WO2012144763A2 - 반송파 집성 기법이 적용된 무선 통신 시스템에서 전력 제어 방법 및 이를 위한 장치 - Google Patents
반송파 집성 기법이 적용된 무선 통신 시스템에서 전력 제어 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- WO2012144763A2 WO2012144763A2 PCT/KR2012/002747 KR2012002747W WO2012144763A2 WO 2012144763 A2 WO2012144763 A2 WO 2012144763A2 KR 2012002747 W KR2012002747 W KR 2012002747W WO 2012144763 A2 WO2012144763 A2 WO 2012144763A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base station
- component carrier
- receiving
- message
- carrier
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0096—Indication of changes in allocation
- H04L5/0098—Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0016—Time-frequency-code
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0203—Power saving arrangements in the radio access network or backbone network of wireless communication networks
- H04W52/0206—Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0212—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
- H04W52/0216—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
- H04W52/0229—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
- H04W52/0235—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention relates to a wireless communication system, and more particularly, to a power control method and apparatus therefor in a wireless communication system to which a carrier aggregation technique is applied.
- a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
- E-UMTS Evolved Universal Mobile Telecommunications System
- UMTS Universal Mobile Telecommunications System
- LTE Long Term Evolution
- an E-UMTS is an access gateway (AG) located at an end of a user equipment (UE) and a base station (eNode B), an eNB, and a network (E-UTRAN) and connected to an external network.
- the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
- the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
- the base station controls data transmission and reception for a plurality of terminals.
- the base station transmits downlink scheduling information for downlink (DL) data and informs the user equipment of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
- HARQ Hybrid Automatic Repeat and reQuest
- the base station transmits uplink scheduling information to uplink UL data for uplink (UL) data and informs the user equipment of time / frequency domain, encoding, data size, HARQ related information, and the like.
- the core network may be composed of an AG and a network node for user registration of the terminal.
- the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
- Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
- new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
- a method for a UE to transmit and receive a signal from a base station includes a wake-up of a secondary component carrier which is dormant from the base station through a main component carrier. ) Receiving a message; Initiating monitoring of the secondary component carrier after receiving the wake-up message; And receiving a downlink signal from the base station or transmitting an uplink signal to the base station through the secondary component carrier.
- the method may further include receiving a scheduling message from the base station through the primary component carrier after receiving the wake-up message.
- the wake-up message is received through a physical control channel of the primary component carrier, the physical control channel is characterized in that it comprises an indicator indicating the secondary component carrier.
- a method for a terminal to transmit and receive a signal from a base station includes receiving a scheduling message for a sub component carrier in a dormant state from the base station through a main component carrier. step; Initiating monitoring of the sub-component carrier after receiving the scheduling message; And receiving an activation message for the subcomponent carrier from the base station. And receiving a downlink signal from the base station or transmitting an uplink signal to the base station through the sub-component carrier from the subframe in which the active message is received.
- the active message may include information regarding a time point at which the scheduling message is received.
- the active message may be received from the base station through one of the primary component carrier and the secondary component carrier.
- a method for a terminal to transmit and receive a signal from a base station includes receiving a scheduling message for a secondary component carrier in a dormant state from the base station through a primary component carrier Doing; Starting monitoring for the secondary component carriers from an activation subframe indicated by the scheduling message; And receiving a downlink signal from the base station or transmitting an uplink signal to the base station through the subcomponent carrier from the activation subframe or the next subframe of the activation subframe.
- initiating monitoring of the secondary component carrier comprises: performing a carrier detection process for a particular component carrier; And setting the specific component carrier to the secondary component carrier when the specific component carrier is in an idle state.
- the step of transitioning the secondary component carrier to a sleep state (sleep state) It may further include.
- FIG. 1 is a diagram schematically illustrating an E-UMTS network structure as an example of a wireless communication system.
- FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
- FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
- FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
- FIG. 5 is a diagram illustrating a structure of a downlink radio frame used in an LTE system.
- FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
- FIG. 7 is a conceptual diagram illustrating a carrier aggregation technique.
- FIG 8 shows an example of transmitting a wake-up message according to the first embodiment of the present invention.
- FIG. 10 shows an example of transmitting a scheduling message according to the third embodiment of the present invention.
