WO2010013980A2 - 중계기를 포함하는 무선통신 시스템에서 백홀링크 및 액세스링크를 위한 자원할당 방법 - Google Patents

중계기를 포함하는 무선통신 시스템에서 백홀링크 및 액세스링크를 위한 자원할당 방법 Download PDF

Info

Publication number
WO2010013980A2
WO2010013980A2 PCT/KR2009/004307 KR2009004307W WO2010013980A2 WO 2010013980 A2 WO2010013980 A2 WO 2010013980A2 KR 2009004307 W KR2009004307 W KR 2009004307W WO 2010013980 A2 WO2010013980 A2 WO 2010013980A2
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
resource allocation
repeater
allocation pattern
subframe
Prior art date
Application number
PCT/KR2009/004307
Other languages
English (en)
French (fr)
Other versions
WO2010013980A3 (ko
Inventor
박규진
정재훈
조한규
이은종
성두현
Original Assignee
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자주식회사 filed Critical 엘지전자주식회사
Priority to EP09803185.9A priority Critical patent/EP2309813A4/en
Priority to CN200980130357.9A priority patent/CN102113398B/zh
Priority to JP2011521049A priority patent/JP5118253B2/ja
Priority to US13/056,799 priority patent/US8848580B2/en
Publication of WO2010013980A2 publication Critical patent/WO2010013980A2/ko
Publication of WO2010013980A3 publication Critical patent/WO2010013980A3/ko
Priority to US14/321,913 priority patent/US9100149B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/12Fixed resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access

