WO2011066793A1 - 用于传输中继链路下行控制信息的方法、基站与中继站及其资源映射方法 - Google Patents

用于传输中继链路下行控制信息的方法、基站与中继站及其资源映射方法 Download PDF

Info

Publication number
WO2011066793A1
WO2011066793A1 PCT/CN2010/079333 CN2010079333W WO2011066793A1 WO 2011066793 A1 WO2011066793 A1 WO 2011066793A1 CN 2010079333 W CN2010079333 W CN 2010079333W WO 2011066793 A1 WO2011066793 A1 WO 2011066793A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
pdcch
value
downlink control
relay
Prior art date
Application number
PCT/CN2010/079333
Other languages
English (en)
French (fr)
Inventor
吴栓栓
毕峰
梁枫
袁明
杨瑾
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011066793A1 publication Critical patent/WO2011066793A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of mobile communications, and in particular to a method for configuring downlink control information of a relay link, a transmission base station, a relay station, and a method. Background technique
  • the relay technology can increase the coverage and balance and increase the cell throughput.
  • the relay node has a relatively small configuration cost compared to the base station. Therefore, the relay is regarded as 3 GPP (3 rd Generation partnership Project, third Generation partnership Project, referred to as 3GPP) long Term Evolution (long Term Evolution, referred to as LTE) system evolved a long term evolution advanced (LTE-advanced, referred to as LTE-a) system, a Key technology.
  • 3 GPP 3 rd Generation partnership Project, third Generation partnership Project, referred to as 3GPP
  • LTE long Term Evolution
  • LTE-a long term evolution advanced
  • the LTE/LTE-A system downlink is based on Orthogonal Frequency Division Multiplexing (OFDM) technology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • communication resources are in the form of time-frequency two-dimensional.
  • downlink communication resources are divided in units of frames in the time direction, and each radio frame has a length of 10 ms and includes 10 subframes having a length of 1 ms ( Sub-frame ), as shown in Figure 1.
  • Sub-frame 10 subframes having a length of 1 ms
  • Each subframe is further divided into two slots (slots) in the time direction.
  • Each subframe may contain 14 or 12 OFDM symbols according to the length of the Cyclic Prefix (CP).
  • CP Cyclic Prefix
  • the subframe When the subframe uses the normal CP (Normal CP) length, the subframe contains 14 OFDM symbols, and each slot has 7 OFDM symbols.
  • the subframe When the subframe uses the extended CP (Extended CP) length, the subframe is within the subframe. Contains 12 OFDM symbols, each with 6 OFDM symbols. In the frequency direction, resources are divided into sub-carriers. In communication, the smallest unit of resource allocation is RB (Resource Block), and one physical resource block corresponding to physical resources (Physical RB, PRB) ).
  • a PRB contains 12 subcarriers in the frequency domain and one slot in the time domain. Two RBs adjacent to each other in the time domain of the subframe are called RB pairs. Every A resource corresponding to one subcarrier on one OFDM symbol is called a Resource Element (RE).
  • a schematic diagram of a physical resource structure under normal CP length is shown in Figure 2.
  • the original base station-terminal communication mode becomes the base station-relay station-terminal communication mode, wherein the base station-relay link is called a backhaul link, and the relay station-terminal link Known as an access link, a base-to-terminal link is called a direct link.
  • some terminals access the relay station and complete communication services through the relay station.
  • it is necessary to ensure backward compatibility with the terminal that is, to ensure that the previous version of the terminal (such as LTE Release-8, referred to as Rel-8) can also access the relay station of the LTE-A system.
  • a part of resources are allocated to ensure communication between the base station and the relay station.
  • the base station-relay station communication and the relay station-terminal communication are determined in a time division manner in the LTE-A system. Specifically, a part of the subframes are allocated in the downlink subframe for base station-relay communication, and these subframes are called relays ( Relay ) Subframe.
  • the Relay sub-frame is indicated as a Multicast Broadcast Single Frequency Network (MBSFN) sub-frame, so that the Rel-8 terminal can skip these sub-frames and complete Base station-relay communication ensures backward compatibility with Rel-8 terminals.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the structure of the Relay subframe is shown in Figure 3.
  • the RN sends control information to the subordinate terminal in the first or second OFDM symbols of the relay subframe, and then receives the transition time interval from the transmission state to the reception state, and then receives the relay link downlink data information from the base station. Since the relay station does not receive the Physical Downlink Control Channel (PDCCH) sent by the base station, it is necessary to redefine a physical channel relay link PDCCH (R-PDCCH) for the relay link. Transmission of downlink control information of the relay link.
  • PDCH Physical Downlink Control Channel
  • the PDCCH is transmitted in a number of consecutive Control Channel Elements (CCEs), and the CCEs in one subframe are interleaved for resource mapping.
  • CCE interleaved unit is a Resource Element Group (REG), and each REG contains 4 valid REs. Valid here refers to the number of REs used to transmit the PDCCH in each REG.
  • the main role of interleaving is frequency diversity and randomization of interference between cells.
  • the order of resource mapping is from the beginning of the subcarrier index and the OFDM symbol index,
  • the PDCCH region is mapped in the order of the time direction and the frequency direction.
  • the transmission resource of the R-PDCCH is located in the service domain of the Rel-8 system, so the new demodulation reference signal discussed in the LTE-A may be located in the R-PDCCH domain; unlike the PDCCH, the R-PDCCH may be only in the downlink part.
  • the intra-RB transmission of the bandwidth; the channel condition of the relay link may be better than that of the direct transmission link, so the data of the R-PDCCH may support a modulation mode and a code rate different from the PDCCH. Due to the above reasons, the design and transmission of the R-PDCCH may not directly follow the design and transmission method of the PDCCH.
  • the technical problem to be solved by the present invention is to provide a method for configuring downlink control information of a relay link, a transmitting base station, a relay station, and a method, and solving the problem of transmitting physical downlink control information of the relay link.
  • the present invention provides a method for transmitting downlink control information of a relay link, where the method includes:
  • R-PDCCH relay link physical downlink control channel
  • CCEs consecutive or discretely distributed control channel elements
  • Each of the CCEs includes N2 resource element groups, each resource element group includes N3 available resource units; or each of the CCEs includes N4 available resource units.
  • the value of the N1 is any one of the sets ⁇ 1, 2, 4, 8 ⁇ ; or
  • the value of the N1 is any one of the sets ⁇ 1, 2, 4 ⁇ ; or
  • the value of the N1 is any one of the sets ⁇ 1, 2 ⁇ ; or
  • the value of the N1 is any one of the sets ⁇ 1, 2, 3, 4 ⁇ ; or
  • the value of the N1 is any one of the sets ⁇ 1, 2, 3 ⁇ .
  • the N3 value is 4, and the value of the N2 is 6 or 7 or 8 or 9; or the value of the N3 is 3, and the value of the N2 is 6 or 8 or 9 or 10 or 12.
  • OFDM orthogonal frequency division multiplexing
  • the value of the N4 is 18 or 24 or 36.
  • All CCEs for transmitting each R-PDCCH in a subframe are subjected to resource mapping by interleaving with an REG as an interleaving unit, and the resources are physical resources for R-PDCCH transmission in a subframe; or, for transmitting the same R
  • the CCE of the PDCCH is subjected to resource mapping by interleaving with the REG as an interleaving unit, and the resource is a physical resource allocated for the R-PDCCH transmission.
  • the CCEs used to transmit the R-PDCCH in the subframe are not interleaved and perform resource mapping, and the resources are physical resources allocated for R-PDCCH transmission.
  • the unit of the resource mapping is a resource unit group or a resource unit
  • the order of the resource mapping is the first time direction and the backward frequency direction, or the first frequency direction and the back time direction.
  • the present invention also provides a method for configuring downlink control information of a relay link, including:
  • N2 resource unit groups are configured for the Control Channel Element (CCE) of each relay link; 3 or 4 available resource units are configured for each resource unit group.
  • CCE Control Channel Element
  • Each resource unit group includes 4 available resource units and the value of the N2 is 6 or 7 or 8 or 9; or
  • Each resource unit group includes 3 available resource units and the value of the N2 is 6 or 8 or 9 or 10 or 12.
  • the present invention also provides a method for transmitting downlink control information of a relay link, including:
  • each R-PDCCH Allocating n consecutive orthogonal frequency division multiplexing (OFDM) symbols in a resource block pair for relay link physical downlink control channel (R-PDCCH) transmission for transmitting the R-PDCCH, each R- The PDCCH is transmitted in one or more CCEs, each CCE includes N4 available resource units, and the N4 is the number of resource units after n OFDM symbols are removed from the corresponding frequency domain resources in one resource block pair. .
  • R-PDCCH relay link physical downlink control channel
  • the present invention further provides a base station for transmitting downlink control information of a relay link, including a configuration module and a sending module;
  • the configuration module is configured to: configure N1 consecutive or discretely distributed Control Channel Elements (CCEs) to transmit each Relay Link Physical Downlink Control Channel (R-PDCCH);
  • CCEs Control Channel Elements
  • Each of the CCEs includes N2 resource element groups, each of the resource element groups includes N3 available resource units, or each of the CCEs includes N4 available resource units;
  • the sending module is configured to: send the R-PDCCH on the CCE.
  • the value of the N1 is any one of the sets ⁇ 1, 2, 4, 8 ⁇ ; or
  • the value of the N1 is any one of the sets ⁇ 1, 2, 4 ⁇ ; or
  • the value of the N1 is any one of the sets ⁇ 1, 2 ⁇ ; or
  • the value of the N1 is any one of the sets ⁇ 1, 2, 3, 4 ⁇ ; or
  • the value of the N1 is any one of the sets ⁇ 1, 2, 3 ⁇ .
  • N3 is 4, and the value of the N2 is 6 or 7 or 8 or 9; or the value of the N3 is 3, and the value of the N2 is 6 or 8 or 9 or 10 or 12.
  • the configuration module is further configured to: allocate n consecutive orthogonal frequency division multiplexing (OFDM) symbols in the resource block pair of the R-PDCCH transmission for transmitting the R-PDCCH, where the value of the N4 is And the number of resource units after the reference signal is removed by the n OFDM symbols in the corresponding frequency domain resource of one resource block pair; or
  • OFDM orthogonal frequency division multiplexing
  • the value of the N4 is 18 or 24 or 36.
  • the base station further includes an interleaving module, where the interleaving module is configured to: interleave all CCEs transmitting each R-PDCCH with an REG as an interleaving unit; or interleave a CCE that transmits the same R-PDCCH with an REG as an interleaving unit. .
  • the base station further includes a mapping module, where the mapping module is configured to: perform resource mapping on the R-PDCCH, where the resource mapping unit is a resource unit group or a resource unit;
