WO2010093143A2 - 무선통신 시스템에서 데이터 중계 방법 및 장치 - Google Patents

무선통신 시스템에서 데이터 중계 방법 및 장치 Download PDF

Info

Publication number
WO2010093143A2
WO2010093143A2 PCT/KR2010/000683 KR2010000683W WO2010093143A2 WO 2010093143 A2 WO2010093143 A2 WO 2010093143A2 KR 2010000683 W KR2010000683 W KR 2010000683W WO 2010093143 A2 WO2010093143 A2 WO 2010093143A2
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
data
base station
relay station
relay
Prior art date
Application number
PCT/KR2010/000683
Other languages
English (en)
French (fr)
Other versions
WO2010093143A3 (ko
Inventor
서한별
최영섭
김병훈
Original Assignee
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자주식회사 filed Critical 엘지전자주식회사
Priority to US13/148,883 priority Critical patent/US8665761B2/en
Publication of WO2010093143A2 publication Critical patent/WO2010093143A2/ko
Publication of WO2010093143A3 publication Critical patent/WO2010093143A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/001Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for relaying data by a relay station in a wireless communication system.
  • ITU-R International Telecommunication Union Radio communication sector
  • IP Internet Protocol
  • 3rd Generation Partnership Project is a system standard that meets the requirements of IMT-Advanced.
  • Long Term Evolution is based on Orthogonal Frequency Division Multiple Access (OFDMA) / Single Carrier-Frequency Division Multiple Access (SC-FDMA) transmission.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • LTE-Advanced is being prepared.
  • LTE-Advanced is one of the potential candidates for IMT-Advanced.
  • the main technologies of LTE-Advanced include relay station technology.
  • a relay station is a device for relaying a signal between a base station and a terminal, and is used to expand cell coverage and improve throughput of a wireless communication system.
  • the base station sets the subframe as an uplink subframe
  • the relay station sets the subframe as an uplink subframe or a multicast / broadcast single frequency network (MBSFN) subframe.
  • MMSFN broadcast single frequency network
  • the relay station may receive information from the terminal in the uplink subframe. You will not be able to receive data. As a result, the relay operation of the relay station is not guaranteed in the configuration of the radio frame.
  • An object of the present invention is to provide a data relay method and apparatus in a wireless communication system.
  • a data relay method of a wireless communication system includes receiving data transmitted in a first subframe from a base station in a second subframe; And relaying the data to the terminal in a third subframe, wherein at least one of the first and second subframes is a non-detection subframe in which the terminal does not attempt to detect data.
  • a data relay method of a wireless communication system includes receiving data from a terminal in a first subframe; And relaying the data from the second subframe to the base station, wherein at least one of the second subframe and the third subframe used by the base station to receive the data does not attempt to detect data by the terminal.
  • Non-detection subframe Non-detection subframe.
  • 1 shows a wireless communication system.
  • FIG. 2 shows a wireless communication system using a relay station.
  • FIG. 3 shows an FDD radio frame structure in a 3GPP LTE system.
  • FIG. 4 shows a TDD radio frame structure in a 3GPP LTE system.
  • 5 is an exemplary diagram illustrating a resource grid for one downlink slot.
  • FIG. 6 shows an example of a resource grid for one uplink slot.
  • FIG. 7 shows an example of a downlink subframe structure.
  • FIG. 8 is a diagram illustrating a configuration of a conventional MBSFN subframe.
  • FIG. 9 illustrates examples of subframes set by a base station and a relay station when transmitting and receiving data in a 3GPP LTE TDD system.
  • FIG. 10 is a diagram illustrating an example in which a relay operation of a relay station cannot be guaranteed.
  • FIG. 11 shows examples of a configuration of a subframe set when a base station transmits data to a relay station.
  • 12 to 14 illustrate an example in which a subframe described with reference to FIG. 11 is applied to a radio frame when the base station transmits data to the relay station.
  • 15 shows examples of a configuration of a subframe set when a relay station transmits data to a base station.
  • 16 and 17 illustrate an example in which a subframe described with reference to FIG. 15 is applied to a radio frame when the relay station transmits data to a base station.
  • 18 is a diagram showing an example of enabling the relay operation of the relay station, which could not be guaranteed in the conventional manner, according to the present invention.
  • FIG. 19 shows an example of a data transmission and reception method in a 3GPP LTE FDD system.
  • 20 and 21 illustrate examples of subframes configured as MBSFN subframes.
  • 22 is an example of radio resource allocation for a reference signal of a conventional downlink subframe.
  • FIG. 23 shows an example of radio resource allocation for a reference signal of an MBSFN subframe according to the present embodiment.
  • 24 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention can be implemented.
  • Wideband CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access Network (UTRAN) by the 3rd Generation Partnership Project (3GPP) standardization organization.
  • CDMA2000 is a wireless technology based on code division multiple access (CDMA).
  • HRPD High Rate Packet Data
  • 3GPP2 3rd Generation Partnership Project 2
  • Evolved HRPD eHRPD
  • TDMA Time Division Multiple Access
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data rates for GSM Evolution
  • Orthogonal Frequency Division Multiple Access may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRAN (Evolved-UTRAN), and the like.
  • LTE Long Term Evolution
  • E-UMTS Evolved-UMTS
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • LTE-A Advanced is the evolution of LTE.
  • 3GPP LTE / LTE-A is mainly described, but the technical spirit of the present invention is not limited thereto.
  • 1 shows a wireless communication system.
  • the wireless communication system 10 includes at least one base station 11 (BS).
  • Each base station 11 provides a communication service for a specific geographic area (generally called a cell) 15a, 15b, 15c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • One or more cells may exist in one base station.
  • the UE 12 may be fixed or mobile, and may include a mobile station (MS), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), It may be called other terms such as a wireless modem, a handheld device, and an access terminal (AT).
  • the base station 11 generally refers to a fixed station communicating with the terminal 12, and includes an evolved NodeB (eNB), a Base Transceiver System (BTS), an Access Point, an Access Network (AN), and the like. It may be called in other terms.
  • eNB evolved NodeB
  • BTS Base Transceiver System
  • AN Access Network
  • downlink means communication from the base station to the terminal
  • uplink means communication from the terminal to the base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal, and a receiver may be part of a base station.
  • FIG. 2 shows a wireless communication system using a relay station.
  • a source station In uplink transmission, a source station may be a terminal, and a destination station may be a base station. In downlink transmission, the source station may be a base station, and the target station may be a terminal.
  • the relay station (RS) may be a terminal or a separate relay may be arranged.
  • the base station may perform functions such as connectivity, management, control, and resource allocation between the relay station and the terminal.
  • the relay station may be called another term such as relay node (RN).
  • the base station may have a separate cell ID determined according to each cell.
  • the relay station may or may not have a separate cell ID that is distinct from the base station.
  • the RS does not have a separate cell ID, the RS does not generate its own control signal and transmit it to the UE.
  • such a relay station may be recognized as an antenna that transmits some or all of the signals generated by the base station, rather than being separated from the base station from the terminal.
  • a relay station is referred to as a relay station which does not appear as a separate cell to the terminal.
  • the target station 20 communicates with the source station 30 through the relay station 25.
  • the source station 30 sends uplink data to the destination station 20 and the relay station 25, and the relay station 20 retransmits the received data.
  • the target station 20 also communicates with the source station 31 via relay stations 26 and 27.
  • the source station 31 sends uplink data to the destination station 20 and the relay stations 26, 27, and the relay stations 26, 27 retransmit the received data simultaneously or sequentially.
  • Fig. 2 one target station 20, three relay stations 25, 26, 27 and two source stations 30, 31 are shown, but this is not a limitation.
  • the number of target stations, relay stations, and source stations included in the wireless communication system is not limited.
  • any method such as AF and ADF may be used, and the technical spirit of the present invention is not limited thereto.
  • a terminal connected to and communicated with a base station is referred to as a macro UE
  • a terminal connected to and communicated with a relay station is referred to as a relay UE.
  • the terminal may be used as a generic term for a macro terminal and a relay station terminal, but may be used to refer to a macro terminal or a relay station terminal when specific reference is made.
  • FIG. 3 shows a structure of a frequency division duplex (FDD) radio frame in 3GPP LTE.
  • FDD frequency division duplex
  • a radio frame consists of 10 subframes and one subframe consists of two slots.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • TDD time division duplex
  • one radio frame is composed of two half-frames having a length of 10 ms and a length of 5 ms.
  • One half frame also consists of five subframes having a length of 1 ms.
  • One subframe in TDD may be designated as one of an uplink subframe (UL subframe), a downlink subframe (DL subframe), and a special subframe.
  • One radio frame includes at least one uplink subframe and at least one downlink subframe.
  • One subframe consists of two slots. For example, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • the special subframe is a specific period for separating the uplink and the downlink between the uplink subframe and the downlink subframe.
  • At least one special subframe exists in one radio frame, and the special subframe includes a downlink pilot time slot (DwPTS), a guard period, and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • One slot in the FDD and TDD radio frames includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain.
  • the OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink, and may be referred to as an SC-FDMA symbol or a symbol period according to a multiple access scheme.
  • the RB includes a plurality of consecutive subcarriers in one slot in resource allocation units.
  • the structure of the radio frame described with reference to FIGS. 3 and 4 is 3GPP TS 36.211 V8.3.0 (2008-05) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release) 8) "and sections 4.1 and 4.2.
  • the structure of the radio frame is only an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may be variously changed.
  • 5 is an exemplary diagram illustrating a resource grid for one downlink slot.
  • one downlink slot includes a plurality of OFDM symbols in a time domain.
  • one downlink slot includes 7 OFDMA symbols, and one resource block (RB) is exemplarily described as including 12 subcarriers in a frequency domain, but is not limited thereto.
  • RB resource block
  • Each element on the resource grid is called a resource element, and one resource block RB includes 12 ⁇ 7 resource elements.
  • the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth set in the cell.
  • FIG. 6 shows an example of a resource grid for one uplink slot.
  • an uplink slot includes a plurality of SC-FDMA or OFDM A symbols in a time domain and includes a plurality of resource blocks (RBs) in a frequency domain.
  • one uplink slot includes 7 SC-FDMA symbols, and one resource block includes 12 subcarriers as an example, but is not limited thereto.
  • the number N UL of resource blocks included in an uplink slot depends on an uplink transmission bandwidth set in a cell.
  • FIG. 7 shows an example of a downlink subframe structure.
  • a subframe includes two slots. Up to three OFDM symbols of the first slot in the subframe may be a control region to which control channels are allocated, and the remaining OFDM symbols may be a data region to which a Physical Downlink Shared Channel (PDSCH) is allocated.
  • PDSCH Physical Downlink Shared Channel
  • Downlink control channels include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and the like.
  • the PCFICH transmitted in the first OFDM symbol of the subframe carries information about the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • DCI indicates uplink resource allocation information, downlink resource allocation information, and uplink transmit power control command for certain UE groups.
  • the PHICH carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for a hybrid automatic repeat request (HARQ) of uplink data. That is, the ACK / NACK signal for the uplink data transmitted by the terminal is transmitted on the PHICH.
  • HARQ hybrid automatic repeat request
  • the downlink subframe may be set to an undetected subframe in which the UE does not attempt to detect data (eg, does not detect the reference signal and does not perform the reference signal measurement).
  • the undetected subframe may be, for example, a multicast / broadcast single frequency network (MBSFN) subframe.
  • MMSFN broadcast single frequency network
  • MBSFN subframe can be used for two purposes.
  • the first use is for multimedia broadcast multicast service (MBMS).
  • MBMS is a service that transmits the same signal in multiple cells of a wireless communication system at the same time. Since the signal for MBMS is transmitted in multiple cells at the same time, unicast and reference signals are transmitted in different cells. Should be inserted differently. To this end, the base station informs the terminal of the location of the subframe in which the MBMS signal is transmitted, and a reference signal insertion scheme different from unicast is used in the subframe.
  • the second use is to avoid unnecessary signal reception and reference signal measurement to the terminal to which the base station or relay station is connected.
  • the RS sets the subframe receiving the downlink data from the base station as the MBSFN subframe and informs the UE.
  • the UE (more specifically, the 3GPP LTE release-8 UE) does not detect the reference signal in the MBSFN subframe and does not perform the reference signal measurement.
  • the MBSFN subframe may be used for a second purpose.
  • the MBSFN subframe of FIG. 8 is a diagram illustrating a configuration of an MBSFN subframe used for the second purpose in the conventional scheme. That is, the MBSFN subframe of FIG. 8 shows a structure when it is used for the purpose of not performing unnecessary signal reception operation and reference signal measurement to a terminal connected to a base station or a relay station.
  • the MBSFN subframe 400 may include a control region 410, a guard period 1 420, a guard period 2 430, and a data region 440.
  • the control region 410 is a portion to which control signals transmitted through control signals, for example, PCFICH, PDCCH, and PHICH, are allocated. These control signals may serve to inform the terminal that downlink data will not be transmitted so that the terminals do not take unnecessary data reception operations.
  • the RS may inform the UE that the corresponding subframe is the MBSFN subframe by using two OFDM symbols transmitted in the control region 410 of the MBSFN subframe. Then, the terminal does not perform the reference signal measurement in the remaining interval except for two OFDM symbols in the corresponding subframe.
  • the RS may transmit the control signal of the control region 410 to the UE in the subframe set as the MBSFN subframe, and then receive data from the base station in the data region 440 after the guard period 1 420.
  • Guard interval 1 420 and guard interval 2 430 are times for eliminating interference between data transmission and data reception.
  • the guard interval 1 and the guard interval 2 may be variously changed according to propagation delay between the base station and the relay station.
  • the PDCCH is transmitted on a downlink shared channel (DL-SCH) resource allocation and transmission format, uplink shared channel (UL-SCH) resource allocation information, paging information on a paging channel (PCH), system information on a DL-SCH, and transmitted on a PDSCH.
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging information on a paging channel
  • PDSCH paging channel
  • Resource allocation of a high layer control message such as a random access response, a set of transmission power control commands for individual UEs in a certain UE group, and activation of a Voice over Internet Protocol (VoIP).
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • a CCE may consist of a plurality of resource element groups (REGs) and a resource element group (REG) may consist of four resource elements.
  • the number of CCEs and the coding rate provided by the CCEs The association determines the format of the PDCCH and the possible number of bits of the PDCCH.
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • DCI downlink control information