Definitions

  • the present invention relates to wireless communication, and more particularly, to a resource allocation method for a backhaul link and an access link in a wireless communication system including a repeater.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available radio resources.
  • radio resources include time, frequency, code, and transmission power.
  • multiple access systems include time division multiple access (TDMA) systems, code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • TDMA time division multiple access
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • division multiple access division multiple access
  • time, a frequency in an FDMA system, a code in a CDMA system, and a subcarrier and time in an OFDMA system are radio resources.
  • the wireless communication system is a system supporting bidirectional communication.
  • the bidirectional communication may be performed using a time division duplex (TDD) mode, a frequency division duplex (FDD) mode, a half-frequency division duplex (H-FDD) mode, or the like.
  • TDD time division duplex
  • FDD frequency division duplex
  • H-FDD half-frequency division duplex
  • uplink transmission and downlink transmission are divided into time resources.
  • the FDD mode divides uplink transmission and downlink transmission into frequency resources.
  • uplink transmission and downlink transmission are classified into a combination of time and frequency resources.
  • the wireless communication system includes a base station (BS) that provides a service to a cell, which is a predetermined area. Due to the characteristics of the wireless transmission technology, the quality of a transmission signal is affected by the change of wireless environment. In particular, due to various scattering factors (scatters), the movement of the mobile station (MS), etc. around the wireless channel changes over time. In addition, since the receiving power is drastically reduced as the distance between the wireless communication subjects increases, the distance is limited. Thus, in general, a terminal can communicate with the base station when it is within coverage of the base station.
  • the maximum transmission speed between the base station and the terminal, the throughput of the user in the cell, and the throughput of the entire cell may decrease due to factors such as a scattering factor, a moving speed of the terminal, and a distance between transmission and reception.
  • the communication quality between the terminal and the base station may not be good.
  • LTE Long Term Evolution
  • IMT International Mobile Telecommunication
  • the technical problem to be solved by the present invention is to provide a frame structure supporting a repeater.
  • the present invention provides a method for properly allocating resources for a backhaul link between a base station and a repeater and an access link between a repeater and a terminal.
  • a resource allocation method of a repeater may include receiving information on a resource allocation pattern for an access link and a backhaul link of a first frequency band; Setting a resource allocation pattern for an access link and a backhaul link of a second frequency band based on the resource allocation pattern, wherein the first frequency band is any one of an uplink frequency band and a downlink frequency band, The second frequency band is the other one of the uplink frequency band and the downlink frequency band.
  • At least one pair of subframes may be allocated as a subframe for an access link in every frame consisting of 10 subframes in the downlink frequency band.
  • the pair of subframes may be two subframes forming an interval of five subframes.
  • the resource allocation pattern of the first frequency band and the resource allocation pattern of the second frequency band may be set for every frame including 10 subframes.
  • the resource allocation pattern of the first frequency band and the resource allocation pattern of the second frequency band are subframes corresponding to the minimum common multiple of the maximum number of HARQ channels and the number of subframes constituting one frame. It can be set every time.
  • the method may further include resetting an acknowledgment / not-acknowledgement (ACK / NACK) feedback time point for data transmission based on the resource allocation pattern of the first frequency band and the resource allocation pattern of the second frequency band.
  • ACK / NACK acknowledgment / not-acknowledgement
  • the method may further include informing the terminal of the information on the ACK / NACK feedback timing.
  • a resource allocation method of a base station in a wireless communication system including a repeater comprises the steps of setting information on the resource allocation pattern for the access link and backhaul link of the first frequency band and the first frequency band Setting a resource allocation pattern for an access link and a backhaul link of a second frequency band based on the resource allocation pattern, wherein the first frequency band is any one of an uplink frequency band and a downlink frequency band, The second frequency band is the other one of the uplink frequency band and the downlink frequency band.
  • the method may further include transmitting information on the resource allocation pattern of the first frequency band and information on the resource allocation pattern of the second frequency band to the repeater.
  • a repeater includes a processor; And a radio frequency (RF) unit connected to the processor and transmitting and receiving a radio signal, wherein the processor receives information on a resource allocation pattern for an access link and a backhaul link of a first frequency band, and receives the first frequency. Setting a resource allocation pattern for the access link and the backhaul of the second frequency band based on the resource allocation pattern of the band, wherein the first frequency band is any one of an uplink frequency band and a downlink frequency band.
  • the second frequency band is the other one of the uplink frequency band and the downlink frequency band.
  • HARQ hybrid automatic request repeat
  • FIG. 1 is a diagram illustrating a wireless communication system in which a repeater is introduced.
  • FIG. 2 shows a link configuration between a base station, a repeater, and a terminal.
  • 5 shows a structure of a downlink subframe.
  • 6 and 7 show an example of the operation of the repeater.
  • FIG 8 shows a frame structure of a downlink frequency band according to an embodiment of the present invention.
  • FIG. 9 shows a setting cycle of a resource allocation pattern according to an embodiment of the present invention.
  • FIG. 10 shows a setting cycle of a resource allocation pattern according to another embodiment of the present invention.
  • 11 is a signaling method of a resource allocation pattern according to an embodiment of the present invention.
  • FIG. 13 shows a frame structure according to an embodiment of the present invention.
  • FIG. 14 is a flowchart illustrating a method of setting a resource allocation pattern according to an embodiment of the present invention.
  • 15 is a flowchart illustrating a method of setting a resource allocation pattern according to another embodiment of the present invention.
  • 16 illustrates an example of performing HARQ by using a method of setting a resource allocation pattern according to an embodiment of the present invention.
  • 17 is another example of performing HARQ by using a method of setting a resource allocation pattern according to an embodiment of the present invention.
  • FIG. 18 and 19 are diagrams illustrating resource allocation patterns allocated based on criteria 1 to 6.
  • FIG. 18 and 19 are diagrams illustrating resource allocation patterns allocated based on criteria 1 to 6.
  • 20 is a diagram illustrating a resource allocation pattern according to another embodiment of the present invention.
  • 21 is a flowchart illustrating a resource allocation method according to an embodiment of the present invention.
  • 22 is a flowchart illustrating a resource allocation method according to another embodiment of the present invention.
  • FIG. 23 is a block diagram illustrating a wireless communication system including a repeater according to an embodiment of the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access Network (UTRAN) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • 3GPP 3rd Generation Partnership Project
  • LTE long term evolution
  • E-UMTS Evolved UMTS
  • 3GPP LTE-Advanced (hereinafter, LTE-A) is an evolution of 3GPP LTE (hereinafter, LTE).
  • FIG. 1 is a diagram illustrating a wireless communication system in which a repeater is introduced.
  • Wireless communication systems are widely deployed to provide various communication services such as voice and packet data.
  • a wireless communication system includes a terminal 10, 11, 12, 13; mobile station (MS), a base station 20 (base station, BS), and repeaters 30, 31 (relay station, RS).
  • the terminals 10, 11, 12, and 13 may be fixed or mobile, and may be called in other terms such as user equipment (UE), user terminal (UT), subscriber station (SS), and wireless device.
  • the base station 20 generally refers to a fixed station communicating with the terminals 10, 11, 12, and 13, and includes a node-B, a base transceiver system (BTS), and an access point. Point) may be called.
  • One or more cells may exist in one base station 20.
  • the repeaters 30 and 31 are for improving the transmission rate according to the expansion of coverage or the diversity effect, and are located between the terminal and the base station.
  • the repeater may be referred to in other terms such as a relay node, a repeater, a relay, a relay node, and an RN. That is, the terminals 10 and 11 within the coverage of the base station 20 may communicate directly with the base station 20, and the terminals 12 and 13 outside the coverage of the base station 20 may be relays 30 and 31. It communicates with the base station 20 via). Alternatively, even though the terminals 10 and 11 are in the coverage of the base station 20, the base station 20 may communicate with the base station 20 through the repeaters 30 and 31 to improve the transmission speed according to the diversity effect.
  • Repeaters can be classified into several types according to their functions.
  • 'X' means supporting the corresponding function
  • '-' means not supporting the corresponding function
  • '(X)' means supporting or not supporting the corresponding function.
  • Table 1 it is classified as L1 repeater, L2 repeater, L3 repeater, but this is exemplary. This classification is classified according to the schematic characteristics of the L1, L2 and L3 repeaters and does not necessarily match the term.
  • Table 1 shows the femtocell or picocell function. A femtocell or picocell is assumed to support all the functions illustrated in Table 1.
  • the L1 repeater is a repeater having some additional functions with AF (Amplify and Forward).
  • the L1 repeater amplifies a signal received from a base station or a terminal and transmits the signal to the terminal or a base station.
  • the L2 repeater is a repeater having a scheduling function along with DF (Decoding and Forward).
  • the L2 repeater recovers information through a process such as demodulation and decoding of a signal received from a base station or a terminal, and then restores information.
  • a signal is generated through a process such as coding and modulation, and transmitted to a terminal or a base station.
  • the L3 repeater is a repeater having a similar shape to one cell. The L3 repeater supports call connection, release, and mobility functions along with the functions of the L2 repeater.
  • L3 repeaters, femto cells, pico cells have the ability to change some or all of the frame structure. That is, the repeater can control the repeater cell.
  • the L1 repeater and the L2 repeater do not have the ability to change some or all of the frame structure. In other words, the repeater cell can not control the repeater. Therefore, the L1 repeater and the L2 repeater relay only data, and the base station transmits a control channel directly to the terminal.
  • a repeater means an L1 repeater, an L2 repeater, an L3 repeater, a pico cell, a femto cell.
  • the repeater may transmit or receive data using radio resources.
  • Radio resources that can be used by the repeater include time resources, frequency resources, spatial resources, and the like.
  • the time resource is represented by a subframe, a symbol, a slot, etc.
  • the frequency resource is represented by a subcarrier, a resource block, a component carrier, and the like.
  • Resources are represented by spatial multiplexing, antennas, and the like. Such radio resources may be dedicated or shared between the base station-repeater and the repeater-terminal.
  • FIG. 2 shows a link configuration between a base station, a repeater, and a terminal.
  • the link between the base station and the repeater is a backhaul link
  • the link between the repeater and the terminal is an access link.
  • the backhaul link between the base station and the repeater may be operated in a frequency division duplex (FDD) mode or a time division duplex (TDD) mode.
  • the access link between the repeater and the terminal may be operated in the FDD mode or the TDD mode.
  • FDD mode uplink and downlink are distinguished by frequency resources.
  • TDD mode uplink and downlink are distinguished by time resources.
  • the FDD mode when the transmission is performed on the backhaul using a downlink frequency band, it is called a backhaul downlink.
  • a backhaul uplink is performed. Is called.
  • transmission is performed on the access link using a downlink frequency band, it is called an access downlink.
  • transmission is performed on an access link using an uplink frequency band, it is called an access uplink.
  • the access link using a downlink subframe it is called a backhaul downlink
  • the access link using an uplink subframe it is called access downlink.
  • a radio resource allocated for the backhaul link may be called a relay zone, and a radio resource allocated for the access link may be called an access zone.
  • Table 2 summarizes the transmission and reception functions of the base station, the repeater and the terminal.
  • the base station may transmit through the downlink resources and receive through the uplink resources.
  • the terminal may receive through the downlink resources and transmit through the uplink resources.
  • the repeater may transmit or receive through the downlink resources, and may transmit or receive through the uplink resources.
  • the repeater operates in the frequency division duplex (FDD) mode.
  • FDD frequency division duplex
  • the repeater may operate in a time division duplex (TDD) mode or a half-FDD (H-FDD) mode.
  • the repeater uses an Orthogonal Frequency Division Multiple Access (OFDMA) scheme for downlink transmission and a Discrete Fourier Transform-Spread-OFDMA (DFT-s-OFDMA) scheme for uplink transmission.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • DFT-s-OFDMA Discrete Fourier Transform-Spread-OFDMA
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the repeater may include two receiving modules for receiving a signal to the base station and the terminal.
  • the repeater may include two transmission modules for transmitting signals from the base station and the terminal.
  • the transmit and signal modules have been simplified to include only the duplexer and signal processing module.
  • the duplexer can be unidirectional or bidirectional depending on the function. In the case of a unidirectional duplexer, as illustrated in FIG. 3, each duplexer is connected to only one of a transmitting module and a receiving module. On the other hand, in the case of the bidirectional duplexer, each duplexer may be connected to both the transmitting module and the receiving module.
  • the transmission module and the reception module may process signals at different points in time.
  • the repeater is allowed to simultaneously receive signals from the base station and the terminal or transmit signals to the base station and the terminal at the same time. Therefore, the transmitting module or the receiving module can process signals in parallel at the same or similar time points.
  • the downlink signal received from the base station is processed through a fast fourier transform (FFT) and OFDMA baseband reception process.
  • the downlink signal to be transmitted to the terminal is processed through an OFDMA baseband transmission process and an Inverse Fast Fourier Transform (IFFT).
  • the OFDMA baseband transmission process may include a serial to parallel conversion module and a subcarrier mapping module. That is, the OFDMA baseband transmission process converts a high speed serial data symbol into a low speed parallel data symbol and then maps it to a subcarrier.
  • the OFDMA baseband reception process processes the signal in the reverse process to the OFDMA baseband transmission process.
  • the channel link signal received from the terminal is processed through the FFT and DFT-s-OFDMA baseband reception processes.
  • the uplink signal to be transmitted to the base station is processed through the DFT-s-OFDMA baseband transmission process and the IFFT.
  • the DFT-s-OFDMA baseband transmission process may include a serial-to-parallel transform module, a discrete fourier transform (DFT) module, and a subcarrier mapping module.
  • the difference between the DFT-s-OFDMA baseband transmission process and the OFDMA baseband transmission process is that lowering the symbol's peak-to-average power ratio (PAPR) by spreading the data symbols in the frequency domain using DFT before IFFT. It is possible.
  • Data symbols passed through the DFT module may be continuously mapped to the subcarriers or discontinuously mapped.
  • the DFT-s-OFDMA baseband reception process processes the signal in the reverse process to the DFT-s-OFDMA baseband transmission process.
  • a radio frame uses a normal CP (normal cyclic prefix).
  • a radio frame includes 10 subframes, and one subframe may include two slots.
  • One slot may include a plurality of OFDM symbols or SC-FDMA symbols in the time domain.
  • the number of OFDM symbols or SC-FDMA symbols included in one slot may vary depending on the CP structure.
  • one slot may include 7 OFDM symbols or SC-FDMA symbols.
  • the primary synchronization channel In the downlink radio frame, the primary synchronization channel (P-SCH) is located in the last OFDM symbol of the 0 th slot and the 10 th slot.
  • the same primary synchronization signal (PSS) is transmitted through two P-SCHs.
  • P-SCH is used to obtain time domain synchronization and / or frequency domain synchronization such as OFDM symbol synchronization, slot synchronization, and the like.
  • a ZS (Zadoff-Chu) sequence may be used as the PSS, and there is at least one PSS in the wireless communication system.
  • the S-SCH (Secondary Synchronization Channel) is located in the last OFDM symbol in the last OFDM symbol of the 0 th slot and the 10 th slot.
  • the S-SCH and the P-SCH may be located in contiguous OFDM symbols.
  • Different SSS (Secondary Synchronization Signal) is transmitted through two S-SCHs.
  • the S-SCH is used to obtain frame synchronization and / or CP configuration of a cell, that is, usage information of a general CP or an extended CP.
  • One S-SCH uses two SSSs. M-sequence can be used as SSS. That is, one S-SCH includes two m-sequences. For example, when one S-SCH includes 63 subcarriers, two m-sequences of length 31 are mapped to one S-SCH.
  • the physical layer cell ID may be represented by 168 physical layer cell ID groups and three physical layer IDs belonging thereto. That is, the total physical layer cell ID is 504, and is represented by a physical layer cell ID group having a range of 0 to 167 and a physical layer ID having a range of 0 to 2 included in each physical layer cell ID group.
  • Three ZC sequence root indexes representing physical layer IDs are used for the P-SCH, and 168 m-sequence indexes representing a physical layer cell ID group may be used for the S-SCH.
  • P-BCH Physical-Broadcast Channel
  • the P-BCH occupies four OFDM symbols except for the P-SCH and the S-SCH starting from the third OFDM symbol (starting from the 0th OFDM symbol) of the 0th subframe.
  • the P-BCH is used to obtain basic system configuration information of the base station.
  • the P-BCH may have a period of 40 ms.
  • the radio frame structure of FIG. 4 is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe may be variously changed.
  • the subframe 5 shows a structure of a downlink subframe.
  • the subframe includes two slots in the time domain. Up to three OFDM symbols of the first slot in the subframe are the control region to which control channels are allocated, and the remaining OFDM symbols are the data region to which the Physical Downlink Shared Channel (PDSCH) is allocated.
  • PDSCH Physical Downlink Shared Channel
  • Downlink control channels used in 3GPP LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and the like.
  • PCFICH Physical Control Format Indicator Channel
  • PDCH Physical Downlink Control Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the PCFICH transmitted in the first OFDM symbol of the subframe carries information about the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • DCI indicates uplink resource allocation information, downlink resource allocation information, and uplink transmission power control command for arbitrary UE groups.
  • the PHICH carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for an uplink HARQ (Hybrid Automatic Repeat Request). That is, the ACK / NACK signal for the uplink data transmitted by the terminal is transmitted on the PHICH.
  • ACK Acknowledgement
  • NACK Not-Acknowledgement
  • FIG. 6 is an example of downlink transmission using downlink frequency band fD
  • FIG. 7 is an example of uplink transmission using uplink frequency band fU. It is assumed that the downlink frequency band fD and the uplink frequency band fU are different frequency bands.
  • the repeater when the repeater receives a signal from the base station through the backhaul link, the repeater may not transmit the signal through the access link to the terminal. When the repeater transmits a signal to the terminal through the access link, the repeater cannot receive the signal from the base station through the backhaul link.
