WO2012150793A2 - 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2012150793A2
WO2012150793A2 PCT/KR2012/003388 KR2012003388W WO2012150793A2 WO 2012150793 A2 WO2012150793 A2 WO 2012150793A2 KR 2012003388 W KR2012003388 W KR 2012003388W WO 2012150793 A2 WO2012150793 A2 WO 2012150793A2
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
pdcch
downlink
control information
information
Prior art date
Application number
PCT/KR2012/003388
Other languages
English (en)
French (fr)
Other versions
WO2012150793A3 (ko
Inventor
서인권
김학성
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP12779433.7A priority Critical patent/EP2706678B1/en
Priority to US14/115,038 priority patent/US9467272B2/en
Publication of WO2012150793A2 publication Critical patent/WO2012150793A2/ko
Publication of WO2012150793A3 publication Critical patent/WO2012150793A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0085Timing of allocation when channel conditions change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving downlink control information in a wireless communication system.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is an access gateway (AG) located at an end of a user equipment (UE) and a base station (eNode B), an eNB, and a network (E-UTRAN) and connected to an external network.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • the base station transmits downlink scheduling information for downlink (DL) data and informs the user equipment of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • HARQ Hybrid Automatic Repeat and reQuest
  • the base station transmits uplink scheduling information to uplink UL data for uplink (UL) data and informs the user equipment of time / frequency domain, encoding, data size, HARQ related information, and the like.
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • a method for receiving a downlink signal from a base station by a terminal includes: receiving downlink control information in a data region of a first subframe from the base station; And receiving downlink data in a data region of a second subframe based on the downlink control information, wherein the second subframe is available after a predetermined number of subframes from the first subframe. It is characterized in that the sub-frame.
  • a terminal device in a wireless communication system a wireless communication module for transmitting and receiving a signal from a base station; And a processor for processing the signal, wherein the processor receives the downlink control information from the base station in the data area of the first subframe, the data area of the second subframe based on the downlink control information
  • the wireless communication module is controlled to receive downlink data in the second subframe, and the second subframe is an available subframe after a predetermined number of subframes from the first subframe.
  • the available subframe is characterized in that the subframe capable of downlink transmission.
  • the predetermined number may be represented by an offset value of the index of the second subframe with respect to the index of the first subframe, and the downlink control information includes information about the offset value. It features.
  • the downlink control information may include scheduling information for a plurality of subframes.
  • the downlink control information may include predefined scheduling information for the third subframe and scheduling information for the second subframe.
  • the second subframe may be an available subframe after a predetermined number of subframes from the third subframe.
  • a base station in a wireless communication system, can effectively transmit downlink control information while avoiding inter-cell interference.
  • FIG. 1 is a diagram schematically illustrating an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • FIG. 5 is a diagram illustrating a structure of a downlink radio frame used in an LTE system.
  • FIG. 6 is a diagram for explaining the concept of Enhanced-PDCCH (E-PDCCH).
  • FIG. 7 is a diagram illustrating an example of receiving an E-PDCCH and a PDSCH according to an embodiment of the present invention.
  • FIG. 8 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer provides unnecessary control for efficiently transmitting IP packets such as IPv4 or IPv6 over a narrow bandwidth air interface. It performs header compression function that reduces information.
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 15, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
  • Different cells may be configured to provide different bandwidths.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in an initial cell search step to check the downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
  • RACH random access procedure
  • the UE may transmit a specific sequence to the preamble through a physical random access channel (PRACH) (S303 and S305), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the procedure as described above, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S308) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • a radio frame has a length of 10 ms (327200 ⁇ Ts) and is composed of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5 ms (15360 x Ts).
  • the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • one resource block includes 12 subcarriers x 7 (6) OFDM symbols.
  • Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 5 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
  • a subframe consists of 14 OFDM symbols.
  • the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
  • R1 to R4 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
  • the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
  • the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
  • Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
  • the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
  • the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
  • the PCFICH is composed of four Resource Element Groups (REGs), and each REG is distributed in a control region based on a Cell ID (Cell IDentity).
  • One REG is composed of four resource elements (REs).
  • the RE represents a minimum physical resource defined by one subcarrier x one OFDM symbol.
  • the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
  • QPSK Quadrature Phase Shift Keying
  • the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
  • the PHICH consists of one REG and is scrambled cell-specifically.
  • ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • a plurality of PHICHs mapped to the same resource constitutes a PHICH group.
  • the number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
  • the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
  • the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
  • n is indicated by the PCFICH as an integer of 1 or more.
  • the PDCCH consists of one or more CCEs.
  • the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
  • Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode PDSCH data is included in the PDCCH and transmitted.
  • a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A”, a radio resource (eg, frequency location) of "B” and a DCI format of "C", that is, a transmission format. It is assumed that information about data transmitted using information (eg, transport block size, modulation scheme, coding information, etc.) is transmitted through a specific subframe.
  • RTI Radio Network Temporary Identity
  • the terminal in the cell monitors the PDCCH using the RNTI information it has, and if there is at least one terminal having an "A" RNTI, the terminals receive the PDCCH, and through the information of the received PDCCH " Receive the PDSCH indicated by B " and " C ".
  • E-PDCCH Enhanced-PDCCH
