WO2018171618A1 - 资源处理方法和装置 - Google Patents

资源处理方法和装置 Download PDF

Info

Publication number
WO2018171618A1
WO2018171618A1 PCT/CN2018/079779 CN2018079779W WO2018171618A1 WO 2018171618 A1 WO2018171618 A1 WO 2018171618A1 CN 2018079779 W CN2018079779 W CN 2018079779W WO 2018171618 A1 WO2018171618 A1 WO 2018171618A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
information
time
common search
symbol
Prior art date
Application number
PCT/CN2018/079779
Other languages
English (en)
French (fr)
Inventor
管鹏
唐小勇
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18770794.8A priority Critical patent/EP3582431B1/en
Publication of WO2018171618A1 publication Critical patent/WO2018171618A1/zh
Priority to US16/579,585 priority patent/US11206679B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present application relates to communication technologies, and in particular, to a resource processing method and apparatus.
  • the beam emitted by one RF link can only be oriented in one direction within a time range corresponding to an Orthogonal Frequency Division Multiplexing (OFDM) symbol. That is, an RF link cannot transmit beams in two directions within a time range corresponding to one symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the terminal device before receiving or transmitting data, the terminal device needs to acquire downlink control information that is configured by the network device to be carried in the public search space of the terminal device.
  • the time-frequency resources occupied by the common search space are divided into a plurality of Control Channel Elements (CCEs), and the CCEs constituting the common search space are usually distributed on frequency domain resources corresponding to different symbols. That is, the downlink control information carried in the common search space may be distributed on the frequency domain resources corresponding to different symbols.
  • CCEs Control Channel Elements
  • the network device has only one RF link transmission beam as an example.
  • the beams corresponding to the symbols occupied by the common search space are all oriented in the first direction, only the first party
  • the upward terminal device can detect the common search space, and the terminal devices in other directions cannot detect the common search space; when the beams corresponding to the symbols occupied by the common search space face different directions, each terminal distributed in different directions
  • the device does not detect the full public search space.
  • the number of RF links of network devices is much smaller than the number of directions in which the terminal devices may be located, and even if different RF links are oriented in different directions, there is still a problem that all possible directions cannot be covered. Therefore, in the prior art, when the terminal devices are distributed in different directions, there is a problem that the terminal device in the partial direction cannot detect the complete common search space, and thus cannot receive the downlink control information carried in the common search space.
  • the present application provides a resource processing method and apparatus for solving a problem that when a beamforming technology is applied to an existing communication system, a terminal device in a partial direction cannot detect a complete public search space, and thus cannot receive a bearer in a public.
  • the problem of searching for downlink control information in the space is not limited to a beamforming technology, a terminal device in a partial direction.
  • the application provides a resource processing method, which is applied to a network device, and includes:
  • the network device determines, according to the information of the direction in which the terminal device is located, at least two beams that need to be sent;
  • a time-frequency resource is defined as a common search space in a time-frequency resource corresponding to each beam, and a part of the time-frequency resource corresponding to the common search space is used to carry control information sent to the terminal device.
  • the network device determines the at least two beams that need to be sent according to the direction information of the terminal device that needs to receive the control information, and the at least two beams are used to ensure that the terminal devices that need to receive the control information can receive the control information.
  • the network device adaptively adjusts the number of beams according to the number of directions in which the terminal device is located. By assigning a common search space to each beam so that the terminal devices are distributed in different directions, each terminal device can detect a complete common search space. At the same time, the network device can transmit more beams in one subframe without increasing the radio frequency link, increase the coverage, speed up the transmission of control information, and reduce the transmission delay of the control information.
  • the resource processing method further includes:
  • the network device sends the resource location information to the terminal device; the resource location information is used to indicate the location of the public search space on the time-frequency resource.
  • the terminal device can directly determine the common search space according to the resource location information, without calculating the location of the common search space, reducing the workload of the terminal device, and improving the terminal device.
  • the speed at which control information carried in the common search space is received.
  • the resource location information is used to indicate the location of the physical downlink control channel occupied by the control information in the common search space on the time-frequency resource corresponding to the common search space.
  • the resource location information of the physical downlink control channel that carries the downlink control information to be received by the multiple terminal devices in the common search space is directly sent to the terminal device, so that the terminal device can directly perform verification and obtain the bearer in the physical downlink control channel.
  • Downlink control without blind detection can reduce the number of blind detections of terminal equipment and reduce the complexity of downlink control information detection.
  • control information includes downlink control information, where the downlink control information is used to indicate configuration parameters of the uplink and downlink data transmission of the terminal device.
  • the downlink control information further includes control channel symbol information.
  • the terminal device can determine, according to the received control channel symbol information, the network device to send the reference signal, the downlink control information, and the hybrid automatic weight.
  • the information of the symbol occupied by the request feedback information and the information of the symbol occupied by the network device when transmitting the data information are transmitted.