  • the repeater when the repeater receives a signal from the terminal through the access link, the repeater may not transmit the signal through the backhaul link to the base station.
  • the repeater transmits a signal through the backhaul link to the base station, the repeater cannot receive a signal from the terminal through the access link.
  • the repeater cannot simultaneously transmit and receive signals by using the same frequency band. Therefore, it is necessary to define the frame structure of the repeater for each downlink frequency band and uplink frequency band. In particular, there is a need to allocate resources for backhaul links and access links.
  • the backhaul link and the access link in the downlink frequency band and the uplink frequency band, respectively, are based on a TDM (Time Division Muliplexing) scheme.
  • the backhaul link and the access link may be allocated in one subframe or a multiple of a subframe. For example, one subframe is 1 ms.
  • the pair of subframes in one frame are necessarily allocated for the access link.
  • the pair of subframes may include a kth subframe and a k + 5th subframe.
  • Resource allocation patterns for the backhaul link and the access link are set at predetermined periods.
  • Resource allocation patterns for the backhaul link and the access link are set by the base station and signaled to each repeater.
  • some regions may be set to idle time for TTG / RTG.
  • the resource allocation pattern for the other frequency band is set based on this.
  • FIG 8 shows a frame structure of a downlink frequency band according to an embodiment of the present invention (reference 2).
  • the frame consists of ten subframes.
  • subframe # 0 and subframe # 5 may form a pair.
  • (subframe # 1 and subframe # 6), (subframe # 2 and subframe # 7), (subframe # 3 and subframe # 8), (subframe # 4 and subframe # 9) Are each paired.
  • at least one pair of subframes must be allocated as a subframe for the access link. This is to transmit a control signal to terminals belonging to the coverage of the repeater. Examples of the control signal include a synchronization signal, a broadcast signal, a paging signal, and the like.
  • subframe # 0 and subframe # 5 are subframes through which synchronization signals and / or broadcast signals are transmitted, and subframe # 0, subframe # 4, subframe # 5, and subframe #. 9 is a subframe in which a paging signal is transmitted. Accordingly, (subframe # 0 and subframe # 5) and (subframe # 4 and subframe # 9) may be allocated for the access link.
  • subframe # 0 and subframe # 5 are subframes through which synchronization signals and / or broadcast signals are transmitted
  • subframe # 0, subframe # 1, subframe # 5, and subframe # 6 are A subframe in which a paging signal is transmitted.
  • subframe # 0 and subframe # 5 and (subframe # 1 and subframe # 6) may be allocated for the access link. Accordingly, subframe # 0, subframe # 4, subframe # 5, and subframe # 9 in the FDD frame must be allocated for the access link and cannot be allocated for the backhaul link, and subframe # 0, in the TDD frame. Subframe # 1, subframe # 5, and subframe # 6 must be allocated for the access link and cannot be allocated for the backhaul link.
  • the resource allocation pattern may be set at one frame (10 ms). At this time, since one frame consists of 10 subframes, the resource allocation pattern may be represented by 10 bits.
  • the synchronization signal, the broadcast signal, and the paging signal may be represented by 6 bits except four subframes to which transmission is to be performed. That is, as illustrated in FIG. 9, the subframe # 0, the subframe # 4, the subframe # 5, and the subframe # 9 are set to subframes through which a synchronization signal, a broadcast signal, and a paging signal are transmitted.
  • subframe # 2 subframe # 8 is allocated for the backhaul link
  • subframe # 3 subframe # 6
  • subframe # 7 is allocated for the access link
  • resource allocation pattern is "001110" and Can be expressed as: Here, the interpretation of "0" and "1" can be reversed.
  • 10 shows a setting period of a resource allocation pattern according to another embodiment of the present invention (reference 3).
  • the resource allocation pattern may be set based on a minimum common multiple of a number of HARQ (Hybrid Automatic ReQuest Repeat) channels and the number of subframes included in one frame. That is, according to the LTE standard, since the time from the initial transmission of data to the time of retransmission in the process of performing HARQ is 8ms, the number of HARQ channels may be eight. Therefore, the resource allocation pattern may be set in units of 40 ms, which is the least common multiple of 8 and 10. In this case, the resource allocation pattern may be represented by 40 bits. Alternatively, it may be represented by 24 bits except subframes to which a synchronization signal, a broadcast signal, and a paging signal should be transmitted.
  • HARQ Hybrid Automatic ReQuest Repeat
  • 11 is a signaling method of a resource allocation pattern according to an embodiment of the present invention (reference 4). It is assumed that a plurality of repeaters exist for one base station.
  • the base station sets resource allocation patterns for the backhaul link and the access link for each repeater (S100).
  • the base station transmits information on the resource allocation pattern set for the first repeater to the first repeater (S110), and transmits information on the resource allocation pattern set for the second repeater to the second repeater (S120).
  • the base station may unicast information about the resource allocation pattern to each repeater through the PDSCH.
  • 12 is a signaling method of a resource allocation pattern according to another embodiment of the present invention (reference 4). It is assumed that a plurality of repeaters exist for one base station.
  • the base station sets resource allocation patterns for the backhaul link and the access link in the same manner for all repeaters (S200).
  • the base station broadcasts the information on the resource allocation pattern set in step S200 to all the relays (S210).
  • the base station may broadcast information on the resource allocation pattern to the repeater through the BCH.
  • the base station may unicast information about the same resource allocation pattern for each relay.
  • the base station and the repeater share a table for the predetermined resource allocation pattern, and the base station may signal the index for the specific pattern to the repeater.
  • FIG. 13 shows a frame structure according to an embodiment of the present invention (reference 5).
  • a partial region immediately before the switching is set to an idle time.
  • the idle time may be 1 OFDMA symbol.
  • Subframes # 1 and subframe # 6 switched from accesslink to backhaul link, subframe # 3 and subframe # 9 switched from backhaul link to accesslink are subframes that include idle time, and these subframes are irregular It may be called an (irregular) subframe.
  • FIG. 14 is a flowchart illustrating a method of setting a resource allocation pattern according to an embodiment of the present invention (reference 6).
  • the base station sets resource allocation patterns for the backhaul link and the access link for the downlink frequency band (S300). Based on the resource allocation pattern of the downlink frequency band configured in step S300, the base station sets the resource allocation pattern for the backhaul link and the access link for the uplink frequency band (S310). The resource allocation pattern of the downlink frequency band and the resource allocation pattern of the uplink frequency band set in steps S300 and S310 are transmitted to the repeater (S330).
  • 15 is a flowchart illustrating a method of setting a resource allocation pattern according to another embodiment of the present invention.
  • the base station sets resource allocation patterns for the backhaul link and the access link for the downlink frequency band (S400).
  • the resource allocation pattern of the downlink frequency band set in step S400 is transmitted to the repeater (S410).
  • the repeater sets a resource allocation pattern of the uplink frequency band based on the resource allocation pattern of the downlink frequency band received in step S410 (S420).
  • the resource allocation pattern of the downlink frequency band is first set, and then the resource allocation pattern of the uplink frequency band is set based on this.
  • this is only an example, and it is also possible to first set the resource allocation pattern of the uplink frequency band, and then set the resource allocation pattern of the downlink frequency band based on this.
  • the transmitter Tx transmits data through a subframe, receives an acknowledgment / not-acknowledgement (ACK / NACK) for the subframe from the receiver Rx, and then retransmits the data. do.
  • the time from data transmission of the transmitter to immediately before data retransmission is called a round trip time (RRT).
  • RRT round trip time
  • the receiver feeds back ACK / NACK 4 subframes after the transmitter transmits data.
  • subframe #k of the downlink frequency band is configured as a subframe for the access link.
  • the repeater may transmit downlink data to the terminal through subframe #k of the downlink frequency band.
  • the terminal receiving the downlink data from the repeater feeds back an ACK / NACK for the downlink data after a predetermined time elapses from the transmission time of the downlink data. For example, the UE feeds back ACK / NACK 4 subframes after the downlink data transmission time.
  • subframe # k + 4 of the uplink frequency band is configured as a subframe for the access link, and the terminal feeds back ACK / NACK to the repeater through subframe # k + 4 of the uplink frequency band.
  • 17 is another example of performing HARQ by using a method of setting a resource allocation pattern according to an embodiment of the present invention.
  • subframe #k of the uplink frequency band is configured as a subframe for the access link. Accordingly, the terminal may transmit uplink data to the repeater through subframe #k of the uplink frequency band.
  • the repeater receiving the uplink data from the terminal feeds back an ACK / NACK for the uplink data through PHICH after a predetermined time point (for example, 4 subframes) elapses from the time point of transmitting the uplink data.
  • subframe # k + 4 of the downlink frequency band is configured as a subframe for the access link, and the repeater feeds back ACK / NACK to the terminal through subframe # k + 4 of the downlink frequency band.
  • the k + nth subframe of the uplink frequency band (for example, k + 4th subframe) is also set as a subframe for the access link.
  • the k + nth subframe of the downlink frequency band is also set as a subframe for the access link.
  • the k + nth subframe (eg, the k + 4th subframe) of the uplink frequency band is also used for the backhaul link. It is set to a subframe.
  • the k + nth subframe of the downlink frequency band is also set as a subframe for the backhaul link.
  • FIG. 18 and 19 are diagrams illustrating resource allocation patterns allocated based on criteria 1 to 6.
  • FIG. 18 and 19 are diagrams illustrating resource allocation patterns allocated based on criteria 1 to 6.
  • a resource allocation pattern of a downlink frequency band is first set, and a resource allocation pattern of an uplink frequency band is set based on this.
  • each terminal is a sub-link for the access link of the uplink frequency band after 4 subframes from the downlink data transmission time
  • the ACK / NACK may be fed back to the repeater through the frame.
  • the repeater receives downlink data from the base station through a subframe for the backhaul of the downlink frequency band
  • the repeater receives a subframe for the backhaul of the uplink frequency band 4 subframes after the downlink data transmission time.
  • the ACK / NACK may be fed back to the base station through the frame.
  • subframe # 0 of the uplink frequency band is set as a subframe for the access link based on the relationship with the downlink frequency band.
  • the repeater should feedback ACK / NACK to the terminal through subframe # 4 of the downlink frequency band.
  • subframe # 4 of the downlink frequency band is configured as a subframe for the backhaul link. Therefore, at the prescribed time, the repeater cannot feed back ACK / NACK to the terminal.
  • a resource allocation pattern of an uplink frequency band is first set, and a resource allocation pattern of a downlink frequency band is set based on this.
  • the terminal transmits the uplink data to the repeater through the subframe for the access link of the uplink frequency band
  • the ACK / NACK may be fed back to the terminal.
  • the repeater transmits uplink data to the base station through a subframe for the backhaul of the uplink frequency band
  • the base station receives a subframe for the backhaul of the downlink frequency band 4 subframes after the uplink data transmission time.
  • the ACK / NACK may be fed back to the repeater through the frame.
  • subframe # 0 of the downlink frequency band is set as a subframe for the access link based on the relationship with the uplink frequency band.
  • the repeater transmits downlink data to the terminal through subframe # 0 of the downlink frequency band
  • the terminal should feed back ACK / NACK to the repeater through subframe # 4 of the uplink frequency band.
  • subframe # 4 of the uplink frequency band is configured as a subframe for the backhaul link. Therefore, at the prescribed time, the terminal cannot feed back the ACK / NACK to the repeater.
  • subframe # 2 of the downlink frequency band is configured as a subframe for the backhaul based on the relationship with the uplink frequency band.
  • the repeater should feedback ACK / NACK to the base station through subframe # 6 of the uplink frequency band.
  • subframe # 6 of the uplink frequency band is configured as a subframe for the access link. Therefore, at the specified time, the repeater cannot feed back the ACK / NACK to the base station.
  • an error may also occur when resource allocation patterns for the backhaul link and the access link are set based on a minimum common multiple (40 ms) of the number of HARQ channels and the number of subframes in one frame.
  • 20 is a diagram illustrating a resource allocation pattern according to another embodiment of the present invention.
  • the resource allocation pattern is set to have a period of 40 ms, and the resource allocation pattern of any one of the downlink frequency band or the uplink frequency band is set, and based on this, the resource allocation pattern of the remaining frequency band is set. Set it.
  • the period of the resource allocation pattern is 40ms and the 8 channel HARQ operation is considered, the probability of generating an error as shown in FIGS. 18 and 19 is relatively low.
  • an error may occur because at least one pair of subframes forming 5 subframe intervals in the downlink frequency band as in reference 2 must be set as a subframe for the access link.
  • subframe # 0 and subframe # 5 of the downlink frequency band must be configured as an access link for transmission of a synchronization signal. Therefore, an error may occur in the resource allocation pattern of the corresponding uplink frequency band.
  • FIG. 21 is a flowchart illustrating a resource allocation method according to an embodiment of the present invention.
  • HARQ operation is illustrated in an access link between a repeater and a terminal, this may also be applied to HARQ operation in a backhaul link between a base station and a repeater.
  • the base station sets a resource allocation pattern of the downlink frequency band (S500).
  • the base station transmits information on the resource allocation pattern of the downlink frequency band set in step S500 to the repeater (S510).
  • the repeater sets the resource allocation pattern of the uplink frequency band based on the information on the resource allocation pattern of the downlink frequency band received in step S510 (S520).
  • the repeater resets the HARQ timing (S530).
  • the HARQ timing may mean a period from an initial transmission time of data to a time of feeding back ACK / NACK.
  • the repeater receives data from the terminal (S540), it feeds back ACK / NACK to the terminal according to the HARQ timing set in step S530 (S550).
  • the repeater may perform ACK / NACK feedback to the terminal in subframe # 4 of the downlink frequency band. Can't. This is because subframe # 4 of the downlink frequency band is configured as a subframe for the backhaul link. In this case, the repeater may feed back the ACK / NACK through the PHICH at a time point that is delayed by one subframe from the predefined time point using the HARQ timing reset in step S530.
  • ACK / NACK for data transmitted from the terminal to the repeater in subframe # 1 of the uplink frequency band is configured to be transmitted in subframe # 5 of the downlink frequency band.
  • ACK / NACK for data transmitted in subframe # 0 of the uplink frequency band and ACK / NACK for data transmitted in subframe # 1 of the uplink frequency band in subframe # 5 of the downlink frequency band may be transmitted multiplexed to at least one of time, frequency and code.
  • the repeater may inform the user equipment of the resource allocation pattern of the uplink frequency band, the resource allocation pattern of the downlink frequency band, and information on the reconfigured HARQ timing. Accordingly, the terminal can know the reception time of the ACK / NACK.
  • FIG. 22 is a flowchart illustrating a resource allocation method according to another embodiment of the present invention. This embodiment illustrates HARQ operation in the access link between the repeater and the terminal, but this can also be applied to HARQ operation in the backhaul link between the base station and the terminal.
  • the base station sets a resource allocation pattern of an uplink frequency band (S600).
  • the base station transmits information on the resource allocation pattern of the uplink frequency band set in step S600 to the repeater (S610).
  • the repeater sets the resource allocation pattern of the downlink frequency band based on the information on the resource allocation pattern of the uplink frequency band received in step S610 (S620).
  • the repeater resets the ACK / NACK transmission time point (S630) and informs the terminal of the information on the ACK / NACK transmission time point (S640). .
  • the ACK / NACK transmission time point may be a subframe allocated for an access link four subframes before and after the data transmission time point.
  • the repeater may inform the terminal of the information on the ACK / NACK transmission time point through a PDCCH or a MAC Medium Access Control Protocol Data Unit (PDU). Thereafter, when the repeater transmits downlink data to the terminal (S650), the repeater receives the ACK / NACK from the terminal in accordance with the ACK / NACK transmission time point set in step S640 (S660).
  • the terminal may perform ACK / NACK feedback to the repeater in subframe # 4 of the uplink frequency band. Can't. This is because subframe # 4 of the uplink frequency band is configured as a subframe for the backhaul link.
  • the UE may feed back the ACK / NACK through the PUCCH at a time delayed by one subframe from a predefined time point using the information on the ACK / NACK transmission time point received in step S640.
  • the ACK / NACK for the data transmission indicated by the dotted lines in FIGS. 18 and 19 may be set to be fed back through a subframe capable of transmitting the ACK / NACK among the preceding and subsequent subframes of the corresponding subframe.
  • subframe # 5 of the odd frame or the even frame may be set as a subframe for the backhaul link.
  • the terminal connected to the repeater in an odd frame or an even frame may be restricted from receiving a synchronization signal from the repeater, but may prevent an error in the process of performing HARQ.
  • the terminal connected to the repeater signals the information that the synchronization signal cannot be received in a specific frame in advance, it is possible to prevent the problem caused by the non-transmission of the synchronization signal.
  • FIG. 23 is a block diagram illustrating a wireless communication system including a repeater according to an embodiment of the present invention.
  • a wireless communication system includes a base station 100, a repeater 200, and a terminal 300.
  • the base station 100 includes a processor 110 and a radio frequency (RF) unit 120.
  • the RF unit 120 of the base station transmits and receives a radio signal, and the processor 110 sets the resource allocation pattern of the uplink frequency band and / or the resource allocation pattern of the downlink frequency band, and the resource allocation of the uplink frequency band.
  • the information on the pattern and / or resource allocation pattern of the downlink frequency band is set to transmit to the repeater (200).
  • the repeater 200 includes an RF unit 220 and a processor 210.
  • the RF unit 220 of the repeater 200 transmits and receives a radio signal
  • the processor 210 transmits a radio signal to at least one of an uplink frequency band resource allocation pattern and a downlink frequency band resource allocation pattern. Receiving the information, and setting the remaining resource allocation pattern based on the information.
  • the terminal 300 includes an RF unit 320 and a processor 310.
  • the RF unit 320 of the terminal 300 transmits and receives a radio signal.
  • the processor 310 of the terminal is configured to receive information on the resource allocation pattern of the uplink frequency band and / or the resource allocation pattern of the downlink frequency band from the repeater and communicate with the repeater.
  • the invention can be implemented in hardware, software or a combination thereof.
  • an application specific integrated circuit ASIC
  • DSP digital signal processing
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the module may be implemented as a module that performs the above-described function.
  • the software may be stored in a memory unit and executed by a processor.
  • the memory unit or processor may employ various means well known to those skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