  • FIG. 6 is a diagram for explaining the concept of Enhanced-PDCCH (E-PDCCH).
  • E-PDCCH Enhanced-PDCCH
  • FIG. 6 compares the PDSCHs allocated by the existing PDCCHs and the PDCCHs and the PDSCH regions allocated by the E-PDCCHs and the E-PDCCHs.
  • the frequency and time domain length of the E-PDCCH may be set differently.
  • the eNB may inform the UE of the time-domain length of the E-PDCCH, that is, the information about the start symbol and the end symbol through higher layer signaling or a specific field of the PDCCH.
  • FIG. 6 illustrates a case in which the start symbol of the E-PDCCH is set as the fourth symbol of the first slot and the end symbol as the last symbol of the second slot.
  • the E-PDCCH may be terminated in a symbol located in the middle of one subframe (for example, the last symbol of the first slot).
  • the present invention proposes a problem that may occur when transmitting control information for a PDSCH using the above-described E-PDCCH and a method for solving the problem.
  • the uplink ACK / NACK timing for the PDSCH interworking with the E-PDCCH depends on the EP configuration of the E-PDCCH. And 2) existing uplink ACK / NACK timing cannot be maintained because of limitation of a subframe that can be used as an uplink subframe under a specific uplink / downlink subframe configuration. In addition, the same problem occurs when the E-PDCCH is used in the FDD system.
  • the present invention proposes that the E-PDCCH indicates control information for the PDSCH in the subframe after the "M" subframe from the subframe in which the E-PDCCH is transmitted.
  • the UE may report a PDSCH decoding result, that is, an uplink ACK / NACK in a subframe spaced apart from a previously defined PDSCH by an uplink ACK / NACK transmission time interval based on the subframe receiving the PDSCH.
  • M preferably operates as an indicator indicating the first available subframe after the E-PDCCH is transmitted.
  • the available subframe may be interpreted as a subframe capable of performing downlink transmission.
  • M may be broadcast by cell-specific signaling or by using a preset value or may be delivered by UE-specific RRC signaling.
  • the downlink control information transmitted on the E-PDCCH may include information for identifying which subframe indicates the control information on the PDSCH of a subframe in the form of an offset value.
  • FIG. 7 is a diagram illustrating an example of receiving an E-PDCCH and a PDSCH according to an embodiment of the present invention.
  • FIG. 7 assumes a case where M is 1 in the E-PDCCH.
  • the E-PDCCH is transmitted at subframe index N
  • the PDSCH scheduled by the E-PDCCH is transmitted at subframe index N + 1.
  • the present invention can be applied to the case where the E-PDCCH is used instead of the existing PDCCH since a multiple subframe scheduling technique, that is, a technique of transmitting control information of several subframes through a PDCCH belonging to one subframe is used. Is self explanatory.
  • the E-PDCCH transmitted in the Nth subframe not only schedules the PDSCH of the N + Kth subframe but also schedules the PDSCH of the N + K + Mth subframe at the same time.
  • M is set similarly to the above description. That is, the first subframe may be operated among the available subframes after the N + K th subframe.
  • the present invention described above may be selectively applied only when the end time of the E-PDCCH is late, for example, when the E-PDCCH transmission is terminated after a specific symbol in one subframe and the PDSCH decoding time is not sufficient.
  • the second slot of subframe N may be used for PDSCH decoding.
  • the E-PDCCH may operate to schedule the PDSCH of subframe N. Can be.
  • the PDSCH decoding time is insufficient, and according to the above-described operation, the PDSCH of the subframe N + M may be operated.
  • the PDCCH is transmitted using the CRS, but since the E-PDCCH is transmitted based on the DM-RS, which is a UE-specific reference signal, the PDCCH is greatly affected by the channel state, and the channel state is transmitted for stable control information transmission. You need a technique that can be applied quickly.
  • the position information on the E-PDCCH in a specific subframe ie, a candidate to which an E-PDCCH can be transmitted or a resource to which an E-PDCCH can be transmitted
  • Suggest instructions from The following information may be signaled to the UE to implement the present invention.
  • the PRB pair in which the E-PDCCH can be transmitted may be interpreted as a blind decoding region for the UE to obtain the E-PDCCH. Accordingly, the UE having received the corresponding information may reconstruct the search region based on the PRB pair set signaled in the subframe and perform blind decoding.
  • the information on the resource on which the E-PDCCH is transmitted includes information about the PRB pair through which the E-PDCCH is transmitted and the E-CCE in any of the CCEs (hereinafter, E-CCEs) corresponding to the E-PDCCH present in the PRB pair.
  • E-CCEs E-CCEs
  • Information on whether the PDCCH is transmitted or information on an aggregation level may be included. Therefore, the UE can directly obtain the E-PDCCH without additional blind decoding.
  • the eNB When applying the present invention, through the above information, the eNB has the advantage that can be applied to the adaptive scheduling (adaptive scheduling) to use resources suitable for the channel state, as control information for a specific UE.
  • the above “subframe” may be the next subframe of the subframe signaling the information on the E-PDCCH, and the corresponding control information is applied from the subframe separated by the offset by adding subframe offset information to the above signaling. May be indicated.
  • FIG. 8 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the communication device 800 includes a processor 810, a memory 820, an RF module 830, a display module 840, and a user interface module 850.
  • the communication device 800 is shown for convenience of description and some modules may be omitted. In addition, the communication device 800 may further include necessary modules. In addition, some modules in the communication device 800 may be classified into more granular modules.
  • the processor 810 is configured to perform an operation according to the embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 810 may refer to the contents described with reference to FIGS. 1 to 7.
  • the memory 820 is connected to the processor 810 and stores an operating system, an application, program code, data, and the like.
  • the RF module 830 is connected to the processor 810 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 830 performs analog conversion, amplification, filtering and frequency up-conversion, or a reverse process thereof.
  • the display module 840 is connected to the processor 810 and displays various information.
  • the display module 840 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
  • the user interface module 850 is connected to the processor 810 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the method and apparatus for transmitting and receiving downlink control information in the wireless communication system as described above have been described with reference to the example applied to the 3GPP LTE system, but can be applied to various wireless communication systems in addition to the 3GPP LTE system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 출원에서는 무선 통신 시스템에서 단말이 기지국으로부터 하향링크 신호를 수신하는 방법이 개시된다. 구체적으로, 상기 기지국으로부터 제 1 서브프레임의 데이터 영역에서 하향링크 제어 정보를 수신하는 단계; 및 상기 하향링크 제어 정보에 기반하여, 제 2 서브프레임의 데이터 영역에서 하향링크 데이터를 수신하는 단계를 포함하고, 상기 제 2 서브프레임은 상기 제 1 서브프레임으로부터 기 설정된 개수의 서브프레임 이후의 가용 서브프레임인 것을 특징으로 한다.