  • the order of the resource mapping is the first time direction and the backward frequency direction, or the first frequency direction and the back time direction.
  • a relay station for transmitting downlink control information of a relay link comprising a receiving module:
  • the receiving module is configured to: receive relay link downlink control information, where the relay link downlink control information is carried on a relay link physical downlink control channel R-PDCCH;
  • the R-PDCCH is transmitted on N1 consecutive or discretely distributed Control Channel Elements (CCEs);
  • Each CCE includes N2 resource unit groups, and each resource unit group includes N3 available resource units; or
  • Each CCE contains N4 available resource units.
  • the present invention also provides a resource mapping method for a relay link physical downlink control channel (R-PDCCH), the method comprising:
  • the resource mapping is performed in the order of the first frequency direction and the time direction; the mapped resource is the frequency domain subcarrier and the time domain OFDM symbol allocated for the one R-PDCCH transmission.
  • the resource mapping begins at a frequency domain subcarrier and a start of a time domain OFDM symbol for the one R-PDCCH transmission, and includes: in the OFDM symbol, a frequency used for the one R-PDCCH transmission Mapping at the beginning of the domain resource according to the frequency domain subcarrier index from the smallest to the largest; after the physical resource mapping for the one R-PDCCH transmission in the OFDM symbol is completed, according to the time domain OFDM symbol index Used in the next OFDM symbol of the resource
  • the present invention provides a method for configuring downlink control information of a relay link, a transmitting base station, a relay station, and a method, and solves the problem of transmitting physical downlink control information of a relay link, and the relay link described in the present invention.
  • the bearer of the physical downlink control information fully considers the structure of the downlink physical resources of the relay link, ensures the flexibility of multiplexing and transmitting the downlink control information of the relay link, and avoids the impact on the terminal.
  • FIG. 1 is a schematic diagram of a frame structure of an LTE/LTE-A system
  • FIG. 2 is a schematic structural diagram of physical resources of an LTE/LTE-A system
  • 3 is a schematic diagram of a structure of a Relay subframe
  • 4 is a schematic structural diagram of a base station according to the present invention
  • 5a to 5e are schematic diagrams of a relay link REG according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of a relay link CCE according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of a relay link CCE according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic diagram of a relay link CCE according to Embodiment 2 of the present invention.
  • 9a to 9c are schematic diagrams of a relay link REG according to Embodiment 3 of the present invention. Preferred embodiment of the invention
  • Embodiments of the present invention provide a method for transmitting physical downlink control information of a relay link and corresponding channel design.
  • the present invention provides a base station for transmitting downlink control information of a relay link.
  • the base station includes a configuration module, a mapping module, and a sending module, and the base station may further include an interleaving module.
  • a configuration module configured to configure N1 CCEs to transmit each R-PDCCH
  • Each CCE includes N2 REGs, each REG includes N3 REs, or each CCE includes N4 valid REs;
  • a sending module configured to send the R-PDCCH on the CCE.
  • N1 can be limited to any number of the set ⁇ 1, 2, 4, 8 ⁇ ; or any number of the set ⁇ 1, 2, 4 ⁇ ; or the set ⁇ 1, 2 ⁇ Any one of the numbers ⁇ 1, 2, 3, 4 ⁇ ; or any number of the set ⁇ 1, 2, 3 ⁇ .
  • N3 above is 4, and the value of N2 is 6 or 7 or 8 or 9;
  • N3 above is 3, and the value of N2 is 6 or 8 or 9 or 10 or 12.
  • the configuration module is further configured to allocate n consecutive OFDM symbols in one RB pair for transmitting the R-PDCCH, where the value of N4 is the number of REs in the n OFDM symbols after removing the reference signal in one RB pair; or The value of N4 is fixed at 18, 24 or 36.
  • the interleaving module may be used to interleave all CCEs transmitting each R-PDCCH with an REG as an interleaving unit; or, for a CCE transmitting the same R-PDCCH with an REG as an interleaving list
  • the elements are interwoven.
  • mapping module configured to perform resource mapping on the R-PDCCH, where the unit of the resource mapping may be REG or RE;
  • the order of the resource mapping may be the first time direction and the backward frequency direction, or the first frequency direction and the time direction.
  • resource mapping can be directly performed.
  • the present invention further provides a relay station for transmitting downlink control information of a relay link, comprising a receiving module, a receiving module, configured to receive downlink control information of the relay link, and downlink control information of the relay link is carried in a physical downlink of the relay link.
  • Control channel R-PDCCH Control channel
  • the R-PDCCH is transmitted on N1 consecutive or discretely distributed CCEs (Control Channel Elements); each CCE includes N2 resource element groups, each resource element group includes N3 effective resource units; or each CCE contains N4 valid resource units Resource unit.
  • the present invention also provides a method for configuring downlink control information of a relay link
  • Each resource unit group includes 4 available resource units and the value of N2 is 6 or 7 or 8 or 9; or
  • Each resource unit group includes 3 available resource units and the value of N2 is 6 or 8 or 9 or 10 or 12.
  • each R-PDCCH is transmitted in one or more CCEs, and each CCE includes N4 available
  • the resource unit, N4 is the number of available resource units after the reference signal is removed from the frequency domain resources corresponding to the n OFDM symbols in one resource block pair. That is, 1 CCE is in the frequency domain Should be 1 resource block (RB). Further, when the value of n is the number of OFDM symbols available in one resource block, one CCE is one resource block.
  • the present invention further provides a method for transmitting downlink control information of a relay link, where the base station configures N1 consecutive or discretely distributed CCEs for each R-PDCCH, where each CCE includes N2 REGs, and each resource unit group Contains N3 available REs; or, each CCE contains N4 available REs.
  • the relay link physical downlink control information described in the present invention may be transmitted after interleaving.
  • the interlace may be all interlaced, that is, the same processing manner as the PDCCH interlace in the LTE, and the CCE for transmitting the R-PDCCH in the subframe is interleaved with the REG as an interleaving unit; or is partially interleaved, that is, one R-PDCCH is transmitted.
  • the CCEs are interleaved with REG as an interleaving unit.
  • the resource mapping may be performed after the interleaving.
  • the sequence of the resource mapping may be the first time direction and the backward frequency direction, or the first frequency direction.
  • the physical downlink control information of the relay link described in the present invention may also not be interleaved, and each R-PDCCH is occupied by the R-PDCCH.
  • the resource mapping is performed in the resource.
  • the unit of the resource mapping is REG or RE.
  • the order of the resource mapping may be the first time direction after the frequency direction or the time direction after the time direction. When the unit of the resource mapping is RE, it is preferable to use the resource mapping order in the time direction after the frequency first.
  • the transmission of the downlink control information of the relay link may reduce the resource overhead without causing the transmission on the basis of the direct transmission link.
  • the performance is degraded.
  • a general way to reduce resource overhead is to use a higher order constellation modulation method, or to increase the transmission rate.
  • the way to change the code rate is usually done by rate matching.
  • the method of high-order modulation or increasing the transmission rate is adopted to achieve the purpose of reducing control signaling overhead.
  • PDCCH is modulated by Quaternary Phase Shift Keying (QPSK); for R-PDCCH, 16th-order quadrature amplitude modulation (16 Quadrature Amplitude) can be used. Modulation, 16QAM) even 64QAM modulation.
  • QPSK Quaternary Phase Shift Keying
  • 16QAM 16QAM
  • the size of the relay link CCE can be reduced to reduce the resource overhead.
  • the relay link resources are relatively limited, a smaller CCE can make it more flexible when allocating resources for the R-PDCCH.
  • each CCE includes N2 REGs, and each REG includes N3 valid REs
  • the size of the REG can be kept the same as the REG size of the LTE PDCCH, that is, each REG has 6 Or 4 REs, 6 REs corresponding to the RB, where there are up to 4 REs in the OFDM symbol for reference signal transmission, and 4 REs corresponding to the case where there is no reference signal transmission in the OFDM symbol; further, the REG can be kept valid.
  • the size is the same as the REG effective size of the LTE PDCCH, that is, the effective size is 4 RE/REG (N3 in each REG is 4); the structure of the REG in this example is described as shown in FIG. 4, where FIG. 5a indicates that there is no OFDM symbol. Referring to the REG example at the time of the reference signal, FIGS. 5b, 5c, 5d, and 5e depict REG diagrams with different reference signal patterns in the OFDM symbol.
  • the value of N2 may be 6 or 7 or 8 or 9; if the resource cost is reduced, the number of REGs included in each CCE may be smaller than the 9 REGs defined in the LTE PDCCH, that is, the CCE size of the relay link may be It is defined as 6 REGs, and the number of REs in a corresponding CCE is 24, or the CCE size can be defined as 7 REGs, and the number of REs in a corresponding CCE is 28, or the CCE size can be defined as 8 REG, the corresponding one CCE contains 32 REs.
  • the number N1 of CCEs for transmitting each R-PDCCH may be limited to any one of the sets ⁇ 1, 2, 4, 8 ⁇ , or the set ⁇ 1, 2, 4 Any number in ⁇ , or any number in the set ⁇ 1, 2 ⁇ , or any number in the set ⁇ 1, 2, 3, 4 ⁇ , or the set ⁇ 1, 2 Any number of 3 ⁇ ;
  • the channel-encoded data is rate-matched to ensure that the number of modulation symbols after constellation modulation can fill the CCE allocated by the R-PDCCH.
  • the rate matching manner of the LTE PDCCH is the same as that of the LTE PDCCH, and is not described here.
  • the data in the R-PDCCH can be resource mapped after interleaving.
  • the interleaving mode may be an interleaving unit in the REG, and may be all R-PDCCHs transmitted in a subframe-interleaving, that is, all CCEs in the subframe for R-PDCCH transmission are interleaved together with the REG as an interleaving unit;
  • the inter-interleaving is performed by one R-PDCCH, that is, the CCE transmitting one R-PDCCH is interleaved with the REG as an interleaving unit.
  • the specific interleaving method can use the same interleaving method as the LTE PDCCH interleaving, and details are not described herein again.
  • the frequency domain subcarriers and the start of the time domain OFDM symbol of the physical resources used for transmitting the R-PDCCH in the subframe after interleaving are used in units of REGs.
  • Resource mapping is performed in the order of the time direction and the frequency direction; if it is a CCE in an R-PDCCH, the interleaving is performed at the beginning of the frequency domain subcarrier and the time domain OFDM symbol of the physical resource used for transmitting the R-PDCCH.