  • Table 1 shows a structure of a configurable radio frame according to an arrangement of an uplink subframe and a downlink subframe in a 3GPP LTE TDD system.
  • 'D' represents a downlink subframe
  • 'U' represents an uplink subframe
  • 'S' represents a special subframe.
  • the point of time from the downlink to the uplink or the time from the uplink to the downlink is called a switching point.
  • the switch-point periodicity refers to a period in which an uplink subframe and a downlink subframe are repeatedly switched, which is 5 ms or 10 ms.
  • D-> S-> U-> U-> U is switched from the 0th to the 4th subframe, and the 5th to 9th subframe is the same as before.
  • it switches to D-> S-> U-> U-> U. Since one subframe is 1ms, the periodicity at the switching time is 5ms. That is, the periodicity of the switching time is less than one radio frame length (10ms), and the switching mode in the radio frame is repeated once.
  • the base station or the relay station may set the downlink subframe to the MBFSN subframe in Table 1 and then perform data transmission and reception.
  • a wireless communication system is a 3GPP LTE system, i) subframes 0, 1, 5, 6, ii when operating in TDD mode subframes 0, 4, 5, 9 when operating in FDD mode MBSFN It cannot be set as a subframe. This is because it is a subframe that transmits a main control signal such as a synchronization signal (eg, primary synchronization signal and secondary synchronization signal) to the terminal.
  • a main control signal such as a synchronization signal (eg, primary synchronization signal and secondary synchronization signal)
  • FIG. 9 shows examples of subframes set by a base station and a relay station in data transmission and reception in a conventional 3GPP LTE TDD system.
  • 'D', 'M', and 'U' indicate a downlink subframe, an MBSFN subframe, and an uplink subframe in order. Arrows indicate the direction of transmission.
  • the base station BS converts the subframe into the downlink subframe 81.
  • the RS configures the subframe to the MBSFN subframe 82.
  • the RS sets the subframe to the uplink subframe 84, and the BS performs the subframe. It is set to an uplink subframe 83.
  • the BS when the BS transmits data to the RS, the BS configures the subframe as an uplink subframe, and the RS also subframes. Is set to an uplink subframe.
  • the RS transmits data to the base station BS
  • the RS sets the subframe to the uplink subframe
  • the base station BS also sets the subframe to the uplink subframe.
  • the base station BS when the base station BS transmits data to the relay station RS, the base station BS configures the subframe as a downlink subframe and the relay station RS. Sets the subframe to the MBSFN subframe.
  • the RS transmits data to the BS BS, the RS sets the subframe to the MBSFN subframe and the BS sets the subframe to the uplink subframe.
  • the base station should allocate at least one uplink subframe and downlink subframe to be used for communication with the macro terminal in one radio frame.
  • the RS should allocate at least one uplink subframe and a downlink subframe to be used for communication with the RS in one radio frame.
  • such allocation may not be possible.
  • the relay operation of the relay station is not guaranteed for all the configurations of Table 1.
  • a radio frame composed of configuration 5 of Table 1, that is, “DSUDDDDDDD” may be set for a base station (BS), a relay station (RS), and a relay terminal (Relay UE).
  • BS base station
  • RS relay station
  • Relay UE relay terminal
  • only one uplink subframe is included in the radio frame. If a relay station transmits data to a base station in subframe 2, which is only one uplink subframe, the relay station cannot receive data from the relay station terminal in subframe 2 due to self interference. That is, in the entire radio frame, the relay station may not allocate an uplink subframe to communication with the relay station terminal and thus may not guarantee the relay operation of the relay station.
  • the data relay method according to an embodiment of the present invention can solve this problem.
  • the data relay method according to an embodiment of the present invention may be applied to a 3GPP LTE TDD based system. First, the case where the base station transmits data to the relay station will be described.
  • FIG. 11 shows examples of a configuration of a subframe set when a base station transmits data to a relay station.
  • the base station BS sets a subframe for transmitting data to the downlink subframe 101, and the relay station RS sets the subframe for receiving data to the uplink subframe 102.
  • names of subframes are distinguished according to subjects of signal transmission in the same time period, that is, a specific subframe.
  • a subframe in which the base station transmits a signal is called a first subframe
  • a subframe in which the same time interval or relay station receives a signal is called a second subframe (of course, a first subframe between the base station and the relay station).
  • the second subframe may be exactly coincident with time synchronization, but in some cases, there may be a slight offset).
  • the RS may receive data transmitted from the first subframe in the second subframe, but the first subframe is a downlink subframe and the second subframe is configured as an uplink subframe. .
  • the relay station receives data transmitted by the base station in the first subframe in the second subframe, and at least one of the first and second subframes is an undetected subframe in which the terminal does not attempt to detect data (eg, the MBSFN subframe). Frame).
  • the base station configures the first subframe as the MBSFN subframe
  • the macro terminal does not attempt data detection (that is, does not detect the reference signal and does not perform the reference signal measurement).
  • the RS sets the second subframe to the MBSFN subframe, the RS does not attempt to detect the data (that is, does not detect the reference signal and does not perform the reference signal measurement).
  • FIGS. 11E to 11G Such an example is explained in FIGS. 11E to 11G.
  • the base station sets the first subframe for transmitting data to the MBSFN subframe 103, and the relay station sets the second subframe for receiving data to the uplink subframe 104. Set it.
  • the base station is preferably applied when the base station is set to a radio frame configuration with more downlink subframes than the relay station.
  • the base station is set to DL-UL configuration 1 of Table 1
  • the relay station is set to DL-UL configuration 0 of Table 1, the method of FIG. It is preferable to apply.
  • the base station sets the first subframe for transmitting data to the uplink subframe 105, and the relay station sets the second subframe for receiving data to the MBSFN subframe 106.
  • the method of FIG. 11 (f) is preferably applied when the RS is configured with a radio frame configuration in which downlink subframes are larger than that of the base station.
  • the base station is set to configuration 0 in Table 1
  • the relay station is set to configuration 1 in Table 1.
  • both the first subframe and the second subframe are configured as MBSFN subframes 107 and 108.
  • the base station sets the first subframe to the downlink subframe and the relay station sets the second subframe to the MBSFN subframe.
  • the base station sets the first subframe in which the signal is transmitted to the MBSFN subframe.
  • the base station sets the first subframe to the MBSFN subframe, since the macro terminals do not perform reference signal measurement, a reference signal different from the general downlink subframe may be used. .
  • the RS receives the signal from the base station in the second subframe, and then in the third subframe located after one or more subframes in the second subframe. Data can be relayed to the relay station terminal.
  • FIGS. 11 (d) to (g) illustrate an example in which the subframe setting methods described with reference to FIGS. 11 (d) to (g) are applied to a radio frame when the base station transmits data to the relay station.
  • the base station transmits data to the relay station in configuration 1 of Table 1 and the relay station in configuration 0 of Table 1, and in subframe 4 or / and subframe 9 (d) , (e)).
  • a radio frame is set to configuration 0 of Table 1, configuration of a relay station of Configuration 1 of Table 1, and a base station transmits data to a relay station in subframe 4 ((f)).
  • a base station and a relay station are set to a radio frame in configuration 2 of Table 1, and in subframe 4, the base station transmits data to the relay station ((g)).
  • 15 shows examples of a configuration of a subframe set when a relay station transmits data to a base station.
  • the base station BS sets the subframe for receiving data to the MBSFN subframe 141, and the relay station RS sets the subframe for transmitting data to the downlink subframe 142. Set to).
  • the base station BS sets a subframe for receiving data to the MBSFN subframe 143, and the relay station RS sets the subframe for transmitting data to the MBSFN subframe 144.
  • This configuration method enables the relay station to transmit data to the base station, especially when only one uplink subframe is included in the radio frame, that is, in the case of configuration 5 of Table 1. This point will be described later with reference to FIG. 18.
  • the base station and the relay station may have the same radio frame configuration or different configuration.
  • the base station BS sets a subframe for receiving data to the MBSFN subframe 145, and the relay station RS sets the subframe for transmitting data to the uplink subframe 146.
  • Set to This setting method is preferable when the base station is set to a radio frame configuration with more downlink subframes than the relay station. For example, the base station is set to configuration 1 of Table 1 and the relay station to configuration 0 of Table 1.
  • 16 and 17 illustrate an example in which a subframe described with reference to FIGS. 15 (h) to (j) is applied to a radio frame when the relay station transmits data to a base station.
  • a base station BS and a relay station RS are configured with a radio frame in configuration 5 of Table 1, and in subframe 4 or / and subframe 7, the relay station transmits data to the base station ((h) , (i)).
  • a base station BS sets a radio frame to configuration 1 of Table 1, and a relay station RS to configuration 0 of Table 1, and in subframe 4, the relay station transmits data to the base station ((j). ).
  • a configuration of subframes set when the relay station described with reference to FIGS. 15 to 17 transmits data to the base station is shown in Table 3 below.
  • At least one of a subframe in which the relay station transmits data and a subframe used by the base station to receive the data includes a non-detection subframe in which the terminal does not attempt to detect data.
  • a non-detection subframe in which the terminal does not attempt to detect data For example, MBSFN subframe.
  • the RS sets the subframe in which data is transmitted to the MBSFN subframe, the RS does not attempt to detect data.
  • the subframe used for receiving data is set to the MBSFN subframe, the macro terminal does not attempt data detection.
  • the macro terminal does not attempt to detect data, but the RS Data may be received from the relay station (for example, data may be transmitted to the relay station terminal using a frequency resource different from that transmitted by the relay station to the base station).
  • 18 is a diagram showing an example of enabling the relay operation of the relay station, which could not be guaranteed in the conventional manner, according to the present invention.
  • a base station (BS), a relay station (RS) and the relay station terminal is all set to the radio frame in configuration 5 of Table 1.
  • the RS may transmit data to the RS (171).
  • the base station may transmit data to the relay station in subframe 3 ((g)).
  • the relay station may transmit data to the base station in subframe 4 or / and subframe 7 ((h), (i)).
  • a source station eg, base station (BS)
  • a target station eg, relay station (RS)
  • the base station sets the corresponding subframe to the downlink subframe 181 and the relay station sets the corresponding subframe to the MBSFN subframe 182.
  • the relay station includes a data region 440 except for the control region (410 of FIG. 8), guard interval 1 (420 of FIG.
  • 20 and 21 illustrate examples of resource allocation of a subframe configured as an MBSFN subframe.
  • the protection period 201 may be selectively included between the control area 202 and the data area 203 or at the rear end of the data area 203.
  • the guard interval 201 is present between the control region 202 where the RS transmits the PDCCH to the RS, and the data region 203 that receives data from the BS (see FIG. 20), or the base station.
  • After receiving the data from the terminal may optionally be present after the data area (ie, before the control area of the next subframe) (see FIG. 21).
  • radio resources that can be used for data transmission between the base station and the relay station are increased as compared with the conventional MBSFN subframe described with reference to FIG. 8.
  • the base station sets the subframe to the MBSFN subframe such that macro terminals (eg, terminals according to 3GPP LTE release-8) do not perform reference signal measurement in the corresponding subframe. Since the macro terminal does not measure the reference signal in the MBSFN subframe, the base station may use a separate reference signal instead of a general reference signal for data transmitted to the relay station. For example, the reference signal included in the MBSFN subframe may use a smaller resource element than the reference signal included in the downlink subframe.
  • a reference signal uses many resource elements (ie, has a high density) in consideration of a terminal located at a cell boundary.
  • resource elements ie, has a high density
  • a high density reference signal is unnecessary between the base station and the relay station in a good channel condition.
  • a base station transmits data to a relay station in a subframe configured as an MBSFN subframe
  • a new separate reference signal is used, but using fewer resource elements than that of a reference signal used in a general downlink subframe (that is, By using a lower density, more radio resources can be used for data transmission except for the reference signal, thereby increasing the utilization of radio resources.
  • the existing terminal eg 3GPP LTE release-8 terminal
  • radio resources to other relay stations or new terminals eg 3GPP LTE release-10 terminal
  • FIG. 22 is an example of radio resource allocation for a reference signal of a conventional downlink subframe
  • FIG. 23 is an example of radio resource allocation for a reference signal of an MBSFN subframe according to the present embodiment. 22 and 23, it can be seen that the reference signal according to the present embodiment uses half of radio resources as compared to the reference signal of the conventional downlink subframe (the number of reference symbols R is conventionally known. May be small compared to a reference signal). Therefore, more resource elements can be used for data transmission except for the reference signal.
  • the problem of measuring the reference signal generated when transmitting data to the 'relay station not visible to the terminal as a separate cell' is also solved.
  • 'Relay station invisible to the terminal as a separate cell' can not inform the relay station terminals that the base station stops transmitting the reference signal in order to receive the data transmitted.
  • the relay station terminals may not measure the reference signal in the corresponding subframe.
  • the base station can transmit data to the 'relay station that is not visible to the terminal as a separate cell' without a problem with reference signal measurement performance of the relay stations, and the 'relay station that is not visible to the terminal as a separate cell'
  • the transmission may be stopped and data of the base station may be received.
  • 24 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention can be implemented.
  • the base station 2400, the relay station 2430, and the terminal 2450 communicate with each other through a radio channel.
  • the base station 2400 includes a processor 2401 and an RF unit 2402.
  • the RF unit 2402 transmits and / or receives a radio signal.
  • the processor 2401 is connected to the RF unit 2402 and transmits downlink data to the terminal 2450.
  • the processor 2401 performs an operation for implementing the data relay method described with reference to FIGS. 10 to 22.
  • the relay station 2430 includes a processor 2431 and an RF unit 2432.
  • the RF unit 2432 transmits and / or receives a radio signal.
  • the processor 2431 is connected to the RF unit 2432 and relays downlink data received from the base station 2400 to the terminal 2450.
  • the processor 2431 performs an operation for implementing the data relay method described with reference to FIGS. 10 to 22.
  • the terminal 2450 includes a processor 2245 and an RF unit 2452.
  • the RF unit 2452 transmits and / or receives a radio signal.
  • the processor 2251 is connected to the RF unit 2452 and receives downlink data relayed from the relay station 2430.
  • the invention can be implemented in hardware, software or a combination thereof.
  • an application specific integrated circuit ASIC
  • DSP digital signal processing
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the module may be implemented as a module that performs the above-described function.
  • the software may be stored in a memory unit and executed by a processor.
  • the memory unit or processor may employ various means well known to those skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