Description

무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향 링크(Downlink; DL) 데이터에 대해 기지국은 하향 링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향 링크(Uplink; UL) 데이터에 대해 기지국은 상향 링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 하향링크 제어 정보를 송신하는 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명의 일 양상인 무선 통신 시스템에서 단말이 기지국으로부터 하향링크 신호를 수신하는 방법은, 상기 기지국으로부터 제 1 서브프레임의 데이터 영역에서 하향링크 제어 정보를 수신하는 단계; 및 상기 하향링크 제어 정보에 기반하여, 제 2 서브프레임의 데이터 영역에서 하향링크 데이터를 수신하는 단계를 포함하고, 상기 제 2 서브프레임은 상기 제 1 서브프레임으로부터 기 설정된 개수의 서브프레임 이후의 가용 서브프레임인 것을 특징으로 한다.
한편, 본 발명의 다른 양상인 무선 통신 시스템에서의 단말 장치는, 기지국으로부터 신호를 송수신하기 위한 무선 통신 모듈; 및 상기 신호를 처리하기 위한 프로세서를 포함하고, 상기 프로세서는 상기 기지국으로부터 제 1 서브프레임의 데이터 영역에서 하향링크 제어 정보를 수신하는 경우, 상기 하향링크 제어 정보에 기반하여 제 2 서브프레임의 데이터 영역에서 하향링크 데이터를 수신하도록 상기 무선 통신 모듈을 제어하며, 상기 제 2 서브프레임은 상기 제 1 서브프레임으로부터 기 설정된 개수의 서브프레임 이후의 가용 서브프레임인 것을 특징으로 한다.
여기서, 상기 가용 서브프레임은 하향링크 전송이 이루어질 수 있는 서브프레임인 것을 특징으로 한다.
바람직하게는, 상기 기 설정된 개수는 기 제 1 서브프레임의 인덱스에 대한 상기 제 2 서브프레임의 인덱스의 오프셋 값으로 표현될 수 있으며, 상기 하향링크 제어 정보는 상기 오프셋 값에 대한 정보를 포함하는 것을 특징으로 한다.
나아가, 상기 하향링크 제어 정보는 복수의 서브프레임에 대한 스케줄링 정보를 포함할 수 있다. 구체적으로, 상기 하향링크 제어 정보는 기 정의된 제 3 서브프레임에 대한 스케줄링 정보와 상기 제 2 서브프레임에 대한 스케줄링 정보를 포함할 수 있다. 이 경우, 상기 제 2 서브프레임은 상기 제 3 서브프레임으로부터 기 설정된 개수의 서브프레임 이후의 가용 서브프레임인 것을 특징으로 한다.
본 발명의 실시예에 따르면 무선 통신 시스템에서 기지국은 셀 간 간섭을 회피하면서도 하향링크 제어 정보를 효과적으로 송신할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 5는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면이다.
도 6은 E-PDCCH(Enhanced-PDCCH)의 개념을 설명하기 위한 도면이다.
도 7은 본 발명의 실시예에 따라 E-PDCCH 및 PDSCH를 수신하는 예를 도시하는 도면이다
도 8은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향 링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향 링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다.제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
기지국(eNB)을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향 링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향 링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향 링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향 링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향 링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향 링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향 링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향 링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향 링크/상향 링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.