- FIG. 11 shows another example of transmitting a scheduling message according to the third embodiment of the present invention.
- FIG. 13 illustrates a block diagram of a communication device according to an embodiment of the present invention.
- the present specification describes an embodiment of the present invention using an LTE system and an LTE-A system, this as an example may be applied to any communication system corresponding to the above definition.
- the present specification describes an embodiment of the present invention on the basis of the FDD scheme, but this is an exemplary embodiment of the present invention can be easily modified and applied to the H-FDD scheme or the TDD scheme.
- FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
- the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
- the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
- the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
- the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
- the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
- RLC radio link control
- the RLC layer of the second layer supports reliable data transmission.
- the function of the RLC layer may be implemented as a functional block inside the MAC.
- the PDCP (Packet Data Convergence Protocol) layer of the second layer provides unnecessary control for efficiently transmitting IP packets such as IPv4 or IPv6 over a narrow bandwidth air interface. It performs header compression function that reduces information.
- the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
- the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
- RB means a service provided by the second layer for data transmission between the terminal and the network.
- the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
- the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
- One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 15, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
- Different cells may be configured to provide different bandwidths.
- the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
- BCH broadcast channel
- PCH paging channel
- SCH downlink shared channel
- Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
- the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
- RAC random access channel
- SCH uplink shared channel
- BCCH broadcast control channel
- PCCH paging control channel
- CCCH common control channel
- MCCH multicast control channel
- MTCH multicast. Traffic Channel
- FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
- the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in an initial cell search step to check the downlink channel state.
- P-SCH Primary Synchronization Channel
- S-SCH Secondary Synchronization Channel
- DL RS downlink reference signal
- the UE After completing the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
- PDSCH physical downlink control channel
- PDCCH physical downlink control channel
- the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
- RACH random access procedure
- the UE may transmit a specific sequence to the preamble through a physical random access channel (PRACH) (S303 and S305), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
- PRACH physical random access channel
- a contention resolution procedure may be additionally performed.
- the UE After performing the procedure as described above, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
- Control Channel (PUCCH) transmission (S308) may be performed.
- the terminal receives downlink control information (DCI) through the PDCCH.
- DCI downlink control information
- the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
- the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
- the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
- FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
- a radio frame has a length of 10 ms (327200 ⁇ Ts) and is composed of 10 equally sized subframes.
- Each subframe has a length of 1 ms and consists of two slots.
- Each slot has a length of 0.5 ms (15360 x Ts).
- the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
- one resource block includes 12 subcarriers x 7 (6) OFDM symbols.
- Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
- the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
- FIG. 5 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
- a subframe consists of 14 OFDM symbols.
- the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
- R0 to R3 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
- the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
- the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
- Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
- the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
- the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
- the PCFICH is composed of four Resource Element Groups (REGs), and each REG is distributed in a control region based on a Cell ID (Cell IDentity).
- One REG is composed of four resource elements (REs).
- the RE represents a minimum physical resource defined by one subcarrier x one OFDM symbol.
- the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
- QPSK Quadrature Phase Shift Keying
- the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
- the PHICH consists of one REG and is scrambled cell-specifically.
- ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
- BPSK binary phase shift keying
- a plurality of PHICHs mapped to the same resource constitutes a PHICH group.
- the number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
- the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
- the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
- n is indicated by the PCFICH as an integer of 1 or more.
- the PDCCH consists of one or more CCEs.
- the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
- PCH paging channel
- DL-SCH downlink-shared channel
- Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
- Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode the PDSCH data is included in the PDCCH and transmitted.
- a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A”, a radio resource (eg, frequency location) of "B” and a transmission type information of "C” (eg, It is assumed that information on data transmitted using a transport block size, modulation scheme, coding information, etc.) is transmitted through a specific subframe.
- RTI Radio Network Temporary Identity
- the terminal in the cell monitors the PDCCH using the RNTI information it has, and if there is at least one terminal having an "A" RNTI, the terminals receive the PDCCH, and through the information of the received PDCCH " Receive the PDSCH indicated by B " and " C ".