  • the determination of the REG as a single-shot physical resource sequence is the same as the LTE PDCCH, and is not described here.
  • All R-PDCCHs transmitted in a subframe are interleaved, and the frequency domain subcarriers and the start of the time domain OFDM symbol of the physical resources used for transmitting the R-PDCCH in the subframe after interleaving are first used in the OFDM symbol.
  • the mapping from the beginning of the frequency domain resource for the R-PDCCH transmission in the next OFDM symbol is performed. Until all resource mappings within the OFDM symbols for R-PDCCH transmission are completed. If the CCEs in an R-PDCCH are interleaved, the same is true, except that the mapped physical resources only include resources for the R-PDCCH transmission, and details are not described herein again.
  • the size of the CCE of the relay link is reduced on the basis of the CCE size of the direct transmission link, which can save the overhead under the premise of ensuring the downlink control information transmission performance of the relay link, so that the resource allocation of the relay link is more flexible and effectively avoided. A waste of resources.
  • the resources occupied by the R-PDCCH may be different from the PDCCH, that is, the R-PDCCH is located in the service domain of the LTE Rel-8, and the R-PDCCH may occupy only a part of the RBs in the frequency domain.
  • This embodiment provides another method for configuring a CCE of a relay link and transmitting an R-PDCCH.
  • n consecutive OFDM symbols are allocated in one RB pair for transmitting R-PDCCH, and each R-PDCCH is transmitted in one or more CCEs, and each CCE includes N4 effective resource units, where N4 The value of the available RE number after removing the reference signal in the frequency domain resource corresponding to one RB pair in the n OFDM symbols; the reference signal includes but is not limited to the common reference signal and the demodulation reference signal.
  • n is the number of available OFDM symbols in one slot
  • one CCE corresponds to one RB, that is, each R-PDCCH is transmitted in one or more RBs.
  • each RB pair except the reference signal is removed.
  • the available resources in the R-PDCCH region have 32 REs, so the size N4 of the CCE is 32 REs, as shown by the shaded portion in FIG.
  • the subframe has an extended CP length
  • the R-PDCCH transmission occupies the 4th, 5th, and 6th OFDM symbols of the 1st slot in the relay subframe, as shown in FIG. 7, 20 reference signals are removed.
  • the size of the CCE is N6, which is 16 REs; as shown in FIG. 8, there are 16 reference signals in the 4th, 5th, and 6th OFDM symbols. Therefore, the size of the CCE N4 is 20 REs.
  • the size of the CCE of the relay link can also be set to a fixed value.
  • the principle is that one CCE can guarantee the reliability of the physical downlink control channel transmission of some relay links. For example, setting a CCE includes 18 resource unit REs, or setting one CCE to include 24 resource units RE, or setting one CCE to include 36 resource units RE, and so on.
  • the number of CCEs used for transmitting each R-PDCCH may be limited to being a set.
  • rate matching of channel-coded data for different CCE numbers The way to ensure that the number of modulation symbols after constellation modulation can fill the CCE allocated for the R-PDCCH.
  • the rate matching mode is the same as that of the LTE PDCCH, and is not described here.
  • the resource mapping can be directly performed without interleaving.
  • the resource mapping order may be the first frequency direction and the time direction. Specifically, at the beginning of the frequency domain subcarrier and the time domain OFDM symbol of the physical resource used for a certain R-PDCCH transmission, first in the OFDM symbol, Mapping from a small to a large subcarrier index from the beginning of the frequency domain resource used for the R-PDCCH transmission, after the physical resource mapping for the R-PDCCH transmission in the OFDM symbol is completed, and then following the time The domain OFDM symbol index is mapped from the beginning of the frequency domain resource for the R-PDCCH transmission in the next OFDM symbol until all resource mappings within the OFDM symbol for the R-PDCCH transmission are completed.
  • the unit of resource mapping may be a resource unit RE or a resource unit group REG.
  • the RE is preferably used as a unit of resource mapping. sequence. Specifically, in the frequency domain subcarriers and the start of the time domain OFDM symbol of the physical resource used for the R-PDCCH transmission, the resource mapping in the order of the time direction and the frequency direction in the REG unit is not described here.
  • the design method of the CCE size in this embodiment can fully ensure the effective utilization of the relay link resources and ensure the flexibility of the R-PDCCH to occupy resource allocation.
  • the embodiment Since the R-PDCCH occupation resource is different from the PDCCH, the embodiment provides another CCE for configuring the relay link and a method for transmitting the R-PDCCH.
  • each CCE configured includes N2 REGs, and each REG configured includes 3 valid REs, that is, N3 is 3.
  • An example of the definition of a REG under the normal CP length is shown in FIG.
  • FIG. 9a, FIG. 9b, and FIG. 9c respectively show REG forms without reference signals in an OFDM symbol of one PRB, and four REs in an OFDM symbol of one PRB for REG form of a reference signal, and a PRB. There are 6 REs in the OFDM symbol for the REG form of the reference signal.
  • each REG has 1 RE remaining.
  • the remaining 6 REs can be used for R-PDCCH transmission, which can form 2 REGs.
  • the REG in this example like the REG of the LTE PDCCH, does not cross the PRB, that is, each RE that constitutes the same REG is located in the same PRB.
  • the REG size in this example is defined in two forms: 3 REs in each REG, corresponding to the case where there is no reference signal in the OFDM symbol; 6 REs in each REG, corresponding to the OFDM symbol There are cases where there is a reference signal. However, the number of valid REs in each REG is three. As shown in Figure 9.
  • the value of N2 may be 6, corresponding to a CCE containing 18 REs, and the value of N2 may also be 8, corresponding to a CCE containing 24 REs, and the value of N2 may also be 9, corresponding to A CCE contains 27 REs, and the value of N2 can also be 10.
  • the value of N2 can also be 12, corresponding to a CCE containing 36 REs.
  • the number of CCEs used for transmitting each R-PDCCH may be any one of the sets ⁇ 1, 2, 4, 8 ⁇ , or any of the sets ⁇ 1, 2, 4 ⁇ 1 number, or any number in the set ⁇ 1, 2 ⁇ , or any number in the set ⁇ 1, 2, 3, 4 ⁇ , or in the set ⁇ 1, 2, 3 ⁇
  • the rate-matched data of the downlink control information channel of the relay link is matched to ensure that the number of modulation symbols after the constellation modulation can fill the CCE occupied by the R-PDCCH.
  • the rate matching mode is the same as that of the LTE PDCCH, and is not described here.
  • the CCE transmitting the R-PDCCH may perform resource mapping after interleaving.
  • the interlace uses the REG as an interleaving unit to interleave all CCEs in the subframe for transmitting the R-PDCCH together, and after the interleaving, transmits the R-PDCCH in the subframe in the order of the first time direction and the subsequent frequency direction in the REG unit.
  • the resource is mapped by the resource; or the CCEs in one R-PDCCH are interleaved, that is, each CCE transmitting the same R-PDCCH is interleaved by using the REG as an interleaving unit, and the interleaving is performed in the REG direction in the first time direction and the backward frequency direction.
  • Resource mapping is performed in a resource in which the R-PDCCH is transmitted in a subframe.
  • the specific interleaving method can use the same method as the LTE PDCCH interleaving, and details are not described herein again.
  • the specific method of mapping the first time direction and the backward frequency direction is the same as that in LTE, except that the size of the REG and the range of the frequency domain and the time domain of the mapping resource are changed.
  • the sequence of REG triples that are about to be mapped is represented as i ⁇ )(0), ..., i ⁇ )(M - 1), that is, one element in the sequence represents one REG, and contains three constellation modulation symbols. There are a total of M REGs.
  • Table 1 a specific example of a resource mapping is shown in Table 1.
  • step 4) If the resource unit (k', /') represents a REG assigned to the R-PDCCH, then perform steps 5) and 6), otherwise perform step 7);
  • 0 ⁇ m' ⁇ M1 represents the index of the REG group, and if it is an R-PDCCH interlace, M represents the number of REGs occupied by one R-PDCCH; if it is interlaced by the R-PDCCH in the subframe, M represents The number of REGs occupied by all R-PDCCHs in a subframe.
  • K start ⁇ k' ⁇ Struktur d denotes a frequency domain subcarrier index. If it is an R-PDCCH for interleaving, it is the starting subcarrier number of the R-PDCCH in the frequency domain, and is the end of the R-PDCCH in the frequency domain.
  • the R-PDCCH in the subframe is interleaved, it is the starting subcarrier number of the R-PDCCH region in the frequency domain in the subframe, and is the end subcarrier number of the R-PDCCH in the frequency domain in the subframe.
  • L t ⁇ !' ⁇ L end shows the time domain OFDM symbol index
  • is the starting OFDM symbol number of the R-PDCCH
  • P in Table 1 indicates the R-PDCCH transmission
  • the antenna port number, that is, the R-PDCCH can be transmitted by multiple antennas.
  • the resource unit ( , ⁇ ') represents a REG allocated to the R-PDCCH, and the ', ⁇ ') is the starting RE of the REG, that is, The REs of the REs constituting the REG have the smallest RE index.
  • the REG size here is the actual size, that is, the REG includes 3 or 6 REs. All R-PDCCHs transmitted in the subframe are interleaved, and are used after interleaving.
  • the frequency domain subcarrier of the physical resource transmitted by the intra R-PDCCH and the start of the time domain OFDM symbol first within the OFDM symbol, from the RP for The beginning of the frequency domain resource transmitted by the DCCH, from small to large according to the subcarrier index Thereafter, mapping is performed from the beginning of the frequency domain resource for R-PDCCH transmission in the next OFDM symbol according to the time domain OFDM symbol index until resource mapping of all OFDM symbols for R-PDCCH transmission is completed. If the interleaving is performed in an R-PDCCH, the resource mapping order in the time direction after the frequency direction is the same as that in the R-PDCCH in the subframe, except that the mapped physical resources only include the R-PDCCH transmission. Resources, no more details here.
  • the design of the CCE and the REG fully considers the structure of the physical resources of the relay link, and effectively avoids the waste of the physical resources of the relay link.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module. Thus, the invention is not limited to any particular combination of hardware and software.
  • the present invention provides a method for configuring downlink control information of a relay link, a transmission base station, a relay station, and a method, and solves the problem of transmitting physical downlink control information of a relay link, and the physical downlink of the relay link described in the present invention
  • the bearer of the control information fully considers the structure of the downlink physical resources of the relay link, ensures the flexibility of multiplexing and transmitting the downlink control information of the relay link, and avoids the impact on the terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