무선 통신 시스템의 데이터 중계방법은 기지국으로부터 제1 서브프레임에서 전송된 데이터를 제2 서브프레임에서 상기 데이터를 수신하는 단계; 및 상기 제2 서브프레임에서 하나 이상의 서브프레임 후에 위치하는 제 3 서브프레임에서 단말에게 상기 데이터를 중계하는 단계를 포함하되, 상기 제1 및 제 2 서브프레임 중 적어도 어느 하나는 단말이 데이터 검출을 시도하지 않는 비검출 서브프레임인 것을 특징으로 한다. 본 발명에 의하면 무선통신 시스템은 종래의 서브프레임 설정 방식에 비해 효율적인 기지국과 중계국 사이의 데이터 전송이 가능하다. 또한, 높은 무선 자원 할당 효율성을 가지면서 데이터 전송이 가능하다.

Description

무선통신 시스템에서 데이터 중계 방법 및 장치
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 무선통신 시스템에서 중계국이 데이터를 중계하는 방법 및 장치에 관한 것이다.
ITU-R(International Telecommunication Union Radio communication sector)에서는 3세대 이후의 차세대 이동통신 시스템인 IMT(International Mobile Telecommunication)-Advanced의 표준화 작업을 진행하고 있다. IMT-Advanced는 정지 및 저속 이동 상태에서 1Gbps, 고속 이동 상태에서 100Mbps의 데이터 전송률로 IP(Internet Protocol)기반의 멀티미디어 서비스 지원을 목표로 한다.
3GPP(3rd Generation Partnership Project)는 IMT-Advanced의 요구 사항을 충족시키는 시스템 표준으로 OFDMA(Orthogonal Frequency Division Multiple Access)/SC-FDMA(Single Carrier-Frequency Division Multiple Access) 전송방식 기반인 LTE(Long Term Evolution)를 개선한 LTE-Advanced를 준비하고 있다. LTE-Advanced는 IMT-Advanced를 위한 유력한 후보 중의 하나이다. LTE-Advanced의 주요 기술에 중계국(relay station) 기술이 포함된다.
중계국은 기지국과 단말 사이에서 신호를 중계하는 장치인데, 무선통신 시스템의 셀 커버리지(cell coverage)를 확장시키고 전송 용량(throughput)을 향상시키기 위해 사용된다.
이러한 중계국은 전송 안테나와 수신 안테나에서 동일 시간에 동일한 주파수 대역을 사용하여 신호를 전송 및 수신하는 것이 어렵다. 일반적으로 중계국이 전송하는 전송신호가 중계국이 수신하는 수신신호에 비해 전력이 훨씬 크기 때문에 중계국의 전송신호가 수신신호에 간섭으로 작용하여 신호를 왜곡시킬 수 있기 때문이다. 이를 자기 간섭(Self Interference, SI)이라고 한다. 중계국이 자기 간섭 문제를 해결하기 위해서는 복잡한 간섭 제거 과정과 전송 및 수신 신호 처리부의 공간적인 분리가 필요하다. 현실적으로 중계국이 자기 간섭을 제거하는 것은 매우 어려우며, 구현하더라도 많은 비용이 소요될 것이다. 따라서, 통상적으로 중계국이 동일 시간에 동일 주파수 대역을 사용하여 신호를 전송 및 수신하는 것은 어렵다고 가정한다.
자기 간섭 문제 때문에 중계국은 기지국으로부터의 데이터 수신과 단말로의 데이터 전송(또는 기지국으로의 데이터 전송과 단말로부터의 데이터 수신)을 동시에 수행하기 어려우므로 특정 무선 프레임(radio frame)의 구성(configuration)에서 중계동작이 보장되지 않는 경우가 발생할 수 있다.
종래, 중계국이 기지국으로 어떤 서브프레임에서 데이터를 전송하는 경우 기지국은 해당 서브프레임을 상향링크 서브프레임으로 설정하고, 중계국은 해당 서브프레임을 상향링크 서브프레임 또는 MBSFN(Multicast/Broadcast Single Frequency Network) 서브프레임으로 설정한 후 데이터를 전송한다. 이러한 종래의 방식에 의하면 예컨대 무선 프레임 내에 하나의 상향링크 서브프레임만 존재하는 무선 프레임 구성에서, 이 상향링크 서브프레임을 이용하여 중계국이 기지국으로 데이터를 전송하면 해당 상향링크 서브프레임에서 중계국은 단말로부터 데이터를 수신할 수 없게 된다. 결국 이러한 무선 프레임의 구성에서 중계국의 중계동작이 보장되지 않는다.
무선통신 시스템에서 중계국이 효율적으로 데이터를 중계할 수 있도록 하는 방법이 필요하다.
본 발명이 이루고자 하는 기술적 과제는 무선통신 시스템에서 데이터 중계방법 및 장치를 제공하는 데 있다.
일 측면에 있어서, 무선 통신 시스템의 데이터 중계방법은 기지국으로부터 제1 서브프레임에서 전송된 데이터를 제2 서브프레임에서 상기 데이터를 수신하는 단계; 및 제 3 서브프레임에서 단말에게 상기 데이터를 중계하는 단계를 포함하되, 상기 제1 및 제 2 서브프레임 중 적어도 어느 하나는 단말이 데이터 검출을 시도하지 않는 비검출 서브프레임인 것을 특징으로 한다.
다른 측면에 있어서, 무선 통신 시스템의 데이터 중계방법은 제 1 서브프레임에서 단말로부터 데이터를 수신하는 단계; 및 제 2 서브프레임에서 기지국으로 상기 데이터를 중계하는 단계를 포함하되, 상기 제2 서브프레임 및 상기 기지국이 상기 데이터를 수신하는데 사용하는 제 3 서브프레임 중 적어도 어느 하나는 단말이 데이터 검출을 시도하지 않는 비검출 서브프레임인 것을 특징으로 한다.
종래의 서브프레임 설정 방식에 비해 효율적인 기지국과 중계국 사이의 데이터 전송이 가능하다. 또한, 높은 무선 자원 할당 효율성을 가지면서 데이터 전송이 가능하다.
도 1은 무선통신 시스템을 나타낸다.
도 2는 중계국을 이용한 무선통신 시스템을 나타낸다.
도 3은 3GPP LTE 시스템에서 FDD 무선 프레임(radio frame) 구조를 나타낸다.
도 4는 3GPP LTE 시스템에서 TDD 무선 프레임(radio frame) 구조를 나타낸다.
도 5는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 6은 하나의 상향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 7은 하향링크 서브프레임 구조의 일 예를 나타낸다.
도 8은 종래 MBSFN 서브프레임의 구성을 나타내는 도면이다.
도 9는 종래 3GPP LTE TDD 시스템에서 기지국과 중계국이 데이터 송수신 시에 설정하는 서브프레임을 나타낸 예들이다.
도 10은 중계국의 중계동작을 보장할 수 없는 일 예를 나타낸 도면이다.
도 11은 기지국이 중계국에 데이터를 전송하는 경우 설정되는 서브프레임의 구성을 나타낸 예들이다.
도 12 내지 도 14는 기지국이 중계국에 데이터를 전송하는 경우 도 11을 참조하여 설명한 서브프레임의 설정을 무선 프레임에 적용한 예를 나타낸다.
도 15는 중계국이 기지국으로 데이터를 전송하는 경우 설정되는 서브프레임의 구성을 나타낸 예들이다.
도 16 및 도 17은 중계국이 기지국으로 데이터를 전송하는 경우 도 15를 참조하여 설명한 서브프레임의 설정을 무선 프레임에 적용한 예를 나타낸다.
도 18은 종래의 방식으로 보장할 수 없었던 중계국의 중계동작을 본 발명에 따라 가능하게 하는 일 예를 나타낸 도면이다.
도 19는 3GPP LTE FDD 시스템에서 데이터 전송 및 수신 방법을 나타낸 일 예이다.
도 20 및 도 21은 MBSFN 서브프레임으로 설정된 서브프레임의 구성을 나타낸 일 예이다.
도 22는 종래의 하향링크 서브프레임의 기준 신호에 대한 무선 자원 할당의 일 예이다.
도 23은 본 실시예에 따른 MBSFN 서브프레임의 기준 신호에 대한 무선 자원 할당의 일 예이다.
도 24는 본 발명의 실시예가 구현될 수 있는 무선 통신 시스템을 나타낸 블록도이다.
WCDMA(Wideband CDMA)는 3GPP(3rd Generation Partnership Project) 표준화 기구에 의한 UTRAN(Universal Terrestrial Radio Access Network)과 같은 무선 기술로 구현될 수 있다. CDMA2000은 CDMA(Code Division Multiple Access)에 기반한 무선 기술이다. 3GPP2(3rd Generation Partnership Project 2) 표준화 기구에 의한 HRPD(High Rate Packet Data)는 CDMA2000 기반 시스템에서 높은 패킷 데이터 서비스를 제공한다. eHRPD(Evolved HRPD)는 HRPD의 진화이다. TDMA(Time Division Multiple Access)는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA(Orthogonal Frequency Division Multiple Access)는 IEEE 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRAN(Evolved-UTRAN) 등과 같은 무선 기술로 구현될 수 있다.
LTE(Long Term Evolution)은 E-UTRAN를 사용하는 E-UMTS(Evolved-UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access)를 채용한다. LTE-A(Advanced)는 LTE의 진화이다. 이하에서 설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 무선통신 시스템을 나타낸다.
도 1을 참조하면, 무선통신 시스템(10)은 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역(일반적으로 셀(cell)이라고 함)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. 하나의 기지국에는 하나 이상의 셀이 존재할 수 있다.
단말(12;User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(Wireless Device), PDA(Personal Digital Assistant), 무선 모뎀(Wireless Modem), 휴대기기(Handheld Device), AT(Access Terminal) 등 다른 용어로 불릴 수 있다. 기지국(11)은 일반적으로 단말(12)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), AN(Access Network) 등 다른 용어로 불릴 수 있다.
이하에서 하향링크(downlink, DL)는 기지국에서 단말로의 통신을 의미하며, 상향링크(uplink, UL)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 전송기는 기지국의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 전송기는 단말의 일부분일 수 있고, 수신기는 기지국의 일부분일 수 있다.
도 2는 중계국을 이용한 무선통신 시스템을 나타낸다.
상향링크 전송에서 소스국(source station)은 단말이고, 목적국(destination station)은 기지국일 수 있다. 하향링크 전송에서 소스국은 기지국이고, 목적국은 단말일 수 있다. 중계국(Relay Station, RS)은 단말일 수도 있고, 별도의 중계기가 배치될 수 있다. 기지국은 중계국과 단말 간의 연결성(connectivity), 관리(management), 제어 및 자원 할당과 같은 기능을 수행할 수 있다. 중계국은 RN(Relay Node)과 같은 다른 용어로 불릴 수 있다.
기지국은 각각의 셀에 따라 결정되는 별도의 셀 아이디(cell ID)를 가질 수 있다. 중계국은 기지국과 구별되는 별도의 셀 아이디를 가질 수도 있고 가지지 않을 수도 있다. 중계국이 별도의 셀 아이디를 가지지 않는 경우 이러한 중계국은 자신의 제어 신호를 생성하여 단말에게 전송하지 않는다. 따라서, 이러한 중계국은 단말 입장에서 기지국과 분리하여 존재하는 것이 아니라 기지국이 생성한 신호의 일부 혹은 전부를 전송해주는 안테나로 인식될 수 있다. 이하에서 이러한 중계국을 ‘단말에게 별도의 셀로 보이지 않는 중계국’이라 칭한다.