중계기를 포함하는 무선통신 시스템에서 중계기의 자원할당 방법이 제공된다. 상기 방법은 제 1 주파수밴드의 액세스링크 및 백홀링크를 위한 자원할당 패턴에 대한 정보를 수신하는 단계 및 상기 제 1 주파수밴드의 상기 자원할당 패턴에 기초하여 제 2 주파수밴드의 액세스링크 및 백홀링크를 위한 자원할당 패턴을 설정하는 단계를 포함하되, 상기 제 1 주파수밴드는 상향링크 주파수밴드 및 하향링크 주파수밴드 중 어느 하나이고, 상기 제 2 주파수밴드는 상기 상향링크 주파수밴드 및 하향링크 주파수밴드 중 나머지 하나이다.

Description

중계기를 포함하는 무선통신 시스템에서 백홀링크 및 액세스링크를 위한 자원할당 방법
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 중계기를 포함하는 무선통신 시스템에서 백홀링크 및 액세스링크를 위한 자원할당 방법에 관한 것이다.
무선통신 시스템은 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 무선자원을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 무선자원의 예로는 시간, 주파수, 코드, 전송파워 등이 있다. 다중 접속 시스템의 예들로는 TDMA(time division multiple access) 시스템, CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다. TDMA 시스템에서는 시간, FDMA 시스템에서는 주파수, CDMA 시스템에서는 코드, OFDMA 시스템에서는 부반송파(subcarrier) 및 시간이 무선자원이다. 또한, 무선통신 시스템은 양방향 통신을 지원하는 시스템이다. 양방향 통신은 TDD(Time Division Duplex) 모드, FDD(Frequency Division Duplex) 모드, H-FDD(Half-Frequency Division Duplex) 모드 등을 이용하여 수행될 수 있다. TDD 모드는 상향링크 전송과 하향링크 전송을 시간자원으로 구분한다. FDD 모드는 상향링크 전송과 하향링크 전송을 주파수 자원으로 구분한다. H-FDD 모드는 상향링크 전송과 하향링크 전송을 시간자원과 주파수 자원의 조합으로 구분한다.
무선통신 시스템은 소정 영역인 셀(Cell)에 서비스를 제공하는 기지국(Base Station, BS)을 포함한다. 무선전송 기술의 특성상 무선환경의 변화에 따라 전송 신호의 품질이 영향을 받게 된다. 특히, 주변의 다양한 형태의 산란인자(scatters), 단말(Mobile Station, MS)의 이동 등으로 인해 시간에 따라 무선채널이 변화하게 된다. 또한, 무선통신 주체 간의 거리가 증가함에 따라 수신전력이 급격히 줄어들기 때문에 거리에 제약이 따르게 된다. 따라서, 일반적으로 단말은 기지국의 커버리지(Coverage) 내에 있을 때 상기 기지국과 통신할 수 있다. 이와 같이, 산란인자, 단말의 이동 속도, 송수신간 거리 등의 요인으로 기지국과 단말 사이의 최고 전송 속도, 셀 내 사용자의 처리율 및 전체 셀의 처리율이 줄어드는 양상을 띄게 된다. 예를 들어, 단말이 셀 경계에 위치하거나 단말과 기지국 사이에 빌딩과 같은 장애물이 존재하는 경우, 단말과 기지국 사이의 통신 품질은 양호하지 않을 수 있다.
상술한 문제점을 극복하기 위한 노력의 일환으로, 기지국과 단말 간에 전송신호의 열화를 보상할 수 있는 다양한 기술을 도입하여 최고 전송속도, 처리율 향상, 커버리지 확장 등의 효과를 얻을 수 있다. 그 중 한 가지는 무선통신 시스템에 중계기(Relay Station, RS)를 도입하는 것이다. 예컨대, 3세대 이후의 차세대 이동통신 시스템인 IMT(International Mobile Telecommunication)-Advanced의 유력한 후보 중 하나인 LTE(Long Term Evolution)-Advanced는 중요 기술 중에 중계기 기술을 포함한다. 중계기는 기지국과 단말 사이에서 신호를 중계하는 장치인데, 기지국의 커버리지를 확장시키고, 셀 처리율을 향상시킬 수 있다.
본 발명이 해결하고자 하는 기술적 과제는 중계기를 지원하는 프레임 구조를 제공하는 것이다. 특히, 기지국과 중계기 간의 백홀링크 및 중계기와 단말 간의 액세스링크를 위하여 적절하게 자원을 할당하는 방법을 제공하는 것이다.
본 발명의 일 양태에 따른 중계기를 포함하는 무선통신 시스템에서 중계기의 자원할당 방법은 제 1 주파수밴드의 액세스링크 및 백홀링크를 위한 자원할당 패턴에 대한 정보를 수신하는 단계 및 상기 제 1 주파수밴드의 상기 자원할당 패턴에 기초하여 제 2 주파수밴드의 액세스링크 및 백홀링크를 위한 자원할당 패턴을 설정하는 단계를 포함하되, 상기 제 1 주파수밴드는 상향링크 주파수밴드 및 하향링크 주파수밴드 중 어느 하나이고, 상기 제 2 주파수밴드는 상기 상향링크 주파수밴드 및 하향링크 주파수밴드 중 나머지 하나이다.
상기 하향링크 주파수밴드에서 10 서브프레임으로 이루어지는 매 프레임마다 적어도 한 쌍의 서브프레임이 액세스링크를 위한 서브프레임으로 할당될 수 있다.
상기 한 쌍의 서브프레임은 5 서브프레임의 간격을 이루는 두 개의 서브프레임일 수 있다.
상기 제 1 주파수밴드의 자원할당 패턴 및 상기 제 2 주파수밴드의 자원할당 패턴은 10 서브프레임으로 이루어지는 매 프레임마다 설정될 수 있다.
상기 제 1 주파수밴드의 자원할당 패턴 및 상기 제 2 주파수밴드의 자원할당 패턴은 HARQ(Hybrid Automatic Request Repeat) 채널의 최대 개수 및 하나의 프레임을 구성하는 서브프레임의 개수의 최소공배수에 해당하는 서브프레임마다 설정될 수 있다.
상기 제 1 주파수밴드의 자원할당 패턴 및 상기 제 2 주파수밴드의 자원할당 패턴에 기초하여 데이터 전송에 대한 ACK/NACK(Acknowledgement/Not-Acknowledgement) 피드백 시점을 재설정하는 단계를 더 포함할 수 있다.
상기 ACK/NACK 피드백 시점에 대한 정보를 단말에게 알려주는 단계를 더 포함할 수 있다.
본 발명의 일 양태에 따른 중계기를 포함하는 무선통신 시스템에서 기지국의 자원할당 방법은 제 1 주파수밴드의 액세스링크 및 백홀링크를 위한 자원할당 패턴에 대한 정보를 설정하는 단계 및 상기 제 1 주파수밴드의 상기 자원할당 패턴에 기초하여 제 2 주파수밴드의 액세스링크 및 백홀링크를 위한 자원할당 패턴을 설정하는 단계를 포함하되, 상기 제 1 주파수밴드는 상향링크 주파수밴드 및 하향링크 주파수밴드 중 어느 하나이고, 상기 제 2 주파수밴드는 상기 상향링크 주파수밴드 및 하향링크 주파수밴드 중 나머지 하나이다.
상기 제 1 주파수밴드의 자원할당 패턴에 대한 정보 및 상기 제 2 주파수밴드의 자원할당 패턴에 대한 정보를 상기 중계기로 전송하는 단계를 더 포함할 수 있다.
본 발명의 일 양태에 따른 중계기는 프로세서; 및 상기 프로세서에 연결되고, 무선신호를 송수신하는 RF(Radio Frequency)부를 포함하되, 상기 프로세서는 제 1 주파수밴드의 액세스링크 및 백홀링크를 위한 자원할당 패턴에 대한 정보를 수신하고, 상기 제 1 주파수밴드의 상기 자원할당 패턴에 기초하여 제 2 주파수밴드의 액세스링크 및 백홀링크를 위한 자원할당 패턴을 설정하는 것으로 설정되고, 상기 제 1 주파수밴드는 상향링크 주파수밴드 및 하향링크 주파수밴드 중 어느 하나이고, 상기 제 2 주파수밴드는 상기 상향링크 주파수밴드 및 하향링크 주파수밴드 중 나머지 하나이다.
중계기를 지원하는 프레임 구조를 제공할 수 있다. 특히, 백홀링크 및 액세스링크를 위한 자원할당 방법을 제공할 수 있다. 또한, 중계기를 지원하는 프레임 구조에 기초하여 HARQ(Hybrid Automatic Request Repeat)를 수행하는 과정에서 발생할 수 있는 ACK/NACK 전송 시점의 오류를 줄이는 방법을 제공할 수 있다.
도 1은 중계기가 도입된 무선통신 시스템을 나타낸 도면이다.
도 2는 기지국, 중계기 및 단말 사이의 링크 구성을 나타낸다.
도 3은 중계기의 송수신 기능을 장치 관점에서 개념적으로 나타낸다.
도 4는 무선 프레임 구조의 일 예를 나타낸다.
도 5는 하향링크 서브프레임의 구조를 나타낸다.
도 6 및 도 7은 중계기의 동작의 일 예를 나타낸다.
도 8은 본 발명의 일 실시예에 따른 하향링크 주파수밴드의 프레임 구조를 나타낸다.
도 9는 본 발명의 일 실시예에 따른 자원할당 패턴의 설정주기를 나타낸다.
도 10은 본 발명의 다른 실시예에 따른 자원할당 패턴의 설정주기를 나타낸다.
도 11은 본 발명의 일 실시예에 따른 자원할당 패턴의 시그널링 방법이다.
도 12는 본 발명의 다른 실시예에 따른 자원할당 패턴의 시그널링 방법이다.
도 13은 본 발명의 일 실시예에 따른 프레임 구조를 나타낸다.
도 14는 본 발명의 일 실시예에 따른 자원할당 패턴을 설정하는 방법을 나타내는 흐름도이다.
도 15는 본 발명의 다른 실시예에 따른 자원할당 패턴을 설정하는 방법을 나타내는 흐름도이다.
도 16은 본 발명의 일 실시예에 따른 자원할당 패턴을 설정하는 방법을 이용하여 HARQ를 수행하는 일 예이다.
도 17은 본 발명의 일 실시예에 따른 자원할당 패턴을 설정하는 방법을 이용하여 HARQ를 수행하는 다른 예이다.
도 18 및 도 19는 기준 1 내지 기준 6에 기초하여 할당된 자원할당 패턴을 나타내는 도면이다.
도 20은 본 발명의 다른 실시예에 따른 자원할당 패턴을 나타내는 도면이다.
도 21은 본 발명의 일 실시예에 따른 자원할당 방법을 나타내는 흐름도이다.
도 22는 본 발명의 다른 실시예에 따른 자원할당 방법을 나타내는 흐름도이다.
도 23은 본 발명의 일 실시예에 따른 중계기를 포함하는 무선통신 시스템을 나타내는 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier-frequency division multiple access), MC-FDMA(Multi Carrier-Frequency Division Multiple Access) 등과 같은 다양한 무선통신 시스템에 사용될 수 있다. CDMA는 UTRAN(Universal Terrestrial Radio Access Network)이나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다.
설명을 명확하게 하기 위해, 3GPP LTE-Advanced를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 3GPP LTE-Advanced((이하, LTE-A)는 3GPP LTE(이하, LTE)의 진화이다.
도 1은 중계기가 도입된 무선통신 시스템을 나타낸 도면이다. 무선통신 시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다.
도 1을 참조하면, 무선통신 시스템은 단말(10, 11, 12, 13; Mobile Station, MS), 기지국(20; Base Station, BS) 및 중계기(30, 31; Relay Station, RS)를 포함한다. 단말(10, 11, 12, 13)은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 일반적으로 단말(10, 11, 12, 13)과 통신하는 고정된 지점(fixed station)을 말하며, 노드-B(Node-B), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다. 하나의 기지국(20)에는 하나 이상의 셀이 존재할 수 있다. 중계기(30, 31)는 커버리지의 확장 또는 다이버시티 효과에 따른 전송속도의 향상을 위한 것으로, 단말과 기지국 사이에 위치한다. 중계기는 중계 노드, 리피터(Repeater), 릴레이(Relay), 릴레이 노드(Relay Node, RN) 등 다른 용어로 불릴 수 있다. 즉, 기지국(20)의 커버리지 내에 있는 단말들(10, 11)은 기지국(20)과 직접 통신할 수 있고, 기지국(20)의 커버리지 밖에 있는 단말들(12, 13)은 중계기(30, 31)를 거쳐서 기지국(20)과 통신한다. 또는, 기지국(20)의 커버리지 내에 있는 단말들(10, 11)이라 할지라도, 다이버시티 효과에 따른 전송속도의 향상을 위하여 중계기(30, 31)를 거쳐서 기지국(20)과 통신할 수 있다.
중계기는 기능에 따라 아래와 같이 몇 가지 형태로 분류될 수 있다.
표 1
function L1 Relay L2 Relay L3 Relay Pico/Femto Cell
RF function X X X X
Coder/Decoder and CRC - X X X
HARQ - X X X
Multiplex & Demultiplex of MAC SDU - X X X
Priority(Qos) handling - X X X
Scheduling - X X X
Outer ARQ - (X) X X
(Re)-Segmentation and concatenation - (X) X X
Header compression(ROHC) - - - X
Reordering of lower layer SDUs - - - X
In-sequence delivery of upper layer PDUs - - -
Duplicate detection of lower layer SDUs - - - X
Ciphering - - - X
System information broadcast - - X X
RRC Connection set-up and maintenance - - X X
Radio Bearers set-up and maintenance - - - X
Mobility function - - X
MBMS services control - - - X
Paging - - - X
QoS management - - (X) X
UE measurement reporting and control the reporting - - (X) X
NAS signalling handling - - - X
표 1에서 'X'는 해당 기능을 지원함을 의미하고, '-'는 해당 기능을 지원하지 않음을 의미하며, '(X)'는 해당 기능을 지원할 수도 있고 지원하지 않을 수도 있음을 의미한다. 표 1에서 L1 중계기, L2 중계기, L3 중계기로 분류하고 있으나, 이는 예시적인 것이다. 이 분류는 L1, L2, L3 중계기의 개략적인 특징에 따라 분류한 것이며, 반드시 용어와 일치하는 것은 아니다. 참고적으로, 표 1에서 펨토셀 또는 피코셀의 기능을 함께 제시하고 있다. 펨토셀 또는 피코셀은 표 1에서 예시하는 모든 기능을 지원하는 것으로 가정한다. L1 중계기는 AF(Amplify and Forward)와 함께 약간의 추가 기능을 가지는 중계기로, 기지국 또는 단말로부터 수신한 신호를 증폭한 후 단말 또는 기지국으로 전달한다. L2 중계기는 DF(Decoding and Forward)와 함께 스케줄링(Scheduling) 기능을 가지는 중계기로, 기지국 또는 단말로부터 수신한 신호를 복조(Demodulation) 및 복호(Decoding) 등의 과정을 거쳐 정보를 복구한 후, 다시 부호(Coding) 및 변조(Modulation) 등의 과정을 거쳐 신호를 생성하여 단말 또는 기지국으로 전달한다. L3 중계기는 하나의 셀과 유사한 형태를 가지는 중계기로, L2 중계기가 가지는 기능과 함께 호접속, 해제 및 이동성(Mobility Function)을 지원한다. L3 중계기, 펨토 셀, 피코 셀은 프레임 구조의 일부 또는 전부를 변경할 수 있는 능력을 가진다. 즉, 중계기 셀을 제어할 수 있는 중계기이다. 반면, L1 중계기, L2 중계기는 프레임 구조의 일부 또는 전부를 변경할 수 있는 능력을 가지는 않는다. 즉, 중계기 셀을 제어할 수 없는 중계기이다. 따라서, L1 중계기, L2 중계기는 데이터만을 중계하고, 기지국이 단말로 직접 제어 채널을 전송한다. 본 명세서에서, 특별한 제한을 두지 않는다면 중계기는 L1 중계기, L2 중계기, L3 중계기, 피코 셀, 펨토 셀을 의미한다.
중계기는 무선자원을 이용하여 데이터를 전송하거나 수신할 수 있다. 중계기가 이용할 수 있는 무선자원은 시간자원, 주파수 자원, 공간 자원 등을 포함한다. 시간자원은 서브프레임(subframe), 심볼(symbol), 슬롯(slot) 등으로 표현되고, 주파수 자원은 부반송파(subcarrier), 자원블록(resource block), 성분 반송파(component carrier) 등으로 표현되며, 공간 자원은 공간 다중화(spatial multiplexing), 안테나(antenna) 등으로 표현된다. 이와 같은 무선자원은 기지국-중계기 사이, 중계기-단말 사이에 전용되거나, 공유될 수 있다.
도 2는 기지국, 중계기 및 단말 사이의 링크 구성을 나타낸다.
도 2를 참조하면, 기지국과 중계기 사이의 링크는 백홀링크(Backhaul Link)이고, 중계기와 단말 사이의 링크는 액세스링크(Access Link)이다. 기지국과 중계기 사이의 백홀링크는 FDD(Frequency Division Duplex) 모드 또는 TDD(Time Division Duplex) 모드로 운용될 수 있다. 이와 마찬가지로, 중계기와 단말 사이의 액세스 링크도 FDD 모드 또는 TDD 모드로 운용될 수 있다. FDD 모드는 상향링크와 하향링크가 주파수 자원에 의하여 구별된다. TDD 모드는 상향링크와 하향링크가 시간 자원에 의하여 구별된다. FDD 모드에서, 하향링크 주파수밴드를 이용하여 백홀링크로 전송이 이루어지는 경우에는 백홀 하향링크(backhaul downlink)라 하고, 상향링크 주파수밴드를 이용하여 백홀링크로 전송이 이루어지는 경우에는 백홀 상향링크(backhaul uplink)라 한다. 또한, 하향링크 주파수밴드를 이용하여 액세스링크로 전송이 이루어지는 경우에는 액세스 하향링크(access downlink)라 하고, 상향링크 주파수밴드를 이용하여 액세스링크로 전송이 이루어지는 경우에는 액세스 상향링크라 한다. TDD 모드에서, 하향링크 서브프레임을 이용하여 백홀링크로 전송이 이루어지는 경우에는 백홀 하향링크라 하고, 상향링크 서브프레임을 이용하여 백홀링크로 전송이 이루어지는 경우에는 백홀 상향링크라 한다. 또한, 하향링크 서브프레임을 이용하여 액세스링크로 전송이 이루어지는 경우에는 액세스 하향링크라 하고, 상향링크 서브프레임을 이용하여 액세스링크로 전송이 이루어지는 경우에는 액세스 상향링크라 한다. 백홀링크를 위하여 할당된 무선자원을 릴레이존(Relay Zone)이라 하고, 액세스링크를 위하여 할당된 무선자원을 액세스존(Access Zone)이라 할 수 있다.