도 4를 참조하면, 무선 프레임(radio frame)은 10ms(327200×Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360×Ts)의 길이를 가진다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파×7(6)개의 OFDM 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 5는 하향 링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 5를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 참조 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element Group)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파×하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향 링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향 링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향 링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야 하는 지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 DCI 포맷 즉, 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
최근 셀 간 간섭(Inter-cell interference)으로 인한 PDCCH 성능 감소를 줄이기 위해, 혹은 PDCCH를 위한 자원 부족을 해소하기 위한 목적 등으로 E-PDCCH(Enhanced-PDCCH)라는 개념이 제안되었다.
도 6은 E-PDCCH(Enhanced-PDCCH)의 개념을 설명하기 위한 도면이다. 특히, 도 6에서는 기존의 PDCCH와 PDCCH에 의해서 할당된 PDSCH와 E-PDCCH와 E-PDCCH에 의해서 할당된 PDSCH 영역을 비교해서 도시하였다.
E-PDCCH의 주파수 및 시간 영역 길이는 다르게 설정할 수 있다. 특히, E-PDCCH의 시간 영역 길이, 즉, 시작 심볼과 종료 심볼에 관한 정보는 상위 계층 시그널링이나 PDCCH의 특정 필드를 통해 eNB가 UE에게 알려줄 수 있다. 예를 들어, 도 6에서 E-PDCCH의 시작 심볼을 첫 번째 슬롯의 네 번째 심볼, 종료 심볼을 두 번째 슬롯의 마지막 심볼로 설정한 경우를 나타낸다. 도 6에 도시하지는 않았으나, E-PDCCH는 한 서브프레임의 중간에 위치하는 심볼 (예를 들어 첫 번째 슬롯의 마지막 심볼)에서 전송이 종료될 수도 있다.
본 발명에서는 상술한 E-PDCCH를 이용하여 PDSCH에 대한 제어 정보를 전송할 때 발생할 수 있는 문제점과 이를 해결할 수 있는 방법을 제안한다.
TDD 시스템에서 E-PDCCH를 이용할 경우, E-PDCCH와 연동된 PDSCH에 대한 상향링크 ACK/NACK 타이밍은 E-PDCCH의 EP 설정에 따라 1) 상향링크 ACK/NACK 정보를 생성하기 까지 요구되는 처리 시간과 2) 특정 상향링크/하향링크 서브프레임 설정 하에서 상향링크 서브프레임으로 이용될 수 있는 서브프레임의 제한으로 인하여 기존의 상향링크 ACK/NACK 타이밍을 그대로 유지할 수 없는 경우가 발생한다. 또한, 이와 같은 문제는 FDD 시스템에서 E-PDCCH를 이용하는 경우에도 동일하게 발생된다.
본 발명에서는 이와 같은 문제를 해결하기 위해 E-PDCCH가 E-PDCCH가 전송되는 서브프레임으로부터 “M” 서브프레임 이후 서브프레임에서의 PDSCH에 대한 제어 정보를 지시할 것을 제안한다. UE는 PDSCH를 받은 서브프레임을 기준으로 기존에 정의된 PDSCH와 상향링크 ACK/NACK 전송 시간 간격만큼 떨어진 서브프레임에서 PDSCH 디코딩 결과, 즉 상향링크 ACK/NACK을 보고할 수 있다.
이를 통해 기존의 PDSCH와 상향링크 ACK/NACK 사이의 시간 관계를 변경하지 않고 사용하여도 PDSCH 디코딩하기에 충분한 시간을 보장할 수 있다. 이 때 “M”은 E-PDCCH가 전송된 이후 첫 번째 가용 서브프레임을 가리키는 지시자로 동작하는 것이 바람직하다. 또한, 가용 서브프레임은 하향링크 전송을 수행할 수 있는 서브프레임으로 해석될 수 있다. 또한 “M”은 기 설정된 값을 사용하거나 셀 특정 시그널링으로 방송될 수도 있고, 단말 특정한 RRC 시그널링으로 전달될 수도 있다.
추가적으로 E-PDCCH에 전송되는 하향링크 제어 정보에 해당 E-PDCCH가 어떤 서브프레임의 PDSCH에 대한 제어 정보를 나타내는지를 알 수 있는 정보를 오프셋 값의 형태로 포함시킬 수 있다.
도 7은 본 발명의 실시예에 따라 E-PDCCH 및 PDSCH를 수신하는 예를 도시하는 도면이다. 특히, 도 7은 E-PDCCH가 M이 1인 경우를 가정한다.
즉, E-PDCCH가 서브프레임 인덱스 N에서 송신되었다면, 상기 E-PDCCH가 스케줄링하는 PDSCH는 서브프레임 인덱스 N+1에서 송신되는 것이다.
또한 다중 서브프레임 스케줄링 기법, 즉, 하나의 서브프레임에 속한 PDCCH를 통해 여러 서브프레임의 제어 정보가 전송되는 기법이 사용됨에 있어 기존의 PDCCH 대신 E-PDCCH가 사용될 경우에도 본 발명을 적용할 수 있음은 자명하다.