- FIG. 6 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
- an uplink subframe may be divided into a region to which a Physical Uplink Control CHannel (PUCCH) carrying control information is allocated and a region to which a Physical Uplink Shared CHannel (PUSCH) carrying user data is allocated.
- the middle part of the subframe is allocated to the PUSCH, and both parts of the data area are allocated to the PUCCH in the frequency domain.
- the control information transmitted on the PUCCH includes: ACK / NACK used for HARQ, Channel Quality Indicator (CQI) indicating downlink channel state, RI (Rank Indicator) for MIMO, Scheduling Request (SR), which is an uplink resource allocation request, etc. There is this.
- the PUCCH for one UE uses one resource block occupying a different frequency in each slot in a subframe. That is, two resource blocks allocated to the PUCCH are frequency hoped at the slot boundary.
- Carrier aggregation includes a plurality of frequency blocks or (logically) cells in which a terminal consists of uplink resources (or component carriers) and / or downlink resources (or component carriers) in order for a wireless communication system to use a wider frequency band.
- a terminal consists of uplink resources (or component carriers) and / or downlink resources (or component carriers) in order for a wireless communication system to use a wider frequency band.
- component carrier will be unified.
- the entire system bandwidth has a bandwidth of up to 100 MHz as a logical band.
- the entire system band includes five component carriers, each component carrier having a bandwidth of up to 20 MHz.
- a component carrier includes one or more contiguous subcarriers that are physically contiguous.
- each component carrier has the same bandwidth, but this is only an example and each component carrier may have a different bandwidth.
- each component carrier is shown as being adjacent to each other in the frequency domain, the figure is shown in a logical concept, each component carrier may be physically adjacent to each other, or may be separated.
- the center frequency may be used differently for each component carrier or may use one common common carrier for component carriers that are physically adjacent to each other. For example, in FIG. 7, if all component carriers are physically adjacent to each other, center carrier A may be used. In addition, assuming that the component carriers are not physically adjacent to each other, the center carrier A, the center carrier B, and the like may be used separately for each component carrier.
- the component carrier may correspond to the system band of the legacy system.
- provision of backward compatibility and system design may be facilitated in a wireless communication environment in which an evolved terminal and a legacy terminal coexist.
- each component carrier may correspond to a system band of the LTE system.
- the component carrier may have any one of 1.25, 2.5, 5, 10 or 20 Mhz bandwidth.
- the frequency band used for communication with each terminal is defined in component carrier units.
- UE A may use the entire system band 100 MHz and performs communication using all five component carriers.
- Terminals B1 to B5 can use only 20 MHz bandwidth and perform communication using one component carrier.
- Terminals C1 and C2 may use a 40 MHz bandwidth and communicate with each other using two component carriers.
- the two component carriers may or may not be logically / physically adjacent to each other.
- the terminal C1 represents a case of using two component carriers which are not adjacent, and the terminal C2 represents a case of using two adjacent component carriers.
- the present invention proposes an operation of reducing power consumption of a UE in a carrier aggregation situation in which the UE transmits and receives data through two or more component carriers.
- the UE is configured to communicate through two component carriers, one of which is referred to as a primary component carrier (PCC or PCell) and the other as a secondary component carrier (which may be referred to as a SCC or SCell).
- PCC primary component carrier
- SCC or SCell secondary component carrier
- the UE receives various control signals such as PDCCH through the PCC, and cross carrier scheduling (CCS) is applied to data transmission and reception of the SCC by the control signal in the PCC.
- CCS cross carrier scheduling
- the UE may turn off the wireless communication module involved in the transmission and reception of the SCC and reduce power consumption without performing monitoring for the SCC.
- the PCC performs a monitoring operation such as blind decoding the PDCCH.
- the eNB may send a signal to the UE to perform monitoring only at certain points in time and to go to sleep at other times in order to reduce power consumption in the PCC.
- the UE when the eNB intends to perform data transmission / reception with the UE through the SCC, the UE will instruct the UE to prepare for the transmission / reception operation for the SCC at the time when the UE monitors the PCC. Suggest that. That is, the eNB first instructs the PDCCH of the PCC to prepare for operation in the SCC by sending a wake-up message, and after receiving the wake-up message, the UE receives wireless communication related to the operation of the SCC. Run the module.