아래 표 2는 기지국, 중계기 및 단말의 송수신 기능을 정리하고 있다.
표 2
기능 기지국 중계기 단말
하향링크 전송 V V
하향링크 수신 V V
상향링크 전송 V V
상향링크 수신 V V
표 2를 참조하면, 기지국은 하향링크 자원을 통하여 전송하고 상향링크 자원을 통하여 수신할 수 있다. 단말은 하향링크 자원을 통하여 수신하고 상향링크 자원을 통하여 전송할 수 있다. 반면에, 중계기는 하향링크 자원을 통하여 전송하거나 수신할 수 있고, 상향링크 자원을 통하여 전송하거나 수신할 수 있다.
도 3은 중계기의 송수신 기능을 장치 관점에서 개념적으로 나타낸다. 편의상, 본 명세서에서 중계기는 FDD(Frequency Division Duplex) 모드로 동작한다고 가정한다. 그러나, 이는 예시에 지나지 않고, 중계기는 TDD(Time Division Duplex) 모드 또는 H-FDD(Half-FDD) 모드로 동작할 수 있다. 또한, 중계기는 하향링크 전송에 OFDMA(Orthogonal Frequency Division Multiple Access) 방식을 사용하고, 상향링크 전송에 DFT-s-OFDMA(Discrete Fourier Transform-Spread-OFDMA) 방식을 사용한다고 가정한다. DFT-s-OFDMA 방식은 SC-FDMA(Single Carrier-Frequency Division Multiple Access) 방식으로 지칭될 수 있고 양자는 혼용된다.
도 3을 참조하면, 중계기는 기지국 및 단말로 신호를 수신하는 두 개의 수신 모듈을 포함할 수 있다. 또한, 중계기는 기지국 및 단말로부터 신호를 송신하는 두 개의 송신 모듈을 포함할 수 있다. 이해를 돕기 위해, 송신 및 신호 모듈은 듀플렉서 및 신호 처리 모듈만을 포함하는 것으로 간략화 하였다. 듀플렉서는 기능에 따라 단방향과 양방향이 가능하다. 단방향 듀플렉서의 경우, 도 3에서 예시한 바와 같이, 각 듀플렉서는 송신 모듈 및 수신 모듈 중 어느 하나와만 연결된다. 반면, 양방향 듀플렉서의 경우, 각 듀플렉서는 송신 모듈 및 수신 모듈에 모두 연결될 수 있다.
일반적으로 중계기는 송신 및 수신 동작을 동시에 수행하는 것이 제한되므로, 송신 모듈 및 수신 모듈은 서로 다른 시점에 신호를 처리할 수 있다. 반면, 중계기는 기지국 및 단말로부터 동시에 신호를 수신하거나 기지국 및 단말에게 동시에 신호를 전송하는 것이 허용된다. 따라서, 송신 모듈 또는 수신 모듈끼리는 동일 또는 유사한 시점에 병렬적으로 신호를 처리하는 것이 가능하다.
신호 처리 과정을 살펴보면, 기지국으로부터 수신된 하향링크 신호는 FFT(Fast Fourier Transform) 및 OFDMA 기저대역 수신 프로세스를 통해 처리된다. 유사하게, 단말로 전송할 하향링크 신호는 OFDMA 기저대역 전송 프로세스 및 IFFT(Inverse Fast Fourier Transform)를 통해 처리된다. 구체적으로, OFDMA 기저대역 전송 프로세스는 직병렬 변환 모듈 및 부반송파 매핑 모듈을 포함할 수 있다. 즉, OFDMA 기저대역 전송 프로세스는 고속의 직렬 데이터 심볼을 저속의 병렬 데이터 심볼로 변환한 뒤, 부반송파에 매핑하는 역할을 수행한다. OFDMA 기저대역 수신 프로세스는 OFDMA 기저대역 전송 프로세스와 반대 과정으로 신호를 처리한다.
한편, 단말로부터 수신된 샹향링크 신호는 FFT 및 DFT-s-OFDMA 기저대역 수신 프로세스를 통해 처리된다. 유사하게, 기지국으로 전송할 상향링크 신호는 DFT-s-OFDMA 기저대역 전송 프로세스 및 IFFT를 통해 처리된다. 구체적으로, DFT-s-OFDMA 기저대역 전송 프로세스는 직병렬 변환 모듈, DFT(Discrete Fourier Transform) 모듈 및 부반송파 매핑 모듈을 포함할 수 있다. DFT-s-OFDMA 기저대역 전송 프로세스가 OFDMA 기저대역 전송 프로세스와 다른 점은 IFFT 이전에 DFT를 이용하여 데이터 심볼을 주파수 영역에 확산시킴으로써 전송 심볼의 PAPR(Peak-to-Average Power Ratio)을 낮추는 것이 가능하다. DFT 모듈을 거친 데이터 심볼은 부반송파에 연속적으로 매핑되거나 불연속적으로 매핑될 수 있다. DFT-s-OFDMA 기저대역 수신 프로세스는 DFT-s-OFDMA 기저대역 전송 프로세스와 반대 과정으로 신호를 처리한다.
도 4는 무선 프레임 구조의 일 예를 나타낸다. 일반적인 CP(normal cyclic prefix)를 사용하는 무선 프레임이다.
도 4를 참조하면, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임에는 2개의 슬롯(slot)이 포함될 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼 또는 SC-FDMA 심볼을 포함할 수 있다. 하나의 슬롯에 포함되는 OFDM 심볼 또는 SC-FDMA 심볼의 수는 CP 구조에 따라 다양하게 결정될 수 있다. 일반적인 CP 크기를 사용하는 무선 프레임에서, 하나의 슬롯에는 7 OFDM 심볼 또는 SC-FDMA 심볼이 포함될 수 있다. 10ms 무선 프레임에서 OFDM 심볼 또는 SC-FDMA 심볼이 2048 Ts 일 때, 일반적인 CP 크기는 144 Ts 일 수 있다(Ts=1/(15000*2048)sec).
하향링크 무선프레임의 경우, P-SCH(Primary Synchronization Channel)은 0번째 슬롯과 10번째 슬롯의 마지막 OFDM 심볼에 위치한다. 2개의 P-SCH를 통하여 동일한 PSS(Primary Synchronization Signal)이 전송된다. P-SCH는 OFDM 심볼 동기, 슬롯 동기 등의 시간 영역(time domain) 동기 및/또는 주파수 영역 동기를 얻기 위해 사용된다. PSS로 ZC(Zadoff-Chu) 시퀀스가 사용될 수 있으며, 무선통신 시스템에는 적어도 하나의 PSS가 있다.
S-SCH(Secondary Synchronization Channel)은 0번째 슬롯과 10번째 슬롯의 마지막 OFDM 심볼에서 바로 이전 OFDM 심볼에 위치한다. S-SCH와 P-SCH는 인접하는(contiguous) OFDM 심볼에 위치할 수 있다. 2개의 S-SCH을 통하여 서로 다른 SSS(Secondary Synchronization Signal)이 전송된다. S-SCH는 프레임 동기 및/또는 셀의 CP 구성, 즉 일반적인 CP 또는 확장 CP(extended CP)의 사용 정보를 얻기 위해 사용된다. 하나의 S-SCH는 2개의 SSS를 사용한다. SSS로 m-시퀀스가 사용될 수 있다. 즉, 하나의 S-SCH에는 2개의 m-시퀀스가 포함된다. 예를 들어, 하나의 S-SCH가 63 부반송파를 포함한다고 할 때, 길이 31인 m-시퀀스 2개가 하나의 S-SCH에 맵핑된다.
P-SCH 및 S-SCH은 물리계층 셀 ID(physical-layer cell identities)를 얻기 위해 사용된다. 물리계층 셀 ID는 168개의 물리계층 셀 ID 그룹 및 이에 속하는 3개의 물리계층 ID로 표현될 수 있다. 즉, 전체 물리계층 셀 ID는 504개이며, 0 내지 167 범위를 가지는 물리계층 셀 ID 그룹 및 각 물리계층 셀 ID 그룹에 포함되는 0 내지 2 범위를 가지는 물리계층 ID로 표현된다. P-SCH에는 물리계층 ID는 나타내는 3개의 ZC 시퀀스 원시 인덱스(root index)가 사용되고, S-SCH은 물리계층 셀 ID 그룹을 나타내는 168개의 m-시퀀스 인덱스가 사용될 수 있다.
P-BCH(Physical-Broadcast Channel)은 무선 프레임에서 0번째 서브프레임에 위치한다. P-BCH은 0번째 서브프레임의 3번째 OFDM 심볼(0번째 OFDM 심볼부터 시작된다)에서 시작하여 P-SCH 및 S-SCH를 제외한 4개의 OFDM 심볼을 차지한다. P-BCH는 해당 기지국의 기본적인 시스템 구성(system configuration) 정보를 얻기 위해 사용된다. P-BCH는 40ms의 주기를 가질 수 있다.
도 4의 무선 프레임 구조는 예시에 불과하고, 상기 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수는 다양하게 변경될 수 있다.
도 5는 하향링크 서브프레임의 구조를 나타낸다. 서브프레임은 시간 영역에서 2개의 슬롯을 포함한다. 서브프레임내의 첫번째 슬롯의 앞선 최대 3 OFDM 심벌들이 제어채널들이 할당되는 제어영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다.
3GPP LTE에서 사용되는 하향링크 제어채널들은 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다. 서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 정보를 나른다. PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 및 임의의 UE 그룹들에 대한 상향링크 전송 파워 제어 명령 등을 가리킨다. PHICH는 상향링크 HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. 즉, 단말이 전송한 상향링크 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
도 6 및 도 7은 중계기의 동작의 일 예를 나타낸다. 이하, 다르게 언급하지 않는 한, 중계기에 연결된 단말을 간단히 단말로 지칭한다. 도 6은 하향링크 주파수밴드(fD)를 사용하는 하향링크 전송의 일 예이고, 도 7은 상향링크 주파수밴드(fU)를 사용하는 상향링크 전송의 일 예이다. 하향링크 주파수밴드(fD)와 상향링크 주파수밴드(fU)는 서로 다른 주파수밴드인 것으로 가정한다.
도 6을 참조하면, 중계기가 기지국으로부터 백홀링크를 통하여 신호를 수신할 때, 중계기는 단말로 액세스링크를 통하여 신호를 전송할 수 없다. 중계기가 단말로 액세스링크를 통하여 신호를 전송할 때, 중계기는 기지국으로부터 백홀링크를 통하여 신호를 수신할 수 없다.
도 7을 참조하면, 중계기가 단말로부터 액세스링크를 통하여 신호를 수신할 때, 중계기는 기지국으로 백홀링크를 통하여 신호를 전송할 수 없다. 중계기가 기지국으로 백홀링크를 통하여 신호를 전송할 때, 중계기는 단말로부터 액세스링크를 통하여 신호를 수신할 수 없다.
도 6 및 도 7과 같이, 중계기는 동일 주파수밴드를 사용하여 신호의 전송 및 수신을 동시에 할 수 없다. 따라서, 하향링크 주파수밴드 및 상향링크 주파수밴드 별로 중계기의 프레임 구조를 정의할 필요가 있다. 특히, 백홀링크 및 액세스링크를 위한 자원을 할당할 필요가 있다.
이하, 본 발명의 일 실시예에 따라, 하향링크 주파수밴드 및 상향링크 주파수밴드 내에서 백홀링크 및 액세스링크를 위한 자원을 할당하기 위한 기준을 제시한다.
기준 1
하향링크 주파수밴드 및 상향링크 주파수밴드 각각에서 백홀링크와 액세스링크는 TDM(Time Division Muliplexing) 방식에 따른다. 이때, 백홀링크와 액세스링크는 1 서브프레임 또는 서브프레임의 배수 단위로 할당될 수 있다. 예를 들어, 1 서브프레임은 1ms이다.
기준 2
하향링크 주파수밴드에서, 하나의 프레임 내의 적어도 한 쌍의 서브프레임은 반드시 액세스링크를 위하여 할당된다. 일 예로, 한 쌍의 서브프레임은 k번째 서브프레임과 k+5번째 서브프레임을 포함할 수 있다.
기준 3
백홀링크 및 액세스링크를 위한 자원할당 패턴은 소정의 주기마다 설정된다.
기준 4
백홀링크 및 액세스링크를 위한 자원할당 패턴은 기지국에 의하여 설정되고, 각각의 중계기로 시그널링된다.
기준 5
프레임 내에서 백홀링크로부터 액세스링크로 전환되거나, 액세스링크로부터 백홀링크로 전환될 때, 일부 영역은 TTG/RTG를 위한 아이들(Idle) 타임으로 설정될 수 있다.
기준 6
기지국이 하향링크 주파수밴드 및 상향링크 주파수밴드 중 어느 하나의 주파수밴드에 대한 자원할당 패턴을 먼저 설정하면, 이에 기초하여 나머지 하나의 주파수밴드에 대한 자원할당 패턴이 설정된다.
이하, 기준 2 내지 기준 6에 따라 백홀링크 및 액세스링크를 위한 자원할당 패턴을 설정하는 방법을 도 8 내지 도 15를 참조하여 구체적으로 예시한다.
도 8은 본 발명의 일 실시예에 따른 하향링크 주파수밴드의 프레임 구조를 나타낸다(기준 2).
도 8을 참조하면, 프레임은 10개의 서브프레임으로 구성되어 있다. 프레임을 구성하는 서브프레임 가운데 서브프레임 #0과 서브프레임 #5는 한 쌍을 이룰 수 있다. 이와 마찬가지로, (서브프레임 #1과 서브프레임 #6), (서브프레임 #2와 서브프레임 #7), (서브프레임 #3과 서브프레임 #8), (서브프레임 #4와 서브프레임 #9)는 각각 쌍을 이룬다. 이 가운데, 적어도 한 쌍의 서브프레임은 반드시 액세스링크를 위한 서브프레임으로 할당되어야 한다. 이는, 중계기의 커버리지에 속하는 단말들로 제어신호를 전송하기 위함이다. 제어신호의 예는 동기신호, 방송신호, 페이징신호 등이 있다. 예를 들어, FDD 프레임에서, 서브프레임 #0 및 서브프레임 #5는 동기신호 및/또는 방송신호가 전송되는 서브프레임이고, 서브프레임 #0, 서브프레임 #4, 서브프레임 #5, 서브프레임 #9는 페이징신호가 전송되는 서브프레임이다. 따라서, (서브프레임 #0과 서브프레임 #5) 및 (서브프레임 #4와 서브프레임 #9)는 액세스링크를 위하여 할당될 수 있다. 마찬가지로, TDD 프레임에서, 서브프레임 #0 및 서브프레임 #5는 동기신호 및/또는 방송신호가 전송되는 서브프레임이고, 서브프레임 #0, 서브프레임 #1, 서브프레임 #5, 서브프레임 #6은 페이징신호가 전송되는 서브프레임이다. 따라서, (서브프레임 #0과 서브프레임 #5) 및 (서브프레임 #1과 서브프레임 #6)은 액세스링크를 위하여 할당될 수 있다. 이에 따라 FDD 프레임에서 서브프레임 #0, 서브프레임 #4, 서브프레임 #5, 서브프레임 #9는 반드시 액세스링크를 위해 할당하고, 백홀링크를 위해 할당할 수 없으며, TDD 프레임에서 서브프레임 #0, 서브프레임 #1, 서브프레임 #5, 서브프레임 #6은 반드시 액세스링크를 위해 할당하고, 백홀링크를 위해 할당할 수 없다.
도 9는 본 발명의 일 실시예에 따른 자원할당 패턴의 설정주기를 나타낸다(기준 3).
도 9를 참조하면, 자원할당 패턴은 하나의 프레임(10ms)을 주기로 설정될 수 있다. 이때, 하나의 프레임은 10서브프레임으로 이루어지므로, 자원할당 패턴은 10비트로 표현될 수 있다. 또는, 동기신호, 방송신호, 페이징신호가 전송되어야 하는 4개의 서브프레임을 제외한 6비트로 표현될 수 있다. 즉, 도 9에서 예시하는 바와 같이, 서브프레임 #0, 서브프레임 #4, 서브프레임 #5, 서브프레임 #9는 동기신호, 방송신호, 페이징신호가 전송되는 서브프레임으로 설정되고, 서브프레임 #1, 서브프레임 #2, 서브프레임 #8은 백홀링크를 위하여 할당되며, 서브프레임 #3, 서브프레임 #6, 서브프레임 #7은 액세스링크를 위하여 할당되는 경우, 자원할당 패턴은 "001110"과 같이 표현될 수 있다. 여기서, "0"과 "1"의 해석은 반대로 될 수 있다.
도 10은 본 발명의 다른 실시예에 따른 자원할당 패턴의 설정주기를 나타낸다(기준 3).
도 10을 참조하면, 자원할당 패턴은 HARQ(Hybrid Automatic ReQuest Repeat) 채널 개수 및 하나의 프레임에 포함되는 서브프레임의 개수의 최소공배수를 주기로 설정될 수 있다. 즉, LTE 표준에 따르면, HARQ 수행과정에 있어서 데이터의 초기전송으로부터 재전송 시점까지 걸리는 시간은 8ms이므로, HARQ 채널 개수는 8개가 될 수 있다. 따라서, 8과 10의 최소공배수인 40ms 단위로 자원할당 패턴이 설정될 수 있다. 이때, 자원할당 패턴은 40비트로 표현될 수 있다. 또는 동기신호, 방송신호, 페이징신호가 전송되어야 하는 서브프레임들을 제외한 24비트로 표현될 수 있다.
도 11은 본 발명의 일 실시예에 따른 자원할당 패턴의 시그널링 방법이다(기준 4). 하나의 기지국에 대하여 복수 개의 중계기가 존재하는 것으로 가정한다.
도 11을 참조하면, 기지국은 각각의 중계기 별로 백홀링크 및 액세스링크를 위한 자원할당 패턴을 설정한다(S100). 기지국은 제 1 중계기를 위하여 설정된 자원할당 패턴에 대한 정보를 제 1 중계기로 전송하고(S110), 제 2 중계기를 위하여 설정된 자원할당 패턴에 대한 정보를 제 2 중계기로 전송한다(S120). 이때, 기지국은 PDSCH를 통하여 자원할당 패턴에 대한 정보를 각각의 중계기에게 유니캐스트할 수 있다.
도 12는 본 발명의 다른 실시예에 따른 자원할당 패턴의 시그널링 방법이다(기준 4). 하나의 기지국에 대하여 복수 개의 중계기가 존재하는 것으로 가정한다.
도 12를 참조하면, 기지국은 모든 중계기에 대하여 동일하게 백홀링크 및 액세스링크를 위한 자원할당 패턴을 설정한다(S200). 기지국은 단계 S200에서 설정된 자원할당 패턴에 대한 정보를 모든 중계기에게 브로드캐스트한다(S210). 이때, 기지국은 BCH를 통하여 자원할당 패턴에 대한 정보를 중계기에게 브로드캐스트할 수 있다. 뿐만 아니라, 기지국은 동일한 자원할당 패턴에 대한 정보를 각각의 중계기에 대하여 유니캐스트할 수도 있다.
도 11 및 도 12에서, 기지국과 중계기는 미리 결정된 자원할당 패턴에 대한 표를 공유하고, 기지국이 중계기로 특정 패턴에 대한 인덱스를 시그널링해 줄 수도 있다.
도 13은 본 발명의 일 실시예에 따른 프레임 구조를 나타낸다(기준 5).
도 13을 참조하면, 백홀링크로부터 액세스링크로 전환되거나, 액세스링크로부터 백홀링크로 전환될 때, 전환이 이루어지기 직전의 일부 영역은 아이들 타임으로 설정한다. 예를 들어, 아이들 타임은 1 OFDMA 심볼일 수 있다. 액세스링크로부터 백홀링크로 전환되는 서브프레임 #1과 서브프레임 #6, 백홀링크로부터 액세스링크로 전환되는 서브프레임 #3, 서브프레임 #9는 아이들 타임을 포함하는 서브프레임으로, 이러한 서브프레임은 비정규(irregular) 서브프레임이라 할 수 있다.
