WO2013141508A1 - 기지국 협력 무선 통신 시스템에서 고속 핸드오버 수행 방법 및 이를 위한 장치 - Google Patents

기지국 협력 무선 통신 시스템에서 고속 핸드오버 수행 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2013141508A1
WO2013141508A1 PCT/KR2013/001943 KR2013001943W WO2013141508A1 WO 2013141508 A1 WO2013141508 A1 WO 2013141508A1 KR 2013001943 W KR2013001943 W KR 2013001943W WO 2013141508 A1 WO2013141508 A1 WO 2013141508A1
Authority
WO
WIPO (PCT)
Prior art keywords
handover
random access
terminal
target cell
perform
Prior art date
Application number
PCT/KR2013/001943
Other languages
English (en)
French (fr)
Inventor
서한별
이승민
김학성
서인권
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/028,109 priority Critical patent/USRE48458E1/en
Priority to US14/386,102 priority patent/US9386489B2/en
Publication of WO2013141508A1 publication Critical patent/WO2013141508A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0077Transmission or use of information for re-establishing the radio link of access information of target access point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0838Random access procedures, e.g. with 4-step access using contention-free random access [CFRA]

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for performing a fast handover in a base station cooperative wireless communication system.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is located at an end of a user equipment (UE), an eNode B (eNB), and a network (E-UTRAN) and connected to an external network (Access Gateway; AG). It includes.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.44, 3, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • For downlink (DL) data the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • the base station transmits uplink scheduling information to the terminal for uplink (UL) data and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use.
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • a method for performing a handover by a terminal includes: receiving a random access triggering signal from a serving cell; Performing a random access procedure with a target cell based on the random access triggering signal; Receiving a downlink signal from the serving cell and transmitting an uplink signal to the target cell; Receiving a handover command message from the serving cell to the target cell; And transmitting a predetermined message indicating completion of handover to the target cell based on the handover command message.
  • the handover command message may include information indicating omission of a random access procedure. More preferably, the handover command message may include information about a temporary terminal identifier to be used by the terminal in the target cell. have. Alternatively, the terminal may include information for transmitting a scheduling request message to the target cell.
  • the serving cell is a macro base station, and the target cell is a pico base station.
  • the serving cell may be a primary component carrier pie, and the target cell may be a secondary component carrier. In the latter case, after transmitting the predetermined message, the sub-component carrier is reset to the main component carrier.
  • the predetermined message may be a scheduling request message.
  • the random access triggering signal may be received from the serving cell through a physical control channel.
  • the method may further include receiving a downlink signal and transmitting an uplink signal from the target cell.
  • the power control process of the terminal may be performed before or after the predetermined message transmission. It is characterized in that it is maintained over.
  • the terminal may perform the handover procedure more efficiently in the base station cooperative wireless communication system.
  • FIG. 1 is a diagram schematically illustrating an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 4 is a diagram illustrating a structure of a downlink radio frame used in an LTE system.
  • FIG. 5 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • FIG. 6 is a diagram illustrating a contention-based random access procedure during a random access procedure of an LTE system.
  • FIG. 7 is a diagram illustrating a contention free random access procedure during a random access procedure of an LTE system.
  • FIGS. 8 to 10 are diagrams for explaining the CoMP operation according to the position of the UE and the handover scheme according to the present invention.
  • FIG. 11 is a flowchart illustrating an example in which a UE performs a handover process according to an embodiment of the present invention.
  • FIG. 12 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the present specification describes an embodiment of the present invention using an LTE system and an LTE-A system, this as an example may be applied to any communication system corresponding to the above definition.
  • the present specification describes an embodiment of the present invention on the basis of the FDD scheme, but this is an exemplary embodiment of the present invention can be easily modified and applied to the H-FDD scheme or the TDD scheme.
  • the present specification may be used as a generic term including a name of a base station, a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like. It may also be referred to as).
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a trans-antenna port channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources.
  • the physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink, and modulated in a Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer performs a header compression function to reduce unnecessary control information for efficiently transmitting IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • IPv4 Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • One cell constituting an eNB is set to one of bandwidths such as 1.4, 3, 5, 10, 15, and 20 MHz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
  • RACH random access procedure
  • the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S303 and S305), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S304 and S306).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the above-described procedure, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S308) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • FIG. 4 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
  • a subframe consists of 14 OFDM symbols.
  • the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
  • R1 to R4 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
  • the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
  • the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
  • Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
  • the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
  • the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
  • the PCFICH is composed of four resource element groups (REGs), and each REG is distributed in a control region based on a cell ID (Cell IDentity).
  • One REG is composed of four resource elements (REs).
  • the RE represents a minimum physical resource defined by one subcarrier x one OFDM symbol.
  • the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
  • QPSK Quadrature Phase Shift Keying
  • the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
  • the PHICH consists of one REG and is scrambled cell-specifically.
  • ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • a plurality of PHICHs mapped to the same resource constitutes a PHICH group.
  • the number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
  • the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
  • the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
  • n is indicated by the PCFICH as an integer of 1 or more.
  • the PDCCH consists of one or more CCEs.
  • the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
  • Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode the PDSCH data is included in the PDCCH and transmitted.
  • a specific PDCCH is masked with a cyclic redundancy check (CRC) with a Radio Network Temporary Identity (RNTI) of "A", a radio resource (eg, a frequency location) of "B” and a transmission of "C”.
  • CRC cyclic redundancy check
  • RTI Radio Network Temporary Identity
  • the terminal in the cell monitors the PDCCH using the RNTI information it has, and if there is at least one terminal having an "A" RNTI, the terminals receive the PDCCH, and through the information of the received PDCCH " Receive the PDSCH indicated by B " and " C ".
  • FIG. 5 is a diagram illustrating a structure of an uplink subframe used in an LTE system.
  • an uplink subframe may be divided into a region to which a Physical Uplink Control CHannel (PUCCH) carrying control information is allocated and a region to which a Physical Uplink Shared CHannel (PUSCH) carrying user data is allocated.
  • the middle part of the subframe is allocated to the PUSCH, and both parts of the data area are allocated to the PUCCH in the frequency domain.
  • the control information transmitted on the PUCCH includes ACK / NACK used for HARQ, Channel Quality Indicator (CQI) indicating downlink channel state, RI (Rank Indicator) for MIMO, SR (Scheduling Request) which is an uplink resource allocation request, etc. There is this.
  • the PUCCH for one UE uses one resource block occupying a different frequency in each slot in a subframe. That is, two resource blocks allocated to the PUCCH are frequency hoped at the slot boundary.
  • CoMP Coordinatd Multi Point
  • the LTE-A system which is a standard for the next generation mobile communication system, is expected to support CoMP method, which was not supported in the existing standard, to improve data rate.
  • the CoMP scheme refers to a transmission scheme for two or more base stations or cells cooperating with each other to communicate with the terminal in order to improve communication performance between the terminal and the base station (cell or sector) in the shadow area.
  • CoMP transmission can be divided into CoMP-Joint Processing (CoMP-JP) and CoMP-Coordinated Scheduling / beamforming (CoMP-CS / CB) schemes through data sharing. .
  • CoMP-JP CoMP-Joint Processing
  • CoMP-CS / CB CoMP-Coordinated Scheduling / beamforming
  • the terminal may simultaneously receive data from each base station that performs the CoMP transmission scheme, and combine the received signals from each base station to improve reception performance.
  • Joint Transmission JT
  • one of the base stations performing the CoMP transmission scheme may also consider a method for transmitting data to the terminal at a specific time point (DPS; Dynamic Point Selection).
  • DPS Dynamic Point Selection
  • the UE may receive data through one base station, that is, a serving base station, through beamforming.
  • each base station may simultaneously receive a PUSCH signal from the terminal (Joint Reception; JR).
  • JR Joint Reception
  • cooperative scheduling / beamforming scheme CoMP-CS / CB
  • only one base station receives a PUSCH, where the decision to use the cooperative scheduling / beamforming scheme is determined by the cooperative cells (or base stations). Is determined.
  • a random access procedure defined in the LTE system will be described.
  • a random access procedure is divided into a contention-based random access procedure and a contention-free random access procedure, and each of them will be described in more detail with reference to the accompanying drawings.
  • FIG. 6 is a diagram illustrating an operation performed between a terminal and a base station in a contention based random access procedure.
  • the UE may randomly select a random access preamble within a group of random access preambles indicated by system information or a handover command, and may select a PRACH resource capable of transmitting the random access preamble,
  • the selected random access preamble may be transmitted to the base station (step 1).
  • the UE After the UE transmits the random access preamble, it may attempt to receive a response to the random access preamble in the random access response reception window indicated by the system information or the handover command (step 2).
  • the random access information may be transmitted in the form of a MAC PDU, and the MAC PDU may be transmitted on the PDSCH.
  • the PDCCH is transmitted so that the UE can properly receive the information transmitted on the PDSCH. That is, the PDCCH includes information on a terminal to receive the PDSCH, frequency and time information of radio resources of the PDSCH, a transmission format of the PDSCH, and the like.
  • the UE can properly receive a random access response transmitted on the PDSCH according to the information of the PDCCH.
  • the random access response may include a random access preamble identifier ID, an UL grant, a temporary C-RNTI (temporary C-RNTI), a time alignment command (TAC), and the like.
  • the random access preamble identifier may be the same as the random access preamble selected by the terminal in step 1.
  • the terminal may process each piece of information included in the random access response. That is, the terminal stores the temporary C-RNTI.
  • the terminal uses an uplink grant to transmit the data stored in the buffer of the terminal to the base station or to transmit the newly generated data to the base station (step 3).
  • the base station In the contention-based random access procedure, the base station cannot determine which terminals are performing the random access procedure, and since the terminals must be identified for contention resolution later, the terminal identifier is essentially data included in the uplink grant. Should be included in
  • the first method is to transmit the cell identifier of the terminal through the uplink grant as to whether the terminal has already received the valid cell identifier allocated in the corresponding cell prior to the random access procedure.
  • the second method is to transmit a UE-specific identifier if the UE has not received a valid cell identifier prior to the random access procedure.
  • a unique identifier of a terminal is longer than a cell identifier.
  • the terminal After transmitting data with an identifier through an uplink grant included in the random access response, the terminal waits for an indication of a base station for contention resolution. That is, the terminal attempts to receive the PDCCH in order to receive a specific message (step 4).
  • the terminal attempts to receive the PDCCH using its cell identifier. If the terminal identifier transmitted through the uplink grant is a unique identifier of the terminal, the terminal attempts to receive the PDCCH using the temporary C-RNTI included in the random access response.
  • the terminal determines that the random access procedure was successfully performed and completes the random access procedure.
  • the UE checks the data transmitted by the PDSCH indicated by the PDCCH. If the unique identifier of the terminal is included in the data, the terminal determines that the random access procedure has been successfully performed and completes the random access procedure.
  • FIG. 7 is a diagram illustrating an operation performed between a terminal and a base station in a non-competition based random access procedure. In comparison with the contention-based random access procedure, it is determined that the contention-free random access procedure was successfully performed by receiving random access response information for transmission of a pre-assigned random access preamble, thereby completing the random access procedure.
  • a non-competition based random access procedure is performed in the following two cases. One is a handover procedure and the other is a request by a command of a base station. Undoubtedly, a contention-based random access procedure may also be performed in these two cases.
  • the handover command and the PDCCH command may be performed to allocate a random access preamble.
  • the terminal transmits the preamble to the base station. The method of receiving random access information is then the same as that of the contention based random access procedure.
  • the contention-free random access procedure is initiated as the base station instructs the terminal to start the contention-free random access procedure.
  • the present invention proposes a method in which a UE can perform inter-cell handover faster in a CoMP situation in which multiple cells transmit and receive signals through cooperation.
  • FIG. 8 to 10 are diagrams for explaining the CoMP operation according to the position of the UE and the handover scheme according to the present invention.
  • FIG. 8 to FIG. 10 there is a point where the path loss of the uplink signal transmitted by the UE to the macro eNB is the same as the path loss of the uplink signal transmitted to the pico eNB, and the received signal received from the macro eNB and the pico eNB It can be seen that there are also points with the same intensity.
  • a UE receives a downlink signal from a macro eNB and simultaneously transmits an uplink signal to the eNB with the corresponding macro. Subsequently, when the UE moves toward the pico eNB, the UE receives the downlink signal from the macro eNB and simultaneously transmits an uplink signal to the pico eNB.
  • the UE is located closer to the pico eNB, and the uplink signal is advantageous in that transmitting to the pico eNB provides the same received signal quality with lower transmission power, but the downlink signal has a higher transmission power of the macro eNB. Receiving from the macro eNB is still advantageous in that it performs stronger downlink signal reception.
  • the UE performs the CoMP operation of transmitting the uplink signal to the pico eNB while receiving the downlink signal from the macro eNB.
  • the UE needs to acquire synchronization for transmitting an uplink signal to the pico eNB, and the random access procedure for such synchronization may be triggered by an order on a PDCCH. .
  • the UE moves further to the pico eNB, as shown in FIG. 10, the DL signal from the pico eNB is received more strongly than the DL signal from the macro eNB, so that both DL and UL can be transmitted and received through the pico eNB. do.
  • handover refers to an operation of changing a cell receiving a control channel
  • the UE hands over from a macro eNB to a pico eNB.
  • the serving cell instructs the UE to perform a handover by sending a handover command to a specific target cell, and the receiving UE transmits a random access preamble to the target cell to perform a random access procedure.
  • the handover command may include a preamble index, and the UE may perform a non-competition based random access procedure using the preamble index indicated by the index.
  • the handover command may not include a preamble index, in which case the UE may perform a contention-based random access procedure using any preamble.
  • the pico eNB knows the uplink transmission timing of the corresponding UE at this point. Therefore, while the UE moves to the position shown in FIG. 10 and performs handover to the pico eNB, the pico eNB can still grasp the uplink transmission timing of the corresponding UE even if a separate random access procedure is omitted. Therefore, the present invention proposes to minimize the time delay required in the handover by omitting unnecessary random access procedure when performing the handover when the UE is in the CoMP situation.
  • the macro eNB, the serving cell of the UE, in FIG. 9 transmits a handover command to the pico eNB to the UE, but performs a handover that omits a random access procedure through a separate indicator.
  • This indicator can be implemented by defining a field that explicitly indicates whether to perform an explicit random access procedure or implicit signaling that interprets it as omitting the random access procedure when there are no parameters required for the random access procedure. It is also possible.
  • a C-RNTI or a temporary C-RNTI to be used in the target cell by the UE in a handover command is delivered, but does not include information to be used for the random access procedure, for example, a preamble index to be used in the random access procedure. It can be interpreted as an instruction to omit the access procedure.
  • the UE receiving the handover command through this process skips the random access procedure and immediately receives the downlink signal of the pico eNB.
  • the C-RNTI transmitted in the handover command may be used.
  • the UE performs uplink transmission immediately according to the control signal of the pico eNB immediately after the handover.
  • the UE may maintain the timing advance (TA) value or the power control value. If the UE was transmitting uplink signals to a plurality of cells, the UE may be using a plurality of TA values or a plurality of power control values, and thus may indicate which TA value or power control value is maintained through a handover command. have.
  • TA timing advance
  • the UE When the UE operates to receive the control channel of the target cell directly without a random access procedure after the handover as in the present invention, if the UE fails to receive a valid control channel signal from the target cell for a predetermined time, the UE indicates that the handover has failed. Determine and go back to the original serving cell to receive the control channel.
  • the additional information may be included in the handover command.
  • the additional information may include a C-RNTI to be used by the UE after handover to the target cell.
  • the macro eNB and the pico eNB may exchange signals in preparation for handover through a backhaul link in advance.
  • the macro eNB which is the serving cell, informs the pico eNB of which ID UE will perform the handover to the pico eNB, in particular that the UE is currently performing CoMP operation at the pico eNB, and after the handover.
  • the UE may request C-RNTI to be used.
  • the pico eNB may inform the eNB of the C-RNTI information to be used by the UE.
  • the macro eNB which is a serving cell, delivers a temporary C-RNTI to be used by the UE at the pico eNB, which is a target cell, and the UE transmits the temporary C-RNTI to the target cell based on a time indicated by the handover command and the indicated resources.
  • the predetermined message transmitted using this temporary C-RNTI may be in the same format as that transmitted using the temporary C-RNTI in the existing random access procedure (ie, message 3 of FIG. 9).
  • scheduling request configuration information to be used by the UE after handover to the target cell may be included. Instead of performing a random access procedure on the target cell, the UE transmits the scheduling request message to the target cell by using the received scheduling request configuration information, and in response, uses the resources allocated by the target cell to transmit its own information and hand. A message confirming that the over is terminated may be transmitted to the target cell.
  • the UE receiving the handover command may be defined to transmit a scheduling request message using the scheduling request configuration information within a predetermined time. From the time of transmitting the scheduling request message, the UE should be able to receive the control channel from the target cell, which means that the scheduling request message completes handover of the UE (ie, change of the cell receiving the downlink control channel). This is because the target cell will transmit the control channel after the transmission of the scheduling request message.
  • the handover omitting the random access procedure may be applied to a process of replacing a main component carrier (or primary cell) in a wireless communication system to which a carrier aggregation technique is applied. That is, in the process of reconfiguring the secondary component carrier (or SCell (Secondary Cell)) to the primary component carrier, the uplink transmission timing has already been acquired to the secondary component carrier, the replacement of the primary component carrier itself is handover Depending on the process, the handover technique of the present invention may be applied.
  • SCell Secondary Cell
  • FIG. 11 is a flowchart illustrating an example in which a UE performs a handover process according to an embodiment of the present invention.
  • FIG. 11 illustrates a case in which the UE transmits a scheduling request message in the sense of handover completion.
  • a UE may receive a downlink signal from a macro eNB and transmit an uplink signal to a macro eNB as shown in FIG. 8. That is, step 1100 may be regarded as before the CoMP technique is applied.
  • the UE may perform a random access procedure for obtaining uplink synchronization with the pico eNB according to the PDCCH received from the macro eNB as in step 1105.
  • the UE may operate in the CoMP mode to receive the downlink signal with the macro eNB and transmit the uplink signal to the pico eNB as shown in step 1110 (see FIG. 9).
  • the UE may receive a handover command message to perform a handover from the macro eNB to the pico eNB.
  • the handover command message is preferably a fast handover command message according to the present invention.
  • the fast handover command message may include scheduling request setting information to be used after handover, and upon receiving such a message, the UE may directly transmit a scheduling request to the pico eNB without performing a random random access procedure. have.
  • the UE may transmit a scheduling request message to the target cell using the scheduling request configuration information.
  • the UE receiving the handover command should transmit a scheduling request message using the scheduling request configuration information within a predetermined time.
  • the UE may receive a downlink control channel from a pico eNB which is a target cell.
  • FIG. 12 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the communication device 1200 includes a processor 1210, a memory 1220, an RF module 1230, a display module 1240, and a user interface module 1250.
  • the communication device 1200 is shown for convenience of description and some modules may be omitted. In addition, the communication device 1200 may further include necessary modules. In addition, some modules in the communication device 1200 may be classified into more granular modules.
  • the processor 1210 is configured to perform an operation according to the embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 1210 may refer to the contents described with reference to FIGS. 1 to 11.
  • the memory 1220 is connected to the processor 1210 and stores an operating system, an application, program code, data, and the like.
  • the RF module 1230 is connected to the processor 1210 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 1230 performs analog conversion, amplification, filtering and frequency up-conversion, or a reverse process thereof.
  • the display module 1240 is connected to the processor 1210 and displays various information.
  • the display module 1240 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
  • the user interface module 1250 is connected to the processor 1210 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the embodiments can be constructed by combining claims that do not have an explicit citation in the claims or incorporated into new claims by post-application correction.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 출원에서는 무선 통신 시스템에서 단말이 핸드오버를 수행하는 방법이 개시된다. 구체적으로, 상기 방법은, 서빙 셀로부터 랜덤 액세스 트리거링 신호를 수신하는 단계; 상기 랜덤 액세스 트리거링 신호에 기반하여, 타겟 셀과의 랜덤 액세스 절차를 수행하는 단계; 상기 서빙 셀로부터 하향링크 신호를 수신하고, 상기 타겟 셀로 상향링크 신호를 송신하는 단계; 상기 서빙 셀로부터, 상기 타겟 셀로의 핸드오버 명령 메시지를 수신하는 단계; 및 상기 핸드오버 명령 메시지에 기반하여, 상기 타겟 셀로 핸드오버 완료를 지시하는 소정의 메시지를 송신하는 단계를 포함하는 것을 특징으로 한다.

Description

기지국 협력 무선 통신 시스템에서 고속 핸드오버 수행 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 기지국 협력 무선 통신 시스템에서 고속 핸드오버 수행 방법 및 이를 위한 장치에 관한 것이다.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification 그룹 Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; eNB), 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.44, 3, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향링크(Downlink; DL) 데이터에 대해 기지국은 하향링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향링크(Uplink; UL) 데이터에 대해 기지국은 상향링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.
상술한 바와 같은 논의를 바탕으로 이하에서는 기지국 협력 무선 통신 시스템에서 고속 핸드오버 수행 방법 및 이를 위한 장치를 제안하고자 한다.
본 발명의 일 양상인 무선 통신 시스템에서 단말이 핸드오버를 수행하는 방법은, 서빙 셀로부터 랜덤 액세스 트리거링 신호를 수신하는 단계; 상기 랜덤 액세스 트리거링 신호에 기반하여, 타겟 셀과의 랜덤 액세스 절차를 수행하는 단계; 상기 서빙 셀로부터 하향링크 신호를 수신하고, 상기 타겟 셀로 상향링크 신호를 송신하는 단계; 상기 서빙 셀로부터, 상기 타겟 셀로의 핸드오버 명령 메시지를 수신하는 단계; 및 상기 핸드오버 명령 메시지에 기반하여, 상기 타겟 셀로 핸드오버 완료를 지시하는 소정의 메시지를 송신하는 단계를 포함하는 것을 특징으로 한다.
바람직하게는, 상기 핸드오버 명령 메시지는 랜덤 액세스 절차의 생략을 지시하는 정보를 포함하는 것을 특징으로 하며, 보다 바람직하게는, 상기 타겟 셀에서 상기 단말이 사용할 임시 단말 식별자에 관한 정보를 포함할 수 있다. 또는, 상기 단말이 상기 타겟 셀로 스케줄링 요청 메시지를 송신하기 위한 정보를 포함할 수도 있다.
한편, 상기 서빙 셀은 마크로 기지국이고, 상기 타겟 셀은 피코 기지국인 것을 특징으로 한다. 또는, 상기 서빙 셀은 주 콤포넌트 반송파이고, 상기 타겟 셀은 부 콤포넌트 반송파인 것을 특징으로 한다. 후자의 경우에 있어, 상기 소정의 메시지를 송신 후, 상기 부 콤포넌트 반송파는 주 콤포넌트 반송파로 재설정되는 것을 특징으로 한다.
또한, 상기 소정의 메시지는 스케줄링 요청 메시지일 수 있다. 나아가, 상기 랜덤 액세스 트리거링 신호는 상기 서빙 셀로부터 물리 제어 채널을 통하여 수신될 수 있다.
한편, 상기 소정의 메시지를 송신 후, 상기 타겟 셀로부터 하향링크 신호 수신 및 상향링크 신호 송신을 수행하는 단계를 더 포함하고, 이와 같은 경우, 상기 단말의 전력 제어 프로세스는 상기 소정의 메시지 송신 전후에 걸쳐 유지되는 것을 특징으로 한다.
본 발명의 실시예에 따르면 기지국 협력 무선 통신 시스템에서 단말은 핸드오버 절차를 보다 효율적으로 수행할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 4는 LTE 시스템에서 사용되는 하향링크 무선 프레임의 구조를 예시하는 도면이다.
도 5는 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 6은 LTE 시스템의 랜덤 액세스 과정 중 경쟁 기반 랜덤 액세스 절차를 나타내는 도면이다.
도 7는 LTE 시스템의 랜덤 액세스 과정 중 비경쟁 기반 랜덤 액세스 절차를 나타내는 도면이다.
도 8 내지 도 10은 UE의 위치에 따른 CoMP 동작과 본 발명에 따른 핸드오버 기법을 설명하기 위한 도면들이다.
도 11은 본 발명의 실시예에 따라 UE가 핸드오버 과정을 수행하는 예를 도시하는 순서도이다.
도 12는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서는 FDD 방식을 기준으로 본 발명의 실시예에 대해 설명하지만, 이는 예시로서 본 발명의 실시예는 H-FDD 방식 또는 TDD 방식에도 용이하게 변형되어 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있으며, 이를 노드(node)라는 명칭으로 지칭할 수도 있다.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Trans안테나 포트 Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
기지국(eNB)을 구성하는 하나의 셀은 1.4, 3, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 랜덤 액세스 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 랜덤 액세스 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303 및 S305), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304 및 S306). 경쟁 기반 RACH의 경우, 추가적으로 경쟁 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.
도 4는 하향링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.
도 4를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 기준 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element 그룹)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파×하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산 인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다.
PDCCH는 물리 하향링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE(Control Channel Element)로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원 할당과 관련된 정보, 상향링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야하는지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC(cyclic redundancy check) 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
도 5는 LTE 시스템에서 사용되는 상향링크 서브프레임의 구조를 도시하는 도면이다.
도 5를 참조하면, 상향링크 서브프레임은 제어정보를 나르는 PUCCH(Physical Uplink Control CHannel)가 할당되는 영역과 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared CHannel)가 할당되는 영역으로 나눌 수 있다. 서브프레임의 중간 부분이 PUSCH에 할당되고, 주파수 영역에서 데이터 영역의 양측 부분이 PUCCH에 할당된다. PUCCH 상에 전송되는 제어정보는 HARQ에 사용되는 ACK/NACK, 하향링크 채널 상태를 나타내는 CQI(Channel Quality Indicator), MIMO를 위한 RI(Rank Indicator), 상향링크 자원 할당 요청인 SR(스케줄링 요청) 등이 있다. 한 단말에 대한 PUCCH는 서브프레임 내의 각 슬롯에서 서로 다른 주파수를 차지하는 하나의 자원블록을 사용한다. 즉, PUCCH에 할당되는 2개의 자원블록은 슬롯 경계에서 주파수 호핑(frequency hopping)된다. 특히 도 5는 m=0인 PUCCH, m=1인 PUCCH, m=2인 PUCCH, m=3인 PUCCH가 서브프레임에 할당되는 것을 예시한다.
이하, CoMP(Coordinated Multi Point) 방식에 관하여 설명한다.
차세대 이동통신 시스템의 표준인 LTE-A 시스템에서는 데이터 전송률 향상을 위해 기존 표준에서는 지원되지 않았던 CoMP 방식을 지원할 것으로 예상된다. 여기서, CoMP 방식은 음영 지역에 있는 단말 및 기지국(셀 또는 섹터) 간의 통신성능을 향상시키기 위해 2개 이상의 기지국 혹은 셀이 서로 협력하여 단말과 통신하기 위한 전송 방식을 말한다.
CoMP 전송 방식은 데이터 공유를 통한 협력적 MIMO 형태의 조인트 프로세싱(CoMP-Joint Processing, CoMP-JP) 및 협력 스케줄링/빔포밍(CoMP-Coordinated Scheduling/beamforming, CoMP-CS/CB) 방식으로 구분할 수 있다.
하향링크의 경우 조인트 프로세싱(CoMP-JP) 방식에서, 단말은 CoMP전송 방식을 수행하는 각 기지국으로부터 데이터를 순간적으로 동시에 수신할 수 있으며, 각 기지국으로부터의 수신한 신호를 결합하여 수신 성능을 향상시킬 수 있다 (Joint Transmission; JT). 또한, CoMP전송 방식을 수행하는 기지국들 중 하나가 특정 시점에 상기 단말로 데이터를 전송하는 방법도 고려할 수 있다 (DPS; Dynamic Point Selection). 이와 달리, 협력 스케줄링/빔포밍 방식(CoMP-CS/CB)에서, 단말은 빔포밍을 통해 데이터를 순간적으로 하나의 기지국, 즉 서빙 기지국을 통해서 수신할 수 있다.
상향링크의 경우 조인트 프로세싱(CoMP-JP) 방식에서, 각 기지국은 단말로부터 PUSCH 신호를 동시에 수신할 수 있다 (Joint Reception; JR). 이와 달리, 협력 스케줄링/빔포밍 방식(CoMP-CS/CB)에서, 하나의 기지국만이 PUSCH를 수신하는데 이때 협력 스케줄링/빔포밍 방식을 사용하기로 하는 결정은 협력 셀(혹은 기지국)들에 의해 결정된다.
이하, LTE 시스템에서 정의된 랜덤 액세스 절차에 관하여 설명한다. LTE 시스템에서는 랜덤 액세스 절차를 경쟁 기반 랜덤 액세스 절차와 비경쟁 기반 랜덤 액세스 절차로 구분하고 있으며, 각각에 관하여 도면을 참조하여 보다 구체적으로 설명한다.
도 6은 경쟁 기반 랜덤 액세스 절차에서 단말과 기지국 사이에서 수행되는 동작 과정을 나타낸 도면이다.
경쟁 기반 랜덤 액세스 절차에서 단말은 시스템 정보 또는 핸드오버 명령을 통해 지시되는 랜덤 액세스 프리앰블들의 그룹 내에서 랜덤 액세스 프리앰블을 임의적으로 선택할 수 있고, 상기 랜덤 액세스 프리앰블을 전송할 수 있는 PRACH 자원을 선택할 수 있으며, 기지국으로 선택된 랜덤 액세스 프리앰블을 전송할 수 있다 (단계 1).
단말이 랜덤 액세스 프리앰블을 전송한 후, 시스템 정보 또는 핸드오버 명령을 통하여 지시된 랜덤 액세스 응답 수신 윈도우내의 랜덤 액세스 프리앰블에 대한 응답의 수신을 시도할 수 있다 (단계 2).
구체적으로, 랜덤 액세스 정보는 MAC PDU의 형태로 전송되고, MAC PDU는 PDSCH 상에서 전송될 수 있다. 또한 PDSCH 상에서 전송되는 정보를 단말이 적절하게 수신할 수 있도록 PDCCH가 전송된다. 즉, PDCCH는 PDSCH를 수신할 단말에 대한 정보, PDSCH 의 무선 자원들의 주파수 및 시간 정보, PDSCH의 전송 포맷 등을 포함한다. 여기에서 물리 하향링크 제어 채널이 성공적으로 수신되면, 단말은 PDCCH의 정보에 따라 PDSCH 상에서 전송되는 랜덤 액세스 응답을 적절하게 수신할 수 있다. 랜덤 액세스 응답은 랜덤 액세스 프리앰블 식별자 ID, 상향링크 그랜트(UL Grant), 임시 C-RNTI(임시 C-RNTI), TAC(Time Alignment Command) 등을 포함할 수 있다. 특히, 랜덤 액세스 프리앰블 식별자는 단계 1에서 단말에 의해 선택된 랜덤 액세스 프리앰블과 동일할 수 있다.
단말이 자신에게 유효한 랜덤 액세스 응답을 수신하면, 단말은 랜덤 액세스 응답에 포함된 정보 각각을 처리할 수 있다. 즉, 단말은 임시 C-RNTI를 저장한다. 또한 단말은 단말의 버퍼에 저장된 데이터를 기지국으로 전송하거나 또는 새롭게 생성된 데이터를 기지국으로 전송하기 위해 상향링크 그랜트를 사용한다 (단계 3).
경쟁 기반 랜덤 액세스 절차에 있어서, 기지국은 어느 단말들이 랜덤 액세스 절차를 수행하고 있는지 판단할 수 없고, 이후에 단말들이 경쟁 해결을 위하여 식별되어야 하기 때문에, 단말 식별자는 필수적으로 상향링크 그랜트에 포함되는 데이터에 포함되어야 한다.
여기에서, 단말 식별자를 포함하기 위하여 두 가지 다른 방식이 제공될 수 있다. 첫 번째 방식은 랜덤 액세스 절차에 앞서 단말이 해당 셀 내에서 할당된 유효 셀 식별자를 이미 수신하였는지에 관하여 상향링크 그랜트를 통해 단말의 셀 식별자를 전송하는 것이다. 역으로, 두번째 방식은 랜덤 액세스 절차에 앞서 단말이 유효한 셀 식별자를 수신하지 않았으면 단말 고유의 식별자를 전송하는 것이다. 일반적으로, 단말의 고유 식별자(unique identifier)는 셀 식별자보다 더 길다. 단계 3 에서, 만일 단말이 상향링크 그랜트를 통하여 데이터를 전송하였다면, 단말은 경쟁 해결 타이머를 시작한다.
랜덤 액세스 응답에 포함된 상향링크 그랜트를 통해 식별자와 함께 데이터를 전송한 후, 단말은 경쟁 해결을 위한 기지국의 지시(indication)을 기다린다. 즉, 단말은 특정 메시지를 수신하기 위하여 PDCCH 의 수신을 시도한다 (단계 4).
여기에서, PDCCH 를 수신하기 위해 두 가지 방식이 존재한다. 상술한 바와 같이 상향링크 그랜트를 통해 전송되는 단말 식별자가 셀 식별자인 경우, 단말은 자신의 셀 식별자를 이용하여 PDCCH의 수신을 시도한다. 상향링크 그랜트를 통해 전송되는 단말 식별자가 단말의 고유 식별자인 경우, 단말은 랜덤 액세스 응답에 포함된 임시 C-RNTI를 사용하여 PDCCH의 수신을 시도한다.
이후, 전자에 있어서, PDCCH 가 경쟁 해결 타이머가 만료되기 전에 셀 식별자를 통해 수신되면, 단말은 랜덤 액세스 절차가 성공적으로 수행되었다고 판단하고 랜덤 액세스 절차를 완료한다.
후자에 있어서, PDCCH가 경쟁 해결 타이머가 만료되기 전에 일시적 셀 식별자를 통해 수신되면, 단말은 PDCCH가 지시하는 PDSCH에 의해 전송되는 데이터를 체크한다. 만일 단말의 고유 식별자가 데이터에 포함되어 있으면, 단말은 랜덤 액세스 절차가 성공적으로 수행되었다고 판단하고 랜덤 액세스 절차를 완료한다.
도 7은 비경쟁 기반 랜덤 액세스 절차에 있어서, 단말과 기지국 사이에서 수행되는 동작 과정을 나타내는 도면이다. 경쟁 기반 랜덤 액세스 절차와 비교해 볼 때, 비경쟁 기반 랜덤 액세스 절차는 사전에 할당된 랜덤 액세스 프리앰블의 전송에 대한 랜덤 액세스 응답 정보를 수신함으로써 성공적으로 수행되었다고 판단되고, 이로써 랜덤 액세스 절차는 완료된다.
일반적으로 비경쟁 기반 랜덤 액세스 절차는 다음과 같은 두 가지 경우에서 수행된다. 하나는 핸드오버 절차이고 다른 하나는 기지국의 명령에 의한 요청이 있는 경우이다. 의심할 여지 없이, 경쟁 기반 랜덤 액세스 절차 또한, 이와 같은 두 가지 경우에 수행될 수 있다. 첫 번째로, 비경쟁 기반 랜덤 액세스 절차에 있어서, 경쟁 가능성 없이 전용 랜덤 액세스 프리앰블을 기지국으로부터 수신하는 것이 중요하다. 여기에서, 핸드오버 명령과 PDCCH 명령은 랜덤 액세스 프리앰블을 할당하기 위해 수행될 수 있다. 이후, 기지국으로부터 단말 전용의 랜덤 액세스 프리앰블이 할당되면, 단말은 프리앰블을 기지국으로 전송한다. 이후, 랜덤 액세스 정보를 수신하는 방법은 경쟁기반 랜덤 액세스 절차의 그것과 동일하다.
비경쟁 기반의 랜덤 액세스 절차는 기지국이 단말에 대하여 비경쟁 기반 랜덤 액세스 절차를 시작하도록 지시함에 따라 개시된다. 이 경우, 기지국은 랜덤 액세스 절차 내내 사용될 특정 프리앰블을 선택하고, 선택된 프리앰블을 단말에게 직접 통보한다. 예를 들어, 만일 기지국이 단말에게 랜덤 액세스 프리앰블 식별자 번호 4 (즉, RAPID=4)를 사용할 것을 통보하면, 단말은 RAPID=4 에 해당하는 고유 프리앰블을 사용하여 비경쟁 랜덤 액세스 절차를 수행할 수 있다.
본 발명에서는 다중 셀이 협력을 통하여 신호를 송수신하는 CoMP 상황에서 UE가 셀 간 핸드오버를 보다 빠르게 수행할 수 있는 방법을 제안한다.
도 8 내지 도 10은 UE의 위치에 따른 CoMP 동작과 본 발명에 따른 핸드오버 기법을 설명하기 위한 도면들이다. 특히, 도 8 내지 도 10에서는 UE가 마크로 eNB로 송신하는 상향링크 신호의 경로 손실과 피코 eNB로 송신하는 상향링크 신호의 경로 손실이 같은 지점이 존재하고, 마크로 eNB와 피코 eNB로부터 수신하는 수신 신호 강도가 동일한 지점도 존재함을 알 수 있다.
우선, 도 8을 참조하면 UE는 마크로 eNB로부터 하향링크 신호를 수신하면서 동시에 해당 마크로 eNB에게 상향링크 신호를 송신한다. 이후, UE가 피코 eNB 쪽으로 이동하게 되면 도 9와 같이 마크로 eNB로부터 하향링크 신호를 수신하면서 동시에 피코 eNB에게 상향링크 신호를 송신하게 된다. 여기서 UE가 피코 eNB에 더 가깝게 위치하여서 상향링크 신호는 피코 eNB로 전송하는 것이 더 낮은 전송 전력으로 동일한 수신 신호 품질이 제공된다는 점에서 장점이 있지만 하향링크 신호는 마크로 eNB의 전송 전력이 더 높으므로 여전히 마크로 eNB로부터 수신하는 것이 더 강한 하향링크 신호 수신을 수행한다는 점에서 유리하다. 그 결과로 UE는 하향링크 신호는 마크로 eNB로부터 수신하면서 상향링크 신호는 피코 eNB로 전송하는 CoMP 동작을 수행하게 된다. 특히, 도 9와 같은 상황에서 UE는 피코 eNB로 상향링크 신호를 송신하기 위한 동기를 획득할 필요가 있으며, 이와 같은 동기 획득을 위한 랜덤 액세스 절차는 PDCCH 상의 명령(Order)에 의하여 트리거링될 수 있다.
이후, UE가 피코 eNB로 더 이동하게 되면 도 10과 같이 하향링크 신호 역시 피코 eNB로부터의 하향링크 신호가 마크로 eNB로부터의 하향링크 신호보다 더 강하게 수신되므로 DL와 UL 모두를 피코 eNB를 통하여 송수신하게 된다. 일반적으로 핸드오버란 제어 채널을 수신하는 셀을 바꾸는 행위를 지칭하므로 도 10이 되는 과정에서 UE는 마크로 eNB로부터 피코 eNB로 핸드오버하게 된다.
일반적인 핸드오버 상황에서, 서빙 셀은 UE에게 핸드오버 명령을 전송하여 특정 타겟 셀로 핸드오버를 수행할 것을 지시하고, 이를 수신한 UE는 타겟 셀로 랜덤 액세스 프리앰블을 전송하여 랜덤 액세스 절차를 수행한다. 특히, 핸드오버 명령은 프리앰블 인덱스를 포함할 수 있으며, UE는 이러한 인덱스가 지시하는 프리앰블 인덱스를 이용하여 비경쟁 기반 랜덤 액세스 절차를 수행할 수 있다. 또는, 핸드오버 명령에 프리앰블 인덱스가 포함되지 않을 수 있으며, 이 경우 UE는 임의의 프리앰블을 이용하여 경쟁 기반 랜덤 액세스 절차를 수행할 수 있다.
한편 도 9와 같은 CoMP 상황에서 도 10과 같이 UE가 피코 eNB로 핸드오버하는 경우, UE는 이미 타겟 셀과 상향링크 송신을 수행하고 있으므로, 별도의 랜덤 액세스 절차를 통해서 상향링크 전송 타이밍을 파악할 필요가 없다. 즉, 도 9에서 이미 UE는 피코 eNB에게 상향링크 송신을 수행하고 있으므로, 이 시점에서 피코 eNB는 해당 UE의 상향링크 전송 타이밍을 파악하고 있다. 따라서 UE가 도 10에서 나타낸 위치로 이동하여 피코 eNB로 핸드오버를 수행하는 과정에서, 별도의 랜덤 액세스 절차를 생략하여도 피코 eNB는 여전히 해당 UE의 상향링크 전송 타이밍을 파악할 수 있다. 따라서 본 발명에서는 UE가 CoMP 상황에 있는 경우에서 핸드오버를 수행할 때 불필요한 랜덤 액세스 절차를 생략하여 핸드오버에서 소요되는 시간 지연을 최소화할 것을 제안한다.
다시 도 9와 도 10의 경우로 돌아가서 설명하자면, 도 9에서 UE의 서빙 셀인 마크로 eNB는 UE에게 피코 eNB로의 핸드오버 명령을 전송하되 별도의 지시자를 통해서 랜덤 액세스 절차를 생략하는 핸드오버를 수행할 것을 지시한다. 이 지시자는 명시적인 랜덤 액세스 절차를 수행할 지 여부를 명시적으로 지칭하는 필드를 정의하여 구현 가능하며, 혹은 랜덤 액세스 절차에 필요한 파라미터가 존재하지 않을 때 랜덤 액세스 절차를 생략하는 것으로 해석하는 암묵적인 시그널링도 가능하다. 예를 들어, 핸드오버 명령에서 UE가 타겟 셀에서 사용할 C-RNTI나 임시 C-RNTI가 전달되었으나, 랜덤 액세스 절차에 사용할 정보, 예를 들어 랜덤 액세스 절차에서 사용할 프리앰블 인덱스가 포함되지 않는 경우에는 랜덤 액세스 절차를 생략하는 지시로 해석할 수 있다.
이러한 과정을 통해서 핸드오버 명령을 수신한 UE는 랜덤 액세스 절차를 생략하고 곧바로 피코 eNB의 하향링크 신호를 수신한다. 이 때에는 핸드오버 명령에서 전달된 C-RNTI를 사용할 수 있다. 또한 UE는 핸드오버 후 바로 피코 eNB의 제어 신호에 따라서 상향링크 전송을 수행하는데, 이 때에는 기존에 사용하던 타이밍 어드밴스(Timing Advance; TA) 값이나 전력 제어 값을 그대로 유지하여 동작할 수 있다. 만일 UE가 복수의 셀에게 상향링크 신호를 전송하고 있었다면 복수의 TA 값이나 복수의 전력 제어 값을 사용하고 있을 수 있으므로, 핸드오버 명령을 통하여 어떤 TA 값이나 전력 제어 값이 유지가 되는지를 알릴 수도 있다.
본 발명과 같이 UE가 핸드오버 후 랜덤 액세스 절차 없이 직접적으로 타겟 셀의 제어 채널을 수신하도록 동작하는 경우, 일정 시간 동안 타겟 셀로부터 유효한 제어 채널 신호를 수신하지 못하였다면 UE는 해당 핸드오버가 실패했다고 판단하고 다시 원래의 서빙 셀로 돌아가서 제어 채널을 수신한다.
이하에서는 상기 설명한 랜덤 액세스 절차를 생략하는 핸드오버 상황에서 UE에게 전달되는 추가적인 정보를 보다 구체적으로 설명한다. 여기서, 상기 추가적인 정보는 핸드오버 명령에 포함될 수 있다.
상기 추가적인 정보에는, UE가 타겟 셀로 핸드오버 후 사용할 C-RNTI가 포함될 수 있다. 이러한 C-RNTI 전달 동작을 돕기 위해서, 마크로 eNB와 피코 eNB는 사전에 백홀 링크(backhaul link)를 통해서 핸드오버를 준비하는 신호를 교환할 수 있다. 예를 들어, 서빙 셀인 마크로 eNB는 어떤 ID의 UE가 피코 eNB로 핸드오버를 수행할 것인지를 피코 eNB에게 알리고, 특히 해당 UE가 현재 피코 eNB에서 CoMP 동작을 수행하고 있음을 알리는 동시에, 핸드오버 후 해당 UE가 사용할 C-RNTI를 요청할 수 있다. 이에 대한 응답으로 피코 eNB는 해당 UE가 사용할 C-RNTI 정보를 마크로 eNB에게 알릴 수 있다. 혹은, 서빙 셀인 마크로 eNB는 타겟 셀인 피코 eNB에서 UE가 사용할 임시 C-RNTI를 해당 UE에게 전달하고, UE는 핸드오버 명령에 의해서 지시된 시점 및 지시된 자원에 기반하여 타겟 셀에게 해당 임시 C-RNTI로 마스킹된 소정의 메시지를 전송한다. 이러한 임시 C-RNTI를 사용하여 전송되는 소정의 메시지는 기존 랜덤 액세스 절차에서 임시 C-RNTI를 사용하여 전송되는 포맷 (즉, 도 9의 메시지 3)와 동일한 포맷일 수 있다.
다른 정보로서, UE가 타겟 셀로 핸드오버 후 사용할 스케줄링 요청 설정 정보가 포함될 수 있다. UE는 타겟 셀에 대하여 랜덤 액세스 절차를 수행하는 대신, 전달받은 스케줄링 요청 설정 정보를 사용하여 스케줄링 요청 메시지를 타겟 셀로 전송하고, 이에 대한 응답으로 타겟 셀이 할당한 자원을 사용하여 자신의 정보 및 핸드오버가 종료되었음을 확인하는 메시지를 타겟 셀로 전송할 수 있다. 특히, 핸드오버 명령을 수신한 UE는 일정한 시간 이내에 상기 스케줄링 요청 설정 정보를 사용하여 스케줄링 요청 메시지를 전송하도록 정의될 수 있다. 해당 스케줄링 요청 메시지를 전송하는 시점부터 UE는 타겟 셀로부터 제어 채널을 수신할 수 있어야 하는데, 이는 해당 스케줄링 요청 메시지가 UE의 핸드오버 완료(즉, 하향링크 제어 채널을 수신하는 셀의 변경)을 의미하는 것으로 해석될 수 있으므로, 해당 스케줄링 요청 메시지의 전송 이후부터는 타겟 셀이 제어 채널을 전송할 것이기 때문이다.
한편, 이와 같이 랜덤 액세스 절차를 생략하는 핸드오버는 반송파 집성 기법이 적용된 무선 통신 시스템에서, 주 콤포넌트 반송파 (또는 PCell (Primary Cell))의 교체 과정에도 적용될 수 있다. 즉, 부 콤포넌트 반송파 (또는 SCell (Secondary Cell))을 주 콤포넌트 반송파로 재설정하는 과정에 있어, 이미 부 콤포넌트 반송파로의 상향링크 송신 타이밍이 획득된 상황이고, 주 콤포넌트 반송파의 교체 과정 자체가 핸드오버 과정에 따르므로, 본 발명의 핸드오버 기법이 적용될 수 있을 것이다.
도 11은 본 발명의 실시예에 따라 UE가 핸드오버 과정을 수행하는 예를 도시하는 순서도이다. 특히, 도 11은 UE가 핸드오버 완료의 의미로 스케줄링 요청 메시지를 전송하는 경우를 예시한다.
도 11을 참조하면, 단계 1100에서는 도 8과 같이 UE가 마크로 eNB로부터 하향링크 신호를 수신함과 동시에 마크로 eNB로 상향링크 신호를 송신할 수 있다. 즉, 단계 1100은 아직 CoMP 기법이 적용되기 이전이라고 볼 수 있다.
계속하여, UE가 피코 eNB쪽으로 이동하는 경우, UE는 마크로 eNB로부터 수신하는 PDCCH에 따라, 단계 1105와 같이 피코 eNB와의 상향링크 동기 획득을 위한 랜덤 액세스 절차를 수행할 수 있다. 상향링크 동기 획득 이후, UE는 CoMP 모드로 동작하여, 단계 1110과 같이 마크로 eNB와 하향링크 신호를 수신하는 동시에 피코 eNB로 상향링크 신호를 송신할 수 있다 (도 9 참조).
이후, UE가 피코 eNB쪽으로 이동하는 경우 (도 10 참조), 단계 1115에서 UE는 마크로 eNB로부터 피코 eNB로의 핸드오버를 수행하라는 핸드오버 명령 메시지를 수신할 수 있다. 여기서 핸드오버 명령 메시지는 본 발명에 따른 고속 핸드오버 명령 메시지인 것이 바람직하다.
상술한 바와 같이, 상기 고속 핸드오버 명령 메시지는 핸드오버한 후 사용할 스케줄링 요청 설정 정보가 포함될 수 있으며, 이와 같은 메시지 수신 시 UE는 별도의 랜덤 액세스 절차 수행 없이, 바로 피코 eNB로 스케줄링 요청를 송신할 수 있다.
따라서, 단계 1120에서 UE는 스케줄링 요청 설정 정보를 사용하여 스케줄링 요청 메시지를 타겟 셀로 전송할 수 있다. 특히, 핸드오버 명령을 수신한 UE는 일정한 시간 이내에 상기 스케줄링 요청 설정 정보를 사용하여 스케줄링 요청 메시지를 전송하여야 한다. 또한, 상술한 바와 같이 스케줄링 요청 메시지를 전송하는 시점부터 UE는 타겟 셀인 피코 eNB로부터 하향링크 제어 채널을 수신할 수 있다.
도 12는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 12를 참조하면, 통신 장치(1200)는 프로세서(1210), 메모리(1220), RF 모듈(1230), 디스플레이 모듈(1240) 및 사용자 인터페이스 모듈(1250)을 포함한다.
통신 장치(1200)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(1200)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(1200)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(1210)는 도면을 참조하여 예시한 본 발명의 실시예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(1210)의 자세한 동작은 도 1 내지 도 11에 기재된 내용을 참조할 수 있다.
메모리(1220)는 프로세서(1210)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(1230)은 프로세서(1210)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(1230)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(1240)은 프로세서(1210)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(1240)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(1250)은 프로세서(1210)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 기지국 협력 무선 통신 시스템에서 고속 핸드오버 수행 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (10)

  1. 무선 통신 시스템에서 단말이 핸드오버를 수행하는 방법으로서,
    서빙 셀로부터 랜덤 액세스 트리거링 신호를 수신하는 단계;
    상기 랜덤 액세스 트리거링 신호에 기반하여, 타겟 셀과의 랜덤 액세스 절차를 수행하는 단계;
    상기 서빙 셀로부터 하향링크 신호를 수신하고, 상기 타겟 셀로 상향링크 신호를 송신하는 단계;
    상기 서빙 셀로부터, 상기 타겟 셀로의 핸드오버 명령 메시지를 수신하는 단계; 및
    상기 핸드오버 명령 메시지에 기반하여, 상기 타겟 셀로 핸드오버 완료를 지시하는 소정의 메시지를 송신하는 단계를 포함하는 것을 특징으로 하는,
    핸드오버 수행 방법.
  2. 제 1 항에 있어서,
    상기 핸드오버 명령 메시지는,
    랜덤 액세스 절차의 생략을 지시하는 정보를 포함하는 것을 특징으로 하는,
    핸드오버 수행 방법.
  3. 제 2 항에 있어서,
    상기 핸드오버 명령 메시지는,
    상기 타겟 셀에서 상기 단말이 사용할 임시 단말 식별자에 관한 정보를 포함하는 것을 특징으로 하는,
    핸드오버 수행 방법.
  4. 제 2 항에 있어서,
    상기 핸드오버 명령 메시지는,
    상기 단말이 상기 타겟 셀로 스케줄링 요청 메시지를 송신하기 위한 정보를 포함하는 것을 특징으로 하는,
    핸드오버 수행 방법.
  5. 제 1 항에 있어서,
    상기 서빙 셀은 마크로 기지국이고,
    상기 타겟 셀은 피코 기지국인 것을 특징으로 하는,
    핸드오버 수행 방법.
  6. 제 1 항에 있어서,
    상기 서빙 셀은 주 콤포넌트 반송파이고,
    상기 타겟 셀은 부 콤포넌트 반송파인 것을 특징으로 하는,
    핸드오버 수행 방법.
  7. 제 6 항에 있어서,
    상기 소정의 메시지를 송신 후, 상기 부 콤포넌트 반송파는 주 콤포넌트 반송파로 재설정되는 것을 특징으로 하는,
    핸드오버 수행 방법.
  8. 제 1 항에 있어서,
    상기 소정의 메시지는,
    스케줄링 요청 메시지인 것을 특징으로 하는,
    핸드오버 수행 방법.
  9. 제 1 항에 있어서,
    상기 랜덤 액세스 트리거링 신호는,
    상기 서빙 셀로부터 물리 제어 채널을 통하여 수신되는 것을 특징으로 하는,
    핸드오버 수행 방법.
  10. 제 1 항에 있어서,
    상기 소정의 메시지를 송신 후, 상기 타겟 셀로부터 하향링크 신호 수신 및 상향링크 신호 송신을 수행하는 단계를 더 포함하고,
    상기 단말의 전력 제어 프로세스는 상기 소정의 메시지 송신 전후에 걸쳐 유지되는 것을 특징으로 하는,
    핸드오버 수행 방법.
PCT/KR2013/001943 2012-03-19 2013-03-11 기지국 협력 무선 통신 시스템에서 고속 핸드오버 수행 방법 및 이를 위한 장치 WO2013141508A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/028,109 USRE48458E1 (en) 2012-03-19 2013-03-11 Method for performing high-speed handover in base station cooperative wireless communication system, and device for same
US14/386,102 US9386489B2 (en) 2012-03-19 2013-03-11 Method for performing high-speed handover in base station cooperative wireless communication system, and device for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261612952P 2012-03-19 2012-03-19
US61/612,952 2012-03-19

Publications (1)

Publication Number Publication Date
WO2013141508A1 true WO2013141508A1 (ko) 2013-09-26

Family

ID=49222917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001943 WO2013141508A1 (ko) 2012-03-19 2013-03-11 기지국 협력 무선 통신 시스템에서 고속 핸드오버 수행 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (2) USRE48458E1 (ko)
WO (1) WO2013141508A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3070859A4 (en) * 2013-11-12 2017-06-21 LG Electronics Inc. Method for obtaining uplink synchronization and configuring uplink connection

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087269B (zh) * 2013-05-22 2022-03-29 华为技术有限公司 用户设备接入网络的方法和接入设备
JP6125939B2 (ja) * 2013-07-29 2017-05-10 京セラ株式会社 ユーザ端末及びプロセッサ
CN112217759B (zh) 2015-05-15 2023-10-31 韦勒斯标准与技术协会公司 发送关于缓冲状态信息的无线通信方法和无线通信终端
EP3340682B1 (en) * 2015-09-25 2020-01-08 Huawei Technologies Co., Ltd. Cell handover method, apparatus and terminal
EP3253117B1 (en) * 2016-06-03 2021-02-17 HTC Corporation Handling a handover
US10716042B2 (en) * 2017-01-23 2020-07-14 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for handover in a wireless communication network
US10499424B2 (en) * 2017-02-03 2019-12-03 Nokia Solutions And Networks Oy Scheduling request arrangement for new radio
US11012863B1 (en) * 2019-05-07 2021-05-18 Sprint Spectrum L.P. Method and system for configuration of carrier-aggregation service
US20230292189A1 (en) * 2022-03-09 2023-09-14 Qualcomm Incorporated Rsu initiated inter-rsu handover

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110043893A (ko) * 2009-10-22 2011-04-28 삼성전자주식회사 광대역 무선통신 시스템에서 협력적 송수신 장치 및 방법
WO2011073011A1 (en) * 2009-12-17 2011-06-23 Alcatel Lucent Handover procedure in a coordinated multipoint (comp) transmission network
WO2011112044A2 (ko) * 2010-03-12 2011-09-15 삼성전자 주식회사 일원화된 다중 기지국 시스템에서의 제어 시그널링 방법 및 장치
KR20120012711A (ko) * 2010-08-03 2012-02-10 삼성전자주식회사 간섭 제어를 위한 매크로 기지국 및 소형 기지국의 통신 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100288382B1 (ko) * 1999-03-15 2001-04-16 윤종용 코드분할 다중접속 시스템에서의 라우터를 이용한 교환기간 소프트 핸드오프 방법 및 장치
US20100093354A1 (en) * 2008-10-09 2010-04-15 Qualcomm Incorporated System and method to utilize pre-assigned resources to support handoff of a mobile station from a macro base station to a femto base station
JPWO2010082521A1 (ja) * 2009-01-16 2012-07-05 シャープ株式会社 移動局装置、基地局装置、ハンドオーバ方法および移動通信システム
WO2010098623A2 (ko) * 2009-02-26 2010-09-02 엘지전자 주식회사 광대역 무선 접속 시스템에서 핸드오버 수행 중 시스템 정보 갱신 방법
US8818381B2 (en) * 2009-08-07 2014-08-26 Nokia Siemens Networks Oy Operation in case of radio link failure
US8831608B2 (en) * 2010-10-25 2014-09-09 Acer Incorporated Apparatuses, systems, and methods for inbound handover enhancement
JP5908504B2 (ja) * 2011-03-08 2016-04-26 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 複数のコンポーネント・キャリアに関する伝搬遅延差レポート
US9042918B2 (en) * 2011-10-03 2015-05-26 Telefonaktiebolaget L M Ericsson (Publ) Using fingerprints in proximity detection of wireless devices
US9338711B2 (en) * 2013-10-21 2016-05-10 Htc Corporation Method of handling handover for network of wireless communication system and communication device thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110043893A (ko) * 2009-10-22 2011-04-28 삼성전자주식회사 광대역 무선통신 시스템에서 협력적 송수신 장치 및 방법
WO2011073011A1 (en) * 2009-12-17 2011-06-23 Alcatel Lucent Handover procedure in a coordinated multipoint (comp) transmission network
WO2011112044A2 (ko) * 2010-03-12 2011-09-15 삼성전자 주식회사 일원화된 다중 기지국 시스템에서의 제어 시그널링 방법 및 장치
KR20120012711A (ko) * 2010-08-03 2012-02-10 삼성전자주식회사 간섭 제어를 위한 매크로 기지국 및 소형 기지국의 통신 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Coordinated multi-point operation for LTE physical layer aspects (Release 11)", 3GPP TR 36.819 V11.1.0., 22 December 2011 (2011-12-22) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3070859A4 (en) * 2013-11-12 2017-06-21 LG Electronics Inc. Method for obtaining uplink synchronization and configuring uplink connection
US10362599B2 (en) 2013-11-12 2019-07-23 Lg Electronics Inc. Method for obtaining uplink synchronization and configuring uplink connection

Also Published As

Publication number Publication date
US9386489B2 (en) 2016-07-05
US20150043472A1 (en) 2015-02-12
USRE48458E1 (en) 2021-03-02

Similar Documents

Publication Publication Date Title
WO2018080151A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 harq 수행 방법 및 이를 위한 장치
WO2017155324A1 (ko) 무선 통신 시스템에서 단일 톤 전송을 위한 랜덤 액세스 절차 수행 방법 및 이를 위한 장치
WO2017171390A1 (ko) 차세대 무선 통신 시스템에서 사이드링크를 통한 신호 송수신 방법 및 이를 위한 장치
WO2013055173A2 (ko) 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
WO2013141508A1 (ko) 기지국 협력 무선 통신 시스템에서 고속 핸드오버 수행 방법 및 이를 위한 장치
WO2012169756A2 (ko) 반송파 집성 기법이 적용된 무선 통신 시스템에서 복수의 단말에 관한 신호를 다중화하는 방법 및 이를 위한 장치
WO2017119771A1 (ko) 무선 통신 시스템에서 다중 채널을 이용한 에러 복구 방법 및 이를 위한 장치
WO2012128490A2 (ko) 무선 통신 시스템에서 동적 서브프레임 설정 시 재전송 방법 및 이를 위한 장치
WO2011025195A2 (ko) 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 송신 장치
WO2011083983A2 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 하향링크 신호 수신 방법 및 이를 위한 장치
WO2012150772A2 (ko) 무선 통신 시스템에서 단말이 기지국으로부터 하향링크 신호를 수신하는 방법 및 이를 위한 장치
WO2018012887A1 (ko) 무선 통신 시스템에서 다중 빔을 이용한 신호 송신 방법 및 이를 위한 장치
WO2017069559A1 (ko) 무선 통신 시스템에서 브로드캐스트 신호/멀티캐스트 신호에 대한 ack/nack 응답을 송신하는 방법 및 이를 위한 장치
WO2010117239A2 (ko) 무선 통신 시스템에서 제어 정보 수신 방법 및 이를 위한 장치
WO2013024997A2 (ko) 기지국 협력 무선 통신 시스템에서 상향링크 송신 타이밍을 조절하는 방법 및 이를 위한 장치
WO2018164450A1 (ko) 무선 통신 시스템에서 ack/nack 자원 할당 방법 및 이를 위한 장치
WO2012144763A2 (ko) 반송파 집성 기법이 적용된 무선 통신 시스템에서 전력 제어 방법 및 이를 위한 장치
WO2012150793A2 (ko) 무선 통신 시스템에서 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2018088795A1 (ko) 동기화 신호 전송 방법 및 이를 위한 장치
WO2016171457A1 (ko) 무선 통신 시스템에서 ack/nack 응답을 다중화하는 방법 및 이를 위한 장치
WO2013137582A1 (ko) 무선 통신 시스템에서 하향링크 채널의 시작 심볼을 설정하는 방법 및 이를 위한 장치
WO2017191964A2 (ko) 무선 통신 시스템에서 단축 tti 지원를 위한 harq 수행 방법 및 이를 위한 장치
WO2019031946A1 (ko) 무선 통신 시스템에서 lte 및 nr에 기반한 신호 송수신 방법 및 이를 위한 장치
WO2017155332A2 (ko) 무선 통신 시스템에서 멀티캐스트 신호를 수신하는 방법 및 이를 위한 장치
WO2013095041A1 (ko) 무선 통신 시스템에서 무선 자원 동적 변경에 기반한 신호 송수신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764535

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14386102

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764535

Country of ref document: EP

Kind code of ref document: A1