- the above operation will be described in more detail.
- the eNB sends a wake-up message via the PDCCH in the PCC and the UE which receives it prepares for operation for the SCC.
- FIG 8 shows an example of transmitting a wake-up message according to the first embodiment of the present invention.
- the eNB and the UE may use a PDCCH (hereinafter, referred to as a dummy PDCCH) in which resource allocation is not performed as a wake-up message. That is, the eNB transmits the PDCCH in which cross-carrier scheduling is performed from the PCC to the SCC but resource allocation information for PDSCH or PUSCH is not included (that is, all bitmap information for resource allocation is set to 0).
- a dummy PDCCH a PDCCH in which resource allocation is not performed as a wake-up message. That is, the eNB transmits the PDCCH in which cross-carrier scheduling is performed from the PCC to the SCC but resource allocation information for PDSCH or PUSCH is not included (that is, all bitmap information for resource allocation is set to 0).
- the UE Upon receiving the dummy PDCCH masked with its C-RNTI, the UE regards it as a message to prepare for communication in the SCC and prepares for a corresponding operation.
- the corresponding operation may include an operation in which the UE performs sampling on OFDM symbols of the SCC and buffers the PDCCH until valid PDLCHs containing valid DL resource allocation information are detected.
- the wake-up message or dummy PDCCH may be restricted to be transmitted in DCI format 0 / 1A or a transmission mode dependent DCI format for fallback mode operation. Or, it may be transmitted only in a limited search area, for example, a common search space or a UE-specific search space in order to reduce the number of blind decoding times.
- the eNB and the UE may use the PDCCH for the CSI estimation as a wake-up message.
- the PDCCH that triggers the aperiodic CSI report for the SCC or the PDCCH that triggers the transmission of a Sounding Reference Signal (SRS) in the SCC may be regarded as a wake-up message and the above-described operation may be performed.
- SRS Sounding Reference Signal
- the eNB transmits only the scheduling message for data transmission and reception of the SCC through the PDCCH of the PCC, and operates at the appropriate time after that, sending an active message informing of actual data transmission and reception corresponding to the scheduling message.
- the UE receives the scheduling information for the PDSCH or PUSCH for the SCC through the PDCCH of the PCC, the UE prepares for a corresponding operation.
- the eNB transmits the PDSCH in the SCC at the appropriate time and informs the UE of the PDSCH corresponding to the scheduling message that was sent at some point in the past through the active message.
- this active message needs to include an indicator indicating when to send a scheduling message.
- the indicator indicating the transmission time of the scheduling message may be defined as a field indicating the subframe index explicitly, this field is to be transmitted in the form of PDCCH of the PCC as shown in the active message (a) of FIG. It may be.
- a predetermined preamble indicating whether the PDSCH is transmitted is transmitted immediately before the PDSCH is transmitted in the SCC, and the transmission time of the sequence and the scheduling message used in the corresponding preamble is mapped. May be
- FIG. 10 shows an example of transmitting a scheduling message according to the third embodiment of the present invention.
- the reception time of the scheduling message may have a predetermined relationship with the activation time of the secondary component carrier without a separate indicator or message.
- a scheduling message is transmitted in SF # n + 1 in the PCC
- a PDSCH corresponding thereto may be preconfigured to be transmitted in SF # n + 1 + k in the SCC.
- the k value may be fixed to a value equal to 1, or may be separately reported using a higher layer signal such as an RRC layer.
- FIG. 11 shows another example of transmitting a scheduling message according to the third embodiment of the present invention.
- the above-described relationship between the scheduling message and activation of the secondary component carrier can be applied even when the SCC cannot be used exclusively by the eNB and the UE. That is, it is particularly effective when the SCC should be used by contention for medium access with another system through a carrier-sensing technique.
- the eNB transmits a scheduling message through the PDCCH of the PCC at a specific time point, it is uncertain whether the PDSCH in the SCC may be transmitted at that time point, and it is unpredictable when the transmission may be possible in the future.