도 2를 참조하면, 목적국(20)은 중계국(25)을 통해 소스국(30)과 통신한다. 상향링크 전송에서, 소스국(30)은 상향링크 데이터를 목적국(20)과 중계국(25)으로 보내고, 중계국(20)은 수신한 데이터를 재전송한다. 목적국(20)은 또한 중계국(26, 27)을 통해 소스국(31)과 통신한다. 상향링크 전송에서, 소스국(31)은 상향링크 데이터를 목적국(20)과 중계국(26, 27)으로 보내고, 중계국(26, 27)은 수신한 데이터를 동시에 또는 순차적으로 재전송한다.
도 2에서 하나의 목적국(20), 3개의 중계국(25, 26, 27) 및 2개의 소스국(30, 31)을 나타내고 있으나, 이는 제한이 아니다. 무선통신 시스템에 포함되는 목적국, 중계국 및 소스국의 수는 제한이 없다. 중계국에서 사용하는 중계 방식으로 AF(amplify and forward) 및 DF(decode and forward) 등 어떠한 방식을 사용할 수 있으며, 본 발명의 기술적 사상은 이에 제한되지 않는다.
이하에서 중계국을 이용한 무선통신 시스템에 있어, 기지국과 연결되어 통신하는 단말을 매크로 단말(macro UE), 중계국과 연결되어 통신하는 단말을 중계국 단말(relay UE)이라 칭하기로 한다. 단말은 매크로 단말 및 중계국 단말을 통칭하는 의미로 사용하나, 구체적인 언급이 있으면 매크로 단말 또는 중계국 단말을 지칭하는 의미로 사용할 수 있다.
도 3은 3GPP LTE에서 FDD(Frequency Division Duplex) 무선 프레임의 구조를 나타낸다.
도 3을 참조하면, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
도 4는 3GPP LTE 시스템에서 TDD(Time Division Duplex) 무선 프레임(radio frame) 구조를 나타낸다.
도 4를 참조하면, 하나의 무선 프레임은 10 ms의 길이를 가지며 5 ms의 길이를 가지는 두 개의 반프레임(half-frame)으로 구성된다. 또한 하나의 반프레임은 1 ms의 길이를 가지는 5개의 서브프레임으로 구성된다. TDD에서 하나의 서브프레임은 상향링크 서브프레임(UL subframe), 하향링크 서브프레임(DL subframe), 특수 서브프레임(special subframe) 중 어느 하나로 지정될 수 있다. 하나의 무선 프레임은 적어도 하나의 상향링크 서브프레임과 적어도 하나의 하향링크 서브프레임을 포함한다. 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
특수 서브프레임은 상향링크 서브프레임과 하향링크 서브프레임 사이에서 상향링크 및 하향링크를 분리시키는 특정 구간(period)이다. 하나의 무선 프레임에는 적어도 하나의 특수 서브프레임이 존재하며, 특수 서브프레임은 DwPTS(Downlink Pilot Time Slot), 보호 구간(Guard Period), UpPTS(Uplink Pilot Time Slot)를 포함한다. DwPTS는 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호 구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
FDD 및 TDD 무선 프레임에서 하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역에서 다수의 자원블록(resource block, RB)을 포함한다. OFDM 심벌은 3GPP LTE가 하향링크에서 OFDMA를 사용하므로 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 다중 접속 방식에 따라 SC-FDMA 심벌 또는 심벌 구간이라고 할 수 있다. RB는 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파를 포함한다.
도 3 및 도 4를 참조하여 설명한 무선 프레임의 구조는 3GPP TS 36.211 V8.3.0 (2008-05) "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"의 4.1절 및 4. 2절을 참조할 수 있다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심벌의 수는 다양하게 변경될 수 있다.
도 5는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 5를 참조하면, 하나의 하향링크 슬롯은 시간 영역(time domain)에서 복수의 OFDM 심벌을 포함한다. 여기서, 하나의 하향링크 슬롯은 7 OFDMA 심벌을 포함하고, 하나의 자원블록(RB)은 주파수 영역에서 12 부반송파(subcarrier)를 포함하는 것을 예시적으로 기술하나, 이에 제한되는 것은 아니다.
자원 그리드 상의 각 요소(element)를 자원 요소(resource element)라 하며, 하나의 자원블록(RB)은 12×7개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록의 수 NDL은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다.
도 6은 하나의 상향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 6을 참조하면, 상향링크 슬롯은 시간 영역에서 복수의 SC-FDMA 또는 OFDM A 심벌을 포함하고, 주파수 영역에서 다수의 자원블록(RB)을 포함한다. 여기서, 하나의 상향링크 슬롯은 7 SC-FDMA 심벌을 포함하고, 하나의 자원블록은 12 부반송파를 포함하는 것을 예시적으로 기술하나, 이에 제한되는 것은 아니다. 상향링크 슬롯에 포함되는 자원블록의 수 NUL은 셀에서 설정되는 상향링크 전송 대역폭(bandwidth)에 종속한다.
도 7은 하향링크 서브프레임 구조의 일 예를 나타낸다.
도 7을 참조하면, 서브프레임은 2개의 슬롯을 포함한다. 서브 프레임내의 첫번째 슬롯의 앞선 최대 3 OFDM 심벌들이 제어채널들이 할당되는 제어영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 될 수 있다.
하향링크 제어채널들은 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 포함된다. 서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임 내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 정보를 나른다. PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 및 임의의 UE 그룹들에 대한 상향링크 전송 파워 제어 명령(Transmit Power Control Command) 등을 가리킨다. PHICH는 상향링크 데이터의 HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement)신호를 나른다. 즉, 단말이 전송한 상향링크 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
하향링크 서브프레임은 단말이 데이터 검출을 시도하지 않는(예컨대, 기준 신호를 검출하지 않고 기준 신호 측정을 수행하지 않는 등) 비검출 서브프레임으로 설정될 수 있다. 비검출 서브프레임은 예를 들어 MBSFN(Multicast/Broadcast Single Frequency Network) 서브프레임일 수 있다.
MBSFN 서브프레임은 2가지 용도로 사용될 수 있다. 첫 번째 용도는 MBMS(Multimedia Broadcast multicast service)를 위한 것이다. MBMS는 무선통신 시스템의 여러 셀에서 동시에 동일한 신호를 전송하는 서비스인데, MBMS를 위한 신호는 여러 셀에서 동시에 전송되기 때문에 셀 마다 서로 다른 데이터가 전송되는 유니캐스트(unicast)와 기준 신호(reference signal)의 삽입 방식이 달라야 한다. 이를 위해 기지국은 MBMS신호가 전송되는 서브프레임의 위치를 단말에게 알리고 해당 서브프레임에서는 유니캐스트와 다른 기준 신호 삽입 방식이 사용된다.
두 번째 용도는 기지국 또는 중계국이 연결된 단말에게 불필요한 신호 수신 동작 및 기준 신호 측정(reference signal measurement)을 수행하지 않도록 하는 것이다. 예를 들어, 3GPP LTE에서 단말이 특정 서브프레임에서 기준 신호를 포함한 어떤 신호도 받지 못하게 되면 오작동을 할 가능성이 있다. 이를 방지하기 위해 중계국이 기지국으로부터 하향링크 데이터를 수신하는 서브프레임을 MBSFN 서브프레임으로 설정하고 단말에게 알린다. 그러면, 단말(보다 구체적으로는 3GPP LTE release-8 단말)은 MBSFN 서브프레임에서 기준 신호를 검출하지 않고, 기준 신호 측정을 수행하지 않는다. 본 발명에서 MBSFN 서브프레임은 두 번째 용도로 사용될 수 있다.
도 8은 종래의 방식에서 상기 두번째 용도로 사용되는 MBSFN 서브프레임의 구성을 나타내는 도면이다. 즉, 도 8의 MBSFN 서브프레임은 기지국 또는 중계국에 연결된 단말에게 불필요한 신호 수신 동작 및 기준 신호 측정을 수행하지 않도록 하는 용도로 사용되는 경우의 구조를 나타낸다.
도 8을 참조하면, MBSFN 서브프레임(400)은 제어영역(control region; 410), 보호 구간 1(420), 보호 구간 2(430), 데이터 영역(data region; 440)을 포함할 수 있다.
제어영역(410)은 제어신호 예컨대, 제어채널들인 PCFICH, PDCCH, PHICH 등을 통해 전송되는 제어신호가 할당되는 부분이다. 이러한 제어신호들은 단말에게 하향링크 데이터가 전송되지 않을 것임을 알려 단말들이 불필요한 데이터 수신 동작을 취하지 않게 하는 역할을 수행할 수 있다. 예를 들어, 중계국은 MBSFN 서브프레임의 제어영역(410)에서 전송되는 2개의 OFDM 심볼을 이용하여 단말에게 해당 서브프레임이 MBSFN 서브프레임이라는 것을 알려줄 수 있다. 그러면, 단말은 해당 서브프레임에서 2개의 OFDM 심볼을 제외한 나머지 구간에서 기준 신호 측정을 수행하지 않는다.
중계국은 MBSFN 서브프레임으로 설정되는 서브프레임에서 제어영역(410)의 제어신호를 단말에게 전송한 후, 보호 구간 1(420) 이후의 데이터 영역(440)에서 기지국으로부터 데이터를 수신할 수 있다.
보호 구간 1(420) 및 보호 구간 2(430)는 데이터 전송 및 데이터 수신 간의 간섭을 제거하기 위한 시간이다. 보호 구간 1 및 보호 구간 2는 기지국과 중계국 사이의 전달 지연(propagation delay)에 따라 다양하게 변경될 수 있다.
이제 하향링크 물리채널인 PDCCH에 대해 기술한다.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷, UL-SCH(Uplink Shared Channel)의 자원 할당 정보, PCH (Paging Channel)상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 (High layer) 제어 메시지의 자원 할당, 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및 VoIP(Voice over Internet Protocol)의 활성화 등을 나를 수 있다. 복수의 PDCCH가 제어영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합(aggregation) 상으로 전송된다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group,REG)으로 구성될 수 있고 자원 요소 그룹(REG)은 4개의 자원 요소로 구성될 수 있다.. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다. PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다.