도 14는 본 발명의 일 실시예에 따른 자원할당 패턴을 설정하는 방법을 나타내는 흐름도이다(기준 6).
도 14를 참조하면, 기지국은 하향링크 주파수밴드에 대하여 백홀링크 및 액세스링크를 위한 자원할당 패턴을 설정한다(S300). 단계 S300에서 설정된 하향링크 주파수밴드의 자원할당 패턴에 기초하여, 기지국은 상향링크 주파수밴드에 대하여 백홀링크 및 액세스링크를 위한 자원할당 패턴을 설정한다(S310). 단계 S300 및 단계 S310에서 설정된 하향링크 주파수밴드의 자원할당 패턴 및 상향링크 주파수밴드의 자원할당 패턴을 중계기로 전송한다(S330).
도 15는 본 발명의 다른 실시예에 따른 자원할당 패턴을 설정하는 방법을 나타내는 흐름도이다.
도 15를 참조하면, 기지국은 하향링크 주파수밴드에 대하여 백홀링크 및 액세스링크를 위한 자원할당 패턴을 설정한다(S400). 단계 S400에서 설정된 하향링크 주파수밴드의 자원할당 패턴을 중계기로 전송한다(S410). 중계기는 단계 S410에서 수신한 하향링크 주파수밴드의 자원할당 패턴에 기초하여, 상향링크 주파수밴드의 자원할당 패턴을 설정한다(S420).
도 14 및 도 15는 하향링크 주파수밴드의 자원할당 패턴을 먼저 설정한 다음, 이에 기초하여 상향링크 주파수밴드의 자원할당 패턴을 설정하는 것으로 예시하고 있다. 그러나, 이는 예시에 지나지 않고, 상향링크 주파수밴드의 자원할당 패턴을 먼저 설정한 다음, 이에 기초하여 하향링크 주파수밴드의 자원할당 패턴을 설정하는 것도 가능하다.
도 16은 본 발명의 일 실시예에 따른 자원할당 패턴을 설정하는 방법을 이용하여 HARQ를 수행하는 일 예이다. HARQ 수행에 있어서, 송신기(Tx)는 서브프레임을 통하여 데이터를 전송하고, 수신기(Rx)로부터 상기 서브프레임에 대한 ACK/NACK(Acknowledgement/Not-Acknowledgement)을 피드백받은 후, 데이터를 재전송(retransmission) 한다. 송신기의 데이터 전송으로부터 데이터 재전송 직전까지의 시간을 RRT(round trip time)라 한다. LTE 스펙에 따르면, 송신기가 데이터를 전송한 시점으로부터 4 서브프레임 후에 수신기가 ACK/NACK을 피드백한다.
도 16을 참조하면, 하향링크 주파수밴드의 서브프레임 #k는 액세스링크를 위한 서브프레임으로 설정된다. 따라서, 중계기는 하향링크 주파수밴드의 서브프레임 #k를 통하여 단말로 하향링크 데이터를 전송할 수 있다. 중계기로부터 하향링크 데이터를 수신한 단말은 상기 하향링크 데이터의 전송 시점으로부터 일정 시점이 지난 후에 상기 하향링크 데이터에 대한 ACK/NACK을 피드백한다. 일 예로, 단말은 하향링크 데이터의 전송 시점으로부터 4 서브프레임 후에 ACK/NACK을 피드백한다. 따라서, 상향링크 주파수밴드의 서브프레임 #k+4는 액세스링크를 위한 서브프레임으로 설정되고, 단말은 상향링크 주파수밴드의 서브프레임 #k+4를 통하여 중계기로 ACK/NACK을 피드백한다.
도 17은 본 발명의 일 실시예에 따른 자원할당 패턴을 설정하는 방법을 이용하여 HARQ를 수행하는 다른 예이다.
도 17을 참조하면, 상향링크 주파수밴드의 서브프레임 #k는 액세스링크를 위한 서브프레임으로 설정된다. 따라서, 단말은 상향링크 주파수밴드의 서브프레임 #k를 통하여 중계기로 상향링크 데이터를 전송할 수 있다. 단말로부터 상향링크 데이터를 수신한 중계기는 상기 상향링크 데이터의 전송 시점으로부터 일정 시점(예를 들어, 4 서브프레임)이 지난 후에 상기 상향링크 데이터에 대한 ACK/NACK을 PHICH를 통하여 피드백한다. 따라서, 하향링크 주파수밴드의 서브프레임 #k+4는 액세스링크를 위한 서브프레임으로 설정되고, 중계기는 하향링크 주파수밴드의 서브프레임 #k+4를 통하여 단말로 ACK/NACK을 피드백한다.
도 16 및 도 17과 같이, HARQ 수행을 고려하면, 하향링크 주파수밴드의 k번째 서브프레임이 액세스링크를 위한 서브프레임으로 설정되면 상향링크 주파수밴드의 k+n번째 서브프레임(예를 들어, k+4번째 서브프레임)도 액세스링크를 위한 서브프레임으로 설정된다. 또는, 상향링크 주파수밴드의 k번째 서브프레임이 액세스링크를 위한 서브프레임으로 설정되면 하향링크 주파수밴드의 k+n번째 서브프레임도 액세스링크를 위한 서브프레임으로 설정된다. 이와 마찬가지로,하향링크 주파수밴드의 k번째 서브프레임이 백홀링크를 위한 서브프레임으로 설정되면 상향링크 주파수밴드의 k+n번째 서브프레임(예를 들어, k+4번째 서브프레임)도 백홀링크를 위한 서브프레임으로 설정된다. 또는, 상향링크 주파수밴드의 k번째 서브프레임이 백홀링크를 위한 서브프레임으로 설정되면 하향링크 주파수밴드의 k+n번째 서브프레임도 백홀링크를 위한 서브프레임으로 설정된다.
이하, 기준 1 내지 기준 6에 기초하여 자원할당 패턴을 설정할 경우 발생할 수 있는 문제점 및 이를 해결하기 위한 방안을 살펴본다.
먼저, 하나의 프레임(10ms)을 주기로 백홀링크와 액세스링크를 위한 자원할당 패턴을 설정할 경우, 적어도 한번 이상 기준 6을 만족하지 못하는 경우가 발생할 수 있다.
도 18 및 도 19는 기준 1 내지 기준 6에 기초하여 할당된 자원할당 패턴을 나타내는 도면이다.
도 18을 참조하면, 하향링크 주파수밴드의 자원할당 패턴이 먼저 설정되고, 이를 기초로 상향링크 주파수밴드의 자원할당 패턴이 설정된다. 여기서, 하향링크 주파수밴드의 액세스링크를 위한 서브프레임을 통해 중계기가 단말로 하향링크 데이터를 전송하면, 각각의 단말은 하향링크 데이터 전송 시점으로부터 4 서브프레임 후에 상향링크 주파수밴드의 액세스링크를 위한 서브프레임을 통하여 중계기로 ACK/NACK을 피드백할 수 있다. 이와 마찬가지로, 하향링크 주파수밴드의 백홀링크를 위한 서브프레임을 통해 중계기가 기지국으로부터 하향링크 데이터를 수신하면, 중계기는 상기 하향링크 데이터 전송 시점으로부터 4 서브프레임 후에 상향링크 주파수밴드의 백홀링크를 위한 서브프레임을 통하여 기지국으로 ACK/NACK을 피드백할 수 있다.
다만, 도 18과 같이 하향링크 주파수밴드의 자원할당 패턴에 기초하여 상향링크 주파수밴드의 자원할당 패턴을 설정한 경우, 일부 서브프레임에서 오류가 발생할 수 있다. 예를 들어, 상향링크 주파수밴드의 서브프레임 #0은 하향링크 주파수밴드와의 관계에 기초하여 액세스링크를 위한 서브프레임으로 설정되어 있다. 상향링크 주파수밴드의 서브프레임 #0을 통해 단말이 중계기로 상향링크 데이터를 전송하는 경우, 하향링크 주파수밴드의 서브프레임 #4를 통해 중계기는 단말로 ACK/NACK을 피드백하여야한다. 그러나, 하향링크 주파수밴드의 서브프레임 #4는 백홀링크를 위한 서브프레임으로 설정되어 있다. 따라서, 규정된 시간에 중계기는 단말로 ACK/NACK을 피드백할 수 없게 된다.
이러한 오류는 반대의 경우에도 발생할 수 있다. 도 19를 참조하면, 상향링크 주파수밴드의 자원할당 패턴이 먼저 설정되고, 이를 기초로 하향링크 주파수밴드의 자원할당 패턴이 설정된다. 여기서, 상향링크 주파수밴드의 액세스링크를 위한 서브프레임을 통해 단말이 중계기로 상향링크 데이터를 전송하면, 중계기는 상향링크 데이터 전송 시점으로부터 4 서브프레임 후에 하향링크 주파수밴드의 액세스링크를 위한 서브프레임을 통하여 단말로 ACK/NACK을 피드백할 수 있다. 이와 마찬가지로, 상향링크 주파수밴드의 백홀링크를 위한 서브프레임을 통해 중계기가 기지국으로 상향링크 데이터를 전송하면, 기지국은 상기 상향링크 데이터 전송 시점으로부터 4 서브프레임 후에 하향링크 주파수밴드의 백홀링크를 위한 서브프레임을 통하여 중계기로 ACK/NACK을 피드백할 수 있다.
다만, 도 19와 같이 상향링크 주파수밴드의 자원할당 패턴에 기초하여 하향링크 주파수밴드의 자원할당 패턴을 설정한 경우, 일부 서브프레임에서 오류가 발생할 수 있다. 예를 들어, 하향링크 주파수밴드의 서브프레임 #0은 상향링크 주파수밴드와의 관계에 기초하여 액세스링크를 위한 서브프레임으로 설정되어 있다. 하향링크 주파수밴드의 서브프레임 #0을 통해 중계기가 단말로 하향링크 데이터를 전송하는 경우, 상향링크 주파수밴드의 서브프레임 #4를 통해 단말은 중계기로 ACK/NACK을 피드백하여야한다. 그러나, 상향링크 주파수밴드의 서브프레임 #4는 백홀링크를 위한 서브프레임으로 설정되어 있다. 따라서, 규정된 시간에 단말은 중계기로 ACK/NACK을 피드백할 수 없게 된다. 다른 예로, 하향링크 주파수밴드의 서브프레임 #2는 상향링크 주파수밴드와의 관계에 기초하여 백홀링크를 위한 서브프레임으로 설정되어 있다. 하향링크 주파수밴드의 서브프레임 #2를 통해 기지국이 중계기로 하향링크 데이터를 전송하는 경우, 상향링크 주파수밴드의 서브프레임 #6을 통해 중계기는 기지국으로 ACK/NACK을 피드백하여야 한다. 그러나, 상향링크 주파수밴드의 서브프레임 #6은 액세스링크를 위한 서브프레임으로 설정되어 있다. 따라서, 규정된 시간에 중계기는 기지국으로 ACK/NACK을 피드백할 수 없게 된다.
다음으로, HARQ 채널의 개수와 하나의 프레임 내의 서브프레임의 개수의 최소공배수(40ms)를 주기로 백홀링크와 액세스링크를 위한 자원할당 패턴을 설정할 경우에도 오류가 발생할 수 있다.
도 20은 본 발명의 다른 실시예에 따른 자원할당 패턴을 나타내는 도면이다.
도 20을 참조하면, 자원할당 패턴은 40ms를 주기로 설정되고, 하향링크 주파수밴드 또는 상향링크 주파수밴드 가운데 어느 하나의 주파수밴드의 자원할당 패턴을 설정하고, 이에 기초하여 나머지 주파수밴드의 자원할당 패턴을 설정한다. 여기서, 자원할당 패턴의 주기가 40ms이고 8 채널의 HARQ 동작을 고려하고 있으므로, 도 18 및 도 19와 같은 오류가 발생하는 확률은 상대적으로 낮다. 그러나, 기준 2와 같이 하향링크 주파수밴드에서 5 서브프레임 간격을 이루는 적어도 한 쌍의 서브프레임이 반드시 액세스링크를 위한 서브프레임으로 설정되어야 하므로, 오류가 발생할 수 있다. 예를 들어, 하향링크 주파수밴드의 서브프레임 #0과 서브프레임 #5는 동기신호의 전송을 위하여 반드시 액세스링크로 설정되어야 한다. 따라서, 이에 대응하는 상향링크 주파수밴드의 자원할당 패턴에 오류가 발생할 수 있다.
이하, 이와 같은 문제를 해결하기 위한 방법을 제시한다.
도 21은 본 발명의 일 실시예에 따른 자원할당 방법을 나타내는 흐름도이다. 중계기와 단말 사이의 액세스링크에서 HARQ 동작을 예시하고 있으나, 이는 기지국과 중계기 사이의 백홀링크에서 HARQ 동작에도 적용할 수 있다.
도 21을 참조하면, 기지국은 하향링크 주파수밴드의 자원할당 패턴을 설정한다(S500). 기지국은 단계 S500에서 설정된 하향링크 주파수밴드의 자원할당 패턴에 대한 정보를 중계기로 전송한다(S510). 중계기는 단계 S510에서 수신한 하향링크 주파수밴드의 자원할당 패턴에 대한 정보에 기초하여 상향링크 주파수밴드의 자원할당 패턴을 설정한다(S520). 하향링크 주파수밴드의 자원할당 패턴 및 상향링크 주파수밴드의 자원할당 패턴에 기초하여, 중계기는 HARQ 타이밍을 재설정한다(S530). 여기서, HARQ 타이밍이란, 데이터의 초기 전송 시점으로부터 ACK/NACK을 피드백하는 시점까지의 기간을 의미할 수 있다. 중계기가 단말로부터 데이터를 수신하면(S540), 단계 S530에서 설정한 HARQ 타이밍에 맞추어 단말로 ACK/NACK을 피드백한다(S550).
예를 들어, 도 18에서, 단말이 상향링크 주파수밴드의 서브프레임 #0에서 중계기로 상향링크 데이터를 전송한 경우, 중계기는 하향링크 주파수밴드의 서브프레임 #4에서 단말로 ACK/NACK 피드백을 할 수 없다. 하향링크 주파수밴드의 서브프레임 #4는 백홀링크를 위한 서브프레임으로 설정되어 있기 때문이다. 이때, 중계기는 단계 S530과 같이 재설정된 HARQ 타이밍을 이용하여 미리 정의된 시점보다 1 서브프레임 지연된 시점에 PHICH를 통하여 ACK/NACK을 피드백할 수 있다. 도 18에 따르면, 상향링크 주파수밴드의 서브프레임 #1에서 단말로부터 중계기로 전송된 데이터에 대한 ACK/NACK이 하향링크 주파수밴드의 서브프레임 #5에서 전송되도록 설정되어 있다. 이러한 경우, 하향링크 주파수밴드의 서브프레임 #5에서는 상향링크 주파수밴드의 서브프레임 #0에서 전송된 데이터에 대한 ACK/NACK 및 상향링크 주파수밴드의 서브프레임 #1에서 전송된 데이터에 대한 ACK/NACK이 시간, 주파수 및 코드 가운데 적어도 하나로 다중화되어 전송될 수 있다.
여기서, 중계기는 상향링크 주파수밴드의 자원할당 패턴, 하향링크 주파수밴드의 자원할당 패턴 및 재설정된 HARQ 타이밍에 대한 정보 등을 단말에게 알려줄 수도 있다. 이에 따라, 단말은 ACK/NACK의 수신 시점을 알 수 있다.
도 22는 본 발명의 다른 실시예에 따른 자원할당 방법을 나타내는 흐름도이다. 본 실시예는 중계기와 단말 사이의 액세스링크에서 HARQ 동작을 예시하고 있으나, 이는 기지국과 단말 사이의 백홀링크에서 HARQ 동작에도 적용할 수 있다.
도 22를 참조하면, 기지국은 상향링크 주파수밴드의 자원할당 패턴을 설정한다(S600). 기지국은 단계 S600에서 설정된 상향링크 주파수밴드의 자원할당 패턴에 대한 정보를 중계기로 전송한다(S610). 중계기는 단계 S610에서 수신한 상향링크 주파수밴드의 자원할당 패턴에 대한 정보에 기초하여 하향링크 주파수밴드의 자원할당 패턴을 설정한다(S620). 상향링크 주파수밴드의 자원할당 패턴 및 하향링크 주파수밴드의 자원할당 패턴에 기초하여, 중계기는 ACK/NACK 전송시점을 재설정하고(S630), ACK/NACK 전송시점에 대한 정보를 단말에게 알려준다(S640). 여기서, ACK/NACK 전송 시점은 데이터 전송 시점으로부터 4 서브프레임 전후의 액세스링크를 위하여 할당된 서브프레임일 수 있다. 중계기는 PDCCH 또는 MAC PDU(Medium Access Control Protocol Data Unit)를 통하여 상기 ACK/NACK 전송 시점에 대한 정보를 단말에게 알려줄 수 있다. 이후, 중계기가 단말에게 하향링크 데이터를 전송하면(S650), 단계 S640에서 설정한 ACK/NACK 전송 시점에 맞추어 중계기는 단말로부터 ACK/NACK을 수신한다.(S660).
예를 들어, 도 19에서, 중계기가 하향링크 주파수밴드의 서브프레임 #0에서 단말로 하향링크 데이터를 전송한 경우, 단말은 상향링크 주파수밴드의 서브프레임 #4에서 중계기로 ACK/NACK 피드백을 할 수 없다. 상향링크 주파수밴드의 서브프레임 #4는 백홀링크를 위한 서브프레임으로 설정되어 있기 때문이다. 이때, 단말은 단계 S640에서 수신한 ACK/NACK 전송 시점에 대한 정보를 이용하여 미리 정의된 시점보다 1 서브프레임 지연된 시점에서 PUCCH를 통하여 ACK/NACK을 피드백할 수 있다.
이와 같이, 도 18 및 도 19에서 점선으로 표시된 데이터 전송에 대한 ACK/NACK은 해당 서브프레임의 전후 서브프레임 가운데 ACK/NACK 전송이 가능한 서브프레임을 통하여 피드백되도록 설정될 수 있다. 부가적으로, 도 20에서 홀수 번째 프레임 또는 짝수 번째 프레임의 서브프레임 #5를 백홀링크를 위한 서브프레임으로 설정할 수도 있다. 이에 따라, 홀수 번째 프레임 또는 짝수 번째 프레임에서 중계기에 연결된 단말은 중계기로부터 동기신호를 수신하는데 제약을 받을 수 있으나, HARQ 수행 과정에서의 오류를 방지할 수 있다. 또한, 중계기에 연결된 단말에게 특정 프레임에서 동기신호를 수신할 수 없다는 취지의 정보를 미리 시그널링하면, 동기신호의 미전송으로 인한 문제를 방지할 수 있다.
도 23은 본 발명의 일 실시예에 따른 중계기를 포함하는 무선통신 시스템을 나타내는 블록도이다.
도 23을 참조하면, 무선통신 시스템은 기지국(100), 중계기(200), 단말(300)을 포함한다. 기지국(100)은 프로세서(110) 및 RF(Radio Frequency)부(120)를 포함한다. 기지국의 RF부(120)는 무선신호를 송수신하고, 프로세서(110)는 상향링크 주파수밴드의 자원할당 패턴 및/또는 하향링크 주파수밴드의 자원할당 패턴을 설정하고, 상기 상향링크 주파수밴드의 자원할당 패턴 및/또는 하향링크 주파수밴드의 자원할당 패턴에 대한 정보를 중계기(200)로 전송하도록 설정된다. 중계기(200)는 RF부(220) 및 프로세서(210)를 포함한다. 중계기(200)의 RF부(220)는 무선신호를 송수신하고, 프로세서(210)는 기지국으로부터 상향링크 주파수밴드의 자원할당 패턴 및 하향링크 주파수밴드의 자원할당 패턴 가운데 적어도 하나의 자원할당 패턴에 대한 정보를 수신하고, 상기 정보에 기초하여 나머지 자원할당 패턴을 설정하는 것으로 설정된다. 단말(300)은 RF부(320) 및 프로세서(310)를 포함한다. 단말(300)의 RF부(320)는 무선신호를 송수신한다. 단말의 프로세서(310)는 중계기로부터 상향링크 주파수밴드의 자원할당 패턴 및/또는 하향링크 주파수밴드의 자원할당 패턴에 대한 정보를 수신하고, 중계기와 통신하도록 설정된다.
본 발명은 하드웨어, 소프트웨어 또는 이들의 조합으로 구현될 수 있다. 하드웨어 구현에 있어, 상술한 기능을 수행하기 위해 디자인된 ASIC(application specific integrated circuit), DSP(digital signal processing), PLD(programmable logic device), FPGA(field programmable gate array), 프로세서, 제어기, 마이크로 프로세서, 다른 전자 유닛 또는 이들의 조합으로 구현될 수 있다. 소프트웨어 구현에 있어, 상술한 기능을 수행하는 모듈로 구현될 수 있다. 소프트웨어는 메모리 유닛에 저장될 수 있고, 프로세서에 의해 실행된다. 메모리 유닛이나 프로세서는 당업자에게 잘 알려진 다양한 수단을 채용할 수 있다.
이상, 본 발명의 바람직한 실시예에 대해 상세히 기술하였지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구 범위에 정의된 본 발명의 정신 및 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형 또는, 변경하여 실시할 수 있음을 알 수 있을 것이다. 따라서, 본 발명의 앞으로의 실시예들의 변경은 본 발명의 기술을 벗어날 수 없을 것이다.