예를 들어, N번째 서브프레임에서 송신되는 PDCCH가 N+K 번째 서브프레임의 PDSCH를 스케줄링하는 경우를 가정한다. 이를 본 발명의 E-PDCCH에 적용하면, N번째 서브프레임에서 송신되는 E-PDCCH는 N+K 번째 서브프레임의 PDSCH를 스케줄링할 뿐만 아니라, N+K+M 번째 서브프레임의 PDSCH 역시 동시에 스케줄링할 수 있다. 이 때, M은 상기 설명한 바와 유사하게 설정된다. 즉, N+K 번째 서브프레임 이후의 가용 서브프레임 중 첫 번째 서브프레임을 나타내도록 동작할 수 있다.
상기 설명한 본 발명은 E-PDCCH의 종료 시점이 늦어서, 예를 들어, 한 서브프레임 내의 특정 심볼 이후 E-PDCCH 전송이 종료되어 PDSCH 디코딩 시간이 충분하지 않은 경우에만 선택적으로 적용될 수 있다. 예를 들어 E-PDCCH가 서브프레임 N의 첫 번째 슬롯에서 전송이 종료된다면 서브프레임 N의 두 번째 슬롯을 PDSCH 디코딩에 활용할 수 있으므로, 이 경우 E-PDCCH는 서브프레임 N의 PDSCH를 스케줄링하도록 동작할 수 있다. 반면 E-PDCCH가 서브프레임 N의 두 번째 슬롯에서 전송이 종료된다면 PDSCH 디코딩 시간이 부족해지므로 상기 설명한 동작에 따라서 서브프레임 N+M의 PDSCH를 스케줄링하도록 동작할 수 있다.
한편, PDCCH의 경우 CRS를 이용하여 전송되나, E-PDCCH는 단말 특정 참조 신호인 DM-RS를 기반으로 전송되기 때문에, 채널 상태에 큰 영향을 받게 되고, 안정적인 제어 정보의 전달을 위해 채널 상태를 빠르게 적용할 수 있는 기법이 필요하다. 이를 위해 본 발명에서는 위의 내용에 추가적으로 특정 서브프레임에서의 E-PDCCH에 대한 위치 정보 (즉, E-PDCCH가 전송될 수 있는 후보 혹은 E-PDCCH가 전송될 수 있는 자원)를 이전 E-PDCCH에서 지시할 것을 제안한다. 본 발명을 구현하기 위해 다음 (1) 및 (2)와 같은 정보들이 UE에게 시그널링될 수 있다.
(1) 이후 서브프레임에서 E-PDCCH가 전송될 수 있는 PRB 쌍 집합(pair set)에 관한 정보
- E-PDCCH가 전송될 수 있는 PRB 쌍은 UE가 E-PDCCH를 획득하기 위한 블라인드 디코딩 영역으로 해석될 수 있다. 따라서, 해당 정보를 받은 UE는 이후 서브프레임에서 시그널링된 PRB 쌍 집합을 기반으로 검색 영역을 재구성하여, 블라인드 디코딩을 수행할 수 있다.
(2) 이후 서브프레임에서 해당 UE에 대한 E-PDCCH가 전송되는 자원에 관한 정보
- 또 다른 방법으로 해당 UE에 대한 E-PDCCH가 전송되는 자원의 양과 위치에 대한 정보를 구체적으로 시그널링하는 것도 고려할 수 있다. E-PDCCH가 전송되는 자원에 대한 정보는 E-PDCCH가 전송되는 PRB 쌍에 관한 정보, PRB 쌍 내에 존재하는 E-PDCCH에 대응하는 CCE(이하, E-CCE)들 중 어느 E-CCE에서 E-PDCCH가 전송되는 지에 대한 정보, 집성 레벨(aggregation level)에 대한 정보 등이 포함될 수 있다. 따라서, UE는 별도의 블라인드 디코딩 없이 바로 E-PDCCH를 획득할 수 있다.
본 발명을 적용할 경우, 위의 정보들을 통해 eNB는 특정 UE에 대한 제어 정보로서, 채널 상태에 적합한 자원을 사용하도록 적응적 스케줄링(adaptive scheduling)을 적용할 수 있는 장점이 있다. 위에서 “이후 서브프레임”은 E-PDCCH에 대한 정보를 시그널링하는 서브프레임의 다음 서브프레임이 될 수도 있고, 위의 시그널링에 서브프레임 오프셋 정보를 추가하여 상기 오프셋만큼 떨어진 서브프레임에서부터 해당 제어 정보가 적용됨을 지시할 수도 있다.
도 8은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 8을 참조하면, 통신 장치(800)는 프로세서(810), 메모리(820), RF 모듈(830), 디스플레이 모듈(840) 및 사용자 인터페이스 모듈(850)을 포함한다.
통신 장치(800)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(800)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(800)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(810)는 도면을 참조하여 예시한 본 발명의 실시예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(810)의 자세한 동작은 도 1 내지 도 7에 기재된 내용을 참조할 수 있다.
메모리(820)는 프로세서(810)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(830)은 프로세서(810)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(830)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(840)은 프로세서(810)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(840)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(850)은 프로세서(810)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (12)