표 1은 3GPP LTE TDD 시스템에서 상향링크 서브프레임과 하향링크 서브프레임의 배치에 따른 설정 가능한 무선 프레임의 구조를 나타낸다. 표 1에서 'D'는 하향링크 서브프레임, 'U'는 상향링크 서브프레임, 'S'는 특수 서브프레임을 나타낸다.
표 1
Figure PCTKR2010000683-appb-T000001
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환시점(switching point)이라 한다. 표 1에서 전환시점의 주기성(Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms 이다. 예를 들어, 설정(UL-DL Configuration) 0에서 보면, 0번째부터 4번째 서브프레임까지 D->S->U->U->U로 전환되고, 5번째부터 9번째 서브프레임까지 이전과 동일하게 D->S->U->U->U로 전환된다. 하나의 서브프레임이 1ms이므로, 전환시점의 주기성은 5ms이다. 즉, 전환시점의 주기성은 하나의 무선 프레임 길이(10ms)보다 적으며, 무선 프레임 내에서 전환되는 양상이 1회 반복된다.
기지국 또는 중계국은 표 1에서 하향링크 서브프레임을 MBFSN 서브프레임으로 설정한 후 데이터 전송 및 수신을 할 수 있다. 이 경우, MBSFN 서브프레임으로 설정할 수 없는 서브프레임이 있다. 예컨대, 일 예로 무선 통신 시스템이 3GPP LTE 시스템이고, i) TDD 모드로 동작하는 경우 서브프레임 0, 1, 5, 6, ii) FDD 모드로 동작하는 경우 서브프레임 0, 4, 5, 9가 MBSFN 서브프레임으로 설정될 수 없다. 동기화 신호(예컨대, primary synchronization signal, secondary synchronization signal)와 같은 주요 제어신호를 단말에게 전송하는 서브프레임이기 때문이다.
종래, 3GPP LTE TDD 시스템에서 기지국과 중계국 간의 데이터 전송 및 수신 방법을 살펴본다.
도 9는 종래 3GPP LTE TDD 시스템에서 기지국과 중계국이 데이터 전송 및 수신 시에 설정하는 서브프레임을 나타낸 예들이다. 도 9에서 ‘D’, ‘M’, ’U’는 순서대로 하향링크 서브프레임, MBSFN 서브프레임, 상향링크 서브프레임을 나타낸다. 화살표는 전송 방향을 지시한다.
도 9의 (a)를 참조하면, 기지국(BS)이 중계국(RS)으로 데이터를 전송하는 시간 구간 즉, 특정 서브프레임에 대해, 기지국(BS)은 서브프레임을 하향링크 서브프레임(81)으로 설정(configure)하고 중계국(RS)은 서브프레임을 MBSFN 서브프레임(82)으로 설정한다. 중계국(RS)이 기지국(BS)으로 데이터를 전송하는 시간 구간 즉, 특정 서브프레임에 대해, 중계국(RS)은 서브프레임을 상향링크 서브프레임(84)으로 설정하고 기지국(BS)은 서브프레임을 상향링크 서브프레임(83)으로 설정한다.
도 9의 (b)를 참조하면 기지국(BS)이 중계국(RS)으로 데이터를 전송하는 경우, 기지국(BS)은 서브프레임을 상향링크 서브프레임으로 설정(configure)하고 중계국(RS)도 서브프레임을 상향링크 서브프레임으로 설정한다. 중계국(RS)이 기지국(BS)으로 데이터를 전송하는 경우에는, 중계국(RS)은 서브프레임을 상향링크 서브프레임으로 설정하고 기지국(BS)도 서브프레임을 상향링크 서브프레임으로 설정한다.
또한, 도 9의 (c)를 참조하면, 기지국(BS)이 중계국(RS)으로 데이터를 전송하는 경우, 기지국(BS)은 서브프레임을 하향링크 서브프레임으로 설정(configure)하고 중계국(RS)은 서브프레임을 MBSFN 서브프레임으로 설정한다. 중계국(RS)이 기지국(BS)으로 데이터를 전송하는 경우에는, 중계국(RS)은 서브프레임을 MBSFN 서브프레임으로 설정하고 기지국(BS)은 서브프레임을 상향링크 서브프레임으로 설정한다.
중계국을 포함하는 무선통신 시스템에서 기지국은 하나의 무선 프레임에서 매크로 단말과의 통신에 사용할 상향링크 서브프레임 및 하향링크 서브프레임을 적어도 하나 이상 할당하여야 한다. 또한 중계국은 하나의 무선 프레임에서 중계국 단말과의 통신에 사용할 상향링크 서브프레임 및 하향링크 서브프레임을 적어도 하나 이상 할당하여야 한다. 그런데, 도 9를 참조하여 상술한 종래의 서브프레임 설정방식들에 의하면 이러한 할당이 가능하지 않을 수 있다. 다시 말해, 표 1의 모든 구성에 대해 중계국의 중계동작이 보장되는 것은 아니다.
도 10은 종래 중계국의 중계동작을 보장할 수 없는 일 예를 나타낸 도면이다. 도 10을 참조하면, 기지국(BS), 중계국(RS) 및 중계국 단말(Relay UE)에 대해 표 1의 구성 5, 즉 ‘DSUDDDDDDD’로 구성된 무선 프레임이 설정될 수 있다. 이 경우, 무선 프레임 상에서 상향링크 서브프레임이 하나만 포함된다. 하나뿐인 상향링크 서브프레임인 서브프레임 2에서 중계국이 기지국으로 데이터를 전송한다면 중계국은 자기 간섭으로 인해 서브프레임 2에서 중계국 단말로부터 데이터를 수신할 수 없다. 즉, 무선 프레임 전체에서 중계국은 중계국 단말과의 통신에 상향링크 서브프레임을 할당할 수 없는 결과가 되어 중계국의 중계동작을 보장할 수 없다.
본 발명의 일 실시예에 따른 데이터 중계방법에 의하면 이러한 문제점을 해결할 수 있다. 본 발명의 일 실시예에 따른 데이터 중계방법은 3GPP LTE TDD 기반 시스템에 적용될 수 있다. 먼저, 기지국이 중계국에 데이터를 전송하는 경우를 설명한다.
도 11은 기지국이 중계국에 데이터를 전송하는 경우 설정되는 서브프레임의 구성을 나타낸 예들이다.
도 11의 (d)를 참조하면 기지국(BS)은 데이터를 전송하는 서브프레임을 하향링크 서브프레임(101)으로 설정하고, 중계국(RS)은 데이터를 수신하는 서브프레임을 상향링크 서브프레임(102)으로 설정한다. 설명을 명확하게 하기 위해 이하에서, 동일한 시간 구간 즉 특정 서브프레임에 대해 신호 전송의 주체에 따라 서브프레임의 명칭을 구분하도록 한다. 예를 들어, 기지국이 신호를 전송하는 서브프레임을 제1 서브프레임이라 칭하고, 동일한 시간 구간이나 중계국이 신호를 수신하는 서브프레임을 제2 서브프레임이라 칭한다(물론 기지국과 중계국 간에 서 제1 서브프레임 및 제2 서브프레임은 시간 동기가 정확히 일치할 수도 있으나,경우에 따라서는 약간의 오프셋이 존재할 수도 있다). 그러면, 기지국이 제 1 서브프레임에서 전송한 데이터를 중계국이 제 2 서브프레임에서 수신하되, 제 1 서브프레임은 하향링크 서브프레임이고, 제 2 서브프레임은 상향링크 서브프레임으로 설정되는 것으로 표현할 수 있다.
기지국이 제 1 서브프레임에서 전송한 데이터를 중계국이 제 2 서브프레임에서 수신하되, 제 1 및 제 2 서브프레임 중 적어도 어느 하나는 단말이 데이터 검출을 시도하지 않는 비검출 서브프레임(예컨대, MBSFN 서브프레임)일 수 있다. 예를 들어, 기지국이 제 1 서브프레임을 MBSFN 서브프레임으로 설정하는 경우에는 매크로 단말이 데이터 검출을 시도하지 않는다(즉, 기준 신호를 검출하지 않고, 기준 신호 측정을 수행하지 않는다). 그리고, 중계국이 제 2 서브프레임을 MBSFN 서브프레임으로 설정하는 경우에는 중계국 단말이 데이터 검출을 시도하지 않는다(즉, 기준 신호를 검출하지 않고, 기준 신호 측정을 수행하지 않는다). 이러한 예를 도 11의 (e) 내지 (g)에서 설명한다.
도 11의 (e)를 참조하면, 기지국은 데이터를 전송하는 제1 서브프레임을 MBSFN 서브프레임(103)으로 설정하고, 중계국은 데이터를 수신하는 제2 서브프레임을 상향링크 서브프레임(104)으로 설정한다.
상술한 도 11의 (d) 또는 (e)의 방법은, 기지국이 중계국보다 하향링크 서브프레임이 더 많은 무선 프레임 구성으로 설정되는 경우 적용하는 것이 바람직하다. 예를 들어, 기지국은 표 1의 구성 1(DL-UL configuration 1), 중계국은 표 1의 구성 0(DL-UL configuration 0)으로 설정되는 경우에 도 11의 (d) 또는 (e)의 방법을 적용하는 것이 바람직하다.
도 11의 (f)를 참조하면, 기지국은 데이터를 전송하는 제1 서브프레임을 상향링크 서브프레임(105)으로 설정하고, 중계국은 데이터를 수신하는 제2 서브프레임을 MBSFN 서브프레임(106)으로 설정한다. 도 11 (f)의 방법은 중계국이 기지국보다 하향링크 서브프레임이 더 많은 무선 프레임 구성으로 설정되는 경우 적용하는 것이 바람직하다. 예를 들어, 기지국은 표 1의 구성 0, 중계국은 표 1의 구성 1로 설정되는 경우이다.
도 11의 (g)를 참조하면, 제1 서브프레임 및 제2 서브프레임이 모두 MBSFN 서브프레임(107, 108)으로 설정된다. 종래 기술에서는 기지국은 제1 서브프레임을 하향링크 서브프레임으로, 중계국은 제2 서브프레임을 MBSFN 서브프레임으로 설정한다. 종래 기술과 비교하면, 기지국이 신호를 전송하는 제1 서브프레임을 MBSFN 서브프레임으로 설정하는 점에서 차이가 있다. 그리고, 기지국이 제1 서브프레임을 MBSFN 서브프레임으로 설정함으로써 매크로 단말들이 기준 신호의 측정(reference signal measurement)를 수행하지 않기 때문에 일반적인 하향링크 서브프레임과 다른 별도의 기준 신호를 사용할 수 있는 장점이 있다.
상술한 도 11 (d) 내지 (g)와 같은 서브프레임 설정에 의해 중계국은 제2 서브프레임에서 기지국으로부터 신호를 수신한 후, 제2 서브프레임에서 하나 이상의 서브프레임 후에 위치하는 제3 서브프레임에서 중계국 단말에게 데이터를 중계할 수 있다.
도 12 내지 도 14는 기지국이 중계국에 데이터를 전송하는 경우 도 11 (d) 내지 (g)를 참조하여 설명한 서브프레임 설정 방법들을 무선 프레임에 적용한 예를 나타낸다.
도 12를 참조하면, 기지국은 표 1의 구성 1, 중계국은 표 1의 구성 0으로 무선 프레임이 설정되며, 서브프레임 4 또는/및 서브프레임 9에서 기지국은 중계국으로 데이터를 전송한다((d), (e)). 도 13을 참조하면, 기지국은 표 1의 구성 0, 중계국은 표 1의 구성 1로 무선 프레임이 설정되며, 서브프레임 4에서 기지국은 중계국으로 데이터를 전송한다((f)). 도 14를 참조하면, 기지국 및 중계국은 표 1의 구성 2로 무선 프레임이 설정되며, 서브프레임 4에서 기지국은 중계국으로 데이터를 전송한다((g)).
도 11 내지 도 14를 참조하여 설명한 기지국이 중계국에 데이터를 전송하는 경우 설정하는 서브프레임의 구성을 정리하면 아래 표 2와 같다.
표 2
Figure PCTKR2010000683-appb-T000002
이하에서, 중계국이 기지국으로 데이터를 전송하는 경우를 설명한다.
도 15는 중계국이 기지국으로 데이터를 전송하는 경우 설정되는 서브프레임의 구성을 나타낸 예들이다.
도 15의 (h)를 참조하면, 기지국(BS)은 데이터를 수신하는 서브프레임을 MBSFN 서브프레임(141)으로 설정하고, 중계국(RS)은 데이터를 전송하는 서브프레임을 하향링크 서브프레임(142)으로 설정한다.
도 15의 (i)를 참조하면, 기지국(BS)은 데이터를 수신하는 서브프레임을 MBSFN 서브프레임(143)으로 설정하고, 중계국(RS)은 데이터를 전송하는 서브프레임을 MBSFN 서브프레임(144)으로 설정한다. 이러한 설정 방법은 특히 무선 프레임 내에 상향링크 서브프레임이 하나 밖에 포함되어 있지 않은 경우, 즉 표 1의 구성 5의 경우 중계국이 기지국으로 데이터를 전송하는 것을 가능하게 한다. 이 점은 도 18을 참조하여 후술한다. 도 15의 (h), (i)의 경우, 기지국과 중계국은 무선 프레임의 구성이 동일하게 설정될 수도 있고 서로 다르게 설정될 수도 있다.