  • the resource processing method further includes:
  • the network device maps one downlink control information in each common search space.
  • the downlink control information mapped in each common search space is downlink control information common to at least one terminal device in the cell.
  • Exemplary such as system information or paging information.
  • the downlink control information mapped in each common search space may be downlink control information of a specific terminal device.
  • the network device notifies the terminal device of the resource location information occupied by the downlink control information and the identifier of the redundancy loop check check, so that the terminal device receives the downlink control information according to the resource location information and the identifier. .
  • the terminal device in the direction corresponding to each beam can detect the common search space, and can further receive the downlink control information in the common search space.
  • the network device determines at least two beams that need to be sent, including:
  • the network device determines at least two beams that need to be sent according to the type of the control information.
  • the network device determines, according to the direction information of the terminal device, at least two beams that need to be sent; or
  • the network device determines at least two beams to be transmitted according to the width of the beam.
  • the network device determines a time-frequency resource corresponding to each of the at least two beams, and specifically includes:
  • the network device determines a symbol group corresponding to each of the at least two beams, and obtains a time-frequency resource corresponding to each of the at least two beams according to the time-frequency resource corresponding to the symbol group, where each symbol group includes at least one symbol;
  • Part of the time-frequency resources corresponding to each common search space are distributed on at least one symbol in each symbol group.
  • the symbol is a minimum unit for dividing the time-frequency resource in the time domain.
  • the resource location information includes at least one symbol group information, and frequency domain resource information corresponding to each symbol group information.
  • the terminal device can directly determine the location information of the common search space according to the symbol group information and the frequency domain resource information, and also make the network device at the time frequency.
  • the common search space corresponding to each beam is determined in the resource, the location of the common search space corresponding to different beams can be flexibly set.
  • the resource processing method further includes:
  • the network device determines a part of the time-frequency resource in the time-frequency resource corresponding to each beam, and is used to carry the control frame format indication information, where the control frame format indication information is used to indicate the control channel symbol information, and is used to carry the part of the control frame format indication information.
  • the time-frequency resources of the time-frequency resources and the common search space do not overlap.
  • the control device format indication information is carried in the time-frequency resource corresponding to each beam, which facilitates the terminal device to acquire the resource location information of the common search space in the corresponding time-frequency resource of each beam according to the control frame format indication information, and therefore, the corresponding symbol of each symbol
  • the public search space can have different locations in time-frequency resources and has higher flexibility. It also prevents the network device from transmitting the resource location information of the common search space corresponding to each symbol to the terminal device, which reduces the signaling overhead.
  • the resource processing method further includes:
  • the network device determines a part of the time-frequency resource in the time-frequency resource corresponding to each beam as a dedicated search space; the part of the time-frequency resource corresponding to the dedicated search space is used to carry control information that needs to be received by one terminal device.
  • the resource processing method further includes:
  • the network device determines a part of the time-frequency resource in the time-frequency resource corresponding to each beam to carry the reference signal, where the reference signal is used to assist the terminal device to acquire the control information, and the partial time-frequency resource of the reference signal is matched with the part corresponding to the common search space. Frequency resources do not overlap.
  • the resource processing method further includes:
  • the network device determines part of the time-frequency resource in the time-frequency resource corresponding to each beam to carry the hybrid automatic repeat request feedback information, and the hybrid automatic repeat request feedback information includes the response of the network device to the receiving of the uplink data of the terminal device, and the bearer
  • the partial time-frequency resources of the hybrid automatic repeat request feedback information do not overlap with the partial time-frequency resources corresponding to the common search space.
  • the reference signal and the hybrid automatic repeat request feedback information are mapped on the frequency domain resource corresponding to each beam, so that the terminal device in the direction corresponding to each beam can successfully receive the reference signal and the hybrid automatic repeat request feedback information. . It is avoided that the terminal device in the partial direction has the problem that the downlink control information cannot be received due to the failure to receive the reference signal and the hybrid automatic repeat request feedback information.
  • the resource location information includes frequency domain resource information.
  • the network device sets the resource location occupied by the common search space on the frequency domain resource corresponding to the different symbols to be consistent, and only transmits the frequency domain resource information when transmitting the resource location information, thereby reducing the signaling overhead.
  • the network device sends the resource location information to the terminal device, where the network device sends the resource location information of the public search space to the terminal device by using the high layer signaling.
  • the network device sends the resource location information to the terminal device, where the network device broadcasts the resource location information that sends the common search space.
  • control channel symbol information is at least one of the following:
  • the resource processing method further includes:
  • the network device sends control channel symbol information to the terminal device through high layer signaling.
  • the high layer signaling is any one of the following:
  • Medium access control - control unit signaling non-access stratum signaling, radio resource control signaling, packet data convergence protocol signaling, or radio link control layer protocol signaling.