  1. 무선 통신 시스템에서 단말이 기지국으로부터 하향링크 신호를 수신하는 방법에 있어서,
    상기 기지국으로부터 제 1 서브프레임의 데이터 영역에서 하향링크 제어 정보를 수신하는 단계; 및
    상기 하향링크 제어 정보에 기반하여, 제 2 서브프레임의 데이터 영역에서 하향링크 데이터를 수신하는 단계를 포함하고,
    상기 제 2 서브프레임은,
    상기 제 1 서브프레임으로부터 기 설정된 개수의 서브프레임 이후의 가용 서브프레임인 것을 특징으로 하는,
    하향링크 신호 수신 방법.
  2. 제 1 항에 있어서,
    상기 기 설정된 개수는,
    상기 제 1 서브프레임의 인덱스에 대한 상기 제 2 서브프레임의 인덱스의 오프셋 값으로 표현되는 것을 특징으로 하는,
    하향링크 신호 수신 방법.
  3. 제 2 항에 있어서,
    상기 하향링크 제어 정보는,
    상기 오프셋 값에 대한 정보를 포함하는 것을 특징으로 하는,
    하향링크 신호 수신 방법.
  4. 제 1 항에 있어서,
    상기 하향링크 제어 정보는,
    복수의 서브프레임에 대한 스케줄링 정보를 포함하는 것을 특징으로 하는,
    하향링크 신호 수신 방법.
  5. 제 4 항에 있어서,
    상기 하향링크 제어 정보는,
    기 정의된 제 3 서브프레임에 대한 스케줄링 정보와 상기 제 2 서브프레임에 대한 스케줄링 정보를 포함하고,
    상기 제 2 서브프레임은,
    상기 제 3 서브프레임으로부터 기 설정된 개수의 서브프레임 이후의 가용 서브프레임인 것을 특징으로 하는,
    하향링크 신호 수신 방법.
  6. 제 1 항에 있어서,
    상기 가용 서브프레임은,
    하향링크 전송이 이루어질 수 있는 서브프레임인 것을 특징으로 하는,
    하향링크 신호 수신 방법.
  7. 무선 통신 시스템에서의 단말 장치로서,
    기지국으로부터 신호를 송수신하기 위한 무선 통신 모듈; 및
    상기 신호를 처리하기 위한 프로세서를 포함하고,
    상기 프로세서는,
    상기 기지국으로부터 제 1 서브프레임의 데이터 영역에서 하향링크 제어 정보를 수신하는 경우, 상기 하향링크 제어 정보에 기반하여 제 2 서브프레임의 데이터 영역에서 하향링크 데이터를 수신하도록 상기 무선 통신 모듈을 제어하며,
    상기 제 2 서브프레임은,
    상기 제 1 서브프레임으로부터 기 설정된 개수의 서브프레임 이후의 가용 서브프레임인 것을 특징으로 하는,
    단말 장치.
  8. 제 7 항에 있어서,
    상기 기 설정된 개수는,
    상기 제 1 서브프레임의 인덱스에 대한 상기 제 2 서브프레임의 인덱스의 오프셋 값으로 표현되는 것을 특징으로 하는,
    단말 장치.
  9. 제 8 항에 있어서,
    상기 하향링크 제어 정보는,
    상기 오프셋 값에 대한 정보를 포함하는 것을 특징으로 하는,
    단말 장치.
  10. 제 7 항에 있어서,
    상기 하향링크 제어 정보는,
    복수의 서브프레임에 대한 스케줄링 정보를 포함하는 것을 특징으로 하는,
    단말 장치.
  11. 제 10 항에 있어서,
    상기 하향링크 제어 정보는,
    기 정의된 제 3 서브프레임에 대한 스케줄링 정보와 상기 제 2 서브프레임에 대한 스케줄링 정보를 포함하고,
    상기 제 2 서브프레임은,
    상기 제 3 서브프레임으로부터 기 설정된 개수의 서브프레임 이후의 가용 서브프레임인 것을 특징으로 하는,
    단말 장치.
  12. 제 7 항에 있어서,
    상기 가용 서브프레임은,
    하향링크 전송이 이루어질 수 있는 서브프레임인 것을 특징으로 하는,
    단말 장치.
PCT/KR2012/003388 2011-05-03 2012-05-01 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치 WO2012150793A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12779433.7A EP2706678B1 (en) 2011-05-03 2012-05-01 Method for transmitting/receiving downlink control information in wireless communication system and device therefor
US14/115,038 US9467272B2 (en) 2011-05-03 2012-05-01 Method for transmitting/receiving downlink control information in wireless communication system and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161482204P 2011-05-03 2011-05-03
US61/482,204 2011-05-03