用于传输中继链路下行控制信息的方法、 基站与中继站
及其资源映射方法
技术领域
本发明涉及移动通信领域, 具体而言, 涉及一种中继链路下行控制信息 配置方法及传输基站、 中继站与方法。 背景技术
目前, 移动通信的发展要求是能支持更高的传输速率、 更完善的信号覆 盖以及更高的资源利用率。 为了达到高传输速率, 下一代移动通信系统将釆 用更高频率带宽传输信号, 而更高的频率带宽同时将带来更大的路径损耗, 影响网络覆盖。 中继 (Relay )技术能够增加覆盖和平衡并增加小区吞吐量, 并且, 中继节点(Relay Node, 简称 RN )相比于基站, 具有相对较小的配置 成本, 因此, 中继被视为 3 GPP ( 3rd Generation Partnership Project, 第三代合 作伙伴计划, 简称 3GPP )长期演进( Long Term Evolution, 简称为 LTE ) 的 演进系统 一 高级长期演进(LTE-Advanced, 简称 LTE-A ) 系统中的一项关 键技术。
LTE/LTE-A系统下行链路以正交频分复用( Orthogonal Frequency Division Multiplexing, OFDM )技术为基础。 在 OFDM系统中, 通信资源是时-频两维 的形式。例如,在 LTE系统中 ,下行链路的通信资源在时间方向上以帧( frame ) 为单位划分,每个无线帧( radio frame )长度为 10 ms, 包含 10个长度为 1 ms 的子帧( sub-frame ),如图 1所示。每个子帧在时间方向又分为两个时隙( slot )。 根据循环前缀( Cyclic Prefix, 简称 CP )长度的不同, 每个子帧可以包含 14 个或者 12个 OFDM符号。 当子帧釆用普通 CP ( Normal CP )长度时, 子帧 内包含 14个 OFDM符号,每个时隙有 7个 OFDM符号; 当子帧釆用扩展 CP ( Extended CP )长度时,子帧内包含 12个 OFDM符号 ,每个时隙有 6个 OFDM 符号。 在频率方向, 资源以子载波(sub-carrier )为单位划分, 具体在通信中, 资源分配的最小单位是 RB ( Resource Block, 资源块) , 对应物理资源的一 个物理资源块( Physical RB, PRB )。 一个 PRB在频域包含 12个子载波, 在 时域对应一个时隙。 子帧内时域相邻的两个 RB称为 RB对(RB pair ) 。 每 个 OFDM符号上对应一个子载波的资源称为资源单元( Resource Element, 简 称 RE ) 。 普通 CP长度下的一个物理资源结构示意图如图 2所示。
引入中继站之后, 相当于数据的传输多了一跳。 以两跳系统为例, 原来 的基站 -终端的通信模式变成了基站-中继站 -终端的通信模式, 其中基站 -中继 站链路被称为中继链路(backhaul link ) , 中继站 -终端链路被称为接入链路 ( access link ) ,基站-终端链路被称为直传链路( direct link )。在多跳系统中, 一部分终端接入到中继站下, 通过中继站完成通信业务。 引入中继站之后, 需要保证对于终端的后向兼容性, 即保证以前版本的终端 (比如 LTE Release-8, 简称 Rel-8 )也能接入到 LTE-A系统的中继站下, 这时候就需要 在不影响中继站下属终端通信的前提下, 划分出一部分资源以确保基站和中 继站之间的通信。 目前 LTE-A系统中确定基站-中继站通信和中继站 -终端通 信以时分方式进行, 具体的, 在下行子帧中划分出一部分子帧用于基站 -中继 站通信, 这些子帧被称为中继 (Relay )子帧。 对于中继站下属的 Rel-8终端 来说, Relay 子帧被指示为多播广播单频网络 ( Multicast Broadcast Single Frequency Network, 简称 MBSFN )子帧,从而 Rel-8终端可以跳过这些子帧 , 在完成基站-中继站通信的同时, 保证了对于 Rel-8 终端的后向兼容性。 在 LTE-A系统中 , Relay子帧的结构如图 3所示。
RN在 Relay子帧的前 1或 2个 OFDM符号中向下属终端发送控制信息, 之后经过从发送状态到接收状态切换的转换时间间隔, 再从基站接收中继链 路下行数据信息。 由于中继站接收不到基站发送的物理下行控制信道 ( Physical Downlink Control Channel, 简称 PDCCH ) , 于是需要在中继链路 重新定义一个物理信道中继链路 PDCCH ( Relay-PDCCH, R-PDCCH )用于 中继链路下行控制信息的传输。
在 LTE/LTE-A系统中, PDCCH在若干个连续的控制信道单元(Control Channel Element, 简称 CCE )中传输, 并且一个子帧内的 CCE经过交织之后 进行资源映射。 CCE交织的单元是资源单元组(Resource Element Group, 简 称 REG ) , 每个 REG中包含 4个有效 RE。 这里的有效是指每个 REG中用 于传输 PDCCH的 RE数目。交织的主要作用是频率分集和小区之间干扰的随 机化。 资源映射的顺序是从子载波索引和 OFDM符号索引的起始处, 在 PDCCH域内以先时间方向后频率方向的顺序进行映射。
R-PDCCH的传输资源位于 Rel-8系统的业务域,因此 LTE-A中讨论的新 的解调参考信号可能会位于 R-PDCCH域; 不同于 PDCCH, R-PDCCH可能 只在下行链路部分带宽的 RB 内传输; 相比于直传链路, 中继链路信道状况 可能会比较好,因此 R-PDCCH的数据可能会支持不同于 PDCCH的调制方式 和码率。 由于上述原因, 导致 R-PDCCH 的设计与传输可能无法直接沿用 PDCCH的设计与传输方法。
目前在 3GPP LTE-A相关技术的讨论中, 关于 R-PDCCH的细节问题的 讨论, 如 CCE、 REG等, 仍然没有充分展开。 发明内容
本发明要解决的技术问题是提供一种中继链路下行控制信息配置方法及 传输基站、 中继站与方法, 解决了中继链路物理下行控制信息的发送问题。
为了解决上述问题, 本发明提供了一种中继链路下行控制信息的传输方 法, 所述方法包括:
基站向中继站发送下行控制信息时, 在 N1 个连续或者离散分布的控制 信道单元(CCE )上传输一个中继链路物理下行控制信道(R-PDCCH ) ; 以 及
每个所述 CCE包含 N2个资源单元组, 每个资源单元组包含 N3个可用 资源单元; 或者, 每个所述 CCE包含 N4个可用资源单元。
所述 N1的取值为集合 {1、 2、 4、 8}中的任意 1个数; 或者,
所述 N1的取值为集合 {1、 2、 4}中的任意 1个数; 或者,
所述 N1的取值为集合 {1、 2}中的任意 1个数; 或者,
所述 N1的取值为集合 {1、 2、 3、 4}中的任意 1个数; 或者,
所述 N1的取值为集合 {1、 2、 3}中的任意 1个数。
所述 N3的取值为 4 , 所述 N2的取值为 6或 7或 8或 9; 或者, 所述 N3的取值为 3 , 所述 N2的取值为 6或 8或 9或 10或 12。 在用于所述 R-PDCCH传输的资源块对中分配 n个连续的正交频分复用 ( OFDM )符号用于传输所述 R-PDCCH, 所述 N4的值为所述 n个 OFDM符 号在一个资源块对所对应频域资源内除去参考信号后的资源单元的个数。
所述 N4的取值为 18或 24或 36。
子帧中用于传输各 R-PDCCH的所有 CCE以 REG为交织单元经过交织 后进行资源映射, 所述资源是子帧中用于 R-PDCCH传输的物理资源; 或者, 用于传输同一个 R-PDCCH的 CCE以 REG为交织单元经过交织后进行资源 映射, 所述资源是为该 R-PDCCH传输所分配的物理资源。
子帧中用于传输所述 R-PDCCH的 CCE不交织并进行资源映射, 所述资 源是用于 R-PDCCH传输所分配的物理资源。
所述资源映射的单元是资源单元组或资源单元;
所述资源映射的顺序为先时间方向后频率方向, 或者为先频率方向后时 间方向。
本发明还提供一种中继链路下行控制信息的配置方法, 包括:
为每个中继链路的控制信道单元( CCE )配置 N2个资源单元组; 为每个 资源单元组配置 3个或 4个可用资源单元。
每个资源单元组包括 4个可用资源单元并且所述 N2的取值为 6或 7或 8 或 9; 或者,
每个资源单元组包括 3个可用资源单元并且所述 N2的取值为 6或 8或 9 或 10或 12。
本发明还提供一种中继链路下行控制信息的传输方法, 包括:
在用于中继链路物理下行控制信道(R-PDCCH )传输的资源块对中分配 n 个连续的正交频分复用 (OFDM ) 符号用于传输所述 R-PDCCH, 每个 R-PDCCH在 1个或者多个 CCE中传输,每个 CCE包含 N4个可用资源单元, 所述 N4为 n个 OFDM符号在一个资源块对所对应频域资源内除去参考信号 后的资源单元的个数。
本发明还提供一种传输中继链路下行控制信息的基站, 包括配置模块及 发送模块; 所述配置模块设置为: 配置 N1 个连续或者离散分布的控制信道单元 ( CCE )传输每个中继链路物理下行控制信道(R-PDCCH ) ;
每个所述 CCE包括 N2个资源单元组, 每个所述资源单元组包括 N3个 可用资源单元, 或者每个所述 CCE包括 N4个可用资源单元;
所述发送模块设置为: 在所述 CCE上发送所述 R-PDCCH。
所述 N1的取值为集合 {1、 2、 4、 8}中的任意 1个数; 或者,
所述 N1的取值为集合 {1、 2、 4}中的任意 1个数; 或者,
所述 N1的取值为集合 {1、 2}中的任意 1个数; 或者,
所述 N1的取值为集合 {1、 2、 3、 4}中的任意 1个数; 或者,
所述 N1的取值为集合 {1、 2、 3}中的任意 1个数。
所述 N3的取值为 4, 且所述 N2的取值为 6或 7或 8或 9; 或者, 所述 N3的取值为 3 , 且所述 N2的取值为 6或 8或 9或 10或 12。
所述配置模块还设置为: 在所述 R-PDCCH传输的资源块对中分配 n个 连续的正交频分复用 (OFDM )符号用于传输所述 R-PDCCH, 所述 N4的值 为所述 n个 OFDM符号在一个资源块对所对应频域资源内除去参考信号后的 资源单元的个数; 或者,
所述 N4的取值为 18或 24或 36。
所述基站还包括交织模块, 所述交织模块设置为: 对传输各 R-PDCCH 的所有 CCE以 REG为交织单元进行交织; 或者, 对传输同一个 R-PDCCH 的 CCE以 REG为交织单元进行交织。
所述基站还包括映射模块, 所述映射模块设置为: 对所述 R-PDCCH进 行资源映射, 所述资源映射的单元是资源单元组或资源单元;
所述资源映射的顺序为先时间方向后频率方向, 或者为先频率方向后时 间方向。
一种传输中继链路下行控制信息的中继站, 包括接收模块:
