WO2011139114A2 - 무선 통신 시스템에서 기지국과 릴레이 노드 간의 백홀 서브프레임 설정 방법 및 이를 위한 장치 - Google Patents
무선 통신 시스템에서 기지국과 릴레이 노드 간의 백홀 서브프레임 설정 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- WO2011139114A2 WO2011139114A2 PCT/KR2011/003388 KR2011003388W WO2011139114A2 WO 2011139114 A2 WO2011139114 A2 WO 2011139114A2 KR 2011003388 W KR2011003388 W KR 2011003388W WO 2011139114 A2 WO2011139114 A2 WO 2011139114A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- relay node
- base station
- signal
- downlink
- subframe
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/155—Ground-based stations
- H04B7/15528—Control of operation parameters of a relay station to exploit the physical medium
- H04B7/15542—Selecting at relay station its transmit and receive resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/27—Control channels or signalling for resource management between access points
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
- H04W84/047—Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
Definitions
- the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for setting a backhaul subframe between a base station and a relay node in a wireless communication system.
- a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
- E-UMTS Evolved Universal Mobile Telecommunications System
- UMTS Universal Mobile Telecommunications System
- LTE Long Term Evolution
- an E-UMTS is located at an end of a user equipment (UE) (e.g., an eNode B; an eNB) and a network (E-UTRAN) and connected to an external network (Access Gateway; AG).
- UE user equipment
- E-UTRAN eNode B
- the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
- the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
- the base station controls data transmission and reception for a plurality of terminals.
- the base station transmits downlink scheduling information for downlink (DL) data and informs the user equipment of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
- HARQ Hybrid Automatic Repeat and reQuest
- the base station transmits uplink scheduling information to uplink UL data for uplink (UL) data and informs the user equipment of time / frequency domain, encoding, data size, HARQ related information, and the like.
- the core network may be composed of an AG and a network node for user registration of the terminal.
- the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
- Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
- new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
- the present invention proposes a method and apparatus for setting a backhaul subframe between a base station and a relay node in a wireless communication system.
- a method of receiving a signal from a base station by a relay node may include requesting a signal for changing a size of a downlink physical control channel transmitted from the relay node to a terminal corresponding to the relay node.
- a relay node device for communicating with the base station via a first link, and a terminal corresponding to the relay node via a second link; And a processor for processing a signal transmitted and received through the first link and a signal transmitted and received through the second link, wherein the wireless communication module is configured to determine a size of a downlink physical control channel corresponding to the second link.
- the wireless communication module may receive a relay node specific signal transmitted from the downlink available symbol transmitted through the first link.
- a general subframe and a multicast broadcast single frequency network (MBSFN) subframe may be alternately set.
- the request signal includes information on the number of symbols of a downlink physical control channel transmitted to a terminal corresponding to the relay node, or a PHICH (Physical Hybrid-ARQ Indicator) of a subframe transmitted to a terminal corresponding to the relay node. CHannel) characterized in that it contains information about the duration (duration).
- the response signal is preferably 1-bit information on whether the downlink physical control channel can be changed to a size.
- the response signal includes information on the number of antenna ports for the common reference signal allocated to the subframe transmitted to the terminal corresponding to the relay node or information on the number of transmit antennas of the relay node. do.
- a base station and a relay node can efficiently transmit and receive signals in a wireless communication system.
- FIG. 1 schematically illustrates an E-UMTS network structure as an example of a wireless communication system.
- FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
- FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
- FIG. 3 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
- FIG. 3 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
- FIG. 4 is a diagram illustrating a structure of a downlink radio frame used in an LTE system.
- FIG. 5 is a diagram illustrating the configuration of a relay backhaul link and a relay access link in a wireless communication system.
- FIG 6 illustrates an example of relay node resource partitioning.
- 7 and 8 illustrate the number of available symbols of a backhaul transmission and the number of receivable symbols of a relay node according to the number of PDCCH symbols transmitted from a base station.
- FIG. 9 is a diagram illustrating a problem that may occur when a base station forcibly specifies the number of PDCCH symbols to a relay node.
- FIG. 10 is a diagram for explaining a procedure for changing the number of PDCCH symbols of a relay node according to the first embodiment of the present invention.
- FIG. 11 illustrates a procedure for changing the number of PDCCH symbols of a relay node according to the second embodiment of the present invention.
- FIG. 12 is a diagram illustrating a procedure for changing the number of PDCCH symbols of a relay node according to a third embodiment of the present invention.
- FIG. 13 illustrates a block diagram of a communication device according to an embodiment of the present invention.
- the present specification describes an embodiment of the present invention using an LTE system and an LTE-A system, this as an example may be applied to any communication system corresponding to the above definition.
- the present specification describes an embodiment of the present invention on the basis of the FDD scheme, but this is an exemplary embodiment of the present invention can be easily modified and applied to the H-FDD scheme or the TDD scheme.
- FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
- the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
- the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
- the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
- the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
- the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
- RLC radio link control
- the RLC layer of the second layer supports reliable data transmission.
- the function of the RLC layer may be implemented as a functional block inside the MAC.
- the PDCP (Packet Data Convergence Protocol) layer of the second layer provides unnecessary control for efficiently transmitting IP packets such as IPv4 or IPv6 over a narrow bandwidth air interface. It performs header compression function that reduces information.
- the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
- the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
- RB means a service provided by the second layer for data transmission between the terminal and the network.
- the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
- the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
- One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 15, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
- Different cells may be configured to provide different bandwidths.
- the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
- BCH broadcast channel
- PCH paging channel
- SCH downlink shared channel
- Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
- the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
- RAC random access channel
- SCH uplink shared channel
- BCCH broadcast control channel
- PCCH paging control channel
- CCCH common control channel
- MCCH multicast control channel
- MTCH multicast. Traffic Channel
- FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
- the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in an initial cell search step to check the downlink channel state.
- P-SCH Primary Synchronization Channel
- S-SCH Secondary Synchronization Channel
- DL RS downlink reference signal
- the UE After completing the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
- PDSCH physical downlink control channel
- PDCCH physical downlink control channel
- the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
- RACH random access procedure
- the UE may transmit a specific sequence to the preamble through a physical random access channel (PRACH) (S303 and S305), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
- PRACH physical random access channel
- a contention resolution procedure may be additionally performed.
- the UE After performing the procedure as described above, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
- Control Channel (PUCCH) transmission (S308) may be performed.
- the terminal receives downlink control information (DCI) through the PDCCH.
- DCI downlink control information
- the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
- the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
- the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
- FIG. 4 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
- a subframe consists of 14 OFDM symbols.
- the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
- R1 to R4 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
- the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
- the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
- Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
- the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
- the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
- the PCFICH is composed of four Resource Element Groups (REGs), and each REG is distributed in a control region based on a Cell ID (Cell IDentity).
- One REG is composed of four resource elements (REs).
- the RE represents a minimum physical resource defined by one subcarrier x one OFDM symbol.
- the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
- QPSK Quadrature Phase Shift Keying
- the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
- the PHICH consists of one REG and is scrambled cell-specifically.
- ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
- BPSK binary phase shift keying
- a plurality of PHICHs mapped to the same resource constitutes a PHICH group. The number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
- the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
- the PHICH or PHICH group is sustained by a certain number of symbols in one subframe, which is referred to as PHICH duration.
- the PHICH duration is signaled from the higher layer and may be defined as shown in Table 1 below according to the subframe type.
- the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
- n is indicated by the PCFICH as an integer of 1 or more.
- the PDCCH consists of one or more CCEs.
- the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
- PCH paging channel
- DL-SCH downlink-shared channel
- Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
- Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode the PDSCH data is included in the PDCCH and transmitted.
- a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A”, a radio resource (eg, frequency location) of "B” and a transmission type information of "C” (eg, It is assumed that information on data transmitted using a transport block size, modulation scheme, coding information, etc.) is transmitted through a specific subframe.
- RTI Radio Network Temporary Identity
- the terminal in the cell monitors the PDCCH using the RNTI information it has, and if there is at least one terminal having an "A" RNTI, the terminals receive the PDCCH, and through the information of the received PDCCH " Receive the PDSCH indicated by B " and " C ".
- a relay node may be installed between the base station and the terminal to provide a radio channel having a better channel state to the terminal.
- RN relay node
- the relay node is currently widely used as a technique introduced for eliminating the radio shadow area in a wireless communication system.
- relay node technology is an essential technology for reducing the base station expansion cost and the backhaul network maintenance cost in the next generation mobile communication system, while expanding service coverage and improving data throughput.
- relay node technology gradually develops, it is necessary to support a relay node used in a conventional wireless communication system in a new wireless communication system.
- 3GPP LTE-A (3rd Generation Partnership Project Long Term Evolution-Advanced) systems have the role of forwarding the link connection between a base station and a terminal to a relay node, and have two different attributes in each uplink and downlink carrier frequency band. Will be applied.
- the part of the connection link established between the link between the base station and the relay node is defined as a backhaul link.
- the transmission is performed by the frequency division duplex (FDD) or the time division duplex (TDD) using the downlink resources, and is called backhaul downlink, and the transmission is performed by the FDD or TDD using the uplink resources. This may be expressed as a backhaul uplink.
- FDD frequency division duplex
- TDD time division duplex
- FIG. 5 is a diagram illustrating the configuration of a relay backhaul link and a relay access link in a wireless communication system.
- two types of links having different attributes are applied to respective uplink and downlink carrier frequency bands as a relay node is introduced for a role of forwarding a link between a base station and a terminal.
- the connection link portion established between the base station and the relay node is defined and represented as a relay backhaul link.
- the backhaul link is transmitted using a downlink frequency band (for Frequency Division Duplex (FDD)) or a downlink subframe (for Time Division Duplex (TDD)) resources
- the backhaul link is represented as a backhaul downlink and is uplink. If transmission is performed using a frequency band (in case of FDD) or an uplink subframe (in case of TDD), it may be expressed as a backhaul uplink.