Publications (2)

Publication Number Publication Date
WO2012150793A2 true WO2012150793A2 (ko) 2012-11-08
WO2012150793A3 WO2012150793A3 (ko) 2013-01-17

Family

ID=47108119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003388 WO2012150793A2 (ko) 2011-05-03 2012-05-01 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치

Country Status (3)

Country Link
US (1) US9467272B2 (ko)
EP (1) EP2706678B1 (ko)
WO (1) WO2012150793A2 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105213A (zh) * 2013-04-10 2014-10-15 上海朗帛通信技术有限公司 一种移动通信系统中的调度方法和装置
WO2014171754A1 (ko) * 2013-04-19 2014-10-23 주식회사 케이티 하향링크 제어정보를 송수신하는 방법 및 그 장치
KR20140125705A (ko) * 2013-04-19 2014-10-29 주식회사 케이티 하향링크 제어정보를 송수신하는 방법 및 그 장치
CN104869653A (zh) * 2014-02-23 2015-08-26 上海朗帛通信技术有限公司 一种基站、ue中非授权频谱上的调度方法和设备
WO2015199469A1 (ko) * 2014-06-25 2015-12-30 삼성전자 주식회사 이동 통신 시스템에서 스케줄링 및 피드백 방법 및 장치
US10897328B2 (en) 2017-07-07 2021-01-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data indicating method and related products

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5895388B2 (ja) * 2011-07-22 2016-03-30 シャープ株式会社 端末装置、基地局装置、集積回路および通信方法
GB2502275B (en) * 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
GB2502274B (en) 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
CN106134271B (zh) * 2014-12-19 2019-10-25 华为技术有限公司 一种数据传输的装置和方法
CN108352932B (zh) 2015-11-04 2022-03-04 交互数字专利控股公司 用于窄带lte操作的方法和过程
TW201728207A (zh) * 2015-11-10 2017-08-01 Idac控股公司 波束成形系統下行控制頻道設計及傳訊
WO2018204347A1 (en) 2017-05-03 2018-11-08 Idac Holdings, Inc. Methods, systems, and apparatus for transmitting uplink control information
CN110351855A (zh) * 2018-04-03 2019-10-18 财团法人资讯工业策进会 窄带物联网的基站、用户设备及无线传输方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8611300B2 (en) * 2006-01-18 2013-12-17 Motorola Mobility Llc Method and apparatus for conveying control channel information in OFDMA system
KR20070093657A (ko) * 2006-03-14 2007-09-19 삼성전자주식회사 직교 주파수 다중 접속 방식의 시스템에서 자원 할당 방법및 장치
KR20100011879A (ko) 2008-07-25 2010-02-03 엘지전자 주식회사 무선 통신 시스템에서 데이터 수신 방법
EP2304912B1 (en) 2008-07-31 2018-09-19 Samsung Electronics Co., Ltd. Method and apparatus for allocating resource of multiple carriers in ofdma system
KR101629298B1 (ko) 2008-10-30 2016-06-10 엘지전자 주식회사 무선 통신 시스템에서 제어 신호를 전송하는 방법 및 이를 위한 장치
US8848623B2 (en) * 2009-08-21 2014-09-30 Blackberry Limited System and method for channel timing offset
KR20110020708A (ko) * 2009-08-24 2011-03-03 삼성전자주식회사 Ofdm 시스템에서 셀간 간섭 조정을 위한 제어 채널 구성과 다중화 방법 및 장치
US9277566B2 (en) * 2009-09-14 2016-03-01 Qualcomm Incorporated Cross-subframe control channel design
US8670396B2 (en) * 2009-09-29 2014-03-11 Qualcomm Incorporated Uplink control channel resource allocation for transmit diversity
ES2694076T3 (es) * 2009-10-01 2018-12-17 Interdigital Patent Holdings, Inc. Transmisión de datos de control del enlace ascendente
US20110222491A1 (en) * 2010-03-09 2011-09-15 Qualcomm Incorporated Method and apparatus for sending control information with enhanced coverage in a wireless network
KR101673906B1 (ko) * 2010-04-29 2016-11-22 삼성전자주식회사 Ofdm 시스템에서 공간 다중화 제어 채널 지원을 위한 상향 링크 ack/nack 채널의 맵핑 방법 및 장치
US10638464B2 (en) * 2011-04-01 2020-04-28 Futurewei Technologies, Inc. System and method for transmission and reception of control channels in a communications system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2706678A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104105213A (zh) * 2013-04-10 2014-10-15 上海朗帛通信技术有限公司 一种移动通信系统中的调度方法和装置
WO2014166301A1 (zh) * 2013-04-10 2014-10-16 上海朗帛通信技术有限公司 一种移动通信系统中的调度方法和装置
CN104105213B (zh) * 2013-04-10 2019-05-31 上海朗帛通信技术有限公司 一种移动通信系统中的调度方法和装置
WO2014171754A1 (ko) * 2013-04-19 2014-10-23 주식회사 케이티 하향링크 제어정보를 송수신하는 방법 및 그 장치
KR20140125705A (ko) * 2013-04-19 2014-10-29 주식회사 케이티 하향링크 제어정보를 송수신하는 방법 및 그 장치
KR101886451B1 (ko) 2013-04-19 2018-08-07 주식회사 케이티 하향링크 제어정보를 송수신하는 방법 및 그 장치
CN104869653A (zh) * 2014-02-23 2015-08-26 上海朗帛通信技术有限公司 一种基站、ue中非授权频谱上的调度方法和设备
WO2015199469A1 (ko) * 2014-06-25 2015-12-30 삼성전자 주식회사 이동 통신 시스템에서 스케줄링 및 피드백 방법 및 장치
US10420129B2 (en) 2014-06-25 2019-09-17 Samsung Electronics Co., Ltd. Scheduling and feedback method and apparatus in mobile communication system
US10897328B2 (en) 2017-07-07 2021-01-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data indicating method and related products
RU2743666C1 (ru) * 2017-07-07 2021-02-24 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ указания данных и связанные продукты
US11368252B2 (en) 2017-07-07 2022-06-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data indicating method and related products