- the UE first starts the monitoring of the SCC after receiving the scheduling message of the PCC PDCCH, and deems that the corresponding PDSCH is transmitted from the time when the active message is transmitted, thereby performing a contention operation for medium access through carrier detection. do. That is, the terminal performs a carrier detection operation for a specific component carrier or a specific frequency band when the active message is transmitted. If there is no communication of another terminal in a specific component carrier or a specific frequency band, i.e., it is detected that it is in an idle state, the terminal sets a specific component carrier or a specific frequency band as the subcomponent carrier.
- the eNB may operate in the form of transmitting the above-described active message while guaranteeing this time interval.
- the UE when PDSCH reception or PUSCH transmission through the SCC is terminated, the UE may stop the operation of the SCC again and return to the dormant state.
- the eNB and the UE may operate to promise a predetermined time T and not return to the dormant state before this time.
- These T values may be exchanged in advance through higher layer signals such as the RRC layer.
- the eNB and the UE may operate to not return to the dormant state for the T time again.
- FIG. 13 illustrates a block diagram of a communication device according to an embodiment of the present invention.
- the communication device 1300 includes a processor 1310, a memory 1320, an RF module 1330, a display module 1340, and a user interface module 1350.
- the communication device 1300 is shown for convenience of description and some modules may be omitted. In addition, the communication device 1300 may further include necessary modules. In addition, some modules in the communication device 1300 may be classified into more granular modules.
- the processor 1310 is configured to perform an operation according to the embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 1310 may refer to the contents described with reference to FIGS. 1 to 12.
- the memory 1320 is connected to the processor 1310 and stores an operating system, an application, program code, data, and the like.
- the RF module 1330 is connected to the processor 1310 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 1330 performs analog conversion, amplification, filtering and frequency up conversion, or a reverse process thereof.
- the display module 1340 is connected to the processor 1310 and displays various information.
- the display module 1340 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
- the user interface module 1350 is connected to the processor 1310 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
- embodiments of the present invention have been mainly described based on data transmission / reception relations between a terminal and a base station.
- Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
- a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
- Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
- an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- processors controllers, microcontrollers, microprocessors, and the like.
- an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
- the software code may be stored in a memory unit and driven by a processor.
- the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims (10)
- 반송파 집성 기법이 적용된 무선 통신 시스템에서 단말이 기지국으로부터 신호를 송수신하는 방법에 있어서,주 콤포넌트 반송파를 통하여, 상기 기지국으로부터 휴면 상태인 부 콤포넌트 반송파에 대한 웨이크-업(wake-up) 메시지를 수신하는 단계;상기 웨이크-업 메시지 수신 후, 상기 부 콤포넌트 반송파에 대한 모니터링을 개시하는 단계; 및상기 부 콤포넌트 반송파를 통하여 상기 기지국으로부터 하향링크 신호를 수신하거나, 상기 기지국으로 상향링크 신호를 송신하는 단계를 포함하는 것을 특징으로 하는,신호 송수신 방법.
- 제 1 항에 있어서,상기 웨이크-업 메시지 수신 후, 상기 기지국으로부터 상기 주 콤포넌트 반송파를 통하여 스케줄링 메시지를 수신하는 단계를 더 포함하는 것을 특징으로 하는,신호 송수신 방법.
- 제 1 항에 있어서,상기 웨이크-업 메시지는 상기 주 콤포넌트 반송파의 물리 제어 채널을 통하여 수신되고,상기 물리 제어 채널은 상기 부 콤포넌트 반송파를 지시하는 지시자를 포함하는 것을 특징으로 하는,신호 송수신 방법.
- 제 1 항에 있어서,상기 기지국으로부터의 하향링크 신호 수신이 완료하거나 상기 기지국으로의 상향링크 신호 송신이 완료한 후, 상기 부 콤포넌트 반송파를 휴면 상태(sleep state)로 천이하는 단계를 더 포함하는 것을 특징으로 하는,신호 송수신 방법.
- 반송파 집성 기법이 적용된 무선 통신 시스템에서 단말이 기지국으로부터 신호를 송수신하는 방법에 있어서,주 콤포넌트 반송파를 통하여, 상기 기지국으로부터 휴면 상태인 부 콤포넌트 반송파에 대한 스케줄링 메시지를 수신하는 단계;상기 스케줄링 메시지 수신 후, 상기 부 콤포넌트 반송파에 대한 모니터링을 개시하는 단계; 및상기 기지국으로부터 상기 부 콤포넌트 반송파에 대한 활성 메시지(Activation message)를 수신하는 단계; 및상기 활성 메시지를 수신한 서브프레임부터, 상기 부 콤포넌트 반송파를 통하여 상기 기지국으로부터 하향링크 신호를 수신하거나, 상기 기지국으로 상향링크 신호를 송신하는 단계를 포함하는 것을 특징으로 하는,신호 송수신 방법.
- 제 5 항에 있어서,상기 활성 메시지는,상기 스케줄링 메시지를 수신한 시점에 관한 정보를 포함하는 것을 특징으로 하는,신호 송수신 방법.
- 제 5 항에 있어서,상기 활성 메시지는,상기 주 콤포넌트 반송파 또는 상기 부 콤포넌트 반송파 중 하나를 통하여 상기 기지국으로부터 수신하는 것을 특징으로 하는,신호 송수신 방법.
- 제 5 항에 있어서,상기 기지국으로부터의 하향링크 신호 수신이 완료하거나 상기 기지국으로의 상향링크 신호 송신이 완료한 후, 상기 부 콤포넌트 반송파를 휴면 상태(sleep state)로 천이하는 단계를 더 포함하는 것을 특징으로 하는,신호 송수신 방법.
- 반송파 집성 기법이 적용된 무선 통신 시스템에서 단말이 기지국으로부터 신호를 송수신하는 방법에 있어서,주 콤포넌트 반송파를 통하여, 상기 기지국으로부터 휴면 상태인 부 콤포넌트 반송파에 대한 스케줄링 메시지를 수신하는 단계;상기 스케줄링 메시지가 지시하는 활성화 서브프레임부터, 상기 부 콤포넌트 반송파에 대한 모니터링을 개시하는 단계; 및상기 활성화 서브프레임 또는 상기 활성화 서브프레임의 다음 서브프레임부터, 상기 부 콤포넌트 반송파를 통하여 상기 기지국으로부터 하향링크 신호를 수신하거나, 상기 기지국으로 상향링크 신호를 송신하는 단계를 포함하는 것을 특징으로 하는,신호 송수신 방법.
- 제 5 항에 있어서,상기 부 콤포넌트 반송파에 대한 모니터링을 개시하는 단계는,특정 콤포넌트 반송파에 대한 반송파 감지 과정을 수행하는 단계; 및상기 특정 콤포넌트 반송파가 휴지 상태(idle state)인 경우, 상기 특정 콤포넌트 반송파를 상기 부 콤포넌트 반송파로 설정하는 단계를 포함하는 것을 특징으로 하는,신호 송수신 방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137021918A KR101923452B1 (ko) | 2011-04-18 | 2012-04-12 | 반송파 집성 기법이 적용된 무선 통신 시스템에서 전력 제어 방법 및 이를 위한 장치 |
US14/003,591 US9232467B2 (en) | 2011-04-18 | 2012-04-12 | Method for controlling power in a wireless communication system adopting a carrier aggregation technique, and apparatus for same |
EP12774717.8A EP2701322B1 (en) | 2011-04-18 | 2012-04-12 | Method for controlling power in a wireless communication system adopting a carrier aggregation technique, and apparatus for same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161476743P | 2011-04-18 | 2011-04-18 | |
US61/476,743 | 2011-04-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012144763A2 true WO2012144763A2 (ko) | 2012-10-26 |
WO2012144763A3 WO2012144763A3 (ko) | 2013-03-07 |
Family
ID=47042020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/002747 WO2012144763A2 (ko) | 2011-04-18 | 2012-04-12 | 반송파 집성 기법이 적용된 무선 통신 시스템에서 전력 제어 방법 및 이를 위한 장치 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9232467B2 (ko) |
EP (1) | EP2701322B1 (ko) |
KR (1) | KR101923452B1 (ko) |
WO (1) | WO2012144763A2 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113630885A (zh) * | 2018-08-31 | 2021-11-09 | 北京小米移动软件有限公司 | 载波激活方法、装置、设备、系统及存储介质 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10736087B2 (en) * | 2013-03-15 | 2020-08-04 | Apple Inc. | Secondary component carrier future scheduling in LTE carrier aggregation |
WO2015065155A1 (ko) * | 2013-11-04 | 2015-05-07 | 엘지전자 주식회사 | 무선 통신 시스템에서 신호를 전송하는 방법 및 장치 |
US10015745B2 (en) * | 2015-06-16 | 2018-07-03 | Intel Corporation | Apparatus, system and method of communicating a wakeup packet |
KR20200031446A (ko) * | 2018-09-14 | 2020-03-24 | 삼성전자주식회사 | 무선 통신 시스템에서 pdcch 모니터링 방법 및 장치 |
WO2020067783A1 (ko) * | 2018-09-27 | 2020-04-02 | 엘지전자 주식회사 | 무선 통신 시스템에서 단말에 의해 수행되는 불연속 수신 방법 및 상기 방법을 이용하는 단말 |
KR102628040B1 (ko) | 2018-09-28 | 2024-01-22 | 삼성전자주식회사 | 무선 통신 시스템에서 pdcch 모니터링 방법 및 장치 |
TWI726575B (zh) | 2019-01-11 | 2021-05-01 | 瑞典商Lm艾瑞克生(Publ)電話公司 | 用於載波聚合之scell管理 |
US10887839B2 (en) * | 2019-03-29 | 2021-01-05 | Qualcomm Incorporated | Search space set for wakeup signal |
WO2021189446A1 (zh) * | 2020-03-27 | 2021-09-30 | Oppo广东移动通信有限公司 | 辅助载波的睡眠指示方法、装置、终端及存储介质 |
US20230328649A1 (en) * | 2022-04-07 | 2023-10-12 | Qualcomm Incorporated | Wake up signal monitoring occasions |
CN115022902B (zh) * | 2022-05-30 | 2024-06-14 | 南通领讯信息技术有限公司 | 一种高频带利用率的无线通信方法及使用该方法的基站 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004320153A (ja) | 2003-04-11 | 2004-11-11 | Sony Corp | 無線通信システム及びその電力制御方法 |
KR20050029254A (ko) * | 2003-09-20 | 2005-03-24 | 삼성전자주식회사 | 광대역 무선 통신시스템의 슬리핑 스테이트에서 모드간의상태 천이를 위한 웨이크업 채널 전송 장치 및 방법 |
US20110002281A1 (en) * | 2008-12-30 | 2011-01-06 | Interdigital Patent Holdings, Inc. | Discontinuous reception for carrier aggregation |
WO2010078962A1 (en) * | 2009-01-07 | 2010-07-15 | Nokia Siemens Networks Oy | Discontinuous reception in carrier aggregation wireless communication systems |
DE102009004031A1 (de) * | 2009-01-08 | 2010-07-15 | Bayer Technology Services Gmbh | Strukturierte Gasdiffusionselektrode für Elektrolysezellen |
KR20100118535A (ko) * | 2009-04-28 | 2010-11-05 | 한국전자통신연구원 | 다중 반송파 무선 접속 시스템에서 데이터를 송수신하는 방법 |
US20100284332A1 (en) | 2009-04-28 | 2010-11-11 | Electronics And Telecommunications Research Institute | Method for transmitting and receiving data in multi carrier wireless access system |
US9191179B2 (en) | 2009-10-01 | 2015-11-17 | Electronics And Telecommunications Research Institute | Method for reducing power consumption of terminal in mobile communication system using multi-carrier structure |
US9198188B2 (en) * | 2011-03-01 | 2015-11-24 | Broadcom Corporation | Operating a wireless system in an unlicensed band |
-
2012
- 2012-04-12 US US14/003,591 patent/US9232467B2/en not_active Expired - Fee Related
- 2012-04-12 EP EP12774717.8A patent/EP2701322B1/en not_active Not-in-force
- 2012-04-12 WO PCT/KR2012/002747 patent/WO2012144763A2/ko active Application Filing
- 2012-04-12 KR KR1020137021918A patent/KR101923452B1/ko active IP Right Grant
Non-Patent Citations (2)
Title |
---|
None |
See also references of EP2701322A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113630885A (zh) * | 2018-08-31 | 2021-11-09 | 北京小米移动软件有限公司 | 载波激活方法、装置、设备、系统及存储介质 |
CN113630885B (zh) * | 2018-08-31 | 2024-05-28 | 北京小米移动软件有限公司 | 载波激活方法、装置、设备、系统及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
KR101923452B1 (ko) | 2019-02-27 |
US9232467B2 (en) | 2016-01-05 |
EP2701322A4 (en) | 2014-10-08 |
WO2012144763A3 (ko) | 2013-03-07 |
KR20140016892A (ko) | 2014-02-10 |
EP2701322B1 (en) | 2016-05-18 |
US20140064170A1 (en) | 2014-03-06 |
EP2701322A2 (en) | 2014-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017179784A1 (ko) | 무선 통신 시스템에서 가변적 서브밴드 구성에 기반한 신호 송수신 방법 및 이를 위한 장치 | |
WO2012144763A2 (ko) | 반송파 집성 기법이 적용된 무선 통신 시스템에서 전력 제어 방법 및 이를 위한 장치 | |
WO2011083983A2 (ko) | 반송파 집성을 지원하는 무선 통신 시스템에서 하향링크 신호 수신 방법 및 이를 위한 장치 | |
WO2017155324A1 (ko) | 무선 통신 시스템에서 단일 톤 전송을 위한 랜덤 액세스 절차 수행 방법 및 이를 위한 장치 | |
KR101809959B1 (ko) | 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치 | |
WO2018080184A1 (ko) | 무선 통신 시스템에서 단말 간 직접 통신을 위한 자원 센싱 방법 및 이를 위한 장치 | |
WO2010117225A2 (ko) | 무선 통신 시스템에서 하향링크 제어 정보 수신 방법 및 이를 위한 장치 | |
WO2012169756A2 (ko) | 반송파 집성 기법이 적용된 무선 통신 시스템에서 복수의 단말에 관한 신호를 다중화하는 방법 및 이를 위한 장치 | |
WO2016003229A1 (ko) | 무선 통신 시스템에서 비면허 대역을 통한 신호 송수신 방법 및 이를 위한 장치 | |
WO2010126259A2 (ko) | 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치 | |
WO2011025195A2 (ko) | 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 송신 장치 | |
WO2012150773A2 (ko) | 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치 | |
WO2012128490A2 (ko) | 무선 통신 시스템에서 동적 서브프레임 설정 시 재전송 방법 및 이를 위한 장치 | |
WO2010117239A2 (ko) | 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치 | |
WO2012150772A2 (ko) | 무선 통신 시스템에서 단말이 기지국으로부터 하향링크 신호를 수신하는 방법 및 이를 위한 장치 | |
WO2013055173A2 (ko) | 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2012150793A2 (ko) | 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치 | |
WO2017069559A1 (ko) | 무선 통신 시스템에서 브로드캐스트 신호/멀티캐스트 신호에 대한 ack/nack 응답을 송신하는 방법 및 이를 위한 장치 | |
WO2013024997A2 (ko) | 기지국 협력 무선 통신 시스템에서 상향링크 송신 타이밍을 조절하는 방법 및 이를 위한 장치 | |
WO2013095041A1 (ko) | 무선 통신 시스템에서 무선 자원 동적 변경에 기반한 신호 송수신 방법 및 이를 위한 장치 | |
WO2018169342A1 (ko) | 무선 통신 시스템에서 단말 간 직접 통신을 위한 반송파 설정 및 제어 방법과 이를 위한 장치 | |
WO2013137582A1 (ko) | 무선 통신 시스템에서 하향링크 채널의 시작 심볼을 설정하는 방법 및 이를 위한 장치 | |
WO2013141508A1 (ko) | 기지국 협력 무선 통신 시스템에서 고속 핸드오버 수행 방법 및 이를 위한 장치 | |
WO2017191964A2 (ko) | 무선 통신 시스템에서 단축 tti 지원를 위한 harq 수행 방법 및 이를 위한 장치 | |
WO2017155332A2 (ko) | 무선 통신 시스템에서 멀티캐스트 신호를 수신하는 방법 및 이를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12774717 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 20137021918 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14003591 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012774717 Country of ref document: EP |