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- connection link portion established between the relay node and the series of terminals is defined and represented as a relay access link.
- a relay access link transmits using a downlink frequency band (in case of FDD) or a downlink subframe (in case of TDD), it is expressed as an access downlink and an uplink frequency band (in case of FDD).
- TDD uplink subframe
- the relay node RN may receive information from the base station through the relay backhaul downlink and may transmit information to the base station through the relay backhaul uplink. In addition, the relay node may transmit information to the terminal through the relay access downlink, and may receive information from the terminal through the relay access uplink.
- the band (or spectrum) of the relay node the case in which the backhaul link operates in the same frequency band as the access link is referred to as 'in-band', and the backhaul link and the access link have different frequencies.
- the case of operating in band is called 'out-band'.
- a terminal operating according to an existing LTE system eg, Release-8) (hereinafter referred to as a legacy terminal) should be able to access the donor cell.
- the relay node may be classified as a transparent relay node or a non-transparent relay node.
- a transparent means a case where a terminal does not recognize whether or not it communicates with a network through a relay node
- a non-transparent means a case where a terminal recognizes whether a terminal communicates with a network through a relay node.
- the relay node may be divided into a relay node configured as part of a donor cell or a relay node controlling a cell by itself.
- a relay node configured as part of a donor cell may have a relay node identifier (ID), but does not have a relay node's own cell identity.
- ID a relay node identifier
- the relay node is configured as part of the donor cell.
- a relay node can support legacy terminals.
- various types of smart repeaters, decode-and-forward relays, L2 (layer 2) relay nodes, and type 2 relay nodes may be included in these relay nodes. Corresponding.
- the relay node controls one or several cells, each of the cells controlled by the relay node is provided with a unique physical layer cell identity, and may use the same RRM mechanism. From a terminal perspective, there is no difference between accessing a cell controlled by a relay node and accessing a cell controlled by a general base station.
- the cell controlled by this relay node can support the legacy terminal.
- self-backhauling relay nodes, L3 (third layer) relay nodes, type-1 relay nodes, and type-1a relay nodes are such relay nodes.
- the type-1 relay node controls the plurality of cells as in-band relay nodes, each of which appears to be a separate cell from the donor cell from the terminal's point of view.
- the plurality of cells have their own physical cell IDs (defined in LTE Release-8), and the relay node may transmit its own synchronization channel, reference signal, and the like.
- the terminal may receive scheduling information and HARQ feedback directly from the relay node and transmit its control channel (scheduling request (SR), CQI, ACK / NACK, etc.) to the relay node.
- SR scheduling request
- CQI CQI
- ACK / NACK etc.
- the type-1 relay node is seen as a legacy base station (base station operating according to the LTE Release-8 system). That is, it has backward compatibility.
- the type-1 relay node may be seen as a base station different from the legacy base station, thereby providing a performance improvement.
- the type-1a relay node has the same features as the type-1 relay node described above in addition to operating out-band.
- the operation of the type-1a relay node can be configured to minimize or eliminate the impact on L1 (first layer) operation.
- the type-2 relay node is an in-band relay node and does not have a separate physical cell ID and thus does not form a new cell.
- the type 2 relay node is transparent to the legacy terminal, and the legacy terminal is not aware of the existence of the type 2 relay node.
- the type-2 relay node may transmit the PDSCH, but at least do not transmit the CRS and PDCCH.
- resource partitioning In order for the relay node to operate in-band, some resources in the time-frequency space must be reserved for the backhaul link and these resources can be set not to be used for the access link. This is called resource partitioning.
- the backhaul downlink and the access downlink may be multiplexed in a time division multiplexing (TDM) scheme on one carrier frequency (ie, only one of the backhaul downlink or the access downlink is activated at a specific time).
- TDM time division multiplexing
- the backhaul uplink and access uplink may be multiplexed in a TDM manner on one carrier frequency (ie, only one of the backhaul uplink or access uplink is activated at a particular time).
- Backhaul link multiplexing in FDD may be described as backhaul downlink transmission is performed in a downlink frequency band, and backhaul uplink transmission is performed in an uplink frequency band.
- Backhaul link multiplexing in TDD may be described as backhaul downlink transmission is performed in a downlink subframe of a base station and a relay node, and backhaul uplink transmission is performed in an uplink subframe of a base station and a relay node.
- an in-band relay node for example, if a backhaul downlink reception from a base station and an access downlink transmission to a terminal are simultaneously performed in a predetermined frequency band, a signal transmitted from a transmitting node of the relay node is transmitted to the relay node. It may be received at the receiving end, and thus signal interference or RF jamming may occur at the RF front-end of the relay node. Similarly, if the reception of the access uplink from the terminal and the transmission of the backhaul uplink to the base station are simultaneously performed in a predetermined frequency band, signal interference may occur at the RF front end of the relay node.
- simultaneous transmission and reception in one frequency band at a relay node is provided with sufficient separation between the received signal and the transmitted signal (e.g., sufficient distance between the transmit antenna and the receive antenna geographically (e.g., ground / underground). Is not provided unless) is provided.
- One way to solve this problem of signal interference is to operate the relay node so that it does not transmit a signal to the terminal while receiving a signal from the donor cell. That is, a gap can be created in the transmission from the relay node to the terminal, and during this gap, the terminal (including the legacy terminal) can be set not to expect any transmission from the relay node. This gap can be set by configuring a Multicast Broadcast Single Frequency Network (MBSFN) subframe.
- MBSFN Multicast Broadcast Single Frequency Network
- FIG. 6 is a diagram illustrating an example of relay node resource partitioning.
- a downlink (ie, access downlink) control signal and data are transmitted from a relay node to a terminal as a first subframe, and a second subframe is a control region of a downlink subframe as an MBSFN subframe.
- the control signal is transmitted from the relay node to the terminal, but no transmission is performed from the relay node to the terminal in the remaining areas of the downlink subframe.
- the legacy UE since the physical downlink control channel (PDCCH) is expected to be transmitted in all downlink subframes (in other words, the relay node measures the legacy UEs in their area by receiving the PDCCH in every subframe.
- PDCCH physical downlink control channel
- the relay node may receive the transmission from the base station while no transmission is performed from the relay node to the terminal. Accordingly, through this resource partitioning scheme, it is possible to prevent access downlink transmission and backhaul downlink reception from being simultaneously performed at the in-band relay node.
- the control region of the second subframe may be referred to as a relay node non-hearing interval.
- the relay node non-hearing interval means a period in which the relay node transmits the access downlink signal without receiving the backhaul downlink signal. This interval may be set to 1, 2 or 3 OFDM lengths as described above.
- the relay node may perform access downlink transmission to the terminal and receive a backhaul downlink from the base station in the remaining areas. At this time, since the relay node cannot simultaneously transmit and receive in the same frequency band, it takes time for the relay node to switch from the transmission mode to the reception mode.
- guard time GT needs to be set so that the relay node performs transmission / reception mode switching in the first partial period of the backhaul downlink reception region.
- a guard time GT for switching the reception / transmission mode of the relay node may be set.
- This length of guard time may be given as a value in the time domain, for example, may be given as k (k ⁇ 1) time sample (Ts) values, or may be set to one or more OFDM symbol lengths. have.
- the guard time of the last part of the subframe may not be defined or set.
- Such guard time may be defined only in a frequency domain configured for backhaul downlink subframe transmission in order to maintain backward compatibility (when a guard time is set in an access downlink period, legacy terminals cannot be supported).
- the relay node may receive the PDCCH and the PDSCH from the base station. This may be expressed as a relay-PDCCH (R-PDCCH) and an R-PDSCH (Relay-PDSCH) in the sense of a relay node dedicated physical channel.
- the relay node knows the exact position of the start symbol or the last symbol of the R-PDCCH and R-PDSCH of the backhaul downlink is closely related to the success of decoding and demodulation of the corresponding channel.
- the start and end of the backhaul subframe may vary depending on the number of symbols of the R-PDCCH, the number of symbols of the PDCCH, and the transmission / reception timing relationship.
- an available or receivable time interval (where the time interval is expressed in symbol units) of the backhaul subframe may be set as in the following four cases according to the timing relationship between the base station and the relay node.
- the relay node may receive the downlink transmission starting from the symbol at index m and up to the symbol at index n (13 in the case of a normal CP), and one subframe starts at index 0. It is assumed that the size of the control region used in the access downlink period is k OFDM symbols.
- This case corresponds to the case where the switching time from the backhaul link reception of the relay node to the access link transmission is longer than the cyclic prefix (CP) length.
- CP cyclic prefix
- This case corresponds to a case where the switching time from the backhaul link reception to the access link transmission of the relay node is shorter than the CP length, and the access link transmission timing of the relay node matches the backhaul link reception timing.
- the relay node receives a backhaul subframe from the m ⁇ k th index symbol to the n ( ⁇ 13) th index symbol, and m and n are determined based on a propagation delay and a switching time. This corresponds to the case where the access link transmission timing of the relay node is synchronized with the downlink transmission timing of the base station.
- the start symbol for transmitting the actual R-PDCCH and R-PDSCH may be signaled in the following manner.
- the start symbol position s1 of the R-PDCCH is fixed to the symbol index 3, and it may be considered to separately signal the start symbol position s2 of the R-PDSCH in the PRB not including the R-PDCCH.
- s2 has a value of m ⁇ s2 ⁇ 3 and may be dynamically signaled using the R-PDCCH or may be indicated through higher layer signaling such as RRC signaling.
- RRC signaling it is preferable to inform the relay node of the corresponding position through RRC signaling only when the position of the R-PDSCH start symbol is to be changed.
- the RRC signaling may be relay node specific signaling or cell specific signaling such as broadcast information.
- 7 and 8 are diagrams illustrating the number of available symbols of backhaul transmission and the number of receivable symbols of a relay node according to the number of PDCCH symbols transmitted from a base station.