所述接收模块设置为: 接收中继链路下行控制信息, 所述中继链路下行 控制信息承载于中继链路物理下行控制信道 R-PDCCH; 所述 R-PDCCH在 Nl个连续或者离散分布的控制信道单元( CCE )上传 输;
所述每个 CCE包含 N2个资源单元组, 每个资源单元组包含 N3个可用 资源单元; 或者,
每个 CCE包含 N4个可用资源单元。
本发明还提供了一种中继链路物理下行控制信道(R-PDCCH )的资源映 射方法, 所述方法包括:
对于非交织 R-PDCCH, 釆用先频率方向后时间方向的顺序进行资源映 射; 所述映射的资源为用于所述一个 R-PDCCH传输所分配的频域子载波和 时域 OFDM符号。
所述资源映射从用于所述一个 R-PDCCH传输的频域子载波和时域 OFDM符号起始处开始, 包括: 在所述 OFDM符号内, 从用于所述一个 R-PDCCH传输的频域资源的起始处,按照频域子载波索引从小到大的顺序进 行映射; 所述 OFDM符号内用于所述一个 R-PDCCH传输的物理资源映射完 成后, 按照时域 OFDM符号索引从所述资源的下一个 OFDM符号内用于该
综上所述,本发明提供一种中继链路下行控制信息配置方法及传输基站、 中继站与方法, 解决了中继链路物理下行控制信息的发送问题, 同时本发明 描述的中继链路物理下行控制信息的承载充分考虑了中继链路下行物理资源 的结构, 保证了中继链路下行控制信息复用与传输的灵活性, 同时避免了对 于终端的影响。 附图概述
图 1是 LTE/LTE-A系统的帧结构示意图;
图 2是 LTE/LTE-A系统的物理资源结构示意图;
图 3是 Relay子帧结构示意图; 图 4是本发明基站结构示意图;
图 5a至图 5e是本发明实施例 1的中继链路 REG示意图;
图 6是本发明实施例 2的中继链路 CCE示意图;
图 7是本发明实施例 2的中继链路 CCE示意图;
图 8是本发明实施例 2的中继链路 CCE示意图;
图 9 a至图 9c是本发明实施例 3的中继链路 REG示意图。 本发明的较佳实施方式
在目前 3GPP LTE-A相关技术的讨论中, 关于中继链路物理下行控制信 道传输的细节问题还未有充分的讨论。 本发明的实施例提供了中继链路物理 下行控制信息的发送与相应信道设计的方法。
本发明提供一种传输中继链路下行控制信息的基站, 如图 4所示, 该基 站包括配置模块、 映射模块及发送模块, 该基站还可以包括交织模块;
配置模块, 用于配置 N1个 CCE传输每个 R-PDCCH;
每个 CCE包括 N2个 REG,每个 REG包括 N3个 RE, 或者每个 CCE包 括 N4个有效 RE;
发送模块, 用于在 CCE上发送 R-PDCCH。
N1的取值可以限定为集合 {1、 2、 4、 8}中的任意 1个数; 或者为集合 {1、 2、 4}中的任意 1个数; 或者为集合 {1、 2}中的任意 1个数; 或者为集合 {1、 2、 3、 4}中的任意 1个数; 或者为集合 {1、 2、 3}中的任意 1个数。
上述 N3的取值为 4, 且此时 N2的取值为 6或 7或 8或 9;
上述 N3的取值为 3 , 且此时 N2的取值为 6或 8或 9或 10或 12。
配置模块还用于在一个 RB对中分配 n个连续的 OFDM符号用于传输 R-PDCCH, N4的值为该 n个 OFDM符号中在一个 RB对内除去参考信号后 的 RE的个数; 或者 N4的值固定为 18、 24或者 36。
交织模块, 可以用于对传输各 R-PDCCH的所有 CCE以 REG为交织单 元进行交织; 或者, 用于对传输同一个 R-PDCCH的 CCE以 REG为交织单 元进行交织。
映射模块,用于对 R-PDCCH进行资源映射,资源映射的单元可以是 REG 或 RE;
资源映射的顺序可以为先时间方向后频率方向, 也可以为先频率方向后 时间方向。
当基站不包含交织模块时, 可以直接进行资源映射。
本发明还提供一种传输中继链路下行控制信息的中继站,包括接收模块; 接收模块, 用于接收中继链路下行控制信息, 中继链路下行控制信息承 载于中继链路物理下行控制信道 R-PDCCH;
R-PDCCH在 N1个连续或者离散分布的 CCE (控制信道单元)上传输; 每个 CCE包含 N2个资源单元组, 每个资源单元组包含 N3个有效资源 单元; 或者每个 CCE包含 N4个有效资源单元。
本发明还提供一种中继链路下行控制信息的配置方法,
方法 ( a ) :
为中继链路的每个 CCE配置 N2个资源单元组; 为每个资源单元组配置 3个或 4个可用资源单元。
每个资源单元组包括 4个可用资源单元并且 N2的取值为 6或 7或 8或 9; 或者,
每个资源单元组包括 3个可用资源单元并且 N2的取值为 6或 8或 9或 10或 12。
方法 ( b ) :
在用于 R-PDCCH传输的资源块对中分配 n个连续的 OFDM符号用于传 输所述 R-PDCCH, 每个 R-PDCCH在 1个或者多个 CCE中传输, 每个 CCE 包含 N4个可用资源单元, N4为 n个 OFDM符号在一个资源块对所对应的频 域资源内除去参考信号后的可用资源单元的个数。 也即, 1个 CCE在频域对 应 1个资源块(RB )。 进一步的, 当 n的值为一个资源块内可用的 OFDM符 号数时, 1个 CCE即为 1个资源块。
本发明还提供一种中继链路下行控制信息的传输方法, 基站为每个 R-PDCCH配置 N1个连续或者离散分布的 CCE进行传输, 其中每个 CCE包 含 N2个 REG, 每个资源单元组包含 N3个可用 RE; 或者, 每个 CCE包含 N4个可用 RE。
本发明描述的中继链路物理下行控制信息可以在交织之后传输。 交织可 以是全部交织, 即釆用与 LTE中 PDCCH交织相同的处理方式, 子帧内用于 传输 R-PDCCH的 CCE以 REG为交织单元进行交织; 或者是部分交织, 即 传输某一个 R-PDCCH的 CCE以 REG为交织单元进行交织。 交织之后进行 资源映射, 资源映射的顺序可以是先时间方向后频率方向, 或者先频率方向 本发明描述的中继链路物理下行控制信息也可以不进行交织, 每一个 R-PDCCH在其占用的资源内进行资源映射 ,资源映射的单元是 REG或者 RE, 资源映射的顺序可以是先频率方向后时间方向,或者先时间方向后频率方向。 当资源映射的单元是 RE时, 优选釆用先频率后时间方向的资源映射顺序。
实施例 1
通常认为, 相比于直传链路, 中继链路的信道状况比较好, 因此中继链 路下行控制信息的传输可能会在直传链路的基础上减小资源开销而不会导致 传输的性能下降。一般的降低资源开销的方式有使用更高阶的星座调制方式, 或者增大传输的码率等。 改变码率的方式一般通过速率匹配( rate matching ) 的方式完成。
例如, 考虑到中继链路信道状况比较好, 从而釆用高阶调制或者增大传 输码率的方式以达到降低控制信令开销的目的。 例如, 在 LTE 中, PDCCH 釆用四相相移键控 ( Quaternary Phase Shift Keying, QPSK ) 的方式调制; 而 对于 R-PDCCH, 可以釆用 16 阶正交幅度调制 (16 Quadrature Amplitude Modulation, 16QAM )甚至 64QAM调制的方式。 提高调制阶数或者增大传 输码率后, 进而可以减小中继链路 CCE的大小达到降低资源开销的目的。 另 一方面, 由于中继链路资源比较有限, 更小的 CCE可以使得为 R-PDCCH分 配资源时更加灵活。
基于以上原因,本实例中 CCE设计的原则是,每个 CCE包含 N2个 REG, 每个 REG包含 N3个有效 RE,可保持 REG的大小与 LTE PDCCH的 REG大 小相同, 即每个 REG有 6个或者 4个 RE, 6个 RE对应于 RB内, OFDM符 号中最多有 4个 RE用于参考信号传输的情况, 4个 RE对应于 OFDM符号中 没有参考信号传输的情况; 进一步可保持 REG的有效大小与 LTE PDCCH的 REG有效大小相同, 即有效大小为 4 RE/REG (每个 REG中 N3为 4 ) ; 如 图 4所示描述了本实例中 REG的结构, 其中图 5a表示 OFDM符号中没有参 考信号时的 REG例子, 图 5b、 图 5c、 图 5d及图 5e描述了 OFDM符号中具 有不同参考信号图样时的 REG示意图。
N2的取值可以为 6或 7或 8或 9; 如果为降低资源开销, 可以设置每个 CCE包含的 REG的个数小于 LTE PDCCH中定义的 9 个 REG, 即中继链路 的 CCE大小可以定义为 6个 REG,相应的一个 CCE包含的 RE的个数为 24, 或者 CCE大小可以定义为 7个 REG, 相应的一个 CCE包含的 RE的个数为 28, 或者 CCE大小可以定义为 8个 REG, 相应的一个 CCE包含的 RE的个 数为 32。
在本实施例中, 用于传输每个 R-PDCCH的 CCE的个数 N1可以限定为 是集合 {1、 2、 4、 8}中的任意 1个数, 或者是集合 {1、 2、 4}中的任意 1个数, 或者是集合 {1、 2}中的任意 1个数, 或者是集合 {1、 2、 3、 4}中的任意 1个 数, 或者是集合 {1、 2、 3}中的任意 1个数; 对于不同的 CCE数目, 通过对 信道编码后的数据进行速率匹配的方式以保证星座调制后的调制符号数可以 填满 R-PDCCH所分配的 CCE。 具体的速率匹配的方式可以与 LTE PDCCH 的速率匹配方式相同, 这里不再赘述。
R-PDCCH中的数据可以在交织之后进行资源映射。交织方式可以以 REG 为交织单元, 可以是子帧内传输的所有 R-PDCCH—起交织, 即子帧内用于 R-PDCCH传输的所有 CCE以 REG为交织单元一起进行交织; 交织方式还可 以是一个 R-PDCCH内部进行交织, 即传输某一个 R-PDCCH的 CCE以 REG 为交织单元进行交织。 具体的交织方法可以釆用与 LTE PDCCH交织相同的 交织方法, 这里不再赘述。 如果是子帧内传输的所有 R-PDCCH—起交织, 交织之后在子帧内用于传输 R-PDCCH 的物理资源的频域子载波和时域 OFDM符号起始处,以 REG为单位釆用先时间方向后频率方向的顺序进行资 源映射; 如果是一个 R-PDCCH内的 CCE进行交织, 交织之后在用于传输该 R-PDCCH的物理资源的频域子载波和时域 OFDM符号起始处,以 REG为单 射物理资源顺序的确定与 LTE PDCCH相同, 这里不再赘述。 子帧内传输的所有 R-PDCCH —起交织, 交织之后在子帧内用于传输 R-PDCCH的物理资源的频域子载波和时域 OFDM符号起始处,首先在 OFDM 符号内, 从用于 R-PDCCH传输的频域资源的起始处, 按照子载波索引从小 完成之后, 接着根据时域 OFDM符号索引从下一个 OFDM符号内用于 R-PDCCH传输的频域资源起始处进行映射, 直到所有用于 R-PDCCH传输的 OFDM符号内的资源映射都完成。如果是一个 R-PDCCH内的 CCE进行交织, 相同, 只是这时映射的物理资源只包括用于该 R-PDCCH传输的资源, 这里 不再赘述。