Claims (10)

  1. 중계기를 포함하는 무선통신 시스템에서 중계기의 자원할당 방법에 있어서,
    제 1 주파수밴드의 액세스링크 및 백홀링크를 위한 자원할당 패턴에 대한 정보를 수신하는 단계; 및
    상기 제 1 주파수밴드의 상기 자원할당 패턴에 기초하여 제 2 주파수밴드의 액세스링크 및 백홀링크를 위한 자원할당 패턴을 설정하는 단계를 포함하되,
    상기 제 1 주파수밴드는 상향링크 주파수밴드 및 하향링크 주파수밴드 중 어느 하나이고, 상기 제 2 주파수밴드는 상기 상향링크 주파수밴드 및 하향링크 주파수밴드 중 나머지 하나인 자원할당 방법.
  2. 제 1 항에 있어서,
    상기 하향링크 주파수밴드에서 10 서브프레임으로 이루어지는 매 프레임마다 적어도 한 쌍의 서브프레임이 액세스링크를 위한 서브프레임으로 할당되는 것을 특징으로 하는 자원할당 방법.
  3. 제 2 항에 있어서,
    상기 한 쌍의 서브프레임은 5 서브프레임의 간격을 이루는 두 개의 서브프레임인 것을 특징으로 하는 자원할당 방법.
  4. 제 1 항에 있어서,
    상기 제 1 주파수밴드의 자원할당 패턴 및 상기 제 2 주파수밴드의 자원할당 패턴은 10 서브프레임으로 이루어지는 매 프레임마다 설정되는 것을 특징으로 하는 자원할당 방법.
  5. 제 1 항에 있어서,
    상기 제 1 주파수밴드의 자원할당 패턴 및 상기 제 2 주파수밴드의 자원할당 패턴은 HARQ(Hybrid Automatic Request Repeat) 채널의 최대 개수 및 하나의 프레임을 구성하는 서브프레임의 개수의 최소공배수에 해당하는 40 서브프레임마다 설정되는 것을 특징으로 하는 자원할당 방법.
  6. 제 1 항에 있어서,
    상기 제 1 주파수밴드의 자원할당 패턴 및 상기 제 2 주파수밴드의 자원할당 패턴에 기초하여 데이터 전송에 대한 ACK/NACK(Acknowledgement/Not-Acknowledgement) 피드백 시점을 재설정하는 단계를 더 포함하는 것을 특징으로 하는 자원할당 방법.
  7. 제 6 항에 있어서,
    상기 ACK/NACK 피드백 시점에 대한 정보를 단말에게 알려주는 단계를 더 포함하는 것을 특징으로 하는 자원할당 방법.
  8. 중계기를 포함하는 무선통신 시스템에서 기지국의 자원할당 방법에 있어서,
    제 1 주파수밴드의 액세스링크 및 백홀링크를 위한 자원할당 패턴에 대한 정보를 설정하는 단계; 및
    상기 제 1 주파수밴드의 상기 자원할당 패턴에 기초하여 제 2 주파수밴드의 액세스링크 및 백홀링크를 위한 자원할당 패턴을 설정하는 단계를 포함하되,
    상기 제 1 주파수밴드는 상향링크 주파수밴드 및 하향링크 주파수밴드 중 어느 하나이고, 상기 제 2 주파수밴드는 상기 상향링크 주파수밴드 및 하향링크 주파수밴드 중 나머지 하나인 자원할당 방법.
  9. 제 8 항에 있어서,
    상기 제 1 주파수밴드의 자원할당 패턴에 대한 정보 및 상기 제 2 주파수밴드의 자원할당 패턴에 대한 정보를 상기 중계기로 전송하는 단계를 더 포함하는 것을 특징으로 하는 자원할당 방법.
  10. 프로세서; 및
    상기 프로세서에 연결되고, 무선신호를 송수신하는 RF(Radio Frequency)부를 포함하되,
    상기 프로세서는 제 1 주파수밴드의 액세스링크 및 백홀링크를 위한 자원할당 패턴에 대한 정보를 수신하고, 상기 제 1 주파수밴드의 상기 자원할당 패턴에 기초하여 제 2 주파수밴드의 액세스링크 및 백홀링크를 위한 자원할당 패턴을 설정하는 것으로 설정되고, 상기 제 1 주파수밴드는 상향링크 주파수밴드 및 하향링크 주파수밴드 중 어느 하나이고, 상기 제 2 주파수밴드는 상기 상향링크 주파수밴드 및 하향링크 주파수밴드 중 나머지 하나인 중계기.
PCT/KR2009/004307 2008-08-01 2009-07-31 중계기를 포함하는 무선통신 시스템에서 백홀링크 및 액세스링크를 위한 자원할당 방법 WO2010013980A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09803185.9A EP2309813A4 (en) 2008-08-01 2009-07-31 METHOD FOR ALLOCATING RESOURCES FOR LAND CONNECTION AND ACCESS LINKING IN A WIRELESS COMMUNICATION SYSTEM COMPRISING A RELAY
CN200980130357.9A CN102113398B (zh) 2008-08-01 2009-07-31 在包括中继站的无线通信系统中的对于回程链路和接入链路的资源分配方法
JP2011521049A JP5118253B2 (ja) 2008-08-01 2009-07-31 中継局を含む無線通信システムにおけるバックホールリンク及びアクセスリンクのためのリソース割当方法
US13/056,799 US8848580B2 (en) 2008-08-01 2009-07-31 Resource allocation method for backhaul link and access link in a wireless communication system including relay
US14/321,913 US9100149B2 (en) 2008-08-01 2014-07-02 Resource allocation method for backhaul link and access link in a wireless communication system including relay

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8542708P 2008-08-01 2008-08-01
US61/085,427 2008-08-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/056,799 A-371-Of-International US8848580B2 (en) 2008-08-01 2009-07-31 Resource allocation method for backhaul link and access link in a wireless communication system including relay
US14/321,913 Continuation US9100149B2 (en) 2008-08-01 2014-07-02 Resource allocation method for backhaul link and access link in a wireless communication system including relay

Publications (2)

Publication Number Publication Date
WO2010013980A2 true WO2010013980A2 (ko) 2010-02-04
WO2010013980A3 WO2010013980A3 (ko) 2010-05-14

Family

ID=41610873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004307 WO2010013980A2 (ko) 2008-08-01 2009-07-31 중계기를 포함하는 무선통신 시스템에서 백홀링크 및 액세스링크를 위한 자원할당 방법

Country Status (6)

Country Link
US (2) US8848580B2 (ko)
EP (1) EP2309813A4 (ko)
JP (1) JP5118253B2 (ko)
KR (1) KR101586864B1 (ko)
CN (1) CN102113398B (ko)
WO (1) WO2010013980A2 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102196496A (zh) * 2010-03-19 2011-09-21 中兴通讯股份有限公司 一种处理回程链路错误的方法和中继节点
WO2011121575A3 (en) * 2010-04-01 2011-12-15 Telefonaktiebolaget L M Ericsson (Publ) System and method for scheduling wireless transmissions
WO2011132945A3 (en) * 2010-04-22 2012-03-08 Lg Electronics Inc. Method for transmitting control channel to relay node in wireless communication system and apparatus thereof
WO2012044129A2 (en) * 2010-09-30 2012-04-05 Samsung Electronics Co., Ltd. Method and apparatus for providing multi-media broadcast multicast services data to user equipments over relay nodes
WO2012075630A1 (en) * 2010-12-08 2012-06-14 Nokia Corporation Device-to-device communication scenario
JP2014147118A (ja) * 2014-04-11 2014-08-14 Fujitsu Ltd 通信区間設定方法、中継局、移動局、移動通信システム
JP2016059082A (ja) * 2010-02-12 2016-04-21 三菱電機株式会社 移動体通信システム、基地局装置および中継装置