Also Published As

Publication number Publication date
EP2706678A4 (en) 2015-01-07
US9467272B2 (en) 2016-10-11
EP2706678A2 (en) 2014-03-12
EP2706678B1 (en) 2019-04-03
US20140071929A1 (en) 2014-03-13
WO2012150793A3 (ko) 2013-01-17

Similar Documents

Publication Publication Date Title
WO2012150793A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
KR102011821B1 (ko) 무선 통신 시스템에서 단말이 ack/nack 응답을 송신하는 방법 및 이를 위한 장치
KR101227529B1 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 하향링크 신호 수신 방법 및 이를 위한 장치
KR101809959B1 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2017155324A1 (ko) 무선 통신 시스템에서 단일 톤 전송을 위한 랜덤 액세스 절차 수행 방법 및 이를 위한 장치
KR101890627B1 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2012150772A2 (ko) 무선 통신 시스템에서 단말이 기지국으로부터 하향링크 신호를 수신하는 방법 및 이를 위한 장치
WO2017179784A1 (ko) 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2013055173A2 (ko) 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
US9319196B2 (en) Method of operating an HARQ buffer for a dynamic sub-frame change and an apparatus for same
WO2012169756A2 (ko) 반송파 집성 기법이 적용된 무선 통신 시스템에서 복수의 단말에 관한 신호를 다중화하는 방법 및 이를 위한 장치
WO2010117225A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보 수신 방법 및 이를 위한 장치
WO2011025195A2 (ko) 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 송신 장치
WO2010117239A2 (ko) 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치
WO2017069559A1 (ko) 무선 통신 시스템에서 브로드캐스트 신호/멀티캐스트 신호에 대한 ack/nack 응답을 송신하는 방법 및 이를 위한 장치
WO2010126259A2 (ko) 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치
WO2018012887A1 (ko) 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치
WO2012144763A2 (ko) 반송파 집성 기법이 적용된 무선 통신 시스템에서 전력 제어 방법 및 이를 위한 장치
WO2012108640A2 (en) Method for signaling a subframe pattern for preventing inter-cell interference from occurring in a heterogeneous network system and appartus for the same
WO2013024997A2 (ko) 기지국 협력 무선 통신 시스템에서 상향링크 송신 타이밍을 조절하는 방법 및 이를 위한 장치
WO2012141490A2 (ko) 무선 통신 시스템에서 셀 간 간섭을 완화하기 위한 신호 송수신 방법 및 이를 위한 장치
WO2017176088A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 자원 설정 방법 및 이를 위한 장치
WO2013095041A1 (ko) 무선 통신 시스템에서 무선 자원 동적 변경에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2013019088A2 (ko) 무선 통신 시스템에서 mtc 단말의 검색 영역 설정 방법 및 이를 위한 장치
WO2017155332A2 (ko) 무선 통신 시스템에서 멀티캐스트 신호를 수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12779433

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14115038

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012779433

Country of ref document: EP