- the number of PDCCH symbols of the base station is signaled to the relay node and the terminals in the PCFICH, and may vary in every subframe. Therefore, whether or not to transmit backhaul data (R-PDSCH) or backhaul control information (R-PDCCH) from the first symbol may also vary according to the number of PDCCH symbols of the base station. From the point of view of the relay node, the number of symbols of the R-PDSCH and the R-PDCCH that can be received from the eNB varies according to the number of PDCCH symbols that the relay node transmits to the terminal through the Uu interface.
- the base station may transmit R-PDSCH and R-PDCCH from index 2 symbols, and the relay node may start with R- from index 2 symbols.
- PDSCH and R-PDCCH can be received, and the symbol of index 1 can be utilized for switching. That is, a total of 12 symbols can be used for backhaul transmission.
- the symbols received by the relay node are 11 symbols in total from 3 to 13 indices. Therefore, the symbols usable for backhaul transmission are reduced from 12 symbols to 11 symbols.
- the base station transmits a relay node specific signal to each relay node to force the number of PDCCH symbols that each relay node can use for the Uu interface, and the relay node is a method of complying with the base station indication.
- the problem that may be a problem in this operation is when the command to reduce the number of PDCCH symbols of the relay node is difficult, even though it is difficult to reduce. It will be described in more detail with reference to the drawings.
- FIG. 9 is a diagram illustrating a problem that may occur when a base station forcibly designates the number of PDCCH symbols to a relay node.
- an extended PHICH duration is used for a general subframe used for a Uu interface that is a link between a relay node and a terminal (that is, three symbols of the PDCCH), and an extended PHICH duration (that is, for an MBSFN subframe) In this case, it is assumed that PDCCH has two symbols). In this case, if the relay node is commanded by the base station to reduce the PHICH duration of the MBSFN subframe receiving the backhaul subframe from 2 to 1, the relay node reduces the PHICH duration to the normal PHICH duration (ie, the symbol of the PDCCH). Number is 1).
- the PHICH duration should be changed from 3 symbols to 1 symbol in the general subframe as well as the MBSFN subframe. That is, the same configuration should be applied regardless of the subframe type.
- the general subframe is forced to maintain the PHICH duration as three symbols according to the cell size, transmission power, or the number of UEs to control, it is necessary to reduce the PHICH duration to one symbol according to the BS's command. This is to limit the operation in the subframe, which inevitably leads to a limitation in terms of scheduling.
- the base station has a recommendation format or a negotiation process, not a method of unilaterally changing the PHICH duration or the number of PDCCH symbols of the relay node to the relay node.
- FIG. 10 is a diagram illustrating a procedure for changing the number of PDCCH symbols of a relay node according to the first embodiment of the present invention.
- the relay node designates the number of PDCCH symbols of the Uu interface according to the command of the base station, but sets a channel that may not comply with the command to the base station if there is a problem. For example, when receiving a command to reduce the PHICH duration from 3 symbols to 1 symbol from the base station as shown in FIG. 10 (1010), if the relay node cannot reduce the PHICH duration from 3 symbols to 1 symbol, the relay is relayed. The node informs the base station that it cannot reduce the PHICH duration (1020). In this case, the information may be simply transmitted by transmitting the PDCCH symbol size (k) or by using information of 1 bit size to feed back information in the form of following or not following the command of the base station. Such information may be transmitted periodically, or may be transmitted aperiodically. Alternatively, the transmission may be performed only when a situation that does not comply with the command occurs.
- FIG. 11 is a diagram illustrating a procedure for changing the number of PDCCH symbols of a relay node according to the second embodiment of the present invention.
- the biggest reason why the PDCCH size of the Uu interface is changed in the relay node may be a change in the number of transmit antennas or the number of antenna ports for a cell-specific reference signal (common reference signal, CRS). That is, depending on whether two antennas (or antenna ports) or four antennas (or antenna ports), the number of symbols of the PDCCH may be one or two.
- CRS common reference signal
- the relay node is determined in a terminal mode in which a random access procedure is performed to a base station, that is, in an initial access stage.
- a relay node is essential to provide essential information on Uu interface operation to a base station. Accordingly, in the procedure 1110 of transmitting relay capacity information when the relay node initially accesses the base station as shown in FIG. 11, the number of transmit antennas (or antenna ports for CRS) used at the Uu interface of the relay node is shown. It is proposed to transmit (1120) the information about.
- FIG. 12 is a diagram illustrating a procedure for changing the number of PDCCH symbols of a relay node according to a third embodiment of the present invention.
- the third embodiment of the present invention there is a reporting mode in which the relay node preferentially reports the number of PDCCH symbols (or PHICH duration) of the Uu interface preferred or planned to be used as a base station.
- the third embodiment of the present invention has the advantage that the relay node can fully support the symbols that can be received.
- the relay node may report the number of PDCCH symbols (k) or the PHICH duration that it intends to use to the base station periodically or when a specific event occurs (1210).
- the base station transmits an acknowledgment to use the reported value as it is, or the R-PDSCH in the PRB that does not include the start symbol position s1 of the R-PDCCH and the R-PDCCH.
- the start symbol position s2 may be determined based on the reported value and signaled to the relay node (1220). Alternatively, a method of informing a start symbol index and a last symbol index of a backhaul subframe that each RN can receive may be possible.
- FIG. 13 illustrates a block diagram of a communication device according to an embodiment of the present invention.
- the communication device 1300 includes a processor 1310, a memory 1320, an RF module 1330, a display module 1340, and a user interface module 1350.
- the communication device 1300 is shown for convenience of description and some modules may be omitted. In addition, the communication device 1300 may further include necessary modules. In addition, some modules in the communication device 1300 may be classified into more granular modules.
- the processor 1310 is configured to perform an operation according to the embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 1310 may refer to the contents described with reference to FIGS. 1 to 12.
- the memory 1320 is connected to the processor 1310 and stores an operating system, an application, program code, data, and the like.
- the RF module 1330 is connected to the processor 1310 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 1330 performs analog conversion, amplification, filtering and frequency up conversion, or a reverse process thereof.
- the display module 1340 is connected to the processor 1310 and displays various information.
- the display module 1340 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
- the user interface module 1350 is connected to the processor 1310 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
- each component or feature is to be considered optional unless stated otherwise.
- Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
- the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
- embodiments of the present invention have been mainly described based on data transmission / reception relations between a relay node and a base station.
- Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
- a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
- Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
- an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- processors controllers, microcontrollers, microprocessors, and the like.
- an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
- the software code may be stored in a memory unit and driven by a processor.
- the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 출원에서는 무선 통신 시스템에서 릴레이 노드가 기지국으로부터 신호를 수신하는 방법이 개시된다. 구체적으로, 상기 릴레이 노드에서 상기 릴레이 노드에 대응하는 단말로 전송되는 하향링크 물리 제어 채널의 사이즈를 변경하기 위한 요청 신호를 상기 기지국으로부터 수신하는 단계, 상기 요청 신호에 대한 응답 신호를 상기 기지국으로 송신하는 단계, 상기 요청 신호에 기반하여, 상기 기지국과 상기 릴레이 노드 간의 하향링크 가용 심볼을 설정하는 단계, 및 상기 기지국으로부터 송신되는 릴레이 노드 특정 신호를 상기 하향링크 가용 심볼부터 수신하는 단계를 포함하는 것을 특징으로 한다.
Description
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 기지국과 릴레이 노드 간의 백홀 서브프레임 설정 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)(과 기지국(eNode B; eNB), 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향 링크(Downlink; DL) 데이터에 대해 기지국은 하향 링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향 링크(Uplink; UL) 데이터에 대해 기지국은 상향 링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 기지국과 릴레이 노드 간의 백홀 서브프레임 설정 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명의 일 양상인 무선 통신 시스템에서 릴레이 노드가 기지국으로부터 신호를 수신하는 방법은, 상기 릴레이 노드에서 상기 릴레이 노드에 대응하는 단말로 전송되는 하향링크 물리 제어 채널의 사이즈를 변경하기 위한 요청 신호를 상기 기지국으로부터 수신하는 단계; 상기 요청 신호에 대한 응답 신호를 상기 기지국으로 송신하는 단계; 상기 요청 신호에 기반하여, 상기 기지국과 상기 릴레이 노드 간의 하향링크 가용 심볼을 설정하는 단계; 및 상기 기지국으로부터 송신되는 릴레이 노드 특정 신호를 상기 하향링크 가용 심볼부터 수신하는 단계를 포함하는 것을 특징으로 한다.
한편, 본 발명의 다른 양상인 릴레이 노드 장치는, 제 1 링크를 통하여 상기 기지국과 통신하고, 제 2 링크를 통하여 상기 릴레이 노드에 대응하는 단말과 통신하기 위한 무선 통신 모듈; 및 상기 제 1 링크를 통하여 송수신되는 신호와 상기 제 2 링크를 통하여 송수신되는 신호를 처리하기 위한 프로세서를 포함하며, 상기 무선 통신 모듈은, 상기 제 2 링크에 대응하는 하향링크 물리 제어 채널의 사이즈를 변경하기 위한 요청 신호를 상기 기지국으로부터 수신하고, 상기 요청 신호에 대한 응답 신호를 상기 기지국으로 송신하며, 상기 프로세서는, 상기 요청 신호에 기반하여, 상기 제 1 링크의 하향링크 가용 심볼을 설정하고, 상기 무선 통신 모듈은, 상기 제 1 링크를 통하여 송신되는 릴레이 노드 특정 신호를 상기 하향링크 가용 심볼부터 수신하는 것을 특징으로 한다.
여기서 상기 릴레이 노드에서 상기 릴레이 노드에 대응하는 단말로 전송되는 서브프레임은, 일반 서브프레임과 MBSFN(Multicast Broadcast Single Frequency Network) 서브프레임이 교대로 설정될 수 있다.
상기 요청 신호는, 상기 릴레이 노드에 대응하는 단말로 전송되는 하향링크 물리 제어 채널의 심볼 개수에 관한 정보를 포함하거나, 상기 릴레이 노드에 대응하는 단말로 전송되는 서브프레임의 PHICH(Physical Hybrid-ARQ Indicator CHannel) 지속 기간(duration)에 관한 정보를 포함하는 것을 특징으로 한다.
상기 응답 신호는, 상기 하향링크 물리 제어 채널의 사이즈로의 변경 가능 여부에 대한 1 비트 정보인 것이 바람직하다.
또는 상기 응답 신호가, 상기 릴레이 노드에 대응하는 단말로 전송되는 서브프레임에 할당된 공통 참조 신호를 위한 안테나 포트의 개수에 관한 정보 또는 상기 릴레이 노드의 송신 안테나 개수에 관한 정보를 포함하는 것을 특징으로 한다.
본 발명의 실시예에 따르면 무선 통신 시스템에서 기지국과 릴레이 노드는 효율적으로 신호를 송수신할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면.
도 4는 LTE 시스템에서 사용되는 하향 링크 무선 프레임의 구조를 예시하는 도면.
도 5은 무선 통신 시스템에서 릴레이 백홀 링크 및 릴레이 액세스 링크의 구성을 나타낸 도면.
도 6는 릴레이 노드 자원 분할의 예시를 나타내는 도면.
도 7 및 도 8은 기지국에서 전송되는 PDCCH 심볼 개수에 따른 백홀 전송의 가용 심볼 개수 및 릴레이 노드의 수신 가능 심볼 개수를 도시하는 도면.
도 9는 기지국이 릴레이 노드로 PDCCH 심볼 개수를 강제로 지정하는 경우 발생할 수 있는 문제점을 설명하기 위한 도면.
도 10은 본 발명의 제 1 실시예에 따라 릴레이 노드의 PDCCH 심볼 개수를 변경하기 위한 절차를 설명하는 도면.
도 11은 본 발명의 제 2 실시예에 따라 릴레이 노드의 PDCCH 심볼 개수를 변경하기 위한 절차를 설명하는 도면.
도 12는 본 발명의 제 3실시예에 따라 릴레이 노드의 PDCCH 심볼 개수를 변경하기 위한 절차를 설명하는 도면.
도 13은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서는 FDD 방식을 기준으로 본 발명의 실시예에 대해 설명하지만, 이는 예시로서 본 발명의 실시예는 H-FDD 방식 또는 TDD 방식에도 용이하게 변형되어 적용될 수 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향 링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향 링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다.제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
기지국(eNB)을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향 링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향 링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향 링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향 링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향 링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향 링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향 링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향 링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향 링크/상향 링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
도 4는 하향 링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 4를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 기준 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element Group)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파×하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향 링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다. 한편, PHICH 또는 PHICH 그룹은 하나의 서브프레임에서 특정 개수의 심볼 개수만큼 지속되며, 이를 PHICH 지속 기간(Duration)이라 지칭한다. PHICH 지속 기간은 상위 계층으로부터 시그널링되고, 서브프레임 타입에 따라 아래 표 1과 같이 정의될 수 있다.
PDCCH는 물리 하향 링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향 링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야하는지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
한편, 기지국과 단말 간의 채널 상태가 열악한 경우에는 기지국과 단말 간에 릴레이 노드(Relay Node, RN)를 설치하여 채널 상태가 보다 우수한 무선 채널을 단말에게 제공할 수 있다. 또한, 기지국으로부터 채널 상태가 열악한 셀 경계 지역에서 릴레이 노드를 도입하여 사용함으로써 보다 고속의 데이터 채널을 제공할 수 있고, 셀 서비스 영역을 확장시킬 수 있다. 이와 같이, 릴레이 노드는 무선 통신 시스템에서 전파 음영 지역 해소를 위해 도입된 기술로서 현재 널리 사용되고 있다.
과거의 방식이 단순히 신호를 증폭해서 전송하는 리피터(Repeater)의 기능에 국한된 것에 비해 최근에는 보다 지능화된 형태로 발전하고 있다. 더 나아가 릴레이 노드 기술은 차세대 이동통신 시스템에서 기지국 증설 비용과 백홀망의 유지 비용을 줄이는 동시에, 서비스 커버리지 확대와 데이터 처리율 향상을 위해 반드시 필요한 기술에 해당한다. 릴레이 노드 기술이 점차 발전함에 따라, 종래의 무선 통신 시스템에서 이용하는 릴레이 노드를 새로운 무선 통신 시스템에서 지원할 필요가 있다.
3GPP LTE-A(3rd Generation Partnership Project Long Term Evolution-Advanced) 시스템에서 릴레이 노드에 기지국과 단말 간의 링크 연결을 포워딩하는 역할을 도입하면서 각각의 상향링크 및 하향링크 캐리어 주파수 밴드에 속성이 다른 두 가지 종류의 링크가 적용되게 된다. 기지국과 릴레이 노드의 링크 간에 설정되는 연결 링크 부분을 백홀 링크(backhaul link)라고 정의하여 표현한다. 하향링크 자원을 이용하여 FDD(Frequency Division Duplex)) 혹은 TDD(Time Division Duplex) 방식으로 전송이 이루어지는 것을 백홀 하향링크(backhaul downlink)라고 하며, 상향링크 자원을 이용하여 FDD 또는 TDD 방식으로 전송이 이루어지는 것을 백홀 상향링크라고 표현할 수 있다.
도 5는 무선 통신 시스템에서 릴레이 백홀 링크 및 릴레이 액세스 링크의 구성을 나타낸 도면이다.
도 5를 참조하면, 기지국과 단말 간 링크의 연결을 포워딩(forwarding)하는 역할을 위해 릴레이 노드가 도입되면서 각각의 상향링크 및 하향링크 캐리어 주파수 대역에 속성이 다른 두 종류의 링크가 적용된다. 기지국과 릴레이 노드 간의 설정되는 연결 링크 부분을 릴레이 백홀 링크(relay backhaul link)로서 정의하여 표현한다. 백홀 링크가 하향링크 주파수 대역(Frequency Division Duplex, FDD의 경우)이나 하향링크 서브프레임(Time Division Duplex, TDD의 경우) 자원을 이용하여 전송이 이루어지는 경우 백홀 하향링크(backhaul downlink)로 표현하고 상향링크 주파수 대역이나(FDD의 경우) 상향링크 서브프레임(TDD의 경우) 자원을 이용하여 전송이 이루어지는 경우 백홀 상향링크(backhaul uplink)로 표현할 수 있다.
반면 릴레이 노드와 일련의 단말들 간에 설정되는 연결 링크 부분을 릴레이 액세스 링크(relay access link)로서 정의하여 표현한다. 릴레이 액세스 링크가 하향링크 주파수 대역(FDD의 경우)이나 하향링크 서브프레임(TDD의 경우) 자원을 이용하여 전송이 이루어지는 경우 액세스 하향링크(access downlink)로 표현하고 상향링크 주파수 대역(FDD의 경우)이나 상향링크 서브프레임(TDD의 경우) 자원을 이용하여 전송이 이루어지는 경우 액세스 상향링크(access uplink)로 표현할 수 있다.
릴레이 노드(RN)는 릴레이 백홀 하향링크(relay backhaul downlink)를 통해 기지국으로부터 정보를 수신할 수 있고, 릴레이 백홀 상향링크를 통해 기지국으로 정보를 전송할 수 있다. 또한, 릴레이 노드는 릴레이 액세스 하향링크를 통해 단말로 정보를 전송할 수 있고, 릴레이 액세스 상향링크를 통해 단말로부터 정보를 수신할 수 있다.
한편, 릴레이 노드의 대역(또는 스펙트럼) 사용과 관련하여, 백홀 링크가 액세스 링크와 동일한 주파수 대역에서 동작하는 경우를 '인-밴드(in-band)'라고 하고, 백홀 링크와 액세스 링크가 상이한 주파수 대역에서 동작하는 경우를 '아웃-밴드(out-band)'라고 한다. 인-밴드 및 아웃-밴드 경우 모두에서 기존의 LTE 시스템(예를 들어, 릴리즈-8)에 따라 동작하는 단말(이하, 레거시(legacy) 단말이라 함)이 도너 셀에 접속할 수 있어야 한다.
단말에서 릴레이 노드를 인식하는지 여부에 따라 릴레이 노드는 트랜스패런트(transparent) 릴레이 노드 또는 넌-트랜스패런트(non-transparent) 릴레이 노드로 분류될 수 있다. 트랜스패런트는 단말이 릴레이 노드를 통하여 네트워크와 통신하는지 여부를 인지하지 못하는 경우를 의미하고, 넌-트랜스패런트는 단말이 릴레이 노드를 통하여 네트워크와 통신하는지 여부를 인지하는 경우를 의미한다.
릴레이 노드의 제어와 관련하여, 도너 셀의 일부로 구성되는 릴레이 노드 또는 스스로 셀을 제어하는 릴레이 노드로 구분될 수 있다.
도너 셀의 일부로서 구성되는 릴레이 노드는 릴레이 노드 식별자(ID)를 가질 수는 있지만, 릴레이 노드 자신의 셀 아이덴터티(identity)를 가지지 않는다. 도너 셀이 속하는 기지국에 의하여 RRM(Radio Resource Management)의 적어도 일부가 제어되면 (RRM의 나머지 부분들은 릴레이 노드에 위치하더라도), 도너 셀의 일부로서 구성되는 릴레이 노드라 한다. 바람직하게는, 이러한 릴레이 노드는 레거시 단말을 지원할 수 있다. 예를 들어, 스마트 리피터(Smart repeaters), 디코드-앤-포워드 릴레이 노드(decode-and-forward relays), L2(제2계층) 릴레이 노드들의 다양한 종류들 및 타입-2 릴레이 노드가 이러한 릴레이 노드에 해당한다.
스스로 셀을 제어하는 릴레이 노드의 경우에, 릴레이 노드는 하나 또는 여러개의 셀들을 제어하고, 릴레이 노드에 의해 제어되는 셀들 각각에 고유의 물리계층 셀 아이덴터티가 제공되며, 동일한 RRM 메커니즘을 이용할 수 있다. 단말 관점에서는 릴레이 노드에 의하여 제어되는 셀에 액세스하는 것과 일반 기지국에 의해 제어되는 셀에 액세스하는 것에 차이점이 없다. 바람직하게는, 이러한 릴레이 노드에 의해 제어되는 셀은 레거시 단말을 지원할 수 있다. 예를 들어, 셀프-백홀링(Self-backhauling) 릴레이 노드, L3(제3계층) 릴레이 노드, 타입-1 릴레이 노드 및 타입-1a 릴레이 노드가 이러한 릴레이 노드에 해당한다.
타입-1 릴레이 노드는 인-밴드 릴레이 노드로서 복수개의 셀들을 제어하고, 이들 복수개의 셀들의 각각은 단말 입장에서 도너 셀과 구별되는 별개의 셀로 보인다. 또한, 복수개의 셀들은 각자의 물리 셀 ID(LTE 릴리즈-8에서 정의함)를 가지고, 릴레이 노드는 자신의 동기화 채널, 참조신호 등을 전송할 수 있다. 단일-셀 동작의 경우에, 단말은 릴레이 노드로부터 직접 스케줄링 정보 및 HARQ 피드백을 수신하고 릴레이 노드로 자신의 제어 채널(스케줄링 요청(SR), CQI, ACK/NACK 등)을 전송할 수 있다. 또한, 레거시 단말(LTE 릴리즈-8 시스템에 따라 동작하는 단말)들에게 타입-1 릴레이 노드는 레거시 기지국(LTE 릴리즈-8 시스템에 따라 동작하는 기지국)으로 보인다. 즉, 역방향 호환성(backward compatibility)을 가진다. 한편, LTE-A 시스템에 따라 동작하는 단말들에게는, 타입-1 릴레이 노드는 레거시 기지국과 다른 기지국으로 보여, 성능 향상을 제공할 수 있다.
타입-1a 릴레이 노드는 아웃-밴드로 동작하는 것 외에 전술한 타입-1 릴레이 노드와 동일한 특징들을 가진다. 타입-1a 릴레이 노드의 동작은 L1(제1계층) 동작에 대한 영향이 최소화 또는 없도록 구성될 수 있다.
타입-2 릴레이 노드는 인-밴드 릴레이 노드로서, 별도의 물리 셀 ID를 가지지 않으며, 이에 따라 새로운 셀을 형성하지 않는다. 타입-2 릴레이 노드는 레거시 단말에 대해 트랜스패런트하고, 레거시 단말은 타입-2 릴레이 노드의 존재를 인지하지 못한다. 타입-2 릴레이 노드는 PDSCH를 전송할 수 있지만, 적어도 CRS 및 PDCCH는 전송하지 않는다.
한편, 릴레이 노드가 인-밴드로 동작하도록 하기 위하여, 시간-주파수 공간에서의 일부 자원이 백홀 링크를 위해 예비되어야 하고 이 자원은 액세스 링크를 위해서 사용되지 않도록 설정할 수 있다. 이를 자원 분할(resource partitioning)이라 한다.
릴레이 노드에서의 자원 분할에 있어서의 일반적인 원리는 다음과 같이 설명할 수 있다. 백홀 하향링크 및 액세스 하향링크가 하나의 반송파 주파수 상에서 시간분할다중화(Time Division Multiplexing; TDM) 방식으로 다중화될 수 있다 (즉, 특정 시간에서 백홀 하향링크 또는 액세스 하향링크 중 하나만이 활성화된다). 유사하게, 백홀 상향링크 및 액세스 상향링크는 하나의 반송파 주파수 상에서 TDM 방식으로 다중화될 수 있다 (즉, 특정 시간에서 백홀 상향링크 또는 액세스 상향링크 중 하나만이 활성화된다).
FDD 에서의 백홀 링크 다중화는, 백홀 하향링크 전송은 하향링크 주파수 대역에서 수행되고, 백홀 상향링크 전송은 상향링크 주파수 대역에서 수행되는 것으로 설명할 수 있다. TDD 에서의 백홀 링크 다중화는, 백홀 하향링크 전송은 기지국과 릴레이 노드의 하향링크 서브프레임에서 수행되고, 백홀 상향링크 전송은 기지국과 릴레이 노드의 상향링크 서브프레임에서 수행되는 것으로 설명할 수 있다.
인-밴드 릴레이 노드의 경우에, 예를 들어, 소정의 주파수 대역에서 기지국으로부터의 백홀 하향링크 수신과 단말로의 액세스 하향링크 전송이 동시에 이루어지면, 릴레이 노드의 송신단으로부터 전송되는 신호가 릴레이 노드의 수신단에서 수신될 수 있고, 이에 따라 릴레이 노드의 RF 전단(front-end)에서 신호 간섭 또는 RF 재밍(jamming)이 발생할 수 있다. 유사하게, 소정의 주파수 대역에서 단말로부터의 액세스 상향링크의 수신과 기지국으로의 백홀 상향링크의 전송이 동시에 이루어지면, 릴레이 노드의 RF 전단에서 신호 간섭이 발생할 수 있다. 따라서, 릴레이 노드에서 하나의 주파수 대역에서의 동시 송수신은 수신 신호와 송신 신호간에 충분한 분리(예를 들어, 송신 안테나와 수신 안테나를 지리적으로 충분히 이격시켜(예를 들어, 지상/지하에) 설치함)가 제공되지 않으면 구현하기 어렵다.
이와 같은 신호 간섭의 문제를 해결하는 한 가지 방안은, 릴레이 노드가 도너 셀로부터 신호를 수신하는 동안에 단말로 신호를 전송하지 않도록 동작하게 하는 것이다. 즉, 릴레이 노드로부터 단말로의 전송에 갭(gap)을 생성하고, 이 갭 동안에는 단말(레거시 단말 포함)이 릴레이 노드로부터의 어떠한 전송도 기대하지 않도록 설정할 수 있다. 이러한 갭은 MBSFN (Multicast Broadcast Single Frequency Network) 서브프레임을 구성함으로써 설정할 수 있다
도 6은 릴레이 노드 자원 분할의 예시를 나타내는 도면이다.
도 6에서는 제 1 서브프레임은 일반 서브프레임으로서 릴레이 노드로부터 단말로 하향링크 (즉, 액세스 하향링크) 제어신호 및 데이터가 전송되고, 제 2 서브프레임은 MBSFN 서브프레임으로서 하향링크 서브프레임의 제어 영역에서는 릴레이 노드로부터 단말로 제어 신호가 전송되지만 하향링크 서브프레임의 나머지 영역에서는 릴레이 노드로부터 단말로 아무런 전송이 수행되지 않는다. 여기서, 레거시 단말의 경우에는 모든 하향링크 서브프레임에서 물리하향링크제어채널(PDCCH)의 전송을 기대하게 되므로 (다시 말하자면, 릴레이 노드는 자신의 영역 내의 레거시 단말들이 매 서브프레임에서 PDCCH를 수신하여 측정 기능을 수행하도록 지원할 필요가 있으므로), 레거시 단말의 올바른 동작을 위해서는 모든 하향링크 서브프레임에서 PDCCH를 전송할 필요가 있다. 따라서, 기지국으로부터 릴레이 노드로의 하향링크 (즉, 백홀 하향링크) 전송을 위해 설정된 서브프레임 (제 2 서브프레임)상에서도, 서브프레임의 처음 N (N=1, 2 또는 3) 개의 OFDM 심볼구간에서 릴레이 노드는 백홀 하향링크를 수신하는 것이 아니라 액세스 하향링크 전송을 해야할 필요가 있다. 이에 대하여, 제 2 서브프레임의 제어 영역에서 PDCCH가 릴레이 노드로부터 단말로 전송되므로 릴레이 노드에서 서빙하는 레거시 단말에 대한 역방향 호환성이 제공될 수 있다. 제 2 서브프레임의 나머지 영역에서는 릴레이 노드로부터 단말로 아무런 전송이 수행되지 않는 동안에 릴레이 노드는 기지국으로부터의 전송을 수신할 수 있다. 따라서, 이러한 자원 분할 방식을 통해서, 인-밴드 릴레이 노드에서 액세스 하향링크 전송과 백홀 하향링크 수신이 동시에 수행되지 않도록 할 수 있다.
MBSFN 서브프레임을 이용하는 제 2 서브프레임에 대하여 구체적으로 설명한다. 제 2 서브프레임의 제어 영역은 릴레이 노드 비-청취(non-hearing) 구간이라고 할 수 있다. 릴레이 노드 비-청취 구간은 릴레이 노드가 백홀 하향링크 신호를 수신하지 않고 액세스 하향링크 신호를 전송하는 구간을 의미한다. 이 구간은 전술한 바와 같이 1, 2 또는 3 OFDM 길이로 설정될 수 있다. 릴레이 노드 비-청취 구간에서 릴레이 노드는 단말로의 액세스 하향링크 전송을 수행하고 나머지 영역에서는 기지국으로부터 백홀 하향링크를 수신할 수 있다. 이 때, 릴레이 노드는 동일한 주파수 대역에서 동시에 송수신을 수행할 수 없으므로, 릴레이 노드가 송신 모드에서 수신 모드로 전환하는 데에 시간이 소요된다. 따라서, 백홀 하향링크 수신 영역의 처음 일부 구간에서 릴레이 노드가 송신/수신 모드 스위칭을 하도록 가드 시간(GT)이 설정될 필요가 있다. 유사하게 릴레이 노드가 기지국으로부터의 백홀 하향링크를 수신하고 단말로의 액세스 하향링크를 전송하도록 동작하는 경우에도, 릴레이 노드의 수신/송신 모드 스위칭을 위한 가드 시간(GT)이 설정될 수 있다. 이러한 가드 시간의 길이는 시간 영역의 값으로 주어질 수 있고, 예를 들어, k (k≥1) 개의 시간 샘플(time sample, Ts) 값으로 주어질 수있고, 또는 하나 이상의 OFDM 심볼 길이로 설정될 수도 있다. 또는, 릴레이 노드 백홀 하향링크 서브프레임이 연속으로 설정되어 있는 경우에 또는 소정의 서브프레임 타이밍 정렬(timing alignment) 관계에 따라서, 서브프레임의 마지막 부분의 가드시간은 정의되거나 설정되지 않을 수 있다. 이러한 가드 시간은 역방향 호환성을 유지하기 위하여, 백홀 하향링크 서브프레임 전송을 위해 설정되어 있는 주파수 영역에서만 정의될 수 있다 (액세스 하향링크 구간에서 가드 시간이 설정되는 경우에는 레거시 단말을 지원할 수 없다). 가드 시간을 제외한 백홀 하향링크 수신 구간에서 릴레이 노드는 기지국으로부터 PDCCH 및 PDSCH를 수신할 수 있다. 이를 릴레이 노드 전용 물리 채널이라는 의미에서 R-PDCCH (Relay-PDCCH) 및 R-PDSCH (Relay-PDSCH)로 표현할 수도 있다.
릴레이 노드가 백홀 하향링크의 R-PDCCH 및 R-PDSCH의 시작심볼 또는 마지막 심볼의 위치를 정확히 아는 것은 해당 채널의 복호 및 복조의 성공여부와 밀접한 관련이 있다. 또한 백홀 서브프레임의 시작 및 끝은 R-PDCCH의 심볼 수와 PDCCH의 심볼 수 및 송수신 타이밍 관계에 따라 가변될 수 있다.
우선 백홀 서브프레임의 가용 또는 수신 가능한 시간 구간(여기서, 시간 구간은 심볼 단위로 표현된다)은 기지국과 릴레이 노드 간의 타이밍 관계에 따라 아래 4가지 경우와 같이 설정될 수 있다. 우선, 릴레이 노드는 하향링크 전송을 m번 인덱스의 심볼부터 시작하여, n 번 인덱스의 심볼(일반 CP인 경우 13)까지 수신할 수 있고, 하나의 서브프레임은 인덱스 0부터 시작하며, 릴레이 노드가 액세스 하향링크 구간에서 사용하는 제어 영역의 크기는 k개의 OFDM 심볼인 것으로 가정한다.
첫 번째 경우는, 릴레이 노드가 m=k+1 번째 인덱스 심볼부터 서브프레임의 끝까지 즉, 13 번째 인덱스 심볼까지 백홀 서브프레임을 수신하는 경우이다. 이 경우는, 릴레이 노드의 백홀 링크 수신에서 엑세스 링크 전송으로의 스위칭 시간이 CP(cyclic prefix) 길이보다 긴 경우에 대응한다.
두 번째 경우는 릴레이 노드가 m=k 번째 인덱스 심볼부터 서브프레임의 끝까지 즉, 13 번째 인덱스 심볼까지 백홀 서브프레임을 수신하는 경우이다. 이 경우는, 릴레이 노드의 백홀 링크 수신에서 엑세스 링크 전송으로의 스위칭 시간이 CP 길이보다 짧고, 릴레이 노드의 엑세스 링크 전송 타이밍이 백홀 링크 수신 타이밍과 정합되어 있는 경우에 대응한다.
세 번째 경우는, 릴레이 노드가 m≥k 번째 인덱스 심볼부터 n(<13) 번째 인덱스 심볼까지 백홀 서브프레임을 수신하는 경우로서, 전파 지연과 스위칭 시간에 기반하여 m과 n이 결정된다. 이는, 릴레이 노드의 엑세스 링크 전송 타이밍이 기지국의 하향링크 전송 타이밍과 동기화된 경우에 대응한다.
마지막으로, 네 번째 경우는 릴레이 노드가 0 번째 인덱스 심볼부터 n=13-(k+1) 번째 인덱스 심볼까지 백홀 서브프레임을 수신하는 경우로서, 릴레이 노드가 기지국으로부터 R-PDCCH가 아닌 일반 PDCCH를 수신하는 경우에 대응한다.
앞서 언급한 경우들에서 실제 R-PDCCH 및 R-PDSCH를 전송하는 시작 심볼은 다음과 같은 방법으로 시그널링될 수 있다.
우선, R-PDCCH의 시작 심볼 위치(s1)는 심볼 인덱스 3으로 고정하고, R-PDCCH를 포함하지 않는 PRB에서의 R-PDSCH의 시작 심볼 위치(s2)를 개별적으로 시그널링하는 것을 고려할 수 있다. 여기서 s2는 m ≤ s2 ≤ 3의 값을 갖고, R-PDCCH를 이용하여 동적으로 시그널링하거나, RRC 시그널링과 같이 상위 계층 시그널링을 통하여 지시할 수 있다. 특히 RRC 시그널링의 경우에는, R-PDSCH 시작 심볼의 위치를 변경하고자 할 경우에만 해당 위치를 RRC 시그널링을 통해서 릴레이 노드로 알려주는 것이 바람직하다. 여기서 RRC 시그널링은 릴레이 노드 특정 시그널링이거나, 방송 정보와 같이 셀 특정 시그널링일 수 있다.
한편, R-PDCCH 시작 심볼 위치(s1) 및 R-PDSCH의 시작 심볼 위치(s1) 모두를 상위 계층 시그널링을 통하여 지시하는 방법도 고려할 수 있다. 여기서 s1과 s2은 동일한 값을 갖고, m ≤ s1 = s2 ≤ sx (단, sx는 3 내지 5 중 하나의 정수)사이의 값을 갖는 것이 바람직하다.
도 7 및 도 8은 기지국에서 전송되는 PDCCH 심볼 개수에 따른 백홀 전송의 가용 심볼 개수 및 릴레이 노드의 수신 가능 심볼 개수를 도시하는 도면이다.
기지국의 PDCCH 심볼 개수는 PCFICH로 릴레이 노드 및 단말들에게 시그널링되고, 매 서브프레임마다 달라질 수 있다. 따라서 몇 번째 심볼부터 백홀 데이터(R-PDSCH)나 백홀 제어 정보(R-PDCCH)를 전송할 지 여부도 기지국의 PDCCH 심볼 개수에 따라 달라질 수 있다. 릴레이 노드 입장에서는 릴레이 노드가 Uu 인터페이스를 통하여 단말로 전송하는 PDCCH 심볼 개수에 따라서 eNB로부터 수신할 수 있는 R-PDSCH 및 R-PDCCH 의 심볼 수가 달라진다.
도 7을 참조하면, 릴레이 노드의 PDCCH 가 1 심볼이고 기지국의 PDCCH가 2 심볼이라면, 기지국은 인덱스 2 심볼부터 R-PDSCH 및 R-PDCCH의 전송이 가능하고, 릴레이 노드는 인덱스 2 심볼부터 R-PDSCH 및 R-PDCCH의 수신이 가능하며, 인덱스 1의 심볼은 스위칭을 위하여 활용할 수 있다. 즉, 총 12 개의 심볼을 백홀 전송을 위하여 사용할 수 있다.
그러나, 도 8을 참조하면, 기지국의 PDCCH 심볼이 3인 경우로서, 릴레이 노드가 수신한 심볼은 인덱스 3부터 13까지로 총 11 심볼이다. 따라서, 백홀 전송을 위하여 사용할 수 있는 심볼은 12 심볼에서 11심볼로 줄어든다.
따라서, 기지국이 전송하는 PDCCH 심볼 개수와 릴레이 노드가 전송하는 PDCCH 심볼 개수가 가변될 수 있다는 점을 고려하여, 백홀 전송에 사용되는 심볼 개수를 최대화하는 것이 바람직하다. 이를 구현하기 위한 방법으로 크게 두 가지를 기술한다.
우선 기지국이 각 릴레이 노드들에게 릴레이 노드 특정한 신호를 송신하여, 각 릴레이 노드가 Uu 인터페이스에 사용할 수 있는 PDCCH 심볼 개수를 강제로 지정하고, 릴레이 노드는 이러한 기지국 지시에 순응하는 방법이다. 이러한 동작에서 문제가 될 수 있는 부분은 릴레이 노드의 PDCCH 심볼 수를 줄이기 어려운 상황임에도 불구하고 이를 반드시 줄여야 한다는 명령을 받았을 때이다. 도면을 참조하여 보다 구체적으로 설명한다.
도 9는 기지국이 릴레이 노드로 PDCCH 심볼 개수를 강제로 지정하는 경우 발생할 수 있는 문제점을 설명하기 위한 도면이다.
도 9를 참조하면, 릴레이 노드와 단말간 링크인 Uu 인터페이스에 사용되는 일반 서브프레임에 확장 PHICH 지속 기간이 사용되고 (즉, PDCCH의 심볼 개수가 3개), MBSFN 서브프레임에도 확장 PHICH 지속 기간(즉, PDCCH의 심볼 개수가 2개)이 사용 중임을 가정한다. 이 경우, 릴레이 노드가 기지국으로부터 백홀 서브프레임을 수신하는 MBSFN 서브프레임의 PHICH 지속 기간을 2에서 1로 줄이라고 명령을 받았다면, 릴레이 노드는 PHICH 지속 기간을 일반 PHICH 지속 기간(즉, PDCCH의 심볼 개수가 1개)으로 변경한다.
그러나, PHICH 지속 기간에 관한 정보는 MIB(master information block)를 통해서 전송되기 때문에, 동적으로(dynamic) 변경될 수 없고, 한번 정해지면 상당한 시간 동안 모든 서브프레임에 걸쳐 동일한 설정 값을 유지하는 것이 일반적이다. 따라서 PHICH 지속 기간을 2 심볼에서 1 심볼로 변경하려면 MBSFN 서브프레임뿐만 아니라 일반 서브프레임에서도 PHICH 지속 기간을 3 심볼에서 1 심볼로 변경해야 한다. 즉 서브프레임 종류에 상관없이 동일한 구성을 적용해야 한다. 여기서, 일반 서브프레임이 셀 사이즈나 전송 전력 혹은 제어하는 단말의 개수 등에 따라 PHICH 지속 기간을 3심볼로 유지할 수 밖에 없는 상황이라면, 기지국의 명령에 따라 무리하게 PHICH 지속 기간을 1심볼로 줄이는 것은 해당 서브프레임에서의 동작을 제한하는 것이며, 결국 스케줄링 측면에서 제약을 초래할 수 밖에 없다.
이러한 문제를 완화시키기 위해서는 기지국이 일방적으로 릴레이 노드로 PHICH 지속 기간 변경 혹은 릴레이 노드의 PDCCH 심볼 개수를 명령하는 방식이 아닌 권고형식 또는 협상과정을 갖는 것이 바람직하다.
<제 1 실시예>
도 10은 본 발명의 제 1 실시예에 따라 릴레이 노드의 PDCCH 심볼 개수를 변경하기 위한 절차를 설명하는 도면이다.
우선, 릴레이 노드는 기지국의 명령대로 Uu 인터페이스의 PDCCH 심볼 개수를 지정하되, 문제가 되는 경우 기지국으로 상기 명령에 불응할 수 있는 채널을 별도로 설정하는 것이다. 예를 들어, 도 10과 같이 기지국으로부터 PHICH 지속 기간을 3심볼에서 1심볼로 줄이라는 명령을 수신하였으나 (1010), 릴레이 노드가 PHICH 지속 기간을 3심볼에서 1심볼로 줄일 수 없는 상황이라면, 릴레이 노드는 기지국에게 PHICH 지속 기간을 줄일 수 없다는 정보를 전달한다 (1020). 이 때 정보로는 단순히 PDCCH 심볼 크기 (k)를 전송하거나 또는 1 비트 크기의 정보를 이용하여 기지국의 명령을 따르거나 따르지 않았다는 형태의 정보를 피드백 할 수 있다. 이러한 정보는 주기적으로 전송될 수 있고, 혹은 비주기적으로 전송될 수도 있다. 또는 상기 명령에 불응하는 상황이 발생했을 경우에만 전송하는 방법도 가능하다.
<제 2 실시예>
도 11은 본 발명의 제 2 실시예에 따라 릴레이 노드의 PDCCH 심볼 개수를 변경하기 위한 절차를 설명하는 도면이다.
릴레이 노드에서 Uu 인터페이스의 PDCCH 크기가 변경되는 가장 큰 이유는 송신 안테나의 개수 혹은 셀 특정 참조 신호(공통 참조 신호, CRS)를 위한 안테나 포트 개수의 변화라고 볼 수 있다. 즉, 2개의 안테나(혹은 안테나 포트) 또는 4 개의 안테나(혹은 안테나 포트)인지에 따라서 PDCCH의 심볼 개수가 1개 또는 2개가 될 수 있다.
일반적으로 릴레이 노드가 기지국으로 랜덤 접속 과정을 수행하는 단말 모드, 즉 초기 접속 단계에서 결정된다. 또한, 릴레이 노드는 일반 단말과 달리, Uu 인터페이스 운영에 대한 필수 정보를 기지국으로 제공하는 것은 필수적이다. 따라서, 도 11과 같이 릴레이 노드가 기지국으로 초기 접속할 때 릴레이 노드의 용량(capability) 정보를 전송하는 절차(1110)에서, 릴레이 노드의 Uu 인터페이스에서 사용되는 송신 안테나(혹은 CRS를 위한 안테나 포트) 개수에 대한 정보를 함께 전송(1120)하는 것을 제안한다.
<제 3 실시예>
도 12는 본 발명의 제 3실시예에 따라 릴레이 노드의 PDCCH 심볼 개수를 변경하기 위한 절차를 설명하는 도면이다. 특히 본 발명의 제 3 실시예에서는 릴레이 노드가 기지국으로 선호하는 혹은 향후 이용할 예정인 Uu 인터페이스의 PDCCH 심볼 개수(혹은 PHICH 지속 기간)을 우선적으로 보고하는 보고 모드(Reporting Mode)가 존재한다는 점이다. 본 발명의 제 3 실시예는 릴레이 노드가 수신할 수 있는 심볼을 최대한 지원할 수 있다는 장점이 있다.
도 12를 참조하면, 릴레이 노드는 상기 보고 모드를 주기적으로 혹은 특정 이벤트 발생 시, 자신이 사용하고자 하는 PDCCH 심볼 개수(k), 또는 PHICH 지속 기간을 기지국으로 보고할 수 있다 (1210). 기지국은 상기 릴레이 노드의 보고에 대한 응답으로, 보고된 값을 그대로 사용하라는 확인 응답을 전송하거나, R-PDCCH의 시작 심볼 위치(s1) 및 R-PDCCH를 포함하지 않는 PRB에서의 R-PDSCH의 시작 심볼 위치(s2)를 상기 보고된 값을 기반하여 판단하여 릴레이 노드로 시그널링할 수 있다(1220). 또는 각 RN가 수신할 수 있는 백홀 서브프레임의 시작 심볼 인덱스와 마지막 심볼 인덱스를 알려주는 방식도 가능하다.
도 13은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 13을 참조하면, 통신 장치(1300)는 프로세서(1310), 메모리(1320), RF 모듈(1330), 디스플레이 모듈(1340) 및 사용자 인터페이스 모듈(1350)을 포함한다.
통신 장치(1300)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(1300)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(1300)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(1310)는 도면을 참조하여 예시한 본 발명의 실시예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(1310)의 자세한 동작은 도 1 내지 도 12에 기재된 내용을 참조할 수 있다.
메모리(1320)는 프로세서(1310)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(1330)은 프로세서(1310)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(1330)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(1340)은 프로세서(1310)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(1340)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(1350)은 프로세서(1310)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 본 발명의 실시예들은 주로 릴레이 노드와 기지국 간의 데이터 송수신 관계를 중심으로 설명되었다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 무선 통신 시스템에서 기지국과 릴레이 노드 간의 백홀 서브프레임 설정 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 다중 안테나 무선 통신 시스템에 적용하는 것이 가능하다.
Claims (10)
- 무선 통신 시스템에서 릴레이 노드가 기지국으로부터 신호를 수신하는 방법으로서,상기 릴레이 노드에서 상기 릴레이 노드에 대응하는 단말로 전송되는 하향링크 물리 제어 채널의 사이즈를 변경하기 위한 요청 신호를 상기 기지국으로부터 수신하는 단계;상기 요청 신호에 대한 응답 신호를 상기 기지국으로 송신하는 단계;상기 요청 신호에 기반하여, 상기 기지국과 상기 릴레이 노드 간의 하향링크 가용 심볼을 설정하는 단계; 및상기 기지국으로부터 송신되는 릴레이 노드 특정 신호를 상기 하향링크 가용 심볼부터 수신하는 단계를 포함하는 것을 특징으로 하는,신호 수신 방법.
- 제 1 항에 있어서,상기 요청 신호는,상기 릴레이 노드에 대응하는 단말로 전송되는 하향링크 물리 제어 채널의 심볼 개수에 관한 정보를 포함하는 것을 특징으로 하는,신호 수신 방법.
- 제 1 항에 있어서,상기 요청 신호는,상기 릴레이 노드에 대응하는 단말로 전송되는 서브프레임의 PHICH(Physical Hybrid-ARQ Indicator CHannel) 지속 기간(duration)에 관한 정보를 포함하는 것을 특징으로 하는,신호 수신 방법.
- 제 1 항에 있어서,상기 응답 신호는,상기 하향링크 물리 제어 채널의 사이즈로의 변경 가능 여부에 대한 1 비트 정보인 것을 특징으로 하는,신호 수신 방법.
- 제 1 항에 있어서,상기 응답 신호는,상기 릴레이 노드에 대응하는 단말로 전송되는 서브프레임에 할당된 공통 참조 신호를 위한 안테나 포트의 개수에 관한 정보를 포함하는 것을 특징으로 하는,신호 수신 방법.
- 제 1 항에 있어서,상기 응답 신호는,상기 릴레이 노드의 송신 안테나 개수에 관한 정보를 포함하는 것을 특징으로 하는,신호 수신 방법.
- 제 1 항에 있어서,상기 릴레이 노드에서 상기 릴레이 노드에 대응하는 단말로 전송되는 서브프레임은,일반 서브프레임과 MBSFN(Multicast Broadcast Single Frequency Network) 서브프레임이 교대로 설정되는 것을 특징으로 하는,신호 수신 방법.
- 제 4 항에 있어서,상기 기지국은,상기 응답 신호가 상기 하향링크 물리 제어 채널의 사이즈로의 변경 불가능을 지시하는 경우, 기 설정된 상기 기지국과 상기 릴레이 노드 간의 하향링크 가용 심볼 개수를 유지하는 것을 특징으로 하는,신호 수신 방법.
- 무선 통신 시스템에서의 릴레이 노드로서,제 1 링크를 통하여 상기 기지국과 통신하고, 제 2 링크를 통하여 상기 릴레이 노드에 대응하는 단말과 통신하기 위한 무선 통신 모듈; 및상기 제 1 링크를 통하여 송수신되는 신호와 상기 제 2 링크를 통하여 송수신되는 신호를 처리하기 위한 프로세서를 포함하며,상기 무선 통신 모듈은, 상기 제 2 링크에 대응하는 하향링크 물리 제어 채널의 사이즈를 변경하기 위한 요청 신호를 상기 기지국으로부터 수신하고, 상기 요청 신호에 대한 응답 신호를 상기 기지국으로 송신하며,상기 프로세서는, 상기 요청 신호에 기반하여, 상기 제 1 링크의 하향링크 가용 심볼을 설정하고,상기 무선 통신 모듈은, 상기 제 1 링크를 통하여 송신되는 릴레이 노드 특정 신호를 상기 하향링크 가용 심볼부터 수신하는 것을 특징으로 하는,릴레이 노드.
- 제 9 항에 있어서,상기 제 2 링크의 하향링크 서브프레임은,일반 서브프레임과 MBSFN(Multicast Broadcast Single Frequency Network) 서브프레임이 교대로 설정되는 것을 특징으로 하는,릴레이 노드.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/643,269 US9131494B2 (en) | 2010-05-07 | 2011-05-06 | Method for backhaul subframe setting between a base station and a relay node in a wireless communication system and a device therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33220210P | 2010-05-07 | 2010-05-07 | |
US61/332,202 | 2010-05-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011139114A2 true WO2011139114A2 (ko) | 2011-11-10 |
WO2011139114A3 WO2011139114A3 (ko) | 2012-03-01 |
Family
ID=44904242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/003388 WO2011139114A2 (ko) | 2010-05-07 | 2011-05-06 | 무선 통신 시스템에서 기지국과 릴레이 노드 간의 백홀 서브프레임 설정 방법 및 이를 위한 장치 |
Country Status (2)
Country | Link |
---|---|
US (1) | US9131494B2 (ko) |
WO (1) | WO2011139114A2 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013133673A1 (ko) * | 2012-03-08 | 2013-09-12 | 엘지전자 주식회사 | 참조 신호 수신 방법 및 사용자기기와, 참조 신호 전송 방법 및 기지국 |
KR20140077327A (ko) * | 2012-12-14 | 2014-06-24 | 한국전자통신연구원 | 무선 백홀 시스템에서 백홀 중계기와 기지국 사이의 자원 할당 방법 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2687784C (en) * | 2007-05-22 | 2015-12-01 | Telstra Corporation Limited | A repeater system for extended cell coverage |
US8761074B2 (en) * | 2009-08-27 | 2014-06-24 | Futurewei Technologies, Inc. | Relay backhaul in wireless communication |
US8837301B2 (en) | 2010-11-08 | 2014-09-16 | Motorola Mobility Llc | Interference measurements in enhanced inter-cell interference coordination capable wireless terminals |
US20120122472A1 (en) * | 2010-11-12 | 2012-05-17 | Motorola Mobility, Inc. | Positioning Reference Signal Assistance Data Signaling for Enhanced Interference Coordination in a Wireless Communication Network |
EP2765724B1 (en) * | 2011-10-09 | 2019-10-02 | LG Electronics Inc. | Method for setting starting position of data channel in wireless communication system and device using method |
KR20140126747A (ko) | 2012-02-17 | 2014-10-31 | 달리 시스템즈 씨오. 엘티디. | 분산형 안테나 시스템을 이용하는 지리적 로드 밸런싱을 위한 진화적 알고리즘 |
US9119197B2 (en) | 2012-05-22 | 2015-08-25 | Futurewei Technologies, Inc. | System and method for delay scheduling |
US9571587B1 (en) * | 2014-03-10 | 2017-02-14 | Sprint Spectrum L.P. | Coordinating communication with a wireless device |
US11477771B2 (en) | 2016-04-05 | 2022-10-18 | Qualcomm Incorporated | Indicating start and stop symbols of PDSCH and PUSCH through PDCCH |
CN109905160B (zh) * | 2017-12-08 | 2022-03-29 | 华为技术有限公司 | 一种资源配置方法和装置 |
US11166269B2 (en) | 2019-03-28 | 2021-11-02 | Ofinno, Llc | Interaction between power saving adaptation and bandwidth part adaptation |
WO2023282250A1 (ja) * | 2021-07-08 | 2023-01-12 | 京セラ株式会社 | 通信制御方法、無線端末、及び基地局 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100080139A1 (en) * | 2008-09-30 | 2010-04-01 | Qualcomm Incorporated | Techniques for supporting relay operation in wireless communication systems |
US20100110964A1 (en) * | 2008-11-04 | 2010-05-06 | Motorola, Inc. | Method for Relays within Wireless Communication Systems |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011047496A1 (en) * | 2009-10-19 | 2011-04-28 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangement in a wireless communication system |
US9014079B2 (en) * | 2009-10-29 | 2015-04-21 | Telefonaktiebolaget L M Ericsson (Publ) | Intra-subframe time multiplexing |
FR2954631B1 (fr) * | 2009-12-21 | 2012-08-10 | Canon Kk | Procede et dispositif de configuration en boucle fermee d'un reseau d'antenne |
US20110228700A1 (en) * | 2010-03-16 | 2011-09-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Subframe Allocation for In-Band Relay Nodes |
WO2012006345A1 (en) * | 2010-07-09 | 2012-01-12 | Interdigital Patent Holdings, Inc. | Resource allocation signaling of wireless communication networks |
-
2011
- 2011-05-06 WO PCT/KR2011/003388 patent/WO2011139114A2/ko active Application Filing
- 2011-05-06 US US13/643,269 patent/US9131494B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100080139A1 (en) * | 2008-09-30 | 2010-04-01 | Qualcomm Incorporated | Techniques for supporting relay operation in wireless communication systems |
US20100110964A1 (en) * | 2008-11-04 | 2010-05-06 | Motorola, Inc. | Method for Relays within Wireless Communication Systems |
Non-Patent Citations (1)
Title |
---|
S.W. PETERS ET AL.: 'The future of WiMAX: multishop relaying with IEEE 802.16j' IEEE COMMUNICATIONS MAGAZINE January 2009, pages 104 - 111 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013133673A1 (ko) * | 2012-03-08 | 2013-09-12 | 엘지전자 주식회사 | 참조 신호 수신 방법 및 사용자기기와, 참조 신호 전송 방법 및 기지국 |
US9553704B2 (en) | 2012-03-08 | 2017-01-24 | Lg Electronics Inc. | Method and user equipment for receiving reference signals, and method and base station for transmitting reference signals |
KR20140077327A (ko) * | 2012-12-14 | 2014-06-24 | 한국전자통신연구원 | 무선 백홀 시스템에서 백홀 중계기와 기지국 사이의 자원 할당 방법 |
KR101671990B1 (ko) | 2012-12-14 | 2016-11-03 | 한국전자통신연구원 | 무선 백홀 시스템에서 백홀 중계기와 기지국 사이의 자원 할당 방법 |
Also Published As
Publication number | Publication date |
---|---|
US9131494B2 (en) | 2015-09-08 |
WO2011139114A3 (ko) | 2012-03-01 |
US20130039254A1 (en) | 2013-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011139114A2 (ko) | 무선 통신 시스템에서 기지국과 릴레이 노드 간의 백홀 서브프레임 설정 방법 및 이를 위한 장치 | |
WO2011129537A2 (ko) | 무선 통신 시스템에서 릴레이 노드를 위한 검색 영역 설정 방법 및 이를 위한 장치 | |
WO2012118279A1 (en) | Method for configuring a backhaul link subframe in a wireless communication system to which a carrier aggregation scheme is applied and an apparatus for the same | |
WO2012102510A2 (ko) | 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치 | |
WO2017171390A1 (ko) | 차세대 무선 통신 시스템에서 사이드링크를 통한 신호 송수신 방법 및 이를 위한 장치 | |
KR101740445B1 (ko) | 무선 통신 시스템에서 릴레이 노드로 제어 채널을 송신하는 방법 및 이를 위한 장치 | |
WO2017179784A1 (ko) | 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치 | |
WO2010039003A2 (ko) | 무선통신 시스템에서 중계기를 위한 무선 자원 할당 방법 및 장치 | |
WO2011132946A2 (ko) | 무선 통신 시스템에서 기지국과 릴레이 노드 간의 신호 송수신 방법 및 이를 위한 장치 | |
WO2010117225A2 (ko) | 무선 통신 시스템에서 하향링크 제어 정보 수신 방법 및 이를 위한 장치 | |
WO2012124923A2 (ko) | 무선 통신 시스템에서 동적 서브프레임 설정 방법 및 이를 위한 장치 | |
WO2012115352A2 (ko) | 무선 통신 시스템에서 릴레이 노드의 핸드오버를 위한 검색 영역 설정 방법 및 이를 위한 장치 | |
WO2012093826A2 (ko) | 무선 통신 시스템에서 상향링크 제어 정보를 전송하는 방법 및 이를 위한 장치 | |
WO2010117239A2 (ko) | 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치 | |
WO2010126259A2 (ko) | 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치 | |
WO2012150772A2 (ko) | 무선 통신 시스템에서 단말이 기지국으로부터 하향링크 신호를 수신하는 방법 및 이를 위한 장치 | |
WO2011112015A2 (en) | Method of transceiving signal at relay node in wireless communication system and apparatus thereof | |
WO2017069559A1 (ko) | 무선 통신 시스템에서 브로드캐스트 신호/멀티캐스트 신호에 대한 ack/nack 응답을 송신하는 방법 및 이를 위한 장치 | |
WO2012121509A2 (ko) | 반송파 집성 기법이 적용된 무선 통신 시스템에서 백홀 링크 서브프레임을 설정하는 방법 및 이를 위한 장치 | |
KR20140034730A (ko) | 반송파 집성 기법이 적용된 무선 통신 시스템에서 릴레이 노드가 마크로 기지국으로 채널 상태 정보를 송신하는 방법 및 이를 위한 장치 | |
WO2012150773A2 (ko) | 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치 | |
WO2012150793A2 (ko) | 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치 | |
WO2013024997A2 (ko) | 기지국 협력 무선 통신 시스템에서 상향링크 송신 타이밍을 조절하는 방법 및 이를 위한 장치 | |
WO2013137582A1 (ko) | 무선 통신 시스템에서 하향링크 채널의 시작 심볼을 설정하는 방법 및 이를 위한 장치 | |
WO2019031946A1 (ko) | 무선 통신 시스템에서 lte 및 nr에 기반한 신호 송수신 방법 및 이를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11777595 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13643269 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11777595 Country of ref document: EP Kind code of ref document: A2 |