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE056093T2 (hu) 2008-02-01 2022-01-28 Optis Wireless Technology Llc Kommunikációs végberendezés
KR101632440B1 (ko) 2008-12-03 2016-06-22 엘지전자 주식회사 중계국을 위한 harq 수행방법
CN101753198B (zh) * 2008-12-08 2013-04-17 华为技术有限公司 通信方法、中继器和通信系统
KR101506576B1 (ko) * 2009-05-06 2015-03-27 삼성전자주식회사 무선 통신 시스템에서 백홀 서브프레임 채널 송수신 방법 및 이를 위한 장치
KR101679691B1 (ko) * 2009-08-14 2016-11-28 삼성전자주식회사 무선통신시스템에서 데이터 재전송을 위한 장치 및 방법
US8300588B2 (en) * 2009-10-05 2012-10-30 Futurewei Technologies, Inc. System and method for user equipment measurement timing in a relay cell
KR101801943B1 (ko) * 2010-02-25 2017-11-27 한국전자통신연구원 다중 사용자 다중 안테나 기반 무선 통신 시스템에서 훈련 시퀀스 전송 방법 및 그 장치
US9036533B2 (en) * 2010-03-18 2015-05-19 Acer Incorporated Wireless communication system, and base station and relay station for the wireless communication system
EP2553857A4 (en) * 2010-03-31 2014-05-28 Samsung Electronics Co Ltd RESOURCE INDEXATION FOR TRANSMISSION OF RECEIVE ACCUSED SIGNALS IN TIME DIVISION DUPLEX MULTICELLULAR COMMUNICATION SYSTEMS
AU2011241273B2 (en) 2010-04-13 2014-03-13 Lg Electronics Inc. Method and device for receiving downlink signal
KR101712911B1 (ko) * 2010-04-13 2017-03-07 엘지전자 주식회사 하향링크 신호를 수신하는 방법 및 장치
JP5561362B2 (ja) * 2010-04-16 2014-07-30 富士通株式会社 無線中継伝送機能を含む移動無線通信システム
CN102387506B (zh) * 2010-08-30 2015-06-03 中兴通讯股份有限公司 通信系统共存时的物理资源配置和信号发送方法及系统
EP2622760B1 (en) 2010-10-01 2017-08-02 BlackBerry Limited Orthogonal resource selection and allocation for transmit diversity
EP2458767A1 (en) * 2010-11-25 2012-05-30 NTT DoCoMo, Inc. Method for resource allocation in a wireless communication network
EP2681960B1 (en) * 2011-03-03 2018-05-09 Telecom Italia S.p.A. Link scheduling algorithm for ofdma wireless networks with relay nodes
US8908492B2 (en) 2011-08-11 2014-12-09 Blackberry Limited Orthogonal resource selection transmit diversity and resource assignment
US8891353B2 (en) 2011-08-11 2014-11-18 Blackberry Limited Orthogonal resource selection transmit diversity and resource assignment
US20130039290A1 (en) * 2011-08-11 2013-02-14 Research In Motion Korea Method and System for Uplink Control Channel Transmit Diversity Using Multiple Downlink Control Channel Based Resource Allocation
TW201322813A (zh) 2011-08-11 2013-06-01 Research In Motion Ltd 正交資源選擇傳輸分集及資源指派
US9083517B2 (en) * 2011-08-17 2015-07-14 Qualcomm Incorporated Method and apparatus for aggregating carriers of a backhaul connection
WO2013110218A1 (en) * 2012-01-29 2013-08-01 Alcatel Lucent A high interference indicator for time division duplex wireless communication systems
JP6191997B2 (ja) * 2012-03-06 2017-09-06 シャープ株式会社 移動局装置、基地局装置、通信方法、および集積回路
CN103391618A (zh) * 2012-05-09 2013-11-13 中兴通讯股份有限公司 子帧配置方法及装置
CN104521267B (zh) * 2012-08-13 2018-10-09 索尼公司 通信控制装置及通信控制方法
US10624075B2 (en) 2013-03-16 2020-04-14 Qualcomm Incorporated Apparatus and method for scheduling delayed ACKs/NACKs in LTE cellular systems
JP6177991B2 (ja) * 2013-04-03 2017-08-09 エルジー エレクトロニクス インコーポレイティド 同じ周波数帯域を使用する複数のサイトにリソースを割り当てる方法及び装置
EP3053396B1 (en) * 2013-10-04 2019-10-02 Telefonaktiebolaget LM Ericsson (publ) Exchanging patterns of shared resources between machine-type and human traffic
EP3570619B1 (en) * 2014-02-27 2022-11-02 LG Electronics Inc. Method for transmitting a sidelink data link signal by a user equipment and corresponding user equipment
CN105451271B (zh) * 2014-09-05 2019-07-02 中兴通讯股份有限公司 一种资源管理方法及装置
WO2016150525A1 (en) * 2015-03-25 2016-09-29 Sony Mobile Communications Inc. Scheduling in cellular networks
US10412749B2 (en) 2015-05-21 2019-09-10 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling in license assisted access
KR102443053B1 (ko) * 2015-10-30 2022-09-14 삼성전자주식회사 무선 통신 시스템에서 데이터 송수신 방법 및 장치
US10477540B2 (en) * 2016-03-11 2019-11-12 Qualcomm Incorporated Relay for enhanced machine type communication and narrow band-internet of things
US10813125B2 (en) * 2016-06-24 2020-10-20 Lg Electronics Inc. Method and apparatus for supporting backhaul signaling mechanism for new radio access technology in wireless communication system
CN107889197B (zh) * 2016-09-29 2020-10-09 华为技术有限公司 通信方法与设备
CN106455081B (zh) * 2016-10-31 2022-12-20 宇龙计算机通信科技(深圳)有限公司 资源配置方法及资源配置装置
CN108616338B (zh) * 2016-12-09 2020-08-25 华为技术有限公司 传输信息的方法和接入网设备
CN110476462B (zh) * 2017-03-31 2023-10-03 康维达无线有限责任公司 终端和中继设备、基站以及方法
CN108811097B (zh) 2017-05-02 2021-02-23 华为技术有限公司 资源指示方法及通信设备
US11032779B2 (en) * 2017-08-11 2021-06-08 Telefonaktiebolaget Lm Ericsson (Publ) Use of cell specific reference signals for NR open loop uplink power control
CN110149699A (zh) * 2018-02-11 2019-08-20 成都华为技术有限公司 一种资源配置方法及节点
CN110351781A (zh) * 2018-04-03 2019-10-18 维沃移动通信有限公司 中继资源的请求方法、调度方法及设备
CN110351836B (zh) * 2018-04-03 2022-12-13 维沃移动通信有限公司 中继资源的配置方法和设备
WO2020114588A1 (en) * 2018-12-05 2020-06-11 Nokia Technologies Oy Extending coverage of a communication system
CN111385885B (zh) * 2018-12-29 2023-08-01 大唐移动通信设备有限公司 一种资源分配模式的确定方法、终端及网络设备
WO2021029129A1 (ja) * 2019-08-15 2021-02-18 株式会社Nttドコモ 無線通信システム、地上基地局、空中基地局、及び無線通信方法
CN114390584A (zh) * 2020-10-19 2022-04-22 北京三星通信技术研究有限公司 一种iab节点的上报、配置与传输方法
CN114698110A (zh) * 2020-12-31 2022-07-01 维沃移动通信有限公司 资源映射方法、装置及设备
KR102589831B1 (ko) 2022-12-27 2023-10-16 한화시스템 주식회사 인밴드백홀 기지국의 백홀링크 접속 제어방법
WO2024171693A1 (en) * 2023-02-16 2024-08-22 Sharp Kabushiki Kaisha Network controlled repeater (ncr) side information and configurations for periodic dl transmissions

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE513975C2 (sv) * 1994-08-19 2000-12-04 Telia Ab Repeterare och metod för DECT-system
US6404775B1 (en) * 1997-11-21 2002-06-11 Allen Telecom Inc. Band-changing repeater with protocol or format conversion
CN1174959C (zh) 1998-02-26 2004-11-10 昭和电工株式会社 对氨甲基苯甲酸的非吸湿性晶体及其制备方法
US6718160B2 (en) * 1999-12-29 2004-04-06 Airnet Communications Corp. Automatic configuration of backhaul and groundlink frequencies in a wireless repeater
SE0300443D0 (sv) * 2003-02-17 2003-02-17 Ericsson Telefon Ab L M Method and system of channel adaption
BRPI0515957A (pt) * 2004-09-29 2008-08-12 Matsushita Electric Ind Co Ltd dispositivo de comunicação por rádio e método de comunicação por rádio
US7680452B2 (en) * 2004-10-20 2010-03-16 Panasonic Corporation Repeater
KR100975698B1 (ko) * 2005-06-13 2010-08-12 삼성전자주식회사 셀룰러 통신을 위한 중계통신 시스템 및 방법
EP1931155B1 (en) * 2005-09-30 2014-01-01 Huawei Technologies Co., Ltd. Wireless relay communication system and method
KR100893832B1 (ko) * 2005-10-18 2009-04-17 삼성전자주식회사 두 개의 주파수 대역을 사용하는 다중 홉 릴레이 방식의셀룰러 네트워크에서 다중 링크를 지원하기 위한 장치 및방법
CN1964219B (zh) 2005-11-11 2016-01-20 上海贝尔股份有限公司 实现中继的方法和设备
KR100871856B1 (ko) * 2006-01-06 2008-12-03 삼성전자주식회사 광대역 무선접속 통신시스템에서 중계 서비스를 제공하기위한 장치 및 방법
US8014338B2 (en) 2006-04-19 2011-09-06 Samsung Electronics Co., Ltd. Apparatus and method for supporting relay service in a multi-hop relay broadband wireless access communication system
CN101064913B (zh) * 2006-04-29 2012-05-16 上海贝尔阿尔卡特股份有限公司 无线网络中用于扩展基站覆盖范围的中继站、基站及其方法
EP1879409A1 (en) 2006-07-11 2008-01-16 Nokia Siemens Networks Gmbh & Co. Kg Time frame structure of a multi hop radio communication system
US8165073B2 (en) * 2006-08-04 2012-04-24 Nokia Corporation Relay-station assignment/re-assignment and frequency re-use
JP4952138B2 (ja) * 2006-08-17 2012-06-13 富士通株式会社 中継局、無線基地局及び通信方法
US8032146B2 (en) 2006-08-18 2011-10-04 Fujitsu Limited Radio resource management in multihop relay networks
JP4805751B2 (ja) * 2006-08-18 2011-11-02 富士通株式会社 無線通信装置および無線通信方法
JP5242035B2 (ja) 2006-10-03 2013-07-24 株式会社エヌ・ティ・ティ・ドコモ 基地局および再送制御方法
KR20080047001A (ko) * 2006-11-24 2008-05-28 삼성전자주식회사 다중 홉 중계방식의 광대역 무선접속통신시스템에서 자원할당 장치 및 방법
US8165096B2 (en) * 2008-05-19 2012-04-24 Qualcomm Incorporated Methods and systems of improved success rate for decoding downlink map and uplink map IES in mobile WIMAX mobile
CN102388545B (zh) * 2009-04-09 2014-12-10 Lg电子株式会社 在中继通信系统中的信号发送方法和装置
FR2953349B1 (fr) * 2009-11-27 2012-12-14 Commissariat Energie Atomique Procede de turbocodage distribue adaptatif pour reseau cooperatif

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2309813A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9871643B2 (en) 2010-02-12 2018-01-16 Mitsubishi Electric Corporation Mobile communication system
JP2016059082A (ja) * 2010-02-12 2016-04-21 三菱電機株式会社 移動体通信システム、基地局装置および中継装置
CN102196496A (zh) * 2010-03-19 2011-09-21 中兴通讯股份有限公司 一种处理回程链路错误的方法和中继节点
WO2011113324A1 (zh) * 2010-03-19 2011-09-22 中兴通讯股份有限公司 一种处理回程链路错误的方法和中继节点
CN102196496B (zh) * 2010-03-19 2016-05-11 中兴通讯股份有限公司 一种处理回程链路错误的方法和中继节点
WO2011121575A3 (en) * 2010-04-01 2011-12-15 Telefonaktiebolaget L M Ericsson (Publ) System and method for scheduling wireless transmissions
US9066343B2 (en) 2010-04-22 2015-06-23 Lg Electronics Inc. Method for transmitting control channel to relay node in wireless communication system and apparatus thereof
CN102844995A (zh) * 2010-04-22 2012-12-26 Lg电子株式会社 在无线通信系统中将控制信道传输到中继节点的方法及其装置
JP2013528035A (ja) * 2010-04-22 2013-07-04 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてリレーノードに制御チャネルを送信する方法及びそのための装置
US8817732B2 (en) 2010-04-22 2014-08-26 Lg Electronics Inc. Method for transmitting control channel to relay node in wireless communication system and apparatus thereof
AU2011243353B2 (en) * 2010-04-22 2015-02-26 Lg Electronics Inc. Method for transmitting control channel to relay node in wireless communication system and apparatus thereof
CN102844995B (zh) * 2010-04-22 2016-12-07 Lg电子株式会社 在无线通信系统中将控制信道传输到中继节点的方法及其装置
WO2011132945A3 (en) * 2010-04-22 2012-03-08 Lg Electronics Inc. Method for transmitting control channel to relay node in wireless communication system and apparatus thereof
US9084223B2 (en) 2010-09-30 2015-07-14 Samsung Electronics Co., Ltd. Method and apparatus for providing multi-media broadcast multicast services data to user equipment over relay nodes
WO2012044129A3 (en) * 2010-09-30 2012-05-31 Samsung Electronics Co., Ltd. Method and apparatus for providing multi-media broadcast multicast services data to user equipments over relay nodes
WO2012044129A2 (en) * 2010-09-30 2012-04-05 Samsung Electronics Co., Ltd. Method and apparatus for providing multi-media broadcast multicast services data to user equipments over relay nodes
WO2012075630A1 (en) * 2010-12-08 2012-06-14 Nokia Corporation Device-to-device communication scenario
US9491766B2 (en) 2010-12-08 2016-11-08 Nokia Technologies Oy Device-to-device communication scenario
JP2014147118A (ja) * 2014-04-11 2014-08-14 Fujitsu Ltd 通信区間設定方法、中継局、移動局、移動通信システム

Also Published As

Publication number Publication date
JP5118253B2 (ja) 2013-01-16
US20110128893A1 (en) 2011-06-02
US9100149B2 (en) 2015-08-04
CN102113398A (zh) 2011-06-29
KR20100014190A (ko) 2010-02-10
EP2309813A2 (en) 2011-04-13
US8848580B2 (en) 2014-09-30
EP2309813A4 (en) 2014-07-09
WO2010013980A3 (ko) 2010-05-14
KR101586864B1 (ko) 2016-02-03
CN102113398B (zh) 2014-07-02
US20140362743A1 (en) 2014-12-11
JP2011529318A (ja) 2011-12-01

Similar Documents

Publication Publication Date Title
WO2010013980A2 (ko) 중계기를 포함하는 무선통신 시스템에서 백홀링크 및 액세스링크를 위한 자원할당 방법
WO2010016693A2 (en) Method and apparatus of communication using subframe between base station and relay
WO2017188733A1 (en) Method and apparatus for configuring frame structure for new radio access technology in wireless communication system
WO2010039003A2 (ko) 무선통신 시스템에서 중계기를 위한 무선 자원 할당 방법 및 장치
WO2010082752A2 (ko) 무선통신 시스템에서 mbsfn 서브프레임을 이용한 신호전송 방법
WO2010077038A2 (en) Method and apparatus for transmitting signal in wireless communication system
WO2010050705A2 (en) Method of operating relay station in wireless communication system
WO2010013962A2 (ko) 무선통신 시스템에서 중계국 및 중계국의 동작 방법
WO2010039011A2 (ko) 서브프레임의 무선자원 할당 방법 및 장치
WO2010101432A2 (ko) 중계국의 제어신호 전송 방법 및 장치
WO2010074536A2 (ko) 중계기에 대한 자원 할당 방법
WO2014142611A1 (en) Method and apparatus for performing data transmission in wireless communication system
WO2010053339A2 (ko) 무선통신 시스템의 harq 수행방법, 서브프레임 할당 방법 및 장치
WO2015199494A1 (ko) 비면허 대역에서의 데이터 전송 방법 및 장치
WO2010101366A2 (ko) 무선통신 시스템에서 중계국의 데이터 수신방법 및 장치
WO2010104338A2 (en) Method and apparatus for allocating backhaul transmission resource in wireless communication system based on relay
WO2010093143A2 (ko) 무선통신 시스템에서 데이터 중계 방법 및 장치
WO2011129537A2 (ko) 무선 통신 시스템에서 릴레이 노드를 위한 검색 영역 설정 방법 및 이를 위한 장치
WO2011139114A2 (ko) 무선 통신 시스템에서 기지국과 릴레이 노드 간의 백홀 서브프레임 설정 방법 및 이를 위한 장치
WO2012093826A2 (ko) 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2011031080A2 (ko) 릴레이 시스템에서 통신을 수행하는 방법 및 장치
WO2010085062A2 (en) Method and apparatus of transmitting backhaul signal in wireless communication system including relay station
WO2019156474A1 (ko) 무선 통신 시스템에서 사이드링크 통신을 위한 피드백 신호를 설정하는 방법 및 장치
WO2019031946A1 (ko) 무선 통신 시스템에서 lte 및 nr에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2019194574A1 (en) Method and apparatus for supporting relay operation for urllc in wireless communication system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130357.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09803185

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2011521049

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009803185

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13056799

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE