WO2023282250A1 - 通信制御方法、無線端末、及び基地局 - Google Patents

通信制御方法、無線端末、及び基地局 Download PDF

Info

Publication number
WO2023282250A1
WO2023282250A1 PCT/JP2022/026684 JP2022026684W WO2023282250A1 WO 2023282250 A1 WO2023282250 A1 WO 2023282250A1 JP 2022026684 W JP2022026684 W JP 2022026684W WO 2023282250 A1 WO2023282250 A1 WO 2023282250A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
repeater
controlled
gnb
information
Prior art date
Application number
PCT/JP2022/026684
Other languages
English (en)
French (fr)
Inventor
真人 藤代
智春 山▲崎▼
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2023533137A priority Critical patent/JPWO2023282250A5/ja
Publication of WO2023282250A1 publication Critical patent/WO2023282250A1/ja
Priority to US18/406,070 priority patent/US20240147550A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15557Selecting relay station operation mode, e.g. between amplify and forward mode, decode and forward mode or FDD - and TDD mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present disclosure relates to communication control methods, wireless terminals, and base stations used in mobile communication systems.
  • NR New Radio
  • Radio waves in high frequency bands such as the millimeter wave band and the terahertz wave band have a high degree of rectilinearity, so reducing the coverage of base stations is an issue.
  • a smart repeater (SR) device capable of beamforming, which is a repeater device that relays wireless communication between a base station and a wireless terminal, has attracted attention (for example, Non-Patent Document 1 reference).
  • Such an SR device can extend the coverage of a base station while suppressing the occurrence of interference by, for example, amplifying radio waves received from the base station and transmitting the radio waves by directional transmission.
  • a communication control method comprises establishing a radio connection with a base station by a repeater-controlled radio terminal that controls a base station-controlled repeater that relays radio communication between a base station and a radio terminal; the repeater-controlled wireless terminal transmitting base station-controlled repeater information indicating at least one of the capability of the base station-controlled repeater and the control state of the base station-controlled repeater to the base station by radio communication;
  • a radio terminal is a radio terminal that performs radio communication with a base station in a mobile communication system, and controls a base station control repeater that relays radio communication between the base station and another radio terminal. and a transmitter configured to transmit base station controlled repeater information indicating at least one of the capabilities of the base station controlled repeater and the control state of the base station controlled repeater to the base station by wireless communication.
  • a base station is a base station that performs radio communication with a radio terminal in a mobile communication system, and controls a base station controlled repeater that relays radio communication between the base station and another radio terminal.
  • a receiving unit that receives base station controlled repeater information indicating at least one of the capability of the base station controlled repeater and the control state of the base station controlled repeater from a wireless terminal that communicates with the base station controlled repeater.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to one embodiment
  • FIG. FIG. 2 is a diagram showing the configuration of a protocol stack of a user plane radio interface that handles data
  • FIG. 2 is a diagram showing the configuration of a protocol stack of a radio interface of a control plane that handles signaling (control signals)
  • FIG. 2 illustrates an application scenario of an SR device according to an embodiment
  • FIG. 2 illustrates an application scenario of an SR device according to an embodiment
  • 1 is a diagram showing a configuration example of a protocol stack in a mobile communication system having SR devices and SR-UEs (SR wireless terminals) according to one embodiment
  • FIG. FIG. 2 is a diagram illustrating configurations of an SR-UE and an SR device according to one embodiment
  • FIG. 2 is a diagram showing the configuration of a gNB (base station) according to one embodiment;
  • FIG. 4 illustrates downlink signaling from gNB to SR-UE according to one embodiment;
  • FIG. 4 is a diagram showing a configuration of SR control settings according to one embodiment;
  • FIG. 4 is a diagram showing a configuration of SR control settings according to one embodiment;
  • FIG. 4 illustrates uplink signaling from SR-UE to gNB according to one embodiment;
  • FIG. 4 is a diagram showing the configuration of SR device capability information according to one embodiment;
  • FIG. 4 is a diagram showing the configuration of SR device capability information according to one embodiment; It is a figure which shows the structure of the control state information which concerns on one Embodiment.
  • FIG. 4 illustrates operations related to measurements by an SR-UE according to one embodiment; It is a figure which shows the operation
  • FIG. 11 is a diagram showing a configuration example of SR control settings and control timing information according to the second embodiment; It is a figure which shows the operation
  • the present disclosure provides a communication control method, a wireless terminal, and a base station that enable efficient coverage extension using an SR device.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system 1 according to one embodiment.
  • the mobile communication system 1 complies with the 3GPP standard 5th generation system (5GS: 5th Generation System).
  • 5GS 5th Generation System
  • 4G/LTE may be at least partially applied to the mobile communication system 1 .
  • a sixth generation (6G) system may be at least partially applied to the mobile communication system 1 .
  • the mobile communication system 1 includes a radio terminal (UE: User Equipment) 100, a 5G radio access network (NG-RAN: Next Generation Radio Access Network) 10, and a 5G core network (5GC: 5G Core Network) 20. have.
  • UE User Equipment
  • NG-RAN Next Generation Radio Access Network
  • 5G Core Network 5G Core Network
  • the UE 100 is a mobile wireless communication device.
  • the UE 100 may be a mobile phone terminal (including a smartphone) or a tablet terminal, a notebook PC, a communication module (including a communication card or chipset), a sensor or a device provided in a sensor, a vehicle or a device provided in the vehicle (Vehicle UE ), an aircraft or a device (Aerial UE) provided on the aircraft.
  • the NG-RAN 10 includes a base station (called “gNB” in the 5G system) 200.
  • the gNBs 200 are interconnected via an Xn interface, which is an interface between base stations.
  • the gNB 200 manages one or more cells.
  • the gNB 200 performs radio communication with the UE 100 that has established connection with its own cell.
  • the gNB 200 has a radio resource management (RRM) function, a user data (hereinafter simply referred to as “data”) routing function, a measurement control function for mobility control/scheduling, and the like.
  • RRM radio resource management
  • a “cell” is used as a term indicating the minimum unit of a wireless communication area.
  • a “cell” is also used as a term indicating a function or resource for radio communication with the UE 100 .
  • One cell belongs to one carrier frequency.
  • the gNB can also be connected to the EPC (Evolved Packet Core), which is the LTE core network.
  • EPC Evolved Packet Core
  • LTE base stations can also connect to 5GC.
  • An LTE base station and a gNB may also be connected via an inter-base station interface.
  • 5GC20 includes AMF (Access and Mobility Management Function) and UPF (User Plane Function) 300.
  • AMF performs various mobility control etc. with respect to UE100.
  • AMF manages the mobility of UE 100 by communicating with UE 100 using NAS (Non-Access Stratum) signaling.
  • the UPF controls data transfer.
  • AMF and UPF are connected to gNB 200 via NG interface, which is a base station-core network interface.
  • FIG. 2 is a diagram showing the configuration of the protocol stack of the radio interface of the user plane that handles data.
  • the radio interface protocol of the user plane includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, SDAP (Service Data Adaptation Protocol) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • SDAP Service Data Adaptation Protocol
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the gNB 200 via physical channels.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ: Hybrid Automatic Repeat reQuest), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the gNB 200 via transport channels.
  • the MAC layer of gNB 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS: Modulation and Coding Scheme)) and resource blocks to be allocated to UE 100 .
  • MCS Modulation and Coding Scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the gNB 200 via logical channels.
  • the PDCP layer performs header compression/decompression and encryption/decryption.
  • the SDAP layer maps IP flows, which are units for QoS (Quality of Service) control by the core network, and radio bearers, which are units for QoS control by AS (Access Stratum). Note that SDAP may not be present when the RAN is connected to the EPC.
  • FIG. 3 is a diagram showing the protocol stack configuration of the radio interface of the control plane that handles signaling (control signals).
  • the radio interface protocol stack of the control plane has an RRC (Radio Resource Control) layer and a NAS (Non-Access Stratum) layer instead of the SDAP layer shown in FIG.
  • RRC Radio Resource Control
  • NAS Non-Access Stratum
  • RRC signaling for various settings is transmitted between the RRC layer of the UE 100 and the RRC layer of the gNB 200.
  • the RRC layer controls logical, transport and physical channels according to establishment, re-establishment and release of radio bearers.
  • RRC connection radio connection between the RRC of UE 100 and the RRC of gNB 200
  • UE 100 is in the RRC connected state.
  • RRC connection radio connection between RRC of UE 100 and RRC of gNB 200
  • UE 100 is in RRC idle state.
  • UE 100 is in RRC inactive state.
  • the NAS layer located above the RRC layer performs session management and mobility management.
  • NAS signaling is transmitted between the NAS layer of UE 100 and the NAS layer of AMF 300 .
  • the UE 100 has an application layer and the like in addition to the radio interface protocol.
  • An SR device is an example of a base station controlled repeater.
  • 5G/NR Compared to 4G/LTE, 5G/NR enables broadband transmission in high frequency bands. Radio waves in high frequency bands such as the millimeter wave band and the terahertz wave band have high rectilinearity, so reduction of the coverage of the gNB 200 is a problem.
  • the UE 100A may be located outside the coverage area of the gNB 200, for example, outside the area where radio waves can be directly received from the gNB 200.
  • a shield may exist between the gNB 200 and the UE 100A, and the UE 100A may not be able to perform line-of-sight communication with the gNB 200.
  • a smart repeater (SR) device 500 capable of beamforming, which is a repeater device that relays wireless communication between the gNB 200 and the UE 100A, is introduced into the mobile communication system 1.
  • the SR device 500 amplifies radio waves (radio signals) received from the gNB 200 and transmits them by directional transmission.
  • the SR device 500 receives radio signals transmitted by the gNB 200 by beamforming.
  • the SR device 500 amplifies the received radio signal and transmits the amplified radio signal by directional transmission.
  • the SR device 500 may transmit radio signals with fixed directivity.
  • the SR device 500 may transmit radio signals with variable (adaptive) directional beams. Thereby, the coverage of gNB200 can be extended efficiently.
  • the SR device 500 can also be applied to uplink communication from the UE 100A to the gNB 200.
  • a new UE for controlling the SR device 500 is introduced.
  • An SR-UE is an example of a repeater controlled radio terminal.
  • the SR-UE 100B is also an example of an SR radio terminal.
  • the SR-UE 100B controls the SR device 500 in cooperation with the gNB200 by establishing a wireless connection with the gNB200 and performing wireless communication with the gNB200.
  • the SR device 500 can be used to achieve efficient coverage extension.
  • SR-UE 100B controls SR device 500 according to the SR control setting from gNB200.
  • SR-UE 100B may autonomously control SR device 500 according to preset SR control settings even if SR control settings are not set from gNB 200 .
  • the SR control settings are an example of repeater control settings.
  • the SR-UE 100B may be configured separately from the SR device 500.
  • the SR-UE 100B may be in the vicinity of the SR device 500 and electrically connected to the SR device 500.
  • FIG. The SR-UE 100B may be connected to the SR device 500 by wire or wirelessly.
  • the SR-UE 100B may be configured integrally with the SR device 500.
  • FIG. The SR-UE 100B and the SR device 500 may be fixedly installed, for example, at the coverage edge (cell edge) of the base station 200, or on the wall or window of some building.
  • the SR-UE 100B and the SR device 500 may be installed in a vehicle or the like, and may be movable. Also, one SR-UE 100B may control a plurality of SR devices 500.
  • the SR device 500 dynamically or quasi-statically changes the beam to be transmitted or received.
  • the SR device 500 forms beams toward each of the UE 100A1 and the UE 100A2.
  • the SR device 500 may form a beam toward the gNB 200 .
  • the SR device 500 transmits the radio waves received from the gNB 200 toward the UE 100A1 by beamforming, and/or transmits the radio waves received from the UE 100A1 toward the gNB 200 by beamforming. do.
  • the SR device 500 transmits radio waves received from the gNB 200 toward the UE 100A2 by beamforming and/or transmits radio waves received from the UE 100A2 toward the gNB 200 by beamforming in the communication resources between the gNB 200 and the UE 100A2.
  • the SR device 500 forms nulls ( so-called null steering).
  • beam (beamforming) may be read as null (null steering).
  • beam (beamforming) may be read as beam and null (beamforming and null steering).
  • FIG. 6 is a diagram showing a configuration example of a protocol stack in the mobile communication system 1 having the SR device 500 and the SR-UE 100B according to one embodiment.
  • the SR device 500 relays radio signals transmitted and received between the gNB 200 and the UE 100A.
  • the SR device 500 has an RF (Radio Frequency) function of amplifying and relaying received radio signals, and performs directional transmission by beamforming (for example, analog beamforming).
  • RF Radio Frequency
  • the SR-UE 100B has at least one layer (entity) of PHY, MAC, RRC, and F1-AP (Application Protocol).
  • F1-AP is a kind of fronthaul interface.
  • SR-UE 100B exchanges downlink signaling and/or uplink signaling, which will be described later, with gNB 200 via at least one of PHY, MAC, RRC, and F1-AP.
  • the SR-UE 100B may communicate with the gNB 200 through the Xn AP (Xn-AP), which is the inter-base station interface.
  • FIG. 7 is a diagram showing configurations of the SR-UE 100B and the SR device 500 according to one embodiment.
  • SR-UE 100B includes a receiver 110, a transmitter 120, a controller 130, and an interface 140, as shown in FIG.
  • the receiving unit 110 performs various types of reception under the control of the control unit 130.
  • the receiver 110 includes an antenna and a receiver.
  • the receiver converts a radio wave (radio signal) received by the antenna into a baseband signal (received signal) and outputs the baseband signal (received signal) to control section 130 .
  • the transmission section 120 performs various transmissions under the control of the control section 130 .
  • the transmitter 120 includes an antenna and a transmitter.
  • the transmitter converts a baseband signal (transmission signal) output from the control unit 130 into a radio signal and transmits the radio signal from an antenna.
  • the control unit 130 performs various controls in the SR-UE 100B.
  • Control unit 130 includes at least one processor and at least one memory.
  • the memory stores programs executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor modulates/demodulates and encodes/decodes the baseband signal.
  • the CPU executes programs stored in the memory to perform various processes. Also, the control unit 130 performs at least one layer function of PHY, MAC, RRC, and F1-AP.
  • the interface 140 is electrically connected to the SR device 500 .
  • Control unit 130 controls SR device 500 via interface 140 .
  • the SR-UE 100B and the SR device 500 are integrated, the SR-UE 100B may not have the interface 140.
  • the receiver 110 and the transmitter 120 of the SR-UE 100B may be integrated with the radio unit 510 of the SR device 500.
  • the SR device 500 has a radio unit 510 and an SR control section 520 .
  • the wireless unit 510 has an antenna section 510a including a plurality of antennas, an RF circuit 510b including an amplifier, and a directivity control section 510c for controlling the directivity of the antenna section 510a.
  • the RF circuit 510b amplifies and relays (transmits) radio signals transmitted and received by the antenna section 510a.
  • the RF circuit 510b may convert radio signals, which are analog signals, into digital signals and reconvert them into analog signals after digital signal processing.
  • the directivity control unit 510c may perform analog beamforming by analog signal processing or digital beamforming by digital signal processing. Alternatively, the directivity control unit 510c may perform analog/digital hybrid beamforming.
  • the SR control section 520 controls the radio unit 510 according to the control signal from the control section 130 of the SR-UE 100B.
  • the SR controller 520 may include at least one processor.
  • SR control section 520 may output at least one of information regarding the capabilities of SR device 500 and information regarding the control state of SR device 500 to SR-UE 100B. Note that when the SR-UE 100B and the SR device 500 are configured integrally, the control unit 130 of the SR-UE 100B and the SR control unit 520 of the SR device 500 may also be configured integrally.
  • the receiving unit 110 of the SR-UE 100B receives one or more SR control settings used for controlling the SR device 500 from the gNB 200 by radio communication.
  • Control unit 130 of SR-UE 100B controls SR device 500 based on the one or more SR control settings.
  • SR control configuration is an example of downlink signaling from gNB 200 to SR-UE 100B. This enables the gNB 200 to control the SR device 500 via the SR-UE 100B.
  • control unit 130 of the SR-UE 100B controls the SR device 500.
  • Control unit 130 of SR-UE 100B acquires SR device information indicating at least one of the capability of SR device 500 and the control state of SR device 500 from SR device 500 (SR control unit 520). Then, transmitting section 120 of SR-UE 100B transmits the acquired SR device information to gNB 200 by wireless communication.
  • SR device information is an example of uplink signaling from SR-UE 100B to gNB 200. This enables the gNB 200 to grasp the capability and control state of the SR device 500 .
  • FIG. 8 is a diagram showing the configuration of the gNB 200 according to one embodiment.
  • the gNB 200 includes a transmission section 210, a reception section 220, a control section 230, and a backhaul communication section 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • Transmitter 210 includes an antenna and a transmitter.
  • the transmitter converts a baseband signal (transmission signal) output by the control unit 230 into a radio signal and transmits the radio signal from an antenna.
  • the receiving section 220 performs various types of reception under the control of the control section 230 .
  • the receiver 220 includes an antenna and a receiver. The receiver converts the radio signal received by the antenna into a baseband signal (received signal) and outputs the baseband signal (received signal) to the control unit 230 .
  • the transmitting unit 210 and the receiving unit 220 may be capable of beamforming using multiple antennas.
  • Control unit 230 performs various controls in the gNB200.
  • Control unit 230 includes at least one processor and at least one memory.
  • the memory stores programs executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU.
  • the baseband processor modulates/demodulates and encodes/decodes the baseband signal.
  • the CPU executes programs stored in the memory to perform various processes.
  • the backhaul communication unit 240 is connected to an adjacent base station via an interface between base stations.
  • Backhaul communication unit 240 is connected to AMF/UPF 300 via a base station-core network interface.
  • the gNB may be composed of a CU (Central Unit) and a DU (Distributed Unit) (that is, functionally divided), and the two units may be connected via an F1 interface.
  • the transmitting unit 210 of the gNB 200 transmits one or more SR control settings used for controlling the SR device 500 to the SR-UE 100B that controls the SR device 500 by wireless communication.
  • SR control configuration is an example of downlink signaling from gNB 200 to SR-UE 100B. This enables the gNB 200 to control the SR device 500 via the SR-UE 100B.
  • the receiving unit 220 of the gNB 200 receives SR device information indicating at least one of the capability of the SR device 500 and the control state of the SR device 500 from the SR-UE 100B that controls the SR device 500 via wireless communication.
  • SR device information is an example of uplink signaling from SR-UE 100B to gNB 200. This enables the gNB 200 to grasp the capability and control state of the SR device 500 .
  • FIG. 9 is a diagram showing downlink signaling from the gNB 200 to the SR-UE 100B according to one embodiment.
  • the gNB 200 transmits downlink signaling to the SR-UE 100B.
  • the downlink signaling may be an RRC message that is RRC layer signaling, MAC Control Element (MAC CE) that is MAC layer signaling, and/or downlink control information (DCI) that is PHY layer signaling.
  • Downlink signaling may be UE-specific signaling and/or broadcast signaling.
  • the downlink signaling may be fronthaul messages (eg, F1-AP messages). Assuming that the SR-UE 100B is one type or part of the base station, the SR-UE 100B may communicate with the gNB 200 through the Xn AP (Xn-AP), which is the inter-base station interface.
  • Xn-AP Xn AP
  • gNB 200 transmits downlink signaling including SR control settings used for controlling SR device 500 to SR-UE 100B that has established a radio connection with gNB 200.
  • the gNB 200 may include the SR control settings in an RRC Reconfiguration message, which is a type of UE-specific RRC message, and transmit it to the SR-UE 100B.
  • the downlink signaling may be messages of layers higher than the RRC layer (eg, SR application).
  • the downlink signaling may transmit a message of a layer higher than the RRC layer by encapsulating it with a message of a layer below the RRC layer.
  • SR-UE 100B may transmit a response message to downlink signaling from gNB 200 on the uplink.
  • the response message may be sent in response to the SR device 500 completing or receiving the configuration specified in the downlink signaling.
  • the SR control setting may include frequency setting information for setting the center frequency of radio waves (for example, component carriers) to be relayed by the SR device 500 .
  • the SR-UE 100B controls the SR device 500 to relay radio waves of the center frequency indicated by the frequency setting information.
  • the SR control setting may include multiple pieces of frequency setting information that set different center frequencies.
  • the SR control setting may include mode setting information for setting the operation mode of the SR device 500 .
  • Mode setting information may be associated with frequency setting information (center frequency).
  • the modes of operation are a mode in which the SR device 500 performs omnidirectional transmission and/or reception, a mode in which the SR device 500 performs fixed directional transmission and/or reception, and a mode in which the SR device 500 performs variable directional beams. or a mode in which the SR device 500 performs MIMO (Multiple Input Multiple Output) relay transmission.
  • the operation mode may be either a beamforming mode (that is, a mode that emphasizes desired wave improvement) or a null steering mode (that is, a mode that emphasizes interference wave suppression).
  • SR-UE 100B controls SR device 500 to operate in the operation mode indicated by the mode setting information.
  • the gNB 200 can specify the operation mode of the SR device 500 via the SR-UE 100B.
  • the mode in which the SR device 500 performs omnidirectional transmission and/or reception is a mode in which the SR device 500 performs omnidirectional relay, and may be called an omni mode.
  • the mode in which the SR device 500 performs fixed directional transmission and/or reception is a directional mode realized by one directional antenna and/or fixed phase and amplitude control (antenna weight control) for multiple antennas. It may be a beamforming mode realized by applying Any of these modes may be specified (configured) from the gNB 200 to the SR-UE 100B.
  • a mode in which the SR device 500 performs transmission and/or reception using a variable directional beam may be a mode in which analog beamforming is performed or a mode in which digital beamforming is performed.
  • the mode may be a mode in which hybrid beamforming is performed.
  • the mode may be a mode for forming adaptive beams specific to the UE 100A. Any of these modes may be specified (configured) from the gNB 200 to the SR-UE 100B.
  • beam setting information which will be described later, may be provided from the gNB 200 to the SR-UE 100B.
  • the mode in which the SR device 500 performs MIMO relay transmission may be a mode in which SU (Single-User) spatial multiplexing, a mode in which MU (Multi-User) spatial multiplexing is performed, and/or a mode in which transmission diversity is performed. Any of these modes may be specified (configured) from the gNB 200 to the SR-UE 100B.
  • the operation modes may include a mode in which relay transmission by the SR device 500 is turned on (activated) and a mode in which relay transmission by the SR device 500 is turned off (deactivated). Any of these modes may be specified (configured) from the gNB 200 to the SR-UE 100B.
  • the SR control settings may include beam setting information for setting the transmission direction, transmission weight, or beam pattern when the SR device 500 performs directional transmission.
  • the beam setting information may be associated with frequency setting information (center frequency).
  • the beam setting information may include PMI (Precoding Matrix Indicator).
  • the SR control settings may include amplification setting information for setting the degree of radio wave amplification (amplification gain) or transmission output power of the SR device 500 .
  • the amplification setting information may be associated with the frequency setting information (center frequency).
  • the amplification setting information may be information for setting any one of the amplifier gain, beamforming gain, and antenna gain of the SR device 500 .
  • the amplification setting information may be information for setting the transmission output power of the SR device 500 .
  • gNB 200 may transmit SR control settings for each SR device 500 to SR-UE 100B.
  • the SR control setting may include the identifier of the corresponding SR device 500 (SR device identifier).
  • SR-UE 100B control unit 130
  • SR-UE 100B determines the SR device 500 to which the SR control setting is applied based on the SR device identifier included in the SR control setting received from gNB200.
  • the SR device identifier may be transmitted from the SR-UE 100B to the gNB 200 together with the SR control settings even when the SR-UE 100B controls only one SR device 500.
  • the SR-UE 100B controls the SR device 500 based on the SR control setting from the gNB200. This enables the gNB 200 to control the SR device 500 via the SR-UE 100B.
  • FIG. 12 is a diagram showing uplink signaling from the SR-UE 100B to the gNB 200 according to one embodiment.
  • the SR-UE 100B transmits uplink signaling to gNB 200.
  • the uplink signaling may be an RRC message that is RRC layer signaling, MAC CE that is MAC layer signaling, and/or uplink control information (UCI) that is PHY layer signaling.
  • the uplink signaling may be fronthaul messages (eg, F1-AP messages) and/or inter-base station messages (eg, Xn-AP messages).
  • the uplink signaling may be messages of layers higher than the RRC layer (eg, SR application). In the uplink signaling, a message of a layer higher than the RRC layer may be encapsulated with a message of a layer lower than the RRC layer and transmitted.
  • the gNB 200 transmitting a response message to the uplink signaling from the SR-UE 100B on the downlink, and the SR-UE 100B (receiving unit 110) may receive the response message.
  • SR-UE 100B transmits SR device information indicating at least one of the capability of SR device 500 and the control state of SR device 500 to gNB 200 via wireless communication (step S2).
  • the SR device information is an example of base station controlled repeater information.
  • the SR device information includes at least one of SR device capability information indicating the capability of the SR device 500 and control state information indicating the control state of the SR device 500 .
  • the SR-UE 100B (transmitting unit 120) may include SR device information in a UE Capability message or a UE Assistant Information message, which are a type of RRC message, and transmit the message to the gNB 200.
  • SR-UE 100B may transmit SR device information (SR device capability information and/or control state information) to gNB200 in response to a request or inquiry from gNB200.
  • SR-UE 100B (transmitting section 120) may periodically transmit SR device information (in particular, control state information) to gNB 200 according to settings from gNB 200.
  • FIG. This transmission cycle may be set from the gNB 200 to the SR-UE 100B.
  • the SR device capability information may include compatible frequency information indicating frequencies that the SR device 500 supports.
  • the supported frequency information may be a numerical value or index indicating the center frequency of the frequency supported by the SR device 500 and/or a numerical value or index indicating the range of frequencies supported by the SR device 500 .
  • gNB 200 control unit 230
  • the gNB 200 can grasp the frequencies supported by SR device 500 based on the supported frequency information. Then, the gNB 200 (control unit 230) may set the center frequency of the radio wave targeted by the SR device 500 within the frequency range that the SR device 500 supports.
  • the SR device capability information may include mode capability information regarding operation modes that the SR device 500 can handle or switching between operation modes.
  • the operation modes are a mode in which the SR device 500 performs omnidirectional transmission and/or reception, a mode in which the SR device 500 performs fixed directional transmission and/or reception, and a mode in which the SR device 500 performs At least one of a mode in which transmission and/or reception is performed using a variable directional beam and a mode in which the SR device 500 performs MIMO (Multiple Input Multiple Output) relay transmission may be used.
  • the operation mode may be either a beamforming mode (that is, a mode that emphasizes desired wave improvement) or a null steering mode (that is, a mode that emphasizes interference wave suppression).
  • the mode capability information may be information indicating which of these operation modes the SR device 500 is compatible with.
  • the mode capability information may be information indicating to which of these operation modes mode switching is possible.
  • the gNB 200 (control unit 230) can grasp the operation mode and mode switching supported by the SR device 500 based on the mode capability information. Then, the gNB 200 (control unit 230) may set the operation mode of the SR device 500 within the grasped operation mode and mode switching range.
  • the SR device capability information may include beam capability information indicating the beam variable range, beam variable resolution, or variable pattern number when the SR device 500 performs transmission and/or reception using variable directional beams.
  • the beam capability information may be, for example, information indicating a variable range of the beam angle based on the horizontal or vertical direction (for example, controllable from 30° to 90°) and/or information indicating the absolute angle. good.
  • Beam power information may be expressed in terms of beam pointing azimuth and/or elevation.
  • the beam capability information indicates information indicating angle change for each variable step (e.g. horizontal 5°/step, vertical 10°/step) and/or variable number of steps (e.g. horizontal 10 steps, vertical 20 steps). It may be information.
  • the beam capability information may be information indicating the number of beam variable patterns in the SR device 500 (for example, a total of 10 patterns of beam patterns 1 to 10).
  • the gNB 200 (control unit 230) can grasp the beam angle change or beam pattern that the SR device 500 can handle based on the beam capability information. . Then, the gNB 200 (control unit 230) may set the beam of the SR device 500 within the grasped range of beam angle change or beam pattern.
  • These beam capability information may be null capability information. Null capability information indicates null control capability when null steering is performed.
  • the gNB 200 does not need to know the actual beam direction for each variable pattern. For example, gNB 200 first sets beam pattern 1 in SR device 500, performs transmission to UE 100A via SR device 500, and grasps the reception state of UE 100A (ACK/NACK, CSI feedback, , grasp the situation by measurement reports, etc.). Second, gNB 200 sets beam pattern 2 in SR device 500, transmits to UE 100A via SR device 500, and grasps the reception state of UE 100A. Third, gNB 200 sets beam pattern 3 in SR device 500, transmits to UE 100A via SR device 500, and grasps the reception state of UE 100A. Finally, the gNB 200 identifies the beam pattern with which the UE 100A has the best reception state, and sets this pattern in the SR device 500.
  • the SR device capability information may include control delay information indicating the control delay time in the SR device 500.
  • the control delay information from the timing at which the UE 100 receives the SR control setting or the timing at which the setting completion for the SR control setting is transmitted to the gNB 200, is controlled according to the SR control setting (change of operation mode and beam change). This is information indicating a delay time (for example, 1 ms, 10 ms, etc.) until completion.
  • gNB 200 control unit 230
  • the SR device capability information may include amplification characteristic information relating to the radio wave amplification characteristics or output power characteristics of the SR device 500 .
  • the amplification characteristic information may be information indicating the amplifier gain (dB), beamforming gain (dB), and antenna gain (dBi) of the SR device 500 .
  • the amplification characteristic information may be information indicating an amplification variable range (for example, 0 dB to 60 dB) in the SR device 500.
  • the amplification characteristic information may be information indicating the number of steps of amplification that can be changed by the SR device 500 (for example, 10 steps) or the amplification for each variable step (for example, 10 dB/step).
  • the amplification characteristic information may be information indicating the variable range of the output power of the SR device 500 (for example, 0 dBm to 30 dBm).
  • the amplification characteristic information may be information indicating the number of steps of output power that can be changed by the SR device 500 (for example, 10 steps) or the output power for each variable step (for example, 10 dBm/step).
  • the SR device capability information may include location information indicating the installation location of the SR device 500.
  • the location information may include one or more of latitude, longitude, and altitude.
  • the location information may include information indicating the distance and/or installation angle of the SR device 500 relative to the gNB 200.
  • the installation angle may be relative to the gNB 200, or relative to, for example, north, vertical, or horizontal.
  • the installation location may be location information of the location where the antenna unit 510a of the SR device 500 is installed.
  • the SR device capability information may include antenna information indicating the number of antennas that the SR device 500 has.
  • the antenna information may be information indicating the number of antenna ports that the SR device 500 has.
  • Antenna information may be information indicating degrees of freedom for directivity control (beam or null forming).
  • the degree of freedom indicates how many beams can be formed (controlled), and is usually "(the number of antennas)-1". For example, with two antennas, the degree of freedom is one. In the case of two antennas, a figure-eight beam pattern is formed, but since directivity control is possible only in one direction, the degree of freedom is one.
  • the SR-UE 100B may transmit SR device capability information for each SR device 500 to the gNB200.
  • the SR device capability information may include the identifier of the corresponding SR device 500 (SR device identifier).
  • the SR-UE 100B indicates at least one of the respective identifiers of the plurality of SR devices 500 and the number of the plurality of SR devices 500. You may send information.
  • the SR device identifier may be transmitted from the SR-UE 100B to the gNB 200 together with the SR device capability information even when the SR-UE 100B controls only one SR device 500.
  • the control state information may include frequency state information indicating the center frequency of the radio wave that the SR device 500 is to relay.
  • the frequency state information may be information indicating the center frequency of the latest (current) radio wave to be relayed by the SR device 500 at the time of transmission of the control state information.
  • the control state information may include mode state information indicating the operation mode of the SR device 500 .
  • the mode state information may be information indicating the latest (current) operation mode of the SR device 500 at the time of transmission of the control state information.
  • the operation modes are a mode in which the SR device 500 performs omnidirectional transmission and/or reception, a mode in which the SR device 500 performs fixed directional transmission and/or reception, and a mode in which the SR device 500 performs Either a mode in which transmission and/or reception is performed using a variable directional beam or a mode in which the SR device 500 performs MIMO (Multiple Input Multiple Output) relay transmission may be used.
  • MIMO Multiple Input Multiple Output
  • the operation mode may be either a beamforming mode (that is, a mode that emphasizes desired wave improvement) or a null steering mode (that is, a mode that emphasizes interference wave suppression).
  • gNB 200 control unit 230
  • the control state information may include beam state information indicating the transmission direction, transmission weight, or beam pattern when the SR device 500 performs directional transmission.
  • the beam state information may be information indicating the latest (current) transmission direction, transmission weight, or beam pattern of the SR device 500 at the time of transmission of the control state information.
  • SR-UE 100B when SR-UE 100B controls a plurality of SR devices 500, SR-UE 100B (transmitting section 120) may transmit control state information to gNB 200 for each SR device 500.
  • the control state information may include the identifier of the corresponding SR device 500 (SR device identifier).
  • SR device identifier may be transmitted from the SR-UE 100B to the gNB 200 together with the control state information even when the SR-UE 100B controls only one SR device 500.
  • the SR-UE 100B transmits SR device information indicating at least one of the capability of the SR device 500 and the control state of the SR device 500 to the gNB 200 by radio communication. This enables the gNB 200 to grasp the capability and control state of the SR device 500 .
  • FIG. 17 is a diagram showing an operation related to measurement by the SR-UE 100B according to one embodiment.
  • the SR-UE 100B measures radio conditions.
  • the SR-UE 100B is configured integrally with the SR device 500 or located in the vicinity of the SR device 500.
  • FIG. Therefore, the radio state in SR-UE 100B can be handled in the same manner as the radio state in SR device 500.
  • the gNB 200 (the transmission unit 210) transmits settings related to measurement (measurement settings) to the SR-UE 100B that has established a wireless connection with the gNB 200.
  • SR-UE 100B is set to measure at least one of the radio waves received by SR device 500 from gNB 200 and the radio waves received by SR device 500 from UE 100 (eg, UE 100A described above) and to report the measurement results.
  • the measurement settings include the frequency to be measured, the signal to be measured (for example, DM-RS and CSI-RS, which are downlink reference signals, and / or SRS, which is an uplink reference signal), the resource to be measured ( subframes, resource elements, and/or signal sequences), and information for setting at least one of the report type.
  • the report type may be periodic report or event-triggered report.
  • the SR-UE 100B (control unit 130) measures the radio state (radio measurement) based on the measurement settings received from the gNB 200 in step S11.
  • the SR device 500 (control unit 130) performs radio measurement (that is, downlink measurement) on radio waves from the gNB 200 that the SR device 500 receives.
  • the SR device 500 (control unit 130) may perform radio measurement (that is, uplink measurement) on radio waves from the UE 100 that the SR device 500 receives.
  • the measurements by the SR-UE 100B may be radio resource management (RRM) measurements performed mainly in the RRC layer.
  • the measurements by the SR-UE 100B may be channel state information (CSI) measurements performed primarily at the PHY layer.
  • the measurement result obtained by the RRM measurement may be, for example, at least one of reference signal received power (RSRP), reference signal received quality (RSRQ), and received signal strength indicator (RSSI).
  • Measurement results obtained by CSI measurement include, for example, CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), CRI (CSI-RS Resource Indicator), SLI (Strongest layer Indicator), RI (Rank Indicator), and L1- It may be at least one of RSRP.
  • step S13 the SR-UE 100B (transmitting unit 120) transmits a report including the measurement results obtained in step S12 to the gNB200.
  • the measurement result is at least one of the RRM measurement result and the CSI measurement result.
  • the gNB 200 controls radio wave transmission (eg, beam transmission directivity) based on the measurement result report received from SR-UE 100B in step S13.
  • the gNB 200 controls transmission directivity (and/or reception directivity) so that the beam is directed toward the SR device 500.
  • the gNB 200 may reset the SR device 500 via the SR-UE 200B.
  • the gNB 200 treats the radio state in the SR-UE 100B in the same manner as the radio state in the SR device 500, so that appropriate beamforming can be performed using the measurement results of the SR-UE 100B. .
  • FIG. 18 is a diagram showing the operation according to the first embodiment.
  • step S101 the SR-UE 100B is in the RRC idle state or RRC inactive state.
  • the gNB 200 (transmitting unit 210) broadcasts SR support information indicating that the gNB 200 supports the SR-UE 100B.
  • the gNB 200 (transmitter 210) broadcasts system information blocks (SIBs) containing SR support information.
  • SIBs system information blocks
  • the SR support information may be information indicating that the SR-UE 100B is accessible.
  • gNB 200 (transmitting unit 210) may broadcast SR non-support information indicating that gNB 200 does not support SR-UE 100B.
  • the SR non-support information may be information indicating that the SR-UE 100B is inaccessible.
  • SR-UE 100B (control unit 130) that has not established a radio connection with gNB 200 determines that access to the gNB 200 is permitted in response to receiving the SR support information from gNB 200, and establishes a radio connection with gNB 200
  • An access operation may be performed to establish the SR-UE 100B (control unit 130) may perform cell reselection by regarding gNB 200 (cell) to which access is permitted as having the highest priority.
  • SR-UE 100B (control unit 130) that has not established a radio connection with gNB200, if gNB200 does not broadcast SR support information (or if SR non-support information is broadcast), for the gNB200 It may be determined that access (establishment of connection) is not possible. This allows SR-UE 100B to establish a radio connection only with gNB 200 that can handle SR-UE 100B.
  • the gNB 200 can broadcast access control information that controls access from the UE 100.
  • the SR-UE 100B can be regarded as a network side entity. Therefore, the SR-UE 100B may ignore the access control information from the gNB200.
  • the SR-UE 100B may not execute (or may ignore) UAC (Unified Access Control).
  • one or both of AC/AI (Access Category/Access Identity) used in UAC may be a special value indicating access by SR-UE.
  • step S103 the SR-UE 100B (control unit 130) starts a random access procedure to the gNB200.
  • SR-UE 100B transmits a random access preamble (Msg1) and an RRC message (Msg3) to gNB200.
  • Msg1 random access preamble
  • Msg3 RRC message
  • the SR-UE 100B receives a random access response (Msg2) and an RRC message (Msg4) from the gNB200.
  • the SR-UE 100B may transmit SR-UE information indicating that the UE is an SR-UE to the gNB200 when establishing radio connection with the gNB200.
  • SR-UE 100B transmitting section 120
  • SR-UE information in messages for random access procedures (eg, Msg1, Msg3, Msg5) and transmits them to gNB200 during the random access procedure with gNB200.
  • the gNB 200 (control unit 230) recognizes that the accessed UE 100 is the SR-UE 100B based on the SR-UE information received from the SR-UE 100B, and for example removes the SR-UE 100B from access restrictions (i.e., access can accept).
  • step S105 the SR-UE 100B transitions from the RRC idle state or RRC inactive state to the RRC connected state.
  • step S106 the gNB 200 (transmitting unit 120) transmits to SR-UE 100B a capability inquiry message for inquiring the capabilities of SR-UE 100B.
  • SR-UE 100B (receiving unit 110) receives the capability inquiry message.
  • step S107 the SR-UE 100B (transmitting unit 120) transmits a capability information message including the SR device capability information described above to the gNB200.
  • the gNB 200 (receiving unit 220) receives the capability information message.
  • the gNB 200 (control unit 230) grasps the capability of the SR device 500 based on the received capability information message.
  • step S108 the gNB 200 (transmitting unit 210) transmits to SR-UE 100B an RRC message (measurement configuration message) including measurement configuration information for configuring measurement by SR-UE 100B.
  • RRC message measurement configuration message
  • SR-UE 100B receives the measurement configuration message.
  • SR-UE 100B performs radio measurement based on the measurement configuration message.
  • the SR-UE 100B transmits a report (measurement report) including radio measurement results to the gNB200.
  • gNB 200 may perform beamforming so that the beam is directed toward SR-UE 100B (SR device 500).
  • the gNB 200 may determine SR control settings to be set in the SR-UE 100B based on the measurement report received from the SR-UE 100B.
  • step S110 the gNB 200 (transmitting unit 120) transmits the SR control setting used for controlling the SR device 500 to the SR-UE 100B.
  • the gNB 200 (transmitting unit 120) may transmit an RRC Reconfiguration message including SR control settings to the SR-UE 100B.
  • SR-UE 100B (receiving unit 110) receives the SR control setting.
  • step S111 the SR-UE 100B (control unit 130) controls the SR device 500 based on the SR control setting received from the gNB200.
  • SR-UE 100B may control SR device 500 by notifying SR device 500 (SR control unit 520) of the SR control setting received from gNB 200.
  • the SR-UE 100B transmits a control setting completion message (eg, RRC Reconfiguration Complete message) to the gNB 200 when the control (setting change) of the SR device 500 is completed.
  • SR-UE 100B control unit 130
  • the gNB 200 receives the control setting completion message.
  • FIG. 19 is a diagram showing operations according to the second embodiment.
  • step S201 the gNB 200 (transmitting unit 120) generates one or more SR control settings and control timing information indicating the timing at which each of the one or more SR control settings is applied. to the SR-UE 100B.
  • gNB 200 transmits an RRC message (eg, RRC Reconfiguration message) including SR control settings and control timing information to SR-UE 100B.
  • the SR-UE 100B receives the SR control setting and control timing information.
  • step S201 corresponds to step S110 in the first embodiment described above.
  • step S202 the SR-UE 100B (control unit 130) controls the SR device 500 based on the SR control setting and control timing information received in step S201. Specifically, SR-UE 100B (control section 130) controls SR device 500 according to the SR control setting associated with the control timing information at the timing indicated by the control timing information.
  • FIG. 20 is a diagram showing a configuration example of SR control settings and control timing information according to the second embodiment.
  • SR control setting #1 and SR control setting #2 are each associated with separate control timing information.
  • control timing information associated with SR control setting #1 indicates that SR control setting #1 is applied at frame numbers #1, #3, #5, .
  • the control timing information associated with SR control setting #2 indicates that SR control setting #2 is applied at frame numbers #2, #4, #6, .
  • the SR-UE 100B can grasp the current frame number based on the frame number broadcast by the gNB 200 (for example, the frame number in the master information block).
  • the frame number may be a hypersystem frame number (H-SFN), a system frame number (SFN), or a subframe number.
  • the control timing information may include slot numbers and/or OFDM symbol numbers and/or absolute time (eg GPS time) instead of and in addition to frame numbers.
  • multiple SR control settings are applied to control the SR device 500 at different timings.
  • the control timing information includes information indicating application timing of each of a plurality of SR control settings.
  • FIG. 20 shows an example of designating the application timing of the SR control setting by the frame number or the like.
  • the control timing information may be configured in a bitmap format consisting of bits each associated with a frame number.
  • the SR-UE 100B (control unit 130) applies the SR control setting to the frame number of "1" in the bitmap, and does not apply the SR control setting to the radio frame of "0".
  • the control timing information may further include a starting frame number to which the bitmap applies.
  • the SR device 500 can be dynamically controlled by transmitting control timing information indicating the timing at which the SR control setting is applied from the gNB 200 to the SR-UE 100B.
  • the gNB 200 can set the beam direction and amplification for each radio frame to the SR device 500 via the SR-UE 100B.
  • the gNB 200 may set the transmission PMI for each radio frame to the SR device 500 via the SR-UE 100B.
  • the SR device 500 transmits (relays) the signal received from the UE 100A with one antenna to the gNB 200 by applying weights with multiple transmitting antennas, the uplink signal from the other UE at the gNB receiving antenna end and Transmit PMI can be controlled to be orthogonal.
  • the SSB includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), a Physical Broadcast Channel (PBCH), and a Demodulation Reference Signal (DMRS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • DMRS Demodulation Reference Signal
  • an SSB may consist of four consecutive OFDM symbols in the time domain.
  • the SSB may be composed of 240 consecutive subcarriers (20 resource blocks) in the frequency domain.
  • PBCH is a physical channel that carries a master information block (MIB).
  • FIG. 21 is a diagram showing operations according to the third embodiment.
  • the gNB 200 performs beam sweeping by changing the weighting (directivity) for each SSB.
  • the control of the SR device 500 changes the communication quality. Therefore, by linking the beam sweeping and the control of the SR device 500, the SSB transmission mediated by the SR device 500 can be optimized.
  • the gNB 200 transmits a plurality of SSBs at different timings and using different beams.
  • FIG. 21 shows an example in which the gNB 200 (transmitting unit 210) transmits a total of seven SSBs, SSB1 to SSB7.
  • the gNB 200 transmits the sets of SSB3 to SSB5 (hereinafter referred to as "SSB sets") with the same weighting (that is, the same beam characteristics).
  • SSB sets sets of SSB3 to SSB5
  • the number of SSBs forming the SSB set may be two, or four or more.
  • the gNB 200 may transmit information on each SSB included in the SSB set (eg, SSB identifier and/or transmission timing information) to the SR-UE 100B, for example, by means of an RRC message.
  • gNB 200 may transmit SR control configuration to SR-UE 100B in association with information about each SSB included in the SSB set. That is, gNB 200 (transmitting section 210) may transmit SR control configuration to SR-UE 100B for each SSB included in the SSB set.
  • the gNB 200 (transmitting unit 210) may specify different application timing for each SR control setting based on the control timing information described above.
  • the control timing information for SSB may be the same information element as the control timing information described above, or an information element different from the control timing information described above.
  • the SR-UE 100B controls the SR device 500 by applying different SR control settings for each SSB included in the SSB set.
  • FIG. 21 shows an example in which the SR device 500 transmits SSB3 to SSB5 included in the SSB set in different directions.
  • the transmission direction of each SSB from the SR device 500 is linked with the original transmission direction of each SSB transmitted by the gNB 200 .
  • the gNB 200 transmits a plurality of SSBs (SSB sets) with mutually different transmission timings toward the SR device 500.
  • An SR control setting is associated with the plurality of SSBs. Specifically, the gNB 200 transmits the plurality of SSBs with the same beam characteristics toward the SR device 500 .
  • SR-UE 100B controls the transmission direction of radio waves when SR device 500 performs directional transmission for each of the plurality of SSBs. This allows different transmission directions for each SSB included in the SSB set.
  • SR-UE 100B controls the SR device 500 according to the SR control setting from the gNB 200 according to the SR control setting from the gNB 200 has been described in the third embodiment.
  • SR-UE 100B may autonomously control SR device 500 according to preset SR control settings even if SR control settings are not set from gNB 200 .
  • the SR-UE 100B may notify the gNB 200 of the preset SR control setting as the control state information described above. Details of such an operation will be described in a fourth embodiment described later.
  • FIG. 22 is a diagram showing operations according to the fourth embodiment.
  • the SR-UE 100B (control unit 130) autonomously controls the SR device 500 in step S301.
  • step S302 the gNB 200 (transmitting unit 210) transmits to the SR-UE 100B a control state inquiry for inquiring the above control state information to the UE 100 or a control state transmission setting for setting the UE 100 to transmit the above control state information.
  • the gNB 200 (transmitting unit 210) may transmit an RRC message including a control state inquiry or control state transmission setting to the SR-UE 100B.
  • the control state transmission setting is information for setting the period for transmitting control state information from SR-UE 100B to gNB 200, or a trigger event for transmitting control state information from SR-UE 100B to gNB 200 (for example, the radio state of SR-UE 100B (RSRP etc.) exceeds a threshold, or an event that the radio state of SR-UE 100B falls below a threshold).
  • a trigger event for transmitting control state information from SR-UE 100B to gNB 200 for example, the radio state of SR-UE 100B (RSRP etc.) exceeds a threshold, or an event that the radio state of SR-UE 100B falls below a threshold.
  • step S303 the SR-UE 100B (the transmission unit 120) transmits control state information to the gNB200 based on the control state inquiry or control state transmission setting received from the gNB200. Based on the control state information received from gNB200, gNB200 (control unit 130) and SR-UE 100B (transmitting unit 120) grasp the current control state of SR-UE 100B (SR device 500).
  • the gNB 200 can grasp the current control state.
  • FIG. 23 is a diagram showing the operation according to the fifth embodiment.
  • SR-UE 100B (control unit 130) transmits a measurement report to gNB 200A.
  • the gNB 200A (control unit 230) determines handover of the SR-UE 100B to the gNB 200B based on the measurement report received from the SR-UE 100B.
  • gNB 200A (backhaul communication unit 240) transmits a handover request message requesting handover of SR-UE 100B to gNB 200B.
  • the gNB 200A (backhaul communication unit 240) may include the SR control setting that the gNB 200A has set in the SR-UE 100B in the handover request message and transmit it to the gNB 200B.
  • the gNB 200A (backhaul communication unit 240) may include the SR device information received by the gNB 200A from the SR-UE 100B in a handover request message and transmit it to the gNB 200B.
  • the gNB 200B determines whether to approve the handover of the SR-UE 100B based on the handover request received from the gNB 200A.
  • the explanation will proceed on the assumption that it has been determined to approve the handover.
  • the gNB 200B (backhaul communication unit 240) transmits a handover approval message to the gNB 200A.
  • the gNB 200B (backhaul communication unit 240) may include the SR control setting to be set in the SR-UE 100B after handover in a handover approval message and transmit it to the gNB 200A.
  • step S404 gNB 200A (transmitting unit 210) transmits a handover command instructing handover to gNB 200B to SR-UE 100B.
  • the gNB 200A (transmitting unit 210) may include the SR control setting received from the gNB 200B in the handover command and transmit it to the SR-UE 100B.
  • step S405 the SR-UE 100B (control unit 130) establishes radio connection with the gNB 200B by performing a random access procedure with the gNB 200B in response to receiving the handover command.
  • SR-UE 100B may control SR device 500 based on the SR control setting included in the handover command.
  • the handover of the SR-UE 100B can be appropriately controlled.
  • SR-UE 100B Once SR-UE 100B is connected to gNB 200, or when SR control from gNB 200 is performed, it is desirable to maintain the RRC connected state.
  • the SR-UE 100B transitions to the RRC inactive state or the RRC idle state (or when the SR-UE 100B is powered on), the SR-UE 100B controls the SR device 500 to the omni mode or characteristics as close as possible. good.
  • the SR device 500 that is not controlled by the gNB 200 can prevent adverse effects such as unintentionally narrowing the existing coverage area.
  • Each operation flow described above is not limited to being implemented independently, but can be implemented by combining two or more operation flows. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • the base station may be an NR base station (gNB)
  • the base station may be an LTE base station (eNB).
  • the base station may be a relay node such as an IAB (Integrated Access and Backhaul) node.
  • the base station may be a DU (Distributed Unit) of an IAB node.
  • a program that causes a computer to execute each process performed by the UE 100 (SR-UE 100B) or gNB 200 may be provided.
  • the program may be recorded on a computer readable medium.
  • a computer readable medium allows the installation of the program on the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM or DVD-ROM.
  • a circuit that executes each process performed by the UE 100 (SR-UE 100B) or gNB 200 is integrated, and at least part of the UE 100 (SR-UE 100B) or gNB 200 is used as a semiconductor integrated circuit (chipset, SoC: System on a chip) may be configured.
  • the terms “based on” and “depending on,” unless expressly stated otherwise, “based only on.” does not mean The phrase “based on” means both “based only on” and “based at least in part on.” Similarly, the phrase “depending on” means both “only depending on” and “at least partially depending on.” Also, “obtain/acquire” may mean obtaining information among stored information, or it may mean obtaining information among information received from other nodes. or it may mean obtaining the information by generating the information.
  • the terms “include,” “comprise,” and variations thereof are not meant to include only the recited items, and may include only the recited items or in addition to the recited items. Means that it may contain further items.
  • references to elements using the "first,” “second,” etc. designations used in this disclosure do not generally limit the quantity or order of those elements. These designations may be used herein as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein, or that the first element must precede the second element in any way.
  • references to first and second elements do not imply that only two elements may be employed therein, or that the first element must precede the second element in any way.
  • SR-UE 110 Reception unit 120: Transmission unit 130: Control unit 140: Interface 200: gNB 210: Transmitting section 220: Receiving section 230: Control section 240: Backhaul communication section 500: SR device 510: Wireless unit 510a: Antenna section 510b: RF circuit 510c: Directivity control section 520: SR control section

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一実施形態に係る通信制御方法は、基地局(200)と無線端末(100A)との無線通信を中継するリピータ装置であってビームフォーミングが可能なスマートリピータ(SR)装置(500)を制御するSR無線端末(100B)が、前記基地局との無線接続を確立することと、前記SR無線端末が、前記SR装置の能力及び前記SR装置の制御状態のうち少なくとも一方を示すSR装置情報を無線通信により前記基地局に送信することと、を有する。

Description

通信制御方法、無線端末、及び基地局
 本開示は、移動通信システムで用いる通信制御方法、無線端末、及び基地局に関する。
 近年、第5世代(5G)の移動通信システムが注目されている。5Gシステムの無線アクセス技術であるNR(New Radio)は、第4世代の無線アクセス技術であるLTE(Long Term Evolution)に比べて、高周波数帯による広帯域伝送が可能である。
 ミリ波帯又はテラヘルツ波帯といった高周波数帯の電波は、高い直進性を有するため、基地局のカバレッジの縮小が課題となる。このような課題を解決するために、基地局と無線端末との無線通信を中継するリピータ装置であってビームフォーミングが可能なスマートリピータ(SR)装置が注目されている(例えば、非特許文献1参照)。このようなSR装置は、例えば、基地局から受信する電波を増幅するとともに指向性送信により送信することで、干渉の発生を抑制しつつ基地局のカバレッジを拡張できる。
 第1の態様に係る通信制御方法は、基地局と無線端末との無線通信を中継する基地局制御型リピータを制御するリピータ制御無線端末が、前記基地局との無線接続を確立することと、前記リピータ制御無線端末が、前記基地局制御型リピータの能力及び前記基地局制御型リピータの制御状態のうち少なくとも一方を示す基地局制御型リピータ情報を無線通信により前記基地局に送信することと、を有する。
 第2の態様に係る無線端末は、移動通信システムにおいて基地局との無線通信を行う無線端末であって、前記基地局と他の無線端末との無線通信を中継する基地局制御型リピータを制御する制御部と、前記基地局制御型リピータの能力及び前記基地局制御型リピータの制御状態のうち少なくとも一方を示す基地局制御型リピータ情報を無線通信により前記基地局に送信する送信部と、を備える。
 第3の態様に係る基地局は、移動通信システムにおいて無線端末との無線通信を行う基地局であって、前記基地局と他の無線端末との無線通信を中継する基地局制御型リピータを制御する無線端末から、前記基地局制御型リピータの能力及び前記基地局制御型リピータの制御状態のうち少なくとも一方を示す基地局制御型リピータ情報を無線通信により受信する受信部を備える。
一実施形態に係る移動通信システムの構成を示す図である。 データを取り扱うユーザプレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。 シグナリング(制御信号)を取り扱う制御プレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。 一実施形態に係るSR装置の適用シナリオを示す図である。 一実施形態に係るSR装置の適用シナリオを示す図である。 一実施形態に係るSR装置及びSR-UE(SR無線端末)を有する移動通信システムにおけるプロトコルスタックの構成例を示す図である。 一実施形態に係るSR-UE及びSR装置の構成を示す図である。 一実施形態に係るgNB(基地局)の構成を示す図である。 一実施形態に係るgNBからSR-UEへの下りリンクシグナリングを示す図である。 一実施形態に係るSR制御設定の構成を示す図である。 一実施形態に係るSR制御設定の構成を示す図である。 一実施形態に係るSR-UEからgNBへの上りリンクシグナリングを示す図である。 一実施形態に係るSR装置能力情報の構成を示す図である。 一実施形態に係るSR装置能力情報の構成を示す図である。 一実施形態に係る制御状態情報の構成を示す図である。 一実施形態に係る制御状態情報の構成を示す図である。 一実施形態に係るSR-UEによる測定に関する動作を示す図である。 第1実施例に係る動作を示す図である。 第2実施例に係る動作を示す図である。 第2実施例に係るSR制御設定及び制御タイミング情報の構成例を示す図である。 第3実施例に係る動作を示す図である。 第4実施例に係る動作を示す図である。 第5実施例に係る動作を示す図である。
 基地局の動作と連動してSR装置を動作させることにより、SR装置を用いて効率的なカバレッジ拡張を実現できると考えられる。しかしながら、従来の移動通信システムの技術仕様には、基地局がSR装置を制御する仕組みが規定されていないため、SR装置を用いて効率的なカバレッジ拡張を行うことが難しいという問題がある。
 そこで、本開示は、SR装置を用いて効率的なカバレッジ拡張を実現可能とする通信制御方法、無線端末、及び基地局を提供する。
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 [実施形態]
 (移動通信システムの構成)
 まず、一実施形態に係る移動通信システムの構成について説明する。図1は、一実施形態に係る移動通信システム1の構成を示す図である。移動通信システム1は、3GPP規格の第5世代システム(5GS:5th Generation System)に準拠する。以下において、5G/NRを例に挙げて説明するが、移動通信システム1には4G/LTEが少なくとも部分的に適用されてもよい。移動通信システム1には第6世代(6G)システムが少なくとも部分的に適用されてもよい。
 移動通信システム1は、無線端末(UE:User Equipment)100と、5Gの無線アクセスネットワーク(NG-RAN:Next Generation Radio Access Network)10と、5Gのコアネットワーク(5GC:5G Core Network)20とを有する。
 UE100は、移動可能な無線通信装置である。例えば、UE100は、携帯電話端末(スマートフォンを含む)又はタブレット端末、ノートPC、通信モジュール(通信カード又はチップセットを含む)、センサ若しくはセンサに設けられる装置、車両若しくは車両に設けられる装置(Vehicle UE)、飛行体若しくは飛行体に設けられる装置(Aerial UE)である。
 NG-RAN10は、基地局(5Gシステムにおいて「gNB」と呼ばれる)200を含む。gNB200は、基地局間インターフェイスであるXnインターフェイスを介して相互に接続される。gNB200は、1又は複数のセルを管理する。gNB200は、自セルとの接続を確立したUE100との無線通信を行う。gNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数に属する。
 なお、gNBがLTEのコアネットワークであるEPC(Evolved Packet Core)に接続することもできる。LTEの基地局が5GCに接続することもできる。LTEの基地局とgNBとが基地局間インターフェイスを介して接続されることもできる。
 5GC20は、AMF(Access and Mobility Management Function)及びUPF(User Plane Function)300を含む。AMFは、UE100に対する各種モビリティ制御等を行う。AMFは、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信することにより、UE100のモビリティを管理する。UPFは、データの転送制御を行う。AMF及びUPFは、基地局-コアネットワーク間インターフェイスであるNGインターフェイスを介してgNB200と接続される。
 図2は、データを取り扱うユーザプレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
 図2に示すように、ユーザプレーンの無線インターフェイスプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、SDAP(Service Data Adaptation Protocol)レイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤとgNB200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ:Hybrid Automatic Repeat reQuest)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤとgNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。gNB200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS:Modulation and Coding Scheme))及びUE100への割当リソースブロックを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとgNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 SDAPレイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。なお、RANがEPCに接続される場合は、SDAPが無くてもよい。
 図3は、シグナリング(制御信号)を取り扱う制御プレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
 図3に示すように、制御プレーンの無線インターフェイスのプロトコルスタックは、図2に示したSDAPレイヤに代えて、RRC(Radio Resource Control)レイヤ及びNAS(Non-Access Stratum)レイヤを有する。
 UE100のRRCレイヤとgNB200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとgNB200のRRCとの間に無線接続(RRC接続)がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCとgNB200のRRCとの間に無線接続(RRC接続)がない場合、UE100はRRCアイドル状態にある。UE100のRRCとgNB200のRRCとの間の無線接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。
 RRCレイヤの上位に位置するNASレイヤは、セッション管理及びモビリティ管理等を行う。UE100のNASレイヤとAMF300のNASレイヤとの間では、NASシグナリングが伝送される。なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
 (SR装置の適用シナリオ)
 次に、一実施形態に係るSR装置の適用シナリオについて説明する。図4及び図5は、一実施形態に係るSR装置の適用シナリオを示す図である。SR装置は、基地局制御型リピータの一例である。
 5G/NRは、4G/LTEに比べて、高周波数帯による広帯域伝送が可能である。ミリ波帯又はテラヘルツ波帯といった高周波数帯の電波は、高い直進性を有するため、gNB200のカバレッジの縮小が課題となる。図4において、UE100Aは、gNB200のカバレッジエリア外、例えば、gNB200から直接的に電波を受信可能なエリアの外に位置していてもよい。gNB200とUE100Aとの間に遮蔽物が存在し、UE100AがgNB200との見通し内での通信ができない状態であってもよい。
 実施形態において、gNB200とUE100Aとの無線通信を中継するリピータ装置であってビームフォーミングが可能なスマートリピータ(SR)装置500を移動通信システム1に導入する。例えば、SR装置500は、gNB200から受信する電波(無線信号)を増幅するとともに指向性送信により送信する。具体的には、SR装置500は、gNB200がビームフォーミングにより送信する無線信号を受信する。そして、SR装置500は、受信した無線信号を増幅し、増幅した無線信号を指向性送信により送信する。ここで、SR装置500は、固定された指向性で無線信号を送信してもよい。SR装置500は、可変の(適応的な)指向性ビームにより無線信号を送信してもよい。これにより、gNB200のカバレッジを効率的に拡張できる。
 なお、ここではgNB200からUE100Aへの下りリンクの通信にSR装置500を適用する一例を説明したが、UE100AからgNB200への上りリンクの通信にもSR装置500を適用可能である。
 実施形態において、図5に示すように、SR装置500を制御するための新たなUE(以下、「SR-UE」と呼ぶ)を導入する。SR-UEは、リピータ制御無線端末の一例である。SR-UE100Bは、SR無線端末の一例でもある。SR-UE100Bは、gNB200との無線接続を確立してgNB200との無線通信を行うことにより、gNB200と連携してSR装置500を制御する。これにより、SR装置500を用いて効率的なカバレッジ拡張を実現できる。SR-UE100Bは、gNB200からのSR制御設定に従ってSR装置500を制御する。SR-UE100Bは、gNB200からSR制御設定が設定されなくても、予め設定されたSR制御設定に従ってSR装置500を自律的に制御してもよい。SR制御設定は、リピータ制御設定の一例である。
 SR-UE100Bは、SR装置500と別体に構成されていてもよい。例えば、SR-UE100Bは、SR装置500の近傍にあり、SR装置500と電気的に接続されていてもよい。SR-UE100Bは、SR装置500と有線又は無線で接続されてよい。或いは、SR-UE100Bは、SR装置500と一体に構成されてもよい。SR-UE100B及びSR装置500は、例えば、基地局200のカバレッジ端(セルエッジ)、或いは、何らかの建築物の壁面又は窓に固定的に設置されてもよい。SR-UE100B及びSR装置500は、例えば車両等に設置され、移動可能であってもよい。また、1つのSR-UE100Bが複数のSR装置500を制御してもよい。
 図5に示す例において、SR装置500は、送信又は受信するビームを動的に又は準静的に変化させる。例えば、SR装置500は、UE100A1及びUE100A2のそれぞれに向けてビームを形成する。また、SR装置500は、gNB200に向けてビームを形成してもよい。例えば、SR装置500は、gNB200とUE100A1との通信リソースにおいて、gNB200から受信する電波をUE100A1に向けてビームフォーミングにより送信する、及び/又は、UE100A1から受信する電波をgNB200に向けてビームフォーミングにより送信する。SR装置500は、gNB200とUE100A2との通信リソースにおいて、gNB200から受信する電波をUE100A2に向けてビームフォーミングにより送信する、及び/又は、UE100A2から受信する電波をgNB200に向けてビームフォーミングにより送信する。SR装置500は、ビームの形成に代えて又はビームの形成に加えて、干渉抑圧のために、通信相手ではないUE100(不図示)及び/又は隣接gNB200(不図示)に向けてヌルの形成(いわゆる、ヌルステアリング)をしてもよい。以下において、ビーム(ビームフォーミング)は、ヌル(ヌルステアリング)と読み替えてもよい。或いは、ビーム(ビームフォーミング)は、ビーム及びヌル(ビームフォーミング及びヌルステアリング)と読み替えてもよい。
 図6は、一実施形態に係るSR装置500及びSR-UE100Bを有する移動通信システム1におけるプロトコルスタックの構成例を示す図である。
 図6に示すように、SR装置500は、gNB200とUE100Aとの間で送受信される無線信号を中継する。SR装置500は、受信した無線信号を増幅及び中継するRF(Radio Frequency)機能を有し、ビームフォーミング(例えば、アナログビームフォーミング)による指向性送信を行う。
 SR-UE100Bは、PHY、MAC、RRC、及びF1-AP(Application Protocol)のうち少なくとも1つのレイヤ(エンティティ)を有する。F1-APは、フロントホールのインターフェイスの一種である。SR-UE100Bは、後述の下りリンクシグナリング及び/又は上りリンクシグナリングを、PHY、MAC、RRC、及びF1-APの少なくとも1つによりgNB200とやり取りする。SR-UE100Bが基地局の一種又は一部であるとした場合、SR-UE100Bは、基地局間インターフェイスであるXnのAP(Xn-AP)によりgNB200とやり取りしてもよい。
 (SR-UE及びSR装置の構成)
 次に、一実施形態に係るSR-UE100B(SR無線端末)及びSR装置500の構成について説明する。図7は、一実施形態に係るSR-UE100B及びSR装置500の構成を示す図である。
 図7に示すように、SR-UE100Bは、受信部110と、送信部120と、制御部130と、インターフェイス140とを備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する電波(無線信号)をベースバンド信号(受信信号)に変換して制御部130に出力する。送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部130は、SR-UE100Bにおける各種の制御を行う。制御部130は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)とを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。また、制御部130は、PHY、MAC、RRC、及びF1-APの少なくとも1つのレイヤの機能を実行する。
 インターフェイス140は、SR装置500と電気的に接続される。制御部130は、インターフェイス140を介してSR装置500を制御する。なお、SR-UE100B及びSR装置500が一体に構成される場合、SR-UE100Bは、インターフェイス140を有していなくてもよい。また、SR-UE100Bの受信部110及び送信部120は、SR装置500の無線ユニット510と一体に構成されてもよい。
 SR装置500は、無線ユニット510と、SR制御部520とを有する。無線ユニット510は、複数のアンテナを含むアンテナ部510aと、アンプを含むRF回路510bと、アンテナ部510aの指向性を制御する指向性制御部510cとを有する。RF回路510bは、アンテナ部510aが送受信する無線信号を増幅して中継(送信)する。RF回路510bは、アナログ信号である無線信号をデジタル信号に変換し、デジタル信号処理の後にアナログ信号に再変換してもよい。指向性制御部510cは、アナログ信号処理によるアナログビームフォーミング、又はデジタル信号処理によるデジタルビームフォーミングを行ってもよい。或いは、指向性制御部510cは、アナログ及びデジタルのハイブリッド型のビームフォーミングを行ってもよい。
 SR制御部520は、SR-UE100Bの制御部130からの制御信号に応じて無線ユニット510を制御する。SR制御部520は、少なくとも1つのプロセッサを含んでもよい。SR制御部520は、SR装置500の能力に関する情報及びSR装置500における制御状態に関する情報の少なくとも一方をSR-UE100Bに出力してもよい。なお、SR-UE100B及びSR装置500が一体に構成される場合、SR-UE100Bの制御部130及びSR装置500のSR制御部520も一体に構成されてもよい。
 一実施形態において、SR-UE100Bの受信部110は、SR装置500の制御に用いる1つ又は複数のSR制御設定をgNB200から無線通信により受信する。SR-UE100Bの制御部130は、当該1つ又は複数のSR制御設定に基づいてSR装置500を制御する。SR制御設定は、gNB200からSR-UE100Bへの下りリンクシグナリングの一例である。これにより、gNB200がSR-UE100Bを介してSR装置500を制御可能になる。
 一実施形態において、SR-UE100Bの制御部130は、SR装置500を制御する。SR-UE100Bの制御部130は、SR装置500の能力及びSR装置500の制御状態のうち少なくとも一方を示すSR装置情報をSR装置500(SR制御部520)から取得する。そして、SR-UE100Bの送信部120は、取得したSR装置情報を無線通信によりgNB200に送信する。SR装置情報は、SR-UE100BからgNB200への上りリンクシグナリングの一例である。これにより、gNB200がSR装置500の能力及び制御状態を把握可能になる。
 (基地局の構成)
 次に、一実施形態に係るgNB200(基地局)の構成について説明する。図8は、一実施形態に係るgNB200の構成を示す図である。
 図8に示すように、gNB200は、送信部210と、受信部220と、制御部230と、バックホール通信部240とを備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。送信部210及び受信部220は、複数のアンテナを用いたビームフォーミングが可能であってもよい。
 制御部230は、gNB200における各種の制御を行う。制御部230は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUとを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。
 バックホール通信部240は、基地局間インターフェイスを介して隣接基地局と接続される。バックホール通信部240は、基地局-コアネットワーク間インターフェイスを介してAMF/UPF300と接続される。なお、gNBは、CU(Central Unit)とDU(Distributed Unit)とで構成され(すなわち、機能分割され)、両ユニット間はF1インターフェイスで接続されてもよい。
 一実施形態において、gNB200の送信部210は、SR装置500を制御するSR-UE100Bに対して、SR装置500の制御に用いる1つ又は複数のSR制御設定を無線通信により送信する。SR制御設定は、gNB200からSR-UE100Bへの下りリンクシグナリングの一例である。これにより、gNB200がSR-UE100Bを介してSR装置500を制御可能になる。
 一実施形態において、gNB200の受信部220は、SR装置500を制御するSR-UE100Bから、SR装置500の能力及びSR装置500の制御状態のうち少なくとも一方を示すSR装置情報を無線通信により受信する。SR装置情報は、SR-UE100BからgNB200への上りリンクシグナリングの一例である。これにより、gNB200がSR装置500の能力及び制御状態を把握可能になる。
 (移動通信システムの動作)
 次に、一実施形態に係る移動通信システム1の動作について説明する。
 (1)下りリンクシグナリング
 図9は、一実施形態に係るgNB200からSR-UE100Bへの下りリンクシグナリングを示す図である。
 gNB200(送信部210)は、SR-UE100Bへの下りリンクシグナリングを送信する。下りリンクシグナリングは、RRCレイヤのシグナリングであるRRCメッセージ、MACレイヤのシグナリングであるMAC CE(Control Element)、及び/又はPHYレイヤのシグナリングである下りリンク制御情報(DCI)であってもよい。下りリンクシグナリングは、UE個別シグナリング、及び/又はブロードキャストシグナリングであってもよい。下りリンクシグナリングは、フロントホールメッセージ(例えば、F1-APメッセージ)であってもよい。SR-UE100Bが基地局の一種又は一部であるとした場合、SR-UE100Bは、基地局間インターフェイスであるXnのAP(Xn-AP)によりgNB200とやり取りしてもよい。
 例えば、gNB200(送信部210)は、図9に示すように、gNB200との無線接続を確立したSR-UE100Bに対して、SR装置500の制御に用いるSR制御設定を含む下りリンクシグナリングを送信する(ステップS1)。gNB200(送信部210)は、UE個別のRRCメッセージの一種であるRRC ReconfigurationメッセージにSR制御設定を含めてSR-UE100Bに送信してもよい。下りリンクシグナリングは、RRCレイヤよりも上位のレイヤ(例えば、SRアプリケーション)のメッセージであってもよい。下りリンクシグナリングは、RRCレイヤよりも上位のレイヤのメッセージを、RRCレイヤ以下のレイヤのメッセージでカプセル化して送信するものであってもよい。
 なお、SR-UE100B(送信部120)は、gNB200からの下りリンクシグナリングに対する応答メッセージを上りリンクで送信してもよい。当該応答メッセージは、SR装置500が当該下りリンクシグナリングで指定された設定を完了したこと、もしくは当該設定を受領したことに応じて送信されてもよい。
 図10に示すように、SR制御設定は、SR装置500が中継の対象とする電波(例えば、コンポーネントキャリア)の中心周波数を設定する周波数設定情報を含んでもよい。SR-UE100B(制御部130)は、gNB200から受信したSR制御設定が周波数設定情報を含む場合、当該周波数設定情報が示す中心周波数の電波を対象として中継するようにSR装置500を制御する。SR制御設定は、互いに異なる中心周波数を設定する複数の周波数設定情報を含んでもよい。SR制御設定が周波数設定情報を含むことにより、SR装置500が中継の対象とするべき電波の中心周波数をgNB200がSR-UE100Bを介して指定できる。
 SR制御設定は、SR装置500の動作モードを設定するモード設定情報を含んでもよい。モード設定情報は、周波数設定情報(中心周波数)と対応付けられていてもよい。動作モードは、SR装置500が無指向性の送信及び/又は受信を行うモードと、SR装置500が固定の指向性の送信及び/又は受信を行うモードと、SR装置500が可変の指向性ビームによる送信及び/又は受信を行うモードと、SR装置500がMIMO(Multiple Input Multiple Output)中継伝送を行うモードと、のいずれかのモードであってもよい。動作モードは、ビームフォーミングモード(すなわち、所望波改善を重視するモード)と、ヌルステアリングモード(すなわち、干渉波抑圧を重視するモード)とのいずれかのモードであってもよい。SR-UE100B(制御部130)は、gNB200から受信したSR制御設定がモード設定情報を含む場合、当該モード設定情報が示す動作モードで動作するようにSR装置500を制御する。SR制御設定がモード設定情報を含むことにより、SR装置500の動作モードをgNB200がSR-UE100Bを介して指定できる。
 ここで、SR装置500が無指向性の送信及び/又は受信を行うモードは、SR装置500が全方向での中継を行うモードであって、オムニモードと称されてもよい。
 SR装置500が固定の指向性の送信及び/又は受信を行うモードは、1つの指向性アンテナにより実現される指向性モード、及び/又は複数のアンテナに固定の位相・振幅制御(アンテナウェイト制御)を適用することで実現されるビームフォーミングモードであってもよい。これらのモードのいずれかがgNB200からSR-UE100Bに対して指定(設定)されてもよい。
 SR装置500が可変の指向性ビームによる送信及び/又は受信を行うモードは、アナログビームフォーミングを行うモード、又はデジタルビームフォーミングを行うモードであってもよい。当該モードは、ハイブリッドビームフォーミングを行うモードであってもよい。当該モードは、UE100A固有の適応的なビームを形成するモードであってもよい。これらのモードのいずれかがgNB200からSR-UE100Bに対して指定(設定)されてもよい。
 なお、ビームフォーミングを行う動作モードにおいて、後述のビーム設定情報がgNB200からSR-UE100Bに提供されてもよい。
 SR装置500がMIMO中継伝送を行うモードは、SU(Single-User)空間多重を行うモード、MU(Multi-User)空間多重を行うモード、及び/又は送信ダイバーシティを行うモードであってもよい。これらのモードのいずれかがgNB200からSR-UE100Bに対して指定(設定)されてもよい。
 動作モードは、SR装置500による中継伝送をオン(アクティブ化)するモードと、SR装置500による中継伝送をオフ(非アクティブ化)するモードとを含んでもよい。これらのモードのいずれかがgNB200からSR-UE100Bに対して指定(設定)されてもよい。
 SR制御設定は、SR装置500が指向性送信を行うときの送信方向、送信ウェイト、又はビームパターンを設定するビーム設定情報を含んでもよい。ビーム設定情報は、周波数設定情報(中心周波数)と対応付けられていてもよい。ビーム設定情報は、PMI(Precoding Matrix Indicator)を含んでもよい。SR制御設定がビーム設定情報を含むことにより、SR装置500の送信指向性をgNB200がSR
-UE100Bを介して制御できる。
 SR制御設定は、SR装置500が電波を増幅する度合い(増幅利得)又は送信出力電力を設定する増幅度設定情報を含んでもよい。増幅度設定情報は、周波数設定情報(中心周波数)と対応付けられていてもよい。増幅度設定情報は、SR装置500のアンプゲイン、ビームフォーミングゲイン、及びアンテナゲインのいずれかを設定する情報であってもよい。増幅度設定情報は、SR装置500の送信出力電力を設定する情報であってもよい。
 図11に示すように、SR-UE100Bが複数のSR装置500を制御する場合、gNB200(送信部210)は、SR装置500ごとにSR制御設定をSR-UE100Bに送信してもよい。この場合、SR制御設定は、対応するSR装置500の識別子(SR装置識別子)を含んでもよい。複数のSR装置500を制御するSR-UE100B(制御部130)は、gNB200から受信したSR制御設定に含まれるSR装置識別子に基づいて、当該SR制御設定を適用するSR装置500を決定する。なお、当該SR装置識別子は、SR-UE100BがひとつのSR装置500のみを制御する場合であっても、SR制御設定と共にSR-UE100BからgNB200に送信されてもよい。
 このように、SR-UE100B(制御部130)は、gNB200からのSR制御設定に基づいてSR装置500を制御する。これにより、gNB200がSR-UE100Bを介してSR装置500を制御可能になる。
 (2)上りリンクシグナリング
 図12は、一実施形態に係るSR-UE100BからgNB200への上りリンクシグナリングを示す図である。
 SR-UE100B(送信部210)は、gNB200への上りリンクシグナリングを送信する。上りリンクシグナリングは、RRCレイヤのシグナリングであるRRCメッセージ、MACレイヤのシグナリングであるMAC CE、及び/又はPHYレイヤのシグナリングである上りリンク制御情報(UCI)であってもよい。上りリンクシグナリングは、フロントホールメッセージ(例えば、F1-APメッセージ)、及び/又は基地局間メッセージ(例えば、Xn-APメッセージ)であってもよい。上りリンクシグナリングは、RRCレイヤよりも上位のレイヤ(例えば、SRアプリケーション)のメッセージであってもよい。上りリンクシグナリングは、RRCレイヤよりも上位のレイヤのメッセージを、RRCレイヤ以下のレイヤのメッセージでカプセル化して送信するものであってもよい。なお、gNB200(送信部210)は、SR-UE100Bからの上りリンクシグナリングに対する応答メッセージを下りリンクで送信し、SR-UE100B(受信部110)は、当該応答メッセージを受信してもよい。
 例えば、gNB200との無線接続を確立したSR-UE100B(送信部120)は、SR装置500の能力及びSR装置500の制御状態のうち少なくとも一方を示すSR装置情報を無線通信によりgNB200に送信する(ステップS2)。SR装置情報は、基地局制御型リピータ情報の一例である。具体的には、SR装置情報は、SR装置500の能力を示すSR装置能力情報及びSR装置500の制御状態を示す制御状態情報のうち少なくとも一方を含む。SR-UE100B(送信部120)は、RRCメッセージの一種であるUE Capabilityメッセージ又はUE Assistant InformationメッセージにSR装置情報を含めてgNB200に送信してもよい。SR-UE100B(送信部120)は、gNB200からの要求又は問い合わせに応じて、SR装置情報(SR装置能力情報及び/又は制御状態情報)をgNB200に送信してもよい。SR-UE100B(送信部120)は、gNB200からの設定に応じて、SR装置情報(特に、制御状態情報)をgNB200に周期的に送信してもよい。この送信周期は、gNB200からSR-UE100Bに設定されてもよい。
 図13に示すように、SR装置能力情報は、SR装置500が対応する周波数を示す対応周波数情報を含んでもよい。対応周波数情報は、SR装置500が対応する周波数の中心周波数を示す数値又はインデックス、及び/又はSR装置500が対応する周波数の範囲を示す数値又はインデックスであってもよい。gNB200(制御部230)は、SR-UE100Bから受信したSR装置能力情報が対応周波数情報を含む場合、当該対応周波数情報に基づいて、SR装置500が対応する周波数を把握できる。そして、gNB200(制御部230)は、SR装置500が対応する周波数の範囲内で、SR装置500が対象とする電波の中心周波数を設定してもよい。
 SR装置能力情報は、SR装置500が対応可能な動作モード又は動作モード間の切り替えに関するモード能力情報を含んでもよい。動作モードは、上述のように、SR装置500が無指向性の送信及び/又は受信を行うモードと、SR装置500が固定の指向性の送信及び/又は受信を行うモードと、SR装置500が可変の指向性ビームによる送信及び/又は受信を行うモードと、SR装置500がMIMO(Multiple Input Multiple Output)中継伝送を行うモードの少なくともいずれか1つのモードであってもよい。動作モードは、ビームフォーミングモード(すなわち、所望波改善を重視するモード)と、ヌルステアリングモード(すなわち、干渉波抑圧を重視するモード)とのいずれかのモードであってもよい。モード能力情報は、これらの動作モードのうちどの動作モードにSR装置500が対応可能かを示す情報であってもよい。モード能力情報は、これらの動作モードのうち、どの動作モード間でモード切り替えが可能かを示す情報であってもよい。gNB200(制御部230)は、SR-UE100Bから受信したSR装置能力情報がモード能力情報を含む場合、当該モード能力情報に基づいて、SR装置500が対応する動作モード及びモード切り替えを把握できる。そして、gNB200(制御部230)は、把握した動作モード及びモード切り替えの範囲内で、SR装置500の動作モードを設定してもよい。
 SR装置能力情報は、SR装置500が可変の指向性ビームによる送信及び/又は受信を行うときのビーム可変範囲、ビーム可変解像度、又は可変パターン数を示すビーム能力情報を含んでもよい。ビーム能力情報は、例えば、水平方向又は垂直方向を基準としたビーム角度の可変範囲(例えば、30°~90°の制御が可能)を示す情報、及び/又は絶対角度を示す情報であってもよい。ビーム能力情報は、ビームを向ける方角及び/又は仰角により表現されてもよい。ビーム能力情報は、可変ステップ毎の角度変化(例えば、水平5°/ステップ、垂直10°/ステップ)を示す情報、及び/又は可変の段階数(例えば、水平10ステップ、垂直20ステップ)を示す情報であってもよい。ビーム能力情報は、SR装置500におけるビームの可変パターン数(例えば、ビームパターン1~10の合計10パターン)を示す情報であってもよい。gNB200(制御部230)は、SR-UE100Bから受信したSR装置能力情報がビーム能力情報を含む場合、当該ビーム能力情報に基づいて、SR装置500が対応可能なビーム角度変化又はビームパターンを把握できる。そして、gNB200(制御部230)は、把握したビーム角度変化又はビームパターンの範囲内で、SR装置500のビームを設定してもよい。これらビーム能力情報は、ヌル能力情報であってもよい。ヌル能力情報の場合、ヌルステアリングを実施した際のヌル制御能力を示す。
 なお、gNB200は、可変パターン毎の実際のビーム方向を把握していなくてもよい。例えば、gNB200は、第1に、SR装置500にビームパターン1を設定した上で、SR装置500を介してUE100Aへの送信を行い、UE100Aの受信状態を把握する(ACK/NACK、CSIフィードバックや、measurement reportなどにより状況把握する)。第2に、gNB200は、SR装置500にビームパターン2を設定した上で、SR装置500を介してUE100Aへの送信を行い、UE100Aの受信状態を把握する。第3に、gNB200は、SR装置500にビームパターン3を設定した上で、SR装置500を介してUE100Aへの送信を行い、UE100Aの受信状態を把握する。最後に、gNB200は、最もUE100Aの受信状態が良かったビームパターンを特定し、当該パターンをSR装置500に設定する。
 SR装置能力情報は、SR装置500における制御遅延時間を示す制御遅延情報を含んでもよい。例えば、制御遅延情報は、UE100がSR制御設定を受信したタイミング又はSR制御設定に対する設定完了をgNB200に送信したタイミングから、SR制御設定に従った制御(動作モードの変更や、ビームの変更)が完了するまでの遅延時間(例えば、1ms,10ms…等)を示す情報である。gNB200(制御部230)は、SR-UE100Bから受信したSR装置能力情報が制御遅延情報を含む場合、当該制御遅延情報に基づいて、SR装置500における制御遅延時間を把握できる。
 SR装置能力情報は、SR装置500における電波の増幅特性又は出力電力特性に関する増幅特性情報を含んでもよい。増幅特性情報は、SR装置500のアンプゲイン(dB)、ビームフォーミングゲイン(dB)、アンテナゲイン(dBi)を示す情報であってもよい。増幅特性情報は、SR装置500における増幅可変範囲(例えば、0dB~60dB)を示す情報であってもよい。増幅特性情報は、SR装置500が変更可能な増幅度のステップ数(例えば、10ステップ)、又は可変ステップ毎の増幅度(例えば、10dB/ステップ)を示す情報であってもよい。増幅特性情報は、SR装置500の出力電力の可変範囲(例えば、0dBm~30dBm)を示す情報であってもよい。増幅特性情報は、SR装置500が変更可能な出力電力のステップ数(例えば、10ステップ)、又は可変ステップ毎の出力電力(例えば、10dBm/ステップ)を示す情報であってもよい。
 SR装置能力情報は、SR装置500の設置位置を示す位置情報を含んでもよい。位置情報は、緯度、経度、高度のいずれかひとつ以上を含んでもよい。位置情報は、gNB200を基準としたSR装置500の距離及び/又は設置角度を示す情報を含んでもよい。当該設置角度は、gNB200との相対角度であってもよく、もしくは例えば北、垂直又は水平を基準とする相対角度であってもよい。設置位置は、SR装置500のアンテナ部510aが設置された場所の位置情報であってもよい。
 SR装置能力情報は、SR装置500が有するアンテナ本数を示すアンテナ情報を含んでもよい。アンテナ情報は、SR装置500が有するアンテナポート数を示す情報であってもよい。アンテナ情報は、指向性制御(ビームもしくはヌル形成)の自由度を示す情報であってもよい。自由度とは、何個のビームが形成(制御)できるかを示すものであって、通常「(アンテナ本数)-1」となる。例えば、アンテナ2本の場合、自由度は1である。アンテナ2本の場合、8の字のようなビームパターンが形成されるが、指向性制御ができるのは1方向だけであるため、自由度は1となる。
 図14に示すように、SR-UE100Bが複数のSR装置500を制御する場合、SR-UE100B(送信部120)は、SR装置500ごとにSR装置能力情報をgNB200に送信してもよい。この場合、SR装置能力情報は、対応するSR装置500の識別子(SR装置識別子)を含んでもよい。また、SR-UE100Bが複数のSR装置500を制御する場合、SR-UE100B(送信部120)は、当該複数のSR装置500のそれぞれの識別子及び複数のSR装置500の個数のうち少なくとも一方を示す情報を送信してもよい。なお、当該SR装置識別子は、SR-UE100BがひとつのSR装置500のみを制御する場合であっても、SR装置能力情報と共にSR-UE100BからgNB200に送信されてもよい。
 図15に示すように、制御状態情報は、SR装置500が中継の対象としている電波の中心周波数を示す周波数状態情報を含んでもよい。周波数状態情報は、制御状態情報の送信時点においてSR装置500が中継の対象としている最新の(現在の)電波の中心周波数を示す情報であってもよい。gNB200(制御部230)は、SR-UE100Bから受信した制御状態情報が周波数状態情報を含む場合、当該周波数状態情報に基づいて、SR装置500が対象としている電波の中心周波数を把握できる。
 制御状態情報は、SR装置500の動作モードを示すモード状態情報を含んでもよい。モード状態情報は、制御状態情報の送信時点におけるSR装置500の最新の(現在の)の動作モードを示す情報であってもよい。動作モードは、上述のように、SR装置500が無指向性の送信及び/又は受信を行うモードと、SR装置500が固定の指向性の送信及び/又は受信を行うモードと、SR装置500が可変の指向性ビームによる送信及び/又は受信を行うモードと、SR装置500がMIMO(Multiple Input Multiple Output)中継伝送を行うモードと、のいずれかのモードであってもよい。動作モードは、ビームフォーミングモード(すなわち、所望波改善を重視するモード)と、ヌルステアリングモード(すなわち、干渉波抑圧を重視するモード)とのいずれかのモードであってもよい。gNB200(制御部230)は、SR-UE100Bから受信した制御状態情報がモード状態情報を含む場合、当該モード状態情報に基づいて、SR装置500の動作モードを把握できる。
 制御状態情報は、SR装置500が指向性送信を行うときの送信方向、送信ウェイト、又はビームパターンを示すビーム状態情報を含んでもよい。ビーム状態情報は、制御状態情報の送信時点におけるSR装置500の最新の(現在の)送信方向、送信ウェイト、又はビームパターンを示す情報であってもよい。gNB200(制御部230)は、SR-UE100Bから受信した制御状態情報がビーム状態情報を含む場合、当該ビーム状態情報に基づいて、SR装置500におけるビームの状態を把握できる。
 図16に示すように、SR-UE100Bが複数のSR装置500を制御する場合、SR-UE100B(送信部120)は、SR装置500ごとに制御状態情報をgNB200に送信してもよい。この場合、制御状態情報は、対応するSR装置500の識別子(SR装置識別子)を含んでもよい。なお、当該SR装置識別子は、SR-UE100BがひとつのSR装置500のみを制御する場合であっても、制御状態情報と共にSR-UE100BからgNB200に送信されてもよい。
 このように、SR-UE100B(送信部120)は、SR装置500の能力及びSR装置500の制御状態のうち少なくとも一方を示すSR装置情報をgNB200に無線通信により送信する。これにより、gNB200がSR装置500の能力及び制御状態を把握可能になる。
 (3)SR-UEによる測定に関する動作
 図17は、一実施形態に係るSR-UE100Bによる測定に関する動作を示す図である。SR-UE100Bは、無線状態の測定を行う。ここで、SR-UE100Bは、SR装置500と一体に構成される又はSR装置500の近傍に位置するものとする。そのため、SR-UE100Bにおける無線状態は、SR装置500における無線状態と同等に扱うことができる。
 図17に示すように、ステップS11において、gNB200(送信部210)は、gNB200との無線接続を確立したSR-UE100Bに対して、測定に関する設定(測定設定)を送信する。測定設定は、gNB200からSR装置500が受信する電波及びUE100(例えば、上述のUE100A)からSR装置500が受信する電波のうち少なくとも一方に対する測定及び測定結果の報告をSR-UE100Bに設定する。測定設定は、測定対象の周波数、測定対象の信号(例えば、下りリンクの参照信号であるDM-RSやCSI-RS、及び/又は、上りリンクの参照信号であるSRS)、測定対象のリソース(例えば、サブフレーム、リソースエレメント、及び/又は信号系列)、及び報告タイプのうち少なくとも1つを設定する情報を含んでもよい。報告タイプは、周期報告又はイベントトリガ報告であってもよい。
 ステップS12において、SR-UE100B(制御部130)は、ステップS11でgNB200から受信した測定設定に基づいて無線状態の測定(無線測定)を行う。SR装置500(制御部130)は、SR装置500が受信するgNB200からの電波に対する無線測定(すなわち、下りリンク測定)を行う。SR装置500(制御部130)は、SR装置500が受信するUE100からの電波に対する無線測定(すなわち、上りリンク測定)を行ってもよい。
 SR-UE100Bによる測定は、主にRRCレイヤにおいて実施される無線リソース管理(RRM)測定であってもよい。SR-UE100Bによる測定は、主にPHYレイヤにおいて実施されるチャネル状態情報(CSI)測定であってもよい。RRM測定により得られる測定結果は、例えば、参照信号受信電力(RSRP)、参照信号受信品質(RSRQ)、及び受信信号強度インジケータ(RSSI)のうち少なくとも1つであってもよい。CSI測定により得られる測定結果は、例えば、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、CRI(CSI-RS Resource Indicator)、SLI(Strongest layer Indicator)、RI(Rank Indicator)、及びL1-RSRPのうち少なくとも1つであってもよい。
 ステップS13において、SR-UE100B(送信部120)は、ステップS12で得られた測定結果を含む報告をgNB200に送信する。測定結果は、RRM測定結果及びCSI測定結果のうち少なくとも一方である。
 ステップS14において、gNB200(制御部230)は、ステップS13でSR-UE100Bから受信した測定結果の報告に基づいて、電波の送信(例えば、ビームの送信指向性)を制御する。例えば、gNB200(制御部230)は、ビームがSR装置500に向くように送信指向性(及び/又は受信指向性)を制御する。gNB200(制御部230)は、SR-UE200Bを介して、SR装置500の再設定を行ってもよい。
 このように、gNB200(制御部230)は、SR-UE100Bにおける無線状態をSR装置500における無線状態と同等に扱うことにより、SR-UE100Bによる測定結果を用いて適切なビームフォーミングを行うことができる。
 [実施例]
 次に、上述の実施形態を前提として、第1実施例乃至第5実施例について説明する。これらの実施例は、別個独立して実施する場合に限らず、2以上の実施例を組み合わせて実施してもよい。また、以下の各実施例の動作フローにおいて、必ずしもすべてのステップを実行する必要は無く、一部のステップのみを実行してもよい。
 (1)第1実施例
 図18は、第1実施例に係る動作を示す図である。
 図18に示すように、ステップS101において、SR-UE100Bは、RRCアイドル状態又はRRCインアクティブ状態にある。
 ステップS102において、gNB200(送信部210)は、gNB200がSR-UE100Bをサポートしていることを示すSRサポート情報をブロードキャストする。例えば、gNB200(送信部210)は、SRサポート情報を含むシステム情報ブロック(SIB)をブロードキャストする。SRサポート情報は、SR-UE100Bがアクセス可能であることを示す情報であってもよい。或いは、gNB200(送信部210)は、gNB200がSR-UE100Bをサポートしていないことを示すSR非サポート情報をブロードキャストしてもよい。SR非サポート情報は、SR-UE100Bがアクセス不可であることを示す情報であってもよい。
 gNB200との無線接続を確立していないSR-UE100B(制御部130)は、gNB200からのSRサポート情報の受信に応じて、当該gNB200へのアクセスが許可されると判断し、gNB200との無線接続を確立するためのアクセス動作を行ってもよい。SR-UE100B(制御部130)は、アクセスを許可するgNB200(セル)を最高優先度と見なしてセル再選択を行ってもよい。
 一方、gNB200との無線接続を確立していないSR-UE100B(制御部130)は、gNB200がSRサポート情報をブロードキャストしていない場合(もしくはSR非サポート情報をブロードキャストしている場合)、当該gNB200に対するアクセス(接続確立)が不可であると判断してもよい。これにより、SR-UE100Bは、SR-UE100Bを取り扱うことができるgNB200に対してのみ無線接続を確立できる。
 なお、gNB200が輻輳している場合、gNB200は、UE100からのアクセスを規制するアクセス規制情報をブロードキャストし得る。しかしながら、SR-UE100Bは、通常のUE100とは異なり、ネットワーク側のエンティティとみなすことができる。そのため、SR-UE100Bは、gNB200からのアクセス規制情報を無視してもよい。例えば、SR-UE100B(制御部130)は、gNB200からSRサポート情報を受信した場合、当該gNB200がアクセス規制情報をブロードキャストしていても、gNB200との無線接続を確立するための動作を行ってもよい。例えば、SR-UE100B(制御部130)は、UAC(Unified Access Control)を実行しなくてもよい(もしくは無視してもよい)。もしくは、UACにおいて用いるAC/AI(Access Category/Access Identity)のいずれか一方もしくは両方を、SR-UEのアクセスであることを示す特別な値を使用してもよい。
 ステップS103において、SR-UE100B(制御部130)は、gNB200に対するランダムアクセスプロシージャを開始する。ランダムアクセスプロシージャにおいて、SR-UE100B(送信部120)は、ランダムアクセスプリアンブル(Msg1)及びRRCメッセージ(Msg3)をgNB200に送信する。また、ランダムアクセスプロシージャにおいて、SR-UE100B(受信部110)は、ランダムアクセス応答(Msg2)及びRRCメッセージ(Msg4)をgNB200から受信する。
 ステップS104において、SR-UE100B(送信部120)は、gNB200との無線接続を確立する際に、自UEがSR-UEであることを示すSR-UE情報をgNB200に送信してもよい。例えば、SR-UE100B(送信部120)は、gNB200とのランダムアクセスプロシージャ中に、ランダムアクセスプロシージャ用のメッセージ(例えば、Msg1、Msg3、Msg5)にSR-UE情報を含めてgNB200に送信する。gNB200(制御部230)は、SR-UE100Bから受信したSR-UE情報に基づいて、アクセスしたUE100がSR-UE100Bであることを認識し、例えばSR-UE100Bをアクセス制限対象から外す(すなわち、アクセスを受け入れる)ことができる。
 ステップS105において、SR-UE100Bは、RRCアイドル状態又はRRCインアクティブ状態からRRCコネクティッド状態に遷移する。
 ステップS106において、gNB200(送信部120)は、SR-UE100Bの能力を問い合わせる能力問い合わせメッセージをSR-UE100Bに送信する。SR-UE100B(受信部110)は、能力問い合わせメッセージを受信する。
 ステップS107において、SR-UE100B(送信部120)は、上述のSR装置能力情報を含む能力情報メッセージをgNB200に送信する。gNB200(受信部220)は、能力情報メッセージを受信する。gNB200(制御部230)は、受信した能力情報メッセージに基づいてSR装置500の能力を把握する。
 ステップS108において、gNB200(送信部210)は、SR-UE100Bによる測定を設定する測定設定情報を含むRRCメッセージ(測定設定メッセージ)をSR-UE100Bに送信する。SR-UE100B(受信部110)は、測定設定メッセージを受信する。SR-UE100B(制御部130)は、測定設定メッセージに基づいて無線測定を行う。
 ステップS109において、SR-UE100B(送信部120)は、無線測定結果を含む報告(測定報告)をgNB200に送信する。gNB200(制御部230)は、SR-UE100Bから受信した測定報告に基づいてSR-UE100B(SR装置500)にビームが向くようにビームフォーミングを行ってもよい。gNB200(制御部230)は、SR-UE100Bから受信した測定報告に基づいて、SR-UE100Bに設定するSR制御設定を決定してもよい。
 ステップS110において、gNB200(送信部120)は、SR装置500の制御に用いるSR制御設定をSR-UE100Bに送信する。gNB200(送信部120)は、SR制御設定を含むRRC ReconfigurationメッセージをSR-UE100Bに送信してもよい。SR-UE100B(受信部110)は、SR制御設定を受信する。
 ステップS111において、SR-UE100B(制御部130)は、gNB200から受信したSR制御設定に基づいてSR装置500を制御する。SR-UE100B(制御部130)は、gNB200から受信したSR制御設定をSR装置500(SR制御部520)に通知することによりSR装置500を制御してもよい。
 ステップS112において、SR-UE100B(送信部120)は、SR装置500の制御(設定変更)が完了した時に、gNB200へ制御設定完了メッセージ(例えば、RRC Reconfiguration Completeメッセージ)を送信する。ここで、SR-UE100B(制御部130)は、SR装置500(SR制御部520)からの通知(フィードバック)に基づいて制御完了を判定してもよい。gNB200(受信部220)は、制御設定完了メッセージを受信する。
 (2)第2実施例
 上述の実施形態及び第1実施例において、SR装置500を準静的に制御する場合を主として想定していた。第2実施例において、SR装置500を動的に制御可能とする場合を想定する。図19は、第2実施例に係る動作を示す図である。
 図19に示すように、ステップS201において、gNB200(送信部120)は、1つ又は複数のSR制御設定と、当該1つ又は複数のSR制御設定のそれぞれが適用されるタイミングを示す制御タイミング情報とをSR-UE100Bに送信する。例えば、gNB200(送信部120)は、SR制御設定及び制御タイミング情報を含むRRCメッセージ(例えば、RRC Reconfigurationメッセージ)をSR-UE100Bに送信する。SR-UE100B(受信部110)は、SR制御設定及び制御タイミング情報を受信する。なお、ステップS201は、上述の第1実施例におけるステップS110と対応する。
 ステップS202において、SR-UE100B(制御部130)は、ステップS201で受信したSR制御設定及び制御タイミング情報に基づいてSR装置500を制御する。具体的には、SR-UE100B(制御部130)は、制御タイミング情報が示すタイミングにおいて、当該制御タイミング情報と対応付けられたSR制御設定に従ってSR装置500を制御する。
 図20は、第2実施例に係るSR制御設定及び制御タイミング情報の構成例を示す図である。
 図20に示すように、SR制御設定#1及びSR制御設定#2のそれぞれが別々の制御タイミング情報と対応付けられている。例えば、SR制御設定#1と対応付けられた制御タイミング情報は、SR制御設定#1がフレーム番号#1、#3、#5・・・で適用されることを示す。SR制御設定#2と対応付けられた制御タイミング情報は、SR制御設定#2がフレーム番号#2、#4、#6・・・で適用されることを示す。なお、SR-UE100B(制御部130)は、gNB200がブロードキャストするフレーム番号(例えばマスタ情報ブロック中のフレーム番号等)に基づいて現在のフレーム番号を把握できる。
 ここで、フレーム番号は、ハイパーシステムフレーム番号(H-SFN)、システムフレーム番号(SFN)、又はサブフレーム番号であってもよい。制御タイミング情報は、フレーム番号に代えて及びフレーム番号に加えて、スロット番号及び/又はOFDMシンボル番号、及び/又は絶対時間(例えばGPS時刻)を含んでもよい。このように、複数のSR制御設定は、互いに異なるタイミングでSR装置500の制御に適用される。制御タイミング情報は、複数のSR制御設定のそれぞれの適用タイミングを示す情報を含む。
 図20は、SR制御設定の適用タイミングをフレーム番号等で指定する一例を示している。しかしながら、制御タイミング情報は、それぞれフレーム番号と対応付けられたビットからなるビットマップ形式で構成されてもよい。例えば、SR-UE100B(制御部130)は、ビットマップで「1」となっているフレーム番号でSR制御設定を適用し、0の無線フレームではSR制御設定を適用しない。制御タイミング情報は、当該ビットマップが適用される開始フレーム番号をさらに含んでもよい。
 第2実施例によれば、SR制御設定が適用されるタイミングを示す制御タイミング情報をgNB200からSR-UE100Bに送信することにより、SR装置500を動的に制御可能とすることができる。
 例えば、gNB200が無線フレーム毎のビーム方向や増幅度をSR-UE100B経由でSR装置500に設定できる。gNB200は、無線フレーム毎の送信PMIをSR-UE100B経由でSR装置500に設定してもよい。例えば、SR装置500が、UE100Aから1アンテナで受信した信号に対して複数送信アンテナでウェイトをかけてgNB200に送信する(中継する)際に、gNB受信アンテナ端で他のUEからの上り信号と直交するように送信PMIを制御できる。
 (3)第3実施例
 第3実施例において、同期信号ブロック(SS/PBCH Block:SSB)送信とSR装置500の制御を連動させる一例について説明する。SSBは、プライマリ同期信号(PSS)、セカンダリ同期信号(SSS)、PBCH(Physical Broadcast Channel)、及び復調参照信号(DMRS)を含む。例えば、SSBは、時間領域において連続した4つのOFDMシンボルにより構成されてもよい。また、SSBは、周波数領域において連続した240サブキャリア(20リソースブロック)により構成されてもよい。なお、PBCHは、マスタ情報ブロック(MIB)を運ぶ物理チャネルである。図21は、第3実施例に係る動作を示す図である。
 SSB送信では、gNB200がSSB毎に重みづけ(指向性)を変化させることでビームスイーピングを行う。gNB200とUE100との間の伝搬路にSR装置500、具体的には、SR510が介在する場合、SR装置500の制御によって通信品質が変わる。よって、ビームスイーピングとSR装置500の制御とを連動させることにより、SR装置500が介在するSSB送信を最適化できる。
 図21に示すように、gNB200(送信部210)は、複数のSSBを互いに異なるタイミングで、且つ、互いに異なるビームで送信する。図21において、gNB200(送信部210)がSSB1乃至SSB7の合計7つのSSBを送信する一例を示している。ここで、gNB200(送信部210)は、SSB3乃至SSB5のセット(以下、「SSBセット」と呼ぶ)については同じ重み付け(すなわち、同じビーム特性)で送信している。SSBセットを構成するSSBの数が3つである一例を示しているが、SSBセットを構成するSSBの数は2つ、又は4つ以上であってもよい。
 gNB200(送信部210)は、SSBセットに含まれる各SSBに関する情報(例えば、SSBの識別子及び/又は送信タイミングの情報)を、例えばRRCメッセージによりSR-UE100Bに送信してもよい。また、gNB200(送信部210)は、SSBセットに含まれる各SSBに関する情報と対応付けてSR制御設定をSR-UE100Bに送信してもよい。すなわち、gNB200(送信部210)は、SSBセットに含まれるSSBごとにSR制御設定をSR-UE100Bに送信してもよい。gNB200(送信部210)は、上述の制御タイミング情報によりSR制御設定ごとに異なる適用タイミングを指定してもよい。SSB用の制御タイミング情報は、上述の制御タイミング情報と同じ情報要素、又は上述の制御タイミング情報と異なる情報要素であってもよい。
 SR-UE100Bは、SSBセットに含まれるSSBごとに異なるSR制御設定を適用してSR装置500を制御する。図21において、SR装置500が、SSBセットに含まれるSSB3乃至SSB5のそれぞれを互いに異なる方向に送信する一例を示している。ここで、SR装置500からの各SSBの送信方向は、gNB200が送信する本来の各SSBの送信方向と連動している。
 このように、第3実施例において、gNB200は、送信タイミングが互いに異なる複数のSSB(SSBセット)をSR装置500に向けて送信する。SR制御設定は、当該複数のSSBと対応付けられている。具体的には、gNB200は、当該複数のSSBを同じビーム特性でSR装置500に向けて送信する。SR-UE100Bは、SR制御設定に基づいて、当該複数のSSBのそれぞれについて、SR装置500が指向性送信を行うときの電波の送信方向を制御する。これにより、SSBセットに含まれるSSBごとに送信方向を異ならせることができる。
 第3実施例において、SR-UE100Bが、gNB200からのSR制御設定に従ってSR装置500を制御する一例について説明した。しかしながら、SR-UE100Bは、gNB200からSR制御設定が設定されなくても、予め設定されたSR制御設定に従ってSR装置500を自律的に制御してもよい。この場合、SR-UE100Bは、当該予め設定されたSR制御設定を上述の制御状態情報としてgNB200に通知してもよい。このような動作の詳細については、後述の第4実施例において説明する。
 (4)第4実施例
 第4実施例において、SR-UE100BがSR装置500を自律的に制御し、現在の制御状態をgNB200に通知する一例について説明する。SR-UE100Bは、gNB200からの補助情報に基づいてSR装置500を自律的に制御してもよい。図22は、第4実施例に係る動作を示す図である。
 図22に示すように、ステップS301において、SR-UE100B(制御部130)は、自律的にSR装置500を制御する。
 ステップS302において、gNB200(送信部210)は、上述の制御状態情報をUE100に問い合わせる制御状態問い合わせ、又は上述の制御状態情報の送信をUE100に設定する制御状態送信設定をSR-UE100Bに送信する。gNB200(送信部210)は、制御状態問い合わせ又は制御状態送信設定を含むRRCメッセージをSR-UE100Bに送信してもよい。制御状態送信設定は、制御状態情報をSR-UE100BからgNB200に送信する周期を設定する情報、又は制御状態情報をSR-UE100BからgNB200に送信するトリガイベント(例えば、SR-UE100Bの無線状態(RSRP等)が閾値を上回ったというイベント、又は、SR-UE100Bの無線状態が閾値を下回ったというイベント)を設定する情報を含んでもよい。
 ステップS303において、SR-UE100B(送信部120)は、gNB200から受信した制御状態問い合わせ又は制御状態送信設定に基づいて、制御状態情報をgNB200に送信する。gNB200(制御部130)は、SR-UE100B(送信部120)は、gNB200から受信した制御状態情報に基づいて、SR-UE100B(SR装置500)における現在の制御状態を把握する。
 第4実施例によれば、SR-UE100BがSR装置500を自律的に制御する場合であっても、現在の制御状態をgNB200が把握できる。
 (5)第5実施例
 第5実施例において、SR-UE100BがgNB200間でハンドオーバを行う一例について説明する。図23は、第5実施例に係る動作を示す図である。
 図23に示すように、ステップS401において、SR-UE100B(制御部130)は、測定報告をgNB200Aに送信する。gNB200A(制御部230)は、SR-UE100Bから受信した測定報告に基づいて、gNB200Bに対するSR-UE100Bのハンドオーバを決定する。
 ステップS402において、gNB200A(バックホール通信部240)は、SR-UE100Bのハンドオーバを要求するハンドオーバ要求メッセージをgNB200Bに送信する。ここで、gNB200A(バックホール通信部240)は、gNB200AがSR-UE100Bに設定しているSR制御設定をハンドオーバ要求メッセージに含めてgNB200Bに送信してもよい。gNB200A(バックホール通信部240)は、SR-UE100BからgNB200Aが受信したSR装置情報をハンドオーバ要求メッセージに含めてgNB200Bに送信してもよい。
 gNB200B(制御部230)は、gNB200Aから受信したハンドオーバ要求に基づいて、SR-UE100Bのハンドオーバを承認するか否かを判定する。ここでは、ハンドオーバを承認すると判定したと仮定して説明を進める。
 ステップS403において、gNB200B(バックホール通信部240)は、ハンドオーバ承認メッセージをgNB200Aに送信する。gNB200B(バックホール通信部240)は、ハンドオーバ後にSR-UE100Bに設定するべきSR制御設定をハンドオーバ承認メッセージに含めてgNB200Aに送信してもよい。
 ステップS404において、gNB200A(送信部210)は、gNB200Bへのハンドオーバを指示するハンドオーバ指令をSR-UE100Bに送信する。gNB200A(送信部210)は、gNB200Bから受信したSR制御設定をハンドオーバ指令に含めてSR-UE100Bに送信してもよい。
 ステップS405において、SR-UE100B(制御部130)は、ハンドオーバ指令の受信に応じて、gNB200Bとのランダムアクセスプロシージャを行うことにより、gNB200Bとの無線接続を確立する。ハンドオーバ後において、SR-UE100B(制御部130)は、ハンドオーバ指令に含まれるSR制御設定に基づいてSR装置500を制御してもよい。
 第5実施例によれば、SR-UE100BがgNB200間でハンドオーバを行う場合であっても、SR-UE100Bのハンドオーバを適切に制御できる。
 [その他の実施形態]
 SR-UE100Bは、一旦gNB200と接続した場合、もしくはgNB200からのSR制御が行われた場合、RRCコネクティッド状態を維持することが望ましい。SR-UE100Bは、RRCインアクティブ状態又はRRCアイドル状態に遷移した場合(もしくはSR-UE100Bの電源オン時)、SR-UE100Bは、SR装置500をオムニモードもしくはこれに極力近い特性に制御してもよい。これにより、gNB200から制御されていないSR装置500が、意図せず既存のカバレッジエリアを狭くするなどの悪影響を防止することができる。
 上述の各動作フローは、別個独立に実施する場合に限らず、2以上の動作フローを組み合わせて実施可能である。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。
 上述の実施形態において、基地局がNR基地局(gNB)である一例について説明したが基地局がLTE基地局(eNB)であってもよい。また、基地局は、IAB(Integrated Access and Backhaul)ノード等の中継ノードであってもよい。基地局は、IABノードのDU(Distributed Unit)であってもよい。
 UE100(SR-UE100B)又はgNB200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM又はDVD-ROM等の記録媒体であってもよい。また、UE100(SR-UE100B)又はgNB200が行う各処理を実行する回路を集積化し、UE100(SR-UE100B)又はgNB200の少なくとも一部を半導体集積回路(チップセット、SoC:System on a chip)として構成してもよい。
 本開示で使用されている「に基づいて(based on)」、「に応じて(depending on)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。また、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。「含む(include)」、「備える(comprise)」、及びそれらの変形の用語は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。また、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。さらに、本開示で使用されている「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 以上、図面を参照して実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 本願は、日本国特許出願第2021-113807号(2021年7月8日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。
1    :移動通信システム
100  :UE
100B :SR-UE
110  :受信部
120  :送信部
130  :制御部
140  :インターフェイス
200  :gNB
210  :送信部
220  :受信部
230  :制御部
240  :バックホール通信部
500  :SR装置
510  :無線ユニット
510a :アンテナ部
510b :RF回路
510c :指向性制御部
520  :SR制御部

Claims (18)

  1.  基地局と無線端末との無線通信を中継する基地局制御型リピータを制御するリピータ制御無線端末が、前記基地局との無線接続を確立することと、
     前記リピータ制御無線端末が、前記基地局制御型リピータの能力及び前記基地局制御型リピータの制御状態のうち少なくとも一方を示す基地局制御型リピータ情報を無線通信により前記基地局に送信することと、を有する
     通信制御方法。
  2.  前記無線接続は、無線リソース制御(RRC)接続であり、
     前記送信することは、前記基地局制御型リピータ情報を情報要素として含むRRCメッセージを前記基地局に送信することを含む
     請求項1に記載の通信制御方法。
  3.  前記基地局制御型リピータ情報は、前記基地局制御型リピータが対応する周波数を示す対応周波数情報を含む
     請求項1又は2に記載の通信制御方法。
  4.  前記基地局制御型リピータ情報は、前記基地局制御型リピータが対応可能な動作モード又は前記動作モード間の切り替えに関するモード能力情報を含み、
     前記動作モードは、前記基地局制御型リピータが無指向性の送信及び/又は受信を行うモードと、前記基地局制御型リピータが固定の指向性の送信及び/又は受信を行うモードと、前記基地局制御型リピータが可変の指向性ビームによる送信及び/又は受信を行うモードと、前記基地局制御型リピータがMIMO中継伝送を行うモードと、の少なくともいずれか1つのモードである
     請求項1又は2に記載の通信制御方法。
  5.  前記基地局制御型リピータ情報は、前記基地局制御型リピータが可変の指向性ビームによる送信及び/又は受信を行うときのビーム可変範囲、ビーム可変解像度、又は可変パターン数を示すビーム能力情報を含む
     請求項1又は2に記載の通信制御方法。
  6.  前記基地局制御型リピータ情報は、前記基地局制御型リピータにおける制御遅延時間を示す情報を含む
     請求項1又は2に記載の通信制御方法。
  7.  前記基地局制御型リピータ情報は、前記基地局制御型リピータにおける電波の増幅特性又は出力電力特性に関する増幅特性情報を含む
     請求項1又は2に記載の通信制御方法。
  8.  前記基地局制御型リピータ情報は、前記基地局制御型リピータの設置位置を示す位置情報を含む
     請求項1又は2に記載の通信制御方法。
  9.  前記基地局制御型リピータ情報は、前記基地局制御型リピータが有するアンテナ本数を示すアンテナ情報を含む
     請求項1又は2に記載の通信制御方法。
  10.  前記リピータ制御無線端末が複数の基地局制御型リピータを制御する場合、前記リピータ制御無線端末から前記基地局に対して、前記複数の基地局制御型リピータのそれぞれの識別子及び前記複数の基地局制御型リピータの個数のうち少なくとも一方を示す情報を送信することをさらに有する
     請求項1又は2に記載の通信制御方法。
  11.  前記基地局制御型リピータ情報は、前記基地局制御型リピータが中継の対象としている電波の中心周波数を示す周波数状態情報を含む
     請求項1又は2に記載の通信制御方法。
  12.  前記基地局制御型リピータ情報は、前記基地局制御型リピータの動作モードを示すモード状態情報を含み、
     前記動作モードは、前記基地局制御型リピータが無指向性の送信及び/又は受信を行うモードと、前記基地局制御型リピータが固定の指向性の送信及び/又は受信を行うモードと、前記基地局制御型リピータが可変の指向性ビームによる送信及び/又は受信を行うモードと、前記基地局制御型リピータがMIMO中継伝送を行うモードと、のいずれかのモードである
     請求項1又は2に記載の通信制御方法。
  13.  前記基地局制御型リピータ情報は、前記基地局制御型リピータが指向性送信を行うときの送信方向、送信ウェイト、又はビームパターンを示すビーム状態情報を含む
     請求項1又は2に記載の通信制御方法。
  14.  前記リピータ制御無線端末が、前記基地局との前記無線接続を確立する際に、自無線端末が前記リピータ制御無線端末であることを示すリピータ制御無線端末情報を前記基地局に送信することをさらに有する
     請求項1又は2に記載の通信制御方法。
  15.  前記基地局が、前記リピータ制御無線端末から受信した前記基地局制御型リピータ情報を他の基地局に送信することと、
     前記リピータ制御無線端末が、前記基地局から前記他の基地局へのハンドオーバを行うことと、をさらに有する
     請求項1又は2に記載の通信制御方法。
  16.  前記リピータ制御無線端末が、前記基地局と前記基地局制御型リピータとの間のチャネル状態を示すチャネル状態情報を前記基地局に送信することと、
     前記基地局が、前記リピータ制御無線端末からの前記チャネル状態情報に基づいて、前記基地局制御型リピータに対する電波の送信指向性を制御することと、をさらに有する
     請求項1又は2に記載の通信制御方法。
  17.  移動通信システムにおいて基地局との無線通信を行う無線端末であって、
     前記基地局と他の無線端末との無線通信を中継する基地局制御型リピータを制御する制御部と、
     前記基地局制御型リピータの能力及び前記基地局制御型リピータの制御状態のうち少なくとも一方を示す基地局制御型リピータ情報を無線通信により前記基地局に送信する送信部と、を備える
     無線端末。
  18.  移動通信システムにおいて無線端末との無線通信を行う基地局であって、
     前記基地局と他の無線端末との無線通信を中継する基地局制御型リピータを制御する無線端末から、前記基地局制御型リピータの能力及び前記基地局制御型リピータの制御状態のうち少なくとも一方を示す基地局制御型リピータ情報を無線通信により受信する受信部を備える
     基地局。
PCT/JP2022/026684 2021-07-08 2022-07-05 通信制御方法、無線端末、及び基地局 WO2023282250A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023533137A JPWO2023282250A5 (ja) 2022-07-05 通信制御方法、無線端末、ネットワークノード、チップセット、移動通信システム、及びプログラム
US18/406,070 US20240147550A1 (en) 2021-07-08 2024-01-05 Communication control method, wireless terminal, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-113807 2021-07-08
JP2021113807 2021-07-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/406,070 Continuation US20240147550A1 (en) 2021-07-08 2024-01-05 Communication control method, wireless terminal, and base station

Publications (1)

Publication Number Publication Date
WO2023282250A1 true WO2023282250A1 (ja) 2023-01-12

Family

ID=84800671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026684 WO2023282250A1 (ja) 2021-07-08 2022-07-05 通信制御方法、無線端末、及び基地局

Country Status (2)

Country Link
US (1) US20240147550A1 (ja)
WO (1) WO2023282250A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120176958A1 (en) * 2011-01-11 2012-07-12 Telefonaktiebolaget L M Ericsson (Publ) Bandwidth Configuration and Reporting for Relay Links
US20130039254A1 (en) * 2010-05-07 2013-02-14 Lg Electronics Inc. Method for backhaul subframe setting between a base station and a relay node in a wireless communication system and a device therefor
US20210075497A1 (en) * 2019-09-05 2021-03-11 Qualcomm Incorporated Relay with a configurable mode of operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130039254A1 (en) * 2010-05-07 2013-02-14 Lg Electronics Inc. Method for backhaul subframe setting between a base station and a relay node in a wireless communication system and a device therefor
US20120176958A1 (en) * 2011-01-11 2012-07-12 Telefonaktiebolaget L M Ericsson (Publ) Bandwidth Configuration and Reporting for Relay Links
US20210075497A1 (en) * 2019-09-05 2021-03-11 Qualcomm Incorporated Relay with a configurable mode of operation

Also Published As

Publication number Publication date
JPWO2023282250A1 (ja) 2023-01-12
US20240147550A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
US12108422B2 (en) Methods and apparatuses for selecting beam in carrier aggregation
US11895525B2 (en) Apparatus and method in wireless communication system, and computer readable storage medium
WO2020063038A1 (en) Timing advance in new radio
WO2018141272A1 (zh) 终端、网络设备和通信方法
US12041477B2 (en) Apparatus and method in wireless communication system, and computer readable storage medium
CN110943848B (zh) 一种用于无线网络和多个ue之间的虚拟通信的方法及设备
CN110476364A (zh) 一种信号传输方法和装置
WO2014126022A1 (ja) 移動通信システム、通信装置、及びd2d端末
CN108886742A (zh) 5g新无线电中的波束成型公共信道
AU2018315005A1 (en) Apparatus and method of wireless communication system, and computer-readable storage medium
WO2022249821A1 (ja) 通信制御方法、無線端末、及び基地局
WO2022249820A1 (ja) 通信制御方法、無線端末、基地局、及びris装置
CN113840375B (zh) 用于寻呼的方法和装置
WO2024067244A1 (zh) 数据发送的方法和装置
WO2023282250A1 (ja) 通信制御方法、無線端末、及び基地局
JP6583435B2 (ja) 無線通信装置、無線通信システム、及び処理方法
WO2023282249A1 (ja) 通信制御方法、無線端末、及び基地局
WO2023163125A1 (ja) 通信制御方法及び制御端末
WO2024029517A1 (ja) 中継装置
WO2023163124A1 (ja) 通信方法、制御端末、及び基地局
WO2023204173A1 (ja) 制御端末、基地局、及び通信方法
WO2024048212A1 (ja) 通信方法及びネットワークノード
WO2024034563A1 (ja) 通信方法
WO2024171984A1 (ja) 通信方法及び中継装置
WO2023210422A1 (ja) 移動通信システム及び制御端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837665

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533137

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22837665

Country of ref document: EP

Kind code of ref document: A1