在直传链路 CCE大小基础上减小中继链路 CCE的大小, 可在保证中继 链路下行控制信息传输性能的前提下节省开销, 使得中继链路的资源分配更 加灵活, 有效避免了资源的浪费。
实施例 2
对于中继站来说, R-PDCCH 占用的资源可能会不同于 PDCCH , 即 R-PDCCH位于 LTE Rel-8的业务域, 并且 R-PDCCH在频域可能只会占用一 部分 RB。 本实施例提供了另外一种配置中继链路的 CCE及传输 R-PDCCH 的方法。 具体的 ,在一个 RB对中分配 n个连续的 OFDM符号用于传输 R-PDCCH, 每个 R-PDCCH在 1个或者多个 CCE中传输,每个 CCE包含 N4个有效资源 单元, 此时 N4的值为该 n个 OFDM符号中在一个 RB对所对应的频域资源 内除去参考信号后的可用 RE个数; 上述参考信号包括但不限于公共参考信 号及解调参考信号。 当 n是一个时隙内的可用 OFDM符号数时, 1个 CCE即 对应于 1个 RB, 即每个 R-PDCCH在 1个或者多个 RB中传输。
例如,假设子帧具有普通 CP长度, 并假设 R-PDCCH传输占用中继子帧 中第 1个时隙的第 4、 5、 6、 7个 OFDM符号, 那么除去参考信号之外, 每 个 RB对中 R-PDCCH域的可用资源有 32个 RE, 从而 CCE的大小 N4为 32 个 RE, 如图 6中的阴影部分所示。
又如,假设子帧具有扩展 CP长度, 并假设 R-PDCCH传输占用中继子帧 中第 1个时隙的第 4、 5、 6个 OFDM符号, 如图 7所示, 除去 20个参考信 号之外, 每个 RB对中 R-PDCCH域的可用资源有 16个 RE, 从而 CCE的大 小 N4为 16个 RE; 如图 8所示, 第 4、 5、 6个 OFDM符号中共有 16个参考 信号, 因此 CCE的大小 N4为 20个 RE。
在本例中, 中继链路 CCE的大小也可以设置为固定值, 设定的原则是 1 个 CCE可以保证部分中继链路物理下行控制信道传输的可靠性。例如设定一 个 CCE包含 18个资源单元 RE, 或者设定一个 CCE包含 24个资源单元 RE, 或者设定一个 CCE包含 36个资源单元 RE, 等等。
在本实施例中, 用于传输每个 R-PDCCH的 CCE个数可以限定为是集合
{1、 2、 4、 8}中的任意 1个数, 或者是集合 {1、 2、 4}中的任意 1个数, 或者 是集合 {1、 2}中的任意 1个数, 或者是集合 {1、 2、 3、 4}中的任意 1个数, 或者是集合 {1、 2、 3}中的任意 1个数; 对于不同的 CCE数目, 通过对信道 编码后的数据进行速率匹配的方式以保证星座调制后的调制符号数可以填满 为 R-PDCCH分配的 CCE。 具体的速率匹配的方式可以与 LTE PDCCH的速 率匹配方式相同, 这里不再赘述。
R-PDCCH传输资源确定后可不进行交织而直接进行资源映射。资源映射 顺序可以是先频率方向后时间方向。 具体的, 在用于某一 R-PDCCH传输的 物理资源的频域子载波和时域 OFDM符号起始处, 首先在 OFDM符号内, 从用于该 R-PDCCH传输的频域资源的起始处, 按照子载波索引从小到大的 顺序进行映射, 该 OFDM符号内用于该 R-PDCCH传输的物理资源映射完成 之后,接着按照时域 OFDM符号索引从下一个 OFDM符号内用于该 R-PDCCH 传输的频域资源起始处进行映射, 直到所有用于该 R-PDCCH传输的 OFDM 符号内的资源映射都完成。 资源映射的单元可以是资源单元 RE, 也可以是资 源单元组 REG。 优选地以 RE作为资源映射的单元。 序。 具体的, 在用于 R-PDCCH传输的物理资源的频域子载波和时域 OFDM 符号起始处, 以 REG为单位釆用先时间方向后频率方向的顺序进行资源映 这里不再赘述。
釆用本实施例中 CCE大小的设计方法,可以充分保证中继链路资源的有 效利用, 保证 R-PDCCH占用资源分配的灵活性。
实施例 3
由于 R-PDCCH占用资源不同于 PDCCH,本实施例提供了又一种配置中 继链路的 CCE及传输 R-PDCCH的方法。
本实例中, 配置的每个 CCE包含 N2个 REG, 配置的每个 REG包含 3 个有效 RE, 即 N3为 3。普通 CP长度下的一个 REG的定义示例如图 9所示。 在图 9中, 图 9a、 图 9b及图 9c依次分别表示一个 PRB的 OFDM符号中没 有参考信号的 REG形式、 一个 PRB的 OFDM符号中有 4个 RE用于参考信 号的 REG形式、 一个 PRB的 OFDM符号中有 6个 RE用于参考信号的 REG 形式。 当 OFDM符号中没有参考信号时, OFDM符号中包括 4个 REG; 当 OFDM符号中有 4个 RE用于参考信号时, 剩余 8个 RE可以用于 R-PDCCH 的传输, 这时 OFDM符号在一个 RB内包含 2个 REG, 每个 REG中空余 1 个 RE; 当 OFDM符号中有 6个 RE用于参考信号时, 剩余 6个 RE可以用于 R-PDCCH的传输, 正好可以组成 2个 REG。 本例中的 REG像 LTE PDCCH 的 REG—样, 是不会跨 PRB的, 即组成同一个 REG的各 RE均位于同一个 PRB内。 为表述方便起见, 本例中的 REG大小定义为两种形式: 每个 REG中包 含 3个 RE, 对应于 OFDM符号中没有参考信号的情况; 每个 REG中包含 6 个 RE, 对应于 OFDM符号中有参考信号的情况。 但是, 每个 REG中的有效 RE数都是 3个。 如图 9所示。
在本实例中 N2的取值可以是 6, 对应于一个 CCE包含 18个 RE, N2的 取值也可以是 8, 对应于一个 CCE包含 24个 RE, N2的取值也可以是 9, 对 应于一个 CCE包含 27个 RE, N2的取值也可以是 10,对应于一个 CCE包含 30个 RE, N2的取值也可以是 12, 对应于一个 CCE包含 36个 RE。
在本实施例中, 用于传输每个 R-PDCCH的 CCE个数可以是集合 {1、 2、 4、 8}中的任意 1个数, 或者是集合 {1、 2、 4}中的任意 1个数, 或者是集合 {1、 2}中的任意 1个数, 或者是集合 {1、 2、 3、 4}中的任意 1个数, 或者是 集合 {1、 2、 3}中的任意 1个数; 对于不同的 CCE数目, 通过对中继链路下 行控制信息信道编码后的数据进行速率匹配的方式以保证星座调制后的调制 符号数可以填满 R-PDCCH占用的 CCE。 具体的速率匹配的方式可以与 LTE PDCCH的速率匹配方式相同, 这里不再赘述。
在本实施例中, 传输 R-PDCCH的 CCE可以在交织之后进行资源映射。 例如, 交织以 REG为交织单元, 将子帧中用于传输 R-PDCCH的所有 CCE 一起交织,交织之后以 REG为单位以先时间方向后频率方向的顺序在子帧内 对传输 R-PDCCH的资源进行资源映射; 或者将一个 R-PDCCH内的各 CCE 进行交织, 即传输同一个 R-PDCCH的各 CCE以 REG为交织单元进行交织, 交织之后以 REG 为单位以先时间方向后频率方向的顺序在子帧内传输该 R-PDCCH的资源中进行资源映射。 具体的交织方法可以釆用与 LTE PDCCH 交织相同的方法, 这里不再赘述。 具体的先时间方向后频率方向的映射方法 与 LTE中相同, 只是改变了 REG的大小和映射资源的频域和时域的范围。 例如即将进行资源映射的 REG三元组序列表示为 i^)(0), ...,i^)(M - 1) , 即该序 列中的一个元素代表一个 REG,包含有三个星座调制符号,总共有 M个 REG。 那么一个资源映射的具体示例如表 1所示。
表 1 : 实施例 3中 R-PDCCH资源映射示例
1 ) 初始化 m ' = 0 ; 2) 初始化 k' = Kstart;
3) 初始化 /' = tart
4 ) 如果资源单元 (k', /')代表一个分配给 R-PDCCH的 REG, 那么执行步骤 5 )和 6 ) , 否则执行步骤 7 ) ;
5 ) 对每一个天线端口 p ,将三元组 映射于 /') 所代表的 REG中;
6 ) m ' = m '+ 1;
7 ) /' = /'+1;
8) 如果 /'≤4„d, 那么从步骤 4)开始重复;
9) k = k+\;
10) 如果 ^^ 那么从 3)重复。
在表 1中, 0≤m'≤M-l表示 REG组的索引,如果是一个 R-PDCCH交织, M表示一个 R-PDCCH占用的 REG数目; 如果是子帧内的 R-PDCCH进行交 织, M表示子帧中所有 R-PDCCH占用的 REG数目。 Kstart≤k'≤ „d表示频域 子载波索引, 如果是一个 R-PDCCH进行交织, 是该 R-PDCCH在频域的 起始子载波编号, 是该 R-PDCCH在频域的结束子载波编号; 如果是子帧 内的 R-PDCCH进行交织, 是该子帧内 R-PDCCH域在频域的起始子载波 编号, 是该子帧内 R-PDCCH在频域的结束子载波编号。 L t≤!'≤Lend 示时域 OFDM符号索引, ^ 是 R-PDCCH的起始 OFDM符号编号, Lend R-PDCCH的结束 OFDM符号编号。表 1中的 P表示 R-PDCCH传输的天线端 口编号, 即 R-PDCCH可以多天线传输。 步骤 4) 中资源单元 ( ,ζ')代表一个 分配给 R-PDCCH的 REG是指, 该 ', ζ')是 REG的起始 RE, 即组成该 REG 的各 RE中频域索引最小的 RE。 这里的 REG大小为实际大小, 即 REG包含 3个或者 6个 RE。 子帧内传输的所有 R-PDCCH—起交织,交织之后在用于子帧内 R-PDCCH传 输的物理资源的频域子载波和时域 OFDM符号起始处, 首先在 OFDM符号 内, 从用于 R-PDCCH传输的频域资源的起始处, 按照子载波索引从小到大 之后, 接着根据时域 OFDM符号索引从下一个 OFDM符号内用于 R-PDCCH 传输的频域资源起始处进行映射, 直到所有用于 R-PDCCH传输的 OFDM符 号的资源映射都完成。 如果是一个 R-PDCCH 内进行交织, 先频率方向后时 间方向的资源映射顺序与子帧内所有 R-PDCCH交织的情况相同, 只是这时 映射的物理资源只包括用于该 R-PDCCH传输的资源, 这里不再赘述。
本实施例中 CCE和 REG的设计充分考虑了中继链路物理资源的结构, 有效避免了中继链路物理资源的浪费。
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。
工业实用性 本发明提供一种中继链路下行控制信息配置方法及传输基站、 中继站与 方法, 解决了中继链路物理下行控制信息的发送问题, 同时本发明描述的中 继链路物理下行控制信息的承载充分考虑了中继链路下行物理资源的结构, 保证了中继链路下行控制信息复用与传输的灵活性, 同时避免了对于终端的 影响。