도 15의 (j)를 참조하면, 기지국(BS)은 데이터를 수신하는 서브프레임을 MBSFN 서브프레임(145)으로 설정하고, 중계국(RS)은 데이터를 전송하는 서브프레임을 상향링크 서브프레임(146)으로 설정한다. 이러한 설정 방법은 기지국이 중계국보다 하향링크 서브프레임이 더 많은 무선 프레임 구성으로 설정되는 경우에 바람직하다. 예를 들어, 기지국은 표 1의 구성 1, 중계국은 표 1의 구성 0으로 설정되는 경우이다.
도 16 및 도 17은 중계국이 기지국으로 데이터를 전송하는 경우 도 15 (h) 내지 (j)를 참조하여 설명한 서브프레임의 설정을 무선 프레임에 적용한 예를 나타낸다.
도 16을 참조하면, 기지국(BS) 및 중계국(RS)은 표 1의 구성 5로 무선 프레임이 설정되며, 서브프레임 4 또는/및 서브프레임 7에서 중계국은 기지국으로 데이터를 전송한다((h),(i)). 도 17을 참조하면, 기지국(BS)은 표 1의 구성 1, 중계국(RS)은 표 1의 구성 0으로 무선 프레임이 설정되며, 서브프레임 4에서 중계국은 기지국으로 데이터를 전송한다((j)).
도 15 내지 도 17을 참조하여 설명한 중계국이 기지국으로 데이터를 전송하는 경우 설정되는 서브프레임의 구성을 정리하면 아래 표 3과 같다.
표 3
Figure PCTKR2010000683-appb-T000003
즉, 중계국이 기지국으로 데이터를 전송하는 경우, 중계국이 데이터를 전송하는 서브프레임 및 기지국이 상기 데이터를 수신하는데 사용하는 서브프레임 중 적어도 어느 하나는 단말이 데이터 검출을 시도하지 않는 비검출 서브프레임(예컨대, MBSFN 서브프레임)일 수 있다. 중계국이 데이터를 전송하는 서브프레임을 MBSFN 서브프레임으로 설정하는 경우에는 중계국 단말이 데이터 검출을 시도하지 않는다. 기지국이 데이터를 수신하는데 사용하는 서브프레임을 MBSFN 서브프레임으로 설정하는 경우에는 매크로 단말이 데이터 검출을 시도하지 않는다. 중계국이 기지국으로 데이터를 전송하는 서브프레임을 하향링크 서브프레임으로 설정하고 기지국이 상기 데이터를 수신하는 서브프레임을 MBSFN 서브프레임으로 설정한 경우에는, 매크로 단말은 데이터 검출을 시도하지 않지만, 중계국 단말은 중계국으로부터 데이터를 수신할 수 있다(예를 들어, 중계국이 기지국으로 전송하는 주파수 자원과 다른 주파수 자원을 사용하여 중계국 단말에게 데이터를 전송할 수 있다)
이상, 도 11 내지 도 17을 참조하여 설명한 바와 같이 기지국과 중계국이 서브프레임을 설정하고 데이터를 송수신하는 경우 종래의 방식으로는 보장할 수 없었던 중계국의 중계동작이 가능하다.
도 18은 종래의 방식으로 보장할 수 없었던 중계국의 중계동작을 본 발명에 따라 가능하게 하는 일 예를 나타낸 도면이다.
도 18을 참조하면, 기지국(BS), 중계국(RS) 및 중계국 단말은 모두 표 1의 구성 5로 무선 프레임이 설정된다. 서브프레임 2에서 중계국 단말은 중계국으로 데이터를 전송할 수 있다(171). 그리고, 기지국은 서브프레임 3에서 중계국으로 데이터를 전송할 수 있다((g)). 또한, 중계국은 서브프레임 4 또는/및 서브프레임 7에서 기지국으로 데이터를 전송할 수 있다((h), (i)).
이하에서는 비검출 서브프레임 예컨대, MBSFN 서브프레임에서 무선 자원의 할당을 설명한다. 설명을 명확히 하기 위해, FDD 시스템에 적용한 예를 기술하지만, 당업자라면 본 발명의 기술적 사상을 TDD 시스템에도 용이하게 적용할 수 있을 것이다.
도 19는 3GPP LTE FDD 시스템에서 데이터 송수신 방법을 나타낸 일 예이다. 도 19를 참조하면, 소스국(예를 들어 기지국(BS))과 목적국(예를 들어 중계국(RS))은 동일한 서브프레임의 상향링크와 하향링크에서 서로 다른 주파수를 사용하여 데이터를 전송한다(183, 184). 기지국과 중계국 간에 데이터를 송수신하는 경우, 기지국은 해당 서브프레임을 하향링크 서브프레임(181)으로 설정하고 중계국은 해당 서브프레임을 MBSFN 서브프레임(182)으로 설정한다. 그런데, 도 8을 참조하여 설명한 바와 같이 중계국은 MBSFN 서브프레임에서 제어 영역(도 8의 410), 보호 구간 1(도 8의 420) 및 보호 구간 2(도 8의 430)를 제외한 데이터 영역(440)에서 기지국으로부터 데이터를 수신한다. 보호 구간 1(도 8의 420) 및 보호 구간 2(도 8의 430)가 반드시 필요한 경우가 아닌 경우에도 이러한 보호 구간들이 존재하여 기지국과 중계국 사이의 무선 자원이 비효율적으로 활용될 수 있다.
도 20 및 도 21은 MBSFN 서브프레임으로 설정된 서브프레임의 자원 할당을 나타낸 예들이다.
도 20 및 도 21을 참조하면, 보호 구간(201)은 제어 영역(202)과 데이터 영역(203) 사이 또는 데이터 영역(203)의 후단에 선택적으로 포함될 수 있다. 예를 들면, 보호 구간(201)은 중계국(RS)이 중계국 단말에게 PDCCH를 전송하는 제어 영역(202)과 기지국으로부터 데이터를 수신하는 데이터 영역(203) 사이에 존재하거나(도 20 참조), 기지국으로부터 데이터 수신을 마친 후 데이터 영역의 후단에 (즉, 다음 서브프레임의 제어 영역 이전에) 선택적으로 존재할 수 있다(도 21 참조). 이처럼 MBSFN 서브프레임을 구성하면, 도 8을 참조하여 설명한 종래의 MBSFN 서브프레임에 비해 기지국과 중계국 간에 데이터 전송에 사용할 수 있는 무선 자원이 증가하는 효과가 있다.
나아가 서브프레임 내에 일체의 보호 구간이 존재하지 않는 경우도 상정할 수 있다. 중계국이 제어 영역(예컨대 PDCCH)을 통해 전송해야 하는 제어신호가 중요하지 않거나 양이 많지 않을 경우에 그러한데, 이 때는 PDCCH 전송이 이루어지는 2개의 OFDM 심볼 구간에서 미리 전송/수신 스위칭을 수행할 수 있다.
기지국은 서브프레임을 MBSFN 서브프레임으로 설정함으로써 매크로 단말들(예컨대 3GPP LTE release-8에 따른 단말들)이 해당 서브프레임에서 기준 신호 측정을 수행하지 않도록 한다. 매크로 단말이 MBSFN 서브프레임에서 기준 신호 측정을 하지 않으므로, 기지국은 중계국으로 전송하는 데이터에 대해서는 일반적인 기준 신호가 아닌 별도의 기준 신호를 사용할 수 있다. 예를 들면, MBSFN 서브프레임에 포함되는 기준 신호는 하향링크 서브프레임에 포함되는 기준 신호에 비해 더 작은 자원 요소(resource element)를 사용하는 것일 수 있다.
일반적으로 기준 신호는 셀 경계에 위치한 단말까지도 고려하여 많은 자원 요소를 사용한다(즉, 밀도가 높다). 그러나, 기지국과 중계국 사이에는 라인 오브 사이트(line of sight)가 형성되고 중계국이 이동성이 없이 고정된 위치에 존재하는 경우가 많기 때문에 채널 상태가 좋은 경우 기지국과 중계국 사이에 높은 밀도의 기준 신호가 불필요한 경우가 많다. 따라서, 기지국이 MBSFN 서브프레임으로 설정된 서브프레임에서 중계국으로 데이터를 전송하는 경우 새로운 별도의 기준 신호를 사용하되, 일반적인 하향링크 서브프레임에서 사용하는 기준 신호의 경우보다 자원 요소를 적게 사용하면(즉, 밀도를 낮추어 사용하면) 더 많은 무선 자원을 기준 신호를 제외한 데이터 전송에 사용할 수 있으므로 무선 자원의 활용성을 높일 수 있다. 물론 기존의 단말(예컨대, 3GPP LTE release-8 단말)은 이러한 낮은 밀도의 기준 신호를 인식하지 못하므로 서비스가 불가능할 수 있지만, 다른 중계국이나 새로운 단말(예컨대 3GPP LTE release-10 단말)들에게 무선 자원을 할당하는 것은 가능하다.
도 22는 종래의 하향링크 서브프레임의 기준 신호에 대한 무선 자원 할당의 일 예이고, 도 23은 본 실시예에 따른 MBSFN 서브프레임의 기준 신호에 대한 무선 자원 할당의 일 예이다. 도 22 및 도 23을 참조하면, 본 실시예에 따른 기준 신호가 종래 하향링크 서브프레임의 기준 신호에 비해 절반의 무선 자원을 사용하는 것을 알 수 있다(기준 심벌(reference symbol, R)의 수가 종래 기준 신호에 비해 작을 수 있다). 따라서 보다 많은 자원 요소(resource element)를 기준 신호를 제외한 데이터 전송에 사용할 수 있다.
기지국이 중계국으로 데이터를 전송하는 서브프레임을 MBSFN 서브프레임으로 설정하는 경우 ‘단말에게 별도의 셀로 보이지 않는 형태의 중계국’으로 데이터를 전송할 때 발생하는 기준 신호 측정 문제도 해결된다. ‘단말에게 별도의 셀로 보이지 않는 형태의 중계국’은 기지국이 전송하는 데이터의 수신을 위해서 기준 신호의 전송을 중단한다는 사실을 중계국 단말들에게 알릴 수가 없다. 그런데, 기지국이 중계국에게 데이터를 전송하는 서브프레임을 MBSFN 서브프레임으로 설정하여 중계국 단말에게 알려줌으로써 중계국 단말들은 해당 서브프레임에서 기준 신호에 대한 측정을 수행하지 않을 수 있다. 결과적으로 기지국은 중계국 단말들의 기준 신호 측정 성능에 대한 문제 없이 ‘단말에게 별도의 셀로 보이지 않는 형태의 중계국’에게 데이터를 전송할 수 있게 되며 ‘단말에게 별도의 셀로 보이지 않는 형태의 중계국’은 기준 신호의 전송을 중지하고 기지국의 데이터를 수신할 수 있다.
도 24는 본 발명의 실시예가 구현될 수 있는 무선 통신 시스템을 나타낸 블록도이다.
도 24를 참조하면, 기지국(2400), 중계국(2430) 및 단말(2450)은 각각 무선채널을 통해 통신한다. 기지국(2400)은 프로세서(2401)과 RF부(2402)를 포함한다. RF부(2402)는 무선 신호를 전송 및/또는 수신한다. 프로세서(2401)은 RF부(2402)와 연결되어, 단말(2450)로 하향링크 데이터를 전송한다. 프로세서(2401)는 도 10 내지 22를 참조하여 설명한 데이터 중계 방법을 구현하기 위한 동작을 수행한다. 중계국(2430)은 프로세서(2431)과 RF부(2432)를 포함한다. RF부(2432)는 무선 신호를 전송 및/또는 수신한다. 프로세서(2431)은 RF부(2432)와 연결되어, 기지국(2400)으로부터 수신한 하향링크 데이터를 단말(2450)로 중계한다. 프로세서(2431)는 도 10 내지 22를 참조하여 설명한 데이터 중계 방법을 구현하기 위한 동작을 수행한다. 단말(2450)은 프로세서(2451)과 RF부(2452)를 포함한다. RF부(2452)는 무선 신호를 전송 및/또는 수신한다. 프로세서(2451)은 RF부(2452)와 연결되어, 중계국(2430)으로부터 중계되는 하향링크 데이터를 수신한다.
본 발명은 하드웨어, 소프트웨어 또는 이들의 조합으로 구현될 수 있다. 하드웨어 구현에 있어, 상술한 기능을 수행하기 위해 디자인된 ASIC(application specific integrated circuit), DSP(digital signal processing), PLD(programmable logic device), FPGA(field programmable gate array), 프로세서, 제어기, 마이크로 프로세서, 다른 전자 유닛 또는 이들의 조합으로 구현될 수 있다. 소프트웨어 구현에 있어, 상술한 기능을 수행하는 모듈로 구현될 수 있다. 소프트웨어는 메모리 유닛에 저장될 수 있고, 프로세서에 의해 실행된다. 메모리 유닛이나 프로세서는 당업자에게 잘 알려진 다양한 수단을 채용할 수 있다.
이상 본 발명에 대하여 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시켜 실시할 수 있음을 이해할 수 있을 것이다. 따라서 상술한 실시예에 한정되지 않고, 본 발명은 이하의 특허청구범위의 범위 내의 모든 실시예들을 포함한다고 할 것이다.

Claims (8)

  1. 무선 통신 시스템에서의 데이터 중계방법에 있어서,
    기지국으로부터 제1 서브프레임에서 전송된 데이터를 제2 서브프레임에서 상기 데이터를 수신하는 단계; 및
    상기 제2 서브프레임에서 하나 이상의 서브프레임 후에 위치하는 제 3 서브프레임에서 단말에게 상기 데이터를 중계하는 단계를 포함하되,
    상기 제1 및 제2 서브프레임 중 적어도 어느 하나는 단말이 데이터 검출을 시도하지 않는 비검출 서브프레임인 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서, 상기 제2 및 제3 서브프레임은 복수의 서브프레임을 포함하는 TDD(Time Division Duplex) 무선 프레임에 속하고, 상기 TDD 무선 프레임은 다음 표 중 어느 하나의 구성인 것을 특징으로 하는 방법.
    Figure PCTKR2010000683-appb-I000001
    상기 표에서 ‘D’는 하향링크 서브프레임, ‘U’는 상향링크 서브프레임, ‘S’는 특수 서브프레임을 의미한다.
  3. 제 2 항에 있어서, 상기 비검출 서브프레임은 상기 TDD 무선 프레임을 구성하는 복수의 하향링크 서브프레임들 중 하나를 MBSFN(Multicast/Broadcast Single Frequency Network) 서브프레임으로 설정한 것임을 특징으로 하는 방법.
  4. 제 1 항에 있어서, 상기 제1 및 제2 서브프레임은 다음 표 중 어느 하나와 같이 설정되는 것을 특징으로 하는 방법.
    Figure PCTKR2010000683-appb-I000002
    상기 표에서 ‘U’는 상향링크 서브프레임, ‘M’은 비검출 서브프레임을 의미한다.
  5. 무선 통신 시스템에서의 데이터 중계방법에 있어서,
    제1 서브프레임에서 단말로부터 데이터를 수신하는 단계; 및
    상기 제1 서브프레임에서 하나 이상의 서브프레임 후에 위치하는 제2 서브프레임에서 기지국으로 상기 데이터를 중계하는 단계를 포함하되,
    상기 제2 서브프레임 및 상기 기지국이 상기 데이터를 수신하는데 사용하는 제3 서브프레임 중 적어도 어느 하나는 단말이 데이터 검출을 시도하지 않는 비검출 서브프레임인 것을 특징으로 하는 방법.
  6. 제 5 항에 있어서, 상기 비검출 서브프레임은 MBSFN 서브프레임인 것을 특징으로 하는 방법.
  7. 제 5 항에 있어서, 상기 제2 및 제3 서브프레임은 다음 표 중 어느 하나와 같이 설정되는 것을 특징으로 하는 방법.
    Figure PCTKR2010000683-appb-I000003
    상기 표에서 ‘D’는 하향링크 서브프레임, ‘U’는 상향링크 서브프레임, ‘M’은 비검출 서브프레임을 의미한다.
  8. 무선 통신 시스템에서의 데이터 중계방법에 있어서,
    기지국이 제1 서브프레임에서 전송한 데이터를 제2 서브프레임에서 수신하는 단계; 및
    상기 제2 서브프레임에서 하나 이상의 서브프레임 후에 위치한 제3 서브프레임에서 단말에게 상기 데이터를 중계하는 단계를 포함하되,
    상기 제1 서브프레임은 하향링크 서브프레임이고, 상기 제2 서브프레임은 상향링크 서브프레임인 것을 특징으로 하는 방법.
PCT/KR2010/000683 2009-02-11 2010-02-04 무선통신 시스템에서 데이터 중계 방법 및 장치 WO2010093143A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/148,883 US8665761B2 (en) 2009-02-11 2010-02-04 Method and apparatus for relaying data in wireless communication system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US15181009P 2009-02-11 2009-02-11
US61/151,810 2009-02-11
US15295109P 2009-02-16 2009-02-16
US61/152,951 2009-02-16
US17007709P 2009-04-16 2009-04-16
US61/170,077 2009-04-16
KR1020090047929A KR101527975B1 (ko) 2009-02-11 2009-06-01 무선통신 시스템에서 데이터 중계 방법
KR10-2009-0047929 2009-06-01