  • the symbol group corresponding to each beam includes different numbers of symbols.
  • the network device uses different number of symbols to transmit the beam, so that the common search space and the downlink control information carried in the common search space are more flexible on the time-frequency resources. Sex.
  • the symbol group corresponding to each beam includes the same number of symbols.
  • control frame format indication information is at least one of the following:
  • the embodiment of the present application further provides a resource processing method, which is applied to a terminal device, and corresponds to the resource processing method applied to the network device side, and has corresponding technical features and technical effects. This application will not go into details here.
  • Another aspect of the embodiment of the present application further provides a resource processing method, including:
  • the terminal device receives the resource location information sent by the network device, where the resource location information is used to indicate the location of the at least one common search space in the time-frequency resource; and according to the resource location information, it is detected whether there is control information carried in the public search space.
  • the resource location information includes the frequency domain location information
  • the terminal device detects, according to the resource location information, whether there is control information that is carried in the public search space, including:
  • the terminal device determines a common search space at a frequency domain position in the frequency domain resource corresponding to the first symbol from the first symbol of the current subframe, and detects whether the control information is carried in the common search space;
  • the common search space is determined at a frequency domain position in the frequency domain resource corresponding to the second symbol, and whether the bearer is controlled in the common search space Information until the control information is detected or all symbols indicated by the maximum number of symbols are traversed; the maximum number of symbols is used to indicate the maximum number of symbols in the current subframe in which the common search space is distributed.
  • the resource location information includes at least one symbol group information, and frequency domain location information corresponding to each symbol group information, where one symbol group includes at least one symbol; and the terminal device detects whether the existence exists according to the resource location information.
  • Control information carried in the public search space including:
  • the terminal device determines a common search space at a frequency domain position in the frequency domain resource corresponding to the first symbol group in a time range corresponding to the first symbol group, and detects whether the control information is carried in the common search space;
  • the common search space is determined, and whether the control information is carried in the common search space is detected until the detection is detected. Control information or traverse all symbol groups.
  • the symbol is a minimum unit for dividing the time-frequency resource in the time domain.
  • the terminal device receives the resource location information sent by the network device, including:
  • the terminal device receives resource location information of a common search space that the network device sends through high layer signaling.
  • the terminal device receives the resource location information sent by the network device, including:
  • the terminal device receives the resource location information of the public search space sent by the network device broadcast.
  • control information includes downlink control information, where the downlink control information is used to indicate configuration parameters of the uplink and downlink data transmission of the terminal device.
  • the downlink control information includes control channel symbol information.
  • the resource processing method further includes:
  • the terminal device receives control channel symbol information sent by the network device through high layer signaling.
  • control channel symbol information is at least one of the following:
  • the high layer signaling is any one of the following:
  • Medium access control - control unit signaling non-access stratum signaling, radio resource control signaling, packet data convergence protocol signaling, or radio link control layer protocol signaling.
  • the resource processing method further includes:
  • the terminal device detects, in all symbols indicated by the maximum number of symbols of the current subframe, whether there is control frame format indication information carried on the physical control format indication channel, and the control frame format indication information is used to indicate control channel symbol information.
  • the resource processing method further includes:
  • the terminal device detects the downlink control information carried in the dedicated search space according to the control channel symbol information on the symbol group in which the control information is detected.
  • the resource processing method further includes:
  • the terminal device detects whether there is a reference signal in all symbols indicated by the maximum number of symbols of the current subframe, and the reference signal is used to assist the terminal device to acquire the control information.
  • the resource processing method further includes:
  • the terminal device detects, according to all the symbols indicated by the maximum number of symbols in the current subframe, whether there is hybrid automatic repeat request feedback information carried on the physical hybrid automatic repeat request channel indication channel, and the hybrid automatic repeat request feedback information includes the network device pair. The response of the reception of the uplink data of the terminal device.
  • the embodiment of the present application further provides a resource processing apparatus for performing the foregoing resource processing method, which has the same technical features and technical effects. This application will not go into details here.
  • a further aspect of the present application is to provide a resource processing apparatus, which is configured to perform the resource processing method corresponding to the network device side, and includes:
  • a beam determining module configured to determine at least two beams that need to be sent
  • a time-frequency resource determining module configured to determine a time-frequency resource corresponding to each of the at least two beams
  • the common search space determining module is configured to determine a part of the time-frequency resource in the time-frequency resource corresponding to each beam. As a common search space, a part of the time-frequency resource corresponding to the common search space is used to carry the control information sent to the terminal device.
  • the resource processing apparatus further includes:
  • a sending module configured to send resource location information to the terminal device; the resource location information is used to indicate a location on the common search space time-frequency resource.
  • the resource location information is used to indicate the location of the physical downlink control channel occupied by the control information in the common search space on the time-frequency resource corresponding to the common search space.
  • control information includes downlink control information, where the downlink control information