Claims

权 利 要 求 书
1、 一种中继链路下行控制信息的传输方法, 所述方法包括:
基站向中继站发送下行控制信息时, 在 N1 个连续或者离散分布的控制 信道单元(CCE )上传输一个中继链路物理下行控制信道(R-PDCCH ) ; 以 及
每个所述 CCE包含 N2个资源单元组, 每个资源单元组包含 N3个可用 资源单元; 或者, 每个所述 CCE包含 N4个可用资源单元。
2、 如权利要求 1所述的方法, 其中,
所述 N1的取值为集合 {1、 2、 4、 8}中的任意 1个数; 或者,
所述 N1的取值为集合 {1、 2、 4}中的任意 1个数; 或者,
所述 N1的取值为集合 {1、 2}中的任意 1个数; 或者,
所述 N1的取值为集合 {1、 2、 3、 4}中的任意 1个数; 或者,
所述 N1的取值为集合 {1、 2、 3}中的任意 1个数。
3、 如权利要求 1所述的方法, 其中,
所述 N3的取值为 4, 所述 N2的取值为 6或 7或 8或 9; 或者, 所述 N3的取值为 3 , 所述 N2的取值为 6或 8或 9或 10或 12。
4、 如权利要求 1所述的方法, 其中,
在用于所述 R-PDCCH传输的资源块对中分配 n个连续的正交频分复用 ( OFDM )符号用于传输所述 R-PDCCH, 所述 N4的值为所述 n个 OFDM符 号在一个资源块对所对应频域资源内除去参考信号后的资源单元的个数。
5、 如权利要求 1所述的方法, 其中,
所述 N4的值为 18或 24或 36。
6、 如权利要求 1所述的方法, 其中,
子帧中用于传输各 R-PDCCH的所有 CCE以 REG为交织单元经过交织 后进行资源映射, 所述资源是子帧中用于 R-PDCCH传输的物理资源; 或者, 用于传输同一个 R-PDCCH的 CCE以 REG为交织单元经过交织后进行资源 映射, 所述资源是为该 R-PDCCH传输所分配的物理资源。
7、 如权利要求 1所述的方法, 其中,
子帧中用于传输所述 R-PDCCH的 CCE不交织并进行资源映射, 所述资 源是用于 R-PDCCH传输所分配的物理资源。
8、 如权利要求 6或 7所述的方法, 其中,
所述资源映射的单元是资源单元组或资源单元;
所述资源映射的顺序为先时间方向后频率方向, 或者为先频率方向后时 间方向。
9、 一种中继链路下行控制信息的配置方法, 包括:
为每个中继链路的控制信道单元( CCE )配置 N2个资源单元组; 为每个 资源单元组配置 3个或 4个可用资源单元。
10、 如权利要求 9所述的方法, 其中,
每个资源单元组包括 4个可用资源单元并且所述 N2的取值为 6或 7或 8 或 9; 或者,
每个资源单元组包括 3个可用资源单元并且所述 N2的取值为 6或 8或 9 或 10或 12。
11、 一种中继链路下行控制信息的传输方法, 包括:
在用于中继链路物理下行控制信道(R-PDCCH )传输的资源块对中分配 n 个连续的正交频分复用 (OFDM ) 符号用于传输所述 R-PDCCH, 每个 R-PDCCH在 1个或者多个 CCE中传输,每个 CCE包含 N4个可用资源单元, 所述 N4的值为 n个 OFDM符号在一个资源块对所对应频域资源内除去参考 信号后的资源单元的个数。
12、一种传输中继链路下行控制信息的基站, 包括配置模块及发送模块; 所述配置模块设置为: 配置 N1 个连续或者离散分布的控制信道单元 ( CCE )传输每个中继链路物理下行控制信道(R-PDCCH ) ;
每个所述 CCE包括 N2个资源单元组, 每个所述资源单元组包括 N3个 可用资源单元, 或者每个所述 CCE包括 N4个可用资源单元; 所述发送模块设置为: 在所述 CCE上发送所述 R-PDCCH。
13、 如权利要求 12所述的基站, 其中,
所述 N1的取值为集合 {1、 2、 4、 8}中的任意 1个数; 或者,
所述 N1的取值为集合 {1、 2、 4}中的任意 1个数; 或者,
所述 N1的取值为集合 {1、 2}中的任意 1个数; 或者,
所述 N1的取值为集合 {1、 2、 3、 4}中的任意 1个数; 或者,
所述 N1的取值为集合 {1、 2、 3}中的任意 1个数。
14、 如权利要求 12所述的基站, 其中,
所述 N3的取值为 4, 且所述 N2的取值为 6或 7或 8或 9; 或者, 所述 N3的取值为 3 , 且所述 N2的取值为 6或 8或 9或 10或 12。
15、 如权利要求 12所述的基站, 其中,
所述配置模块还设置为: 在所述 R-PDCCH传输的资源块对中分配 n个 连续的正交频分复用 (OFDM )符号用于传输所述 R-PDCCH, 所述 N4的值 为所述 n个 OFDM符号在一个资源块对所对应频域资源内除去参考信号后的 资源单元的个数; 或者,
所述 N4的取值为 18或 24或 36。
16、 如权利要求 12所述的基站, 其中,
所述基站还包括交织模块, 所述交织模块设置为: 对传输各 R-PDCCH 的所有 CCE以 REG为交织单元进行交织; 或者, 对传输同一个 R-PDCCH 的 CCE以 REG为交织单元进行交织。
17、 如权利要求 12所述的基站, 其中,
所述基站还包括映射模块, 所述映射模块设置为: 对所述 R-PDCCH进 行资源映射, 所述资源映射的单元是资源单元组或资源单元;
所述资源映射的顺序为先时间方向后频率方向, 或者为先频率方向后时 间方向。
18、 一种传输中继链路下行控制信息的中继站, 包括接收模块, 所述接收模块设置为: 接收中继链路下行控制信息, 所述中继链路下行 控制信息承载于中继链路物理下行控制信道(R-PDCCH ) ;
所述 R-PDCCH在 N1个连续或者离散分布的控制信道单元( CCE )上传 输;
所述每个 CCE包含 N2个资源单元组, 每个资源单元组包含 N3个可用 资源单元; 或者,
每个 CCE包含 N4个可用资源单元。
19、 一种中继链路物理下行控制信道(R-PDCCH )的资源映射方法, 所 述方法包括:
对于非交织 R-PDCCH, 釆用先频率方向后时间方向的顺序进行资源映 射; 所述映射的资源为用于所述一个 R-PDCCH传输所分配的频域子载波和 时域正交频分复用 (OFDM )符号。
20、 如权利要求 19所述的方法, 其中,
所述资源映射从用于所述一个 R-PDCCH传输的频域子载波和时域 OFDM符号起始处开始, 包括: 在所述 OFDM符号内, 从用于所述一个 R-PDCCH传输的频域资源的起始处,按照频域子载波索引从小到大的顺序进 行映射; 所述 OFDM符号内用于所述一个 R-PDCCH传输的物理资源映射完 成后, 按照时域 OFDM符号索引从所述资源的下一个 OFDM符号内用于该
PCT/CN2010/079333 2009-12-01 2010-12-01 用于传输中继链路下行控制信息的方法、基站与中继站及其资源映射方法 WO2011066793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910204574.X 2009-12-01
CN200910204574XA CN102082600A (zh) 2009-12-01 2009-12-01 中继链路下行控制信息配置方法及传输基站、中继站与方法