Publications (2)

Publication Number Publication Date
WO2010093143A2 true WO2010093143A2 (ko) 2010-08-19
WO2010093143A3 WO2010093143A3 (ko) 2010-11-25

Family

ID=42562161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000683 WO2010093143A2 (ko) 2009-02-11 2010-02-04 무선통신 시스템에서 데이터 중계 방법 및 장치

Country Status (3)

Country Link
US (1) US8665761B2 (ko)
KR (1) KR101527975B1 (ko)
WO (1) WO2010093143A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118279A1 (en) * 2011-03-03 2012-09-07 Lg Electronics Inc. Method for configuring a backhaul link subframe in a wireless communication system to which a carrier aggregation scheme is applied and an apparatus for the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101753198B (zh) * 2008-12-08 2013-04-17 华为技术有限公司 通信方法、中继器和通信系统
BRPI1015270A2 (pt) * 2009-04-28 2017-09-26 Zte Usa Inc método e sistema para ajuste dinâmico de taxa de alocação de enlace de descida/ enlace de subida em sistemas lte/tdd
WO2010134195A1 (ja) * 2009-05-22 2010-11-25 富士通株式会社 中継装置、無線通信システムおよび無線通信方法
WO2011013962A2 (ko) 2009-07-26 2011-02-03 엘지전자 주식회사 중계기를 위한 제어 정보 및 시스템 정보를 송수신하는 장치 및 그 방법
US9350508B2 (en) * 2010-01-18 2016-05-24 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement in a wireless communication network
WO2012099369A2 (ko) * 2011-01-17 2012-07-26 주식회사 팬택 무선통신 시스템에서 채널 상태 정보의 전송 장치 및 방법
KR101405978B1 (ko) * 2011-07-01 2014-06-12 엘지전자 주식회사 셀 측정 방법 및 단말
KR101973466B1 (ko) 2011-11-01 2019-04-30 엘지전자 주식회사 신호 송수신 방법 및 이를 위한 장치
IN2014CN03338A (ko) 2011-11-04 2015-07-03 Mitsubishi Electric Corp
US10075970B2 (en) 2015-03-15 2018-09-11 Qualcomm Incorporated Mission critical data support in self-contained time division duplex (TDD) subframe structure
US10342012B2 (en) * 2015-03-15 2019-07-02 Qualcomm Incorporated Self-contained time division duplex (TDD) subframe structure
US9936519B2 (en) 2015-03-15 2018-04-03 Qualcomm Incorporated Self-contained time division duplex (TDD) subframe structure for wireless communications
JP6645849B2 (ja) * 2016-01-29 2020-02-14 株式会社東芝 通信中継装置、通信中継システム、方法及びプログラム
CN110087340B (zh) * 2018-01-25 2024-04-05 北京三星通信技术研究有限公司 中继传输的方法及设备
WO2022074118A1 (en) * 2020-10-08 2022-04-14 Sony Group Corporation Re-configurable repeater device and access node reference signals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069848A2 (en) * 2005-12-13 2007-06-21 Lg Electronics Inc. Communication method using relay station in mobile communication system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8675537B2 (en) * 2008-04-07 2014-03-18 Qualcomm Incorporated Method and apparatus for using MBSFN subframes to send unicast information
US20090268658A1 (en) * 2008-04-25 2009-10-29 Samsung Electronics Co., Ltd. Apparatus and method for relay service in wireless communication system
US9867203B2 (en) * 2008-07-11 2018-01-09 Qualcomm Incorporated Synchronous TDM-based communication in dominant interference scenarios
CN101730115B (zh) * 2008-10-24 2013-01-30 华为技术有限公司 中继传输的方法及设备
CN102204143B (zh) * 2008-11-10 2014-12-10 诺基亚公司 对不必要的下行链路控制信道接收和解码的削减
US8537724B2 (en) * 2009-03-17 2013-09-17 Motorola Mobility Llc Relay operation in a wireless communication system
CN102461219B (zh) * 2009-04-17 2015-12-16 黑莓有限公司 组播/广播单频网络子帧物理下行链路控制信道设计
US8855062B2 (en) * 2009-05-28 2014-10-07 Qualcomm Incorporated Dynamic selection of subframe formats in a wireless network
WO2011043636A2 (ko) * 2009-10-09 2011-04-14 엘지전자 주식회사 무선 통신 시스템에서 상향링크 백홀 신호를 송신 및 수신을 위한 장치 및 그 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069848A2 (en) * 2005-12-13 2007-06-21 Lg Electronics Inc. Communication method using relay station in mobile communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: 'Efficient support of relays through MBSFN subframes' 3GPP TSG-RAN WG1 #55, R1-084357 10 November 2008 - 14 November 2008, *
TEXAS INSTRUMENTS: 'Decode and Forward Relays for E-UTRA enhancements' 3GPP TSG-RAN WG 1 #55, R1-084446 10 November 2008 - 14 November 2008, *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118279A1 (en) * 2011-03-03 2012-09-07 Lg Electronics Inc. Method for configuring a backhaul link subframe in a wireless communication system to which a carrier aggregation scheme is applied and an apparatus for the same
US9167567B2 (en) 2011-03-03 2015-10-20 Lg Electronics Inc. Method for configuring a backhaul link subframe in a wireless communication system to which a carrier aggregation scheme is applied and an apparatus for the same
US9413512B2 (en) 2011-03-03 2016-08-09 Lg Electronics Inc. Method for configuring a backhaul link subframe in a wireless communication system to which a carrier aggregation scheme is applied and an apparatus for the same
US9660749B2 (en) 2011-03-03 2017-05-23 Lg Electronics Inc. Method for configuring a backhaul link subframe in a wireless communication system to which a carrier aggregation scheme is applied and an apparatus for the same

Also Published As

Publication number Publication date
US8665761B2 (en) 2014-03-04
US20110310778A1 (en) 2011-12-22
KR101527975B1 (ko) 2015-06-15
WO2010093143A3 (ko) 2010-11-25
KR20100091871A (ko) 2010-08-19

Similar Documents

Publication Publication Date Title
WO2010093143A2 (ko) 무선통신 시스템에서 데이터 중계 방법 및 장치
WO2010079951A2 (en) Method for relaying data in wireless communication system based on time division duplex
WO2010082752A2 (ko) 무선통신 시스템에서 mbsfn 서브프레임을 이용한 신호전송 방법
WO2010101366A2 (ko) 무선통신 시스템에서 중계국의 데이터 수신방법 및 장치
WO2010053339A2 (ko) 무선통신 시스템의 harq 수행방법, 서브프레임 할당 방법 및 장치
WO2010013980A2 (ko) 중계기를 포함하는 무선통신 시스템에서 백홀링크 및 액세스링크를 위한 자원할당 방법
WO2010039003A2 (ko) 무선통신 시스템에서 중계기를 위한 무선 자원 할당 방법 및 장치
WO2010101432A2 (ko) 중계국의 제어신호 전송 방법 및 장치
WO2010077038A2 (en) Method and apparatus for transmitting signal in wireless communication system
WO2010039011A2 (ko) 서브프레임의 무선자원 할당 방법 및 장치
WO2011096699A2 (ko) 사운딩 참조 신호를 전송하는 방법 및 장치
WO2014137170A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신에 관련된 신호 송수신방법 및 장치
WO2010016693A2 (en) Method and apparatus of communication using subframe between base station and relay
WO2012124996A2 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2012124969A2 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2014069877A1 (en) Method and apparatus for configuring a reference signal in a wireless communication system
WO2012102510A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2012118279A1 (en) Method for configuring a backhaul link subframe in a wireless communication system to which a carrier aggregation scheme is applied and an apparatus for the same
WO2011129537A2 (ko) 무선 통신 시스템에서 릴레이 노드를 위한 검색 영역 설정 방법 및 이를 위한 장치
WO2011139114A2 (ko) 무선 통신 시스템에서 기지국과 릴레이 노드 간의 백홀 서브프레임 설정 방법 및 이를 위한 장치
WO2011132946A2 (ko) 무선 통신 시스템에서 기지국과 릴레이 노드 간의 신호 송수신 방법 및 이를 위한 장치
WO2012093826A2 (ko) 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2010085062A2 (en) Method and apparatus of transmitting backhaul signal in wireless communication system including relay station
WO2013019046A2 (ko) 무선 접속 시스템에서 채널 품질 측정 방법 및 이를 위한 장치
WO2013133599A1 (ko) 무선 통신 시스템에서 신호 수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741361

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13148883

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741361

Country of ref document: EP

Kind code of ref document: A2