Publications (1)

Publication Number Publication Date
WO2011066793A1 true WO2011066793A1 (zh) 2011-06-09

Family

ID=44088364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079333 WO2011066793A1 (zh) 2009-12-01 2010-12-01 用于传输中继链路下行控制信息的方法、基站与中继站及其资源映射方法

Country Status (2)

Country Link
CN (1) CN102082600A (zh)
WO (1) WO2011066793A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018204282A1 (en) * 2017-05-03 2018-11-08 Idac Holdings, Inc. Beam-based pdcch transmission in nr
CN109152041A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 信息传输的方法、终端设备和网络设备
US10277372B2 (en) 2011-08-18 2019-04-30 Huawei Technologies Co., Ltd. Method, device and system for transmitting enhanced downlink control channel

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420685B (zh) * 2011-11-07 2014-08-06 电信科学技术研究院 一种传输控制信息的方法及装置
CN103199974B (zh) * 2012-01-09 2018-03-23 中兴通讯股份有限公司 下行控制信息发送方法及装置
CN109245874B (zh) 2012-01-09 2021-11-19 华为技术有限公司 一种控制信道传输、接收方法及基站、用户设备
JP5832914B2 (ja) 2012-01-27 2015-12-16 シャープ株式会社 通信システム、移動局装置、基地局装置、通信方法および集積回路
WO2014019181A1 (zh) * 2012-08-01 2014-02-06 华为技术有限公司 一种控制信道传输方法及装置
WO2014019202A1 (zh) 2012-08-02 2014-02-06 华为技术有限公司 增强型物理下行控制信道传输方法及设备
WO2014019208A1 (zh) 2012-08-02 2014-02-06 华为技术有限公司 传输控制信息的方法、装置及系统
KR101574713B1 (ko) * 2012-09-14 2015-12-04 주식회사 케이티 송수신포인트의 제어 정보 전송 방법 및 그 송수신포인트, 단말의 제어 정보 수신 방법 및 그 단말
WO2014047927A1 (zh) 2012-09-29 2014-04-03 华为技术有限公司 控制信息发送方法、接收方法和设备
EP3455991B1 (en) * 2016-05-13 2020-10-28 Telefonaktiebolaget LM Ericsson (PUBL) Configuration of downlink transmissions
CN108235433B (zh) 2016-12-15 2021-07-09 华为技术有限公司 通信方法、基站和终端设备
KR20200002890A (ko) 2017-05-02 2020-01-08 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 시스템에서 리소스 바인딩 및 매핑을 제어하기 위한 방법 및 장치
CN108809571A (zh) 2017-05-04 2018-11-13 华为技术有限公司 一种控制信息传输方法、相关装置及计算机存储介质
CN109525359B (zh) * 2017-09-18 2022-03-11 华为技术有限公司 数据传输的方法和设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008115020A1 (en) * 2007-03-21 2008-09-25 Samsung Electronics Co., Ltd. Method for mapping physical downlink control channel to resources and apparatus for transmitting/receiving the mapped physical downlink control channel in a wireless communication system
WO2008133415A1 (en) * 2007-04-27 2008-11-06 Lg Electronics Inc. A method for transmitting downlink control channel in a mobile communication system and a method for mapping the control channel to physical resource using block interleaver in a mobile communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008115020A1 (en) * 2007-03-21 2008-09-25 Samsung Electronics Co., Ltd. Method for mapping physical downlink control channel to resources and apparatus for transmitting/receiving the mapped physical downlink control channel in a wireless communication system
WO2008133415A1 (en) * 2007-04-27 2008-11-06 Lg Electronics Inc. A method for transmitting downlink control channel in a mobile communication system and a method for mapping the control channel to physical resource using block interleaver in a mobile communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "R-PDCCH multiplexing and search space", 3GPP TSG RAN WG1 MEETING #59, RL-094593, 13 November 2009 (2009-11-13) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10277372B2 (en) 2011-08-18 2019-04-30 Huawei Technologies Co., Ltd. Method, device and system for transmitting enhanced downlink control channel
US10903955B2 (en) 2011-08-18 2021-01-26 Huawei Technologies Co., Ltd. Method, device and system for transmitting enhanced downlink control channel
WO2018204282A1 (en) * 2017-05-03 2018-11-08 Idac Holdings, Inc. Beam-based pdcch transmission in nr
CN110603773A (zh) * 2017-05-03 2019-12-20 Idac控股公司 Nr内基于波束的pdcch传输
US11799600B2 (en) 2017-05-03 2023-10-24 Interdigital Patent Holdings, Inc. Beam-based PDCCH transmission in NR
CN109152041A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 信息传输的方法、终端设备和网络设备
CN109152041B (zh) * 2017-06-16 2023-11-03 华为技术有限公司 信息传输的方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN102082600A (zh) 2011-06-01

Similar Documents

Publication Publication Date Title
WO2011066793A1 (zh) 用于传输中继链路下行控制信息的方法、基站与中继站及其资源映射方法
US11419036B2 (en) DL backhaul control channel design for relays
JP7423877B2 (ja) 高性能nlosワイヤレスバックホールフレーム構造
US8959410B2 (en) Methods and systems for HARQ protocols
JP6746779B2 (ja) 無線通信システムにおいて信号を送信又は受信する方法及びそのための装置
US10779302B2 (en) Method and device in wireless communication
EP2465316B1 (en) Method and apparatus for transmitting/receiving control channel
WO2012062178A1 (zh) 用于确定中继链路资源单元组的方法及装置
WO2018145607A1 (zh) 一种用于无线通信中的方法和装置
US20120236783A1 (en) Repeater apparatus for simultaneously transceiving signals in a wireless communication system, and method for same
WO2011137696A1 (zh) 中继节点下行控制信道的传输方法及系统
WO2011009371A1 (zh) 下行解调参考信号的发送方法、基站及中继站
CN102474378A (zh) 用于发送和接收针对中继器的控制信息和系统信息的装置及其方法
WO2011120320A1 (zh) 中继链路边界的指示及确定方法、基站
JP6668482B2 (ja) 下りリンク送信方法、基地局及び端末
CN115696582A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021093512A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN111431680B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN110324121B (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2020216013A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
TWI751263B (zh) Harq進程的配置方法、裝置及設備
KR101513512B1 (ko) 직교 주파수 분할 다중 접속 시스템에서의 이종 서브프레임간 송수신 방법 및 장치
CN113365348B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024093880A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10834226

Country of ref document: EP

Kind code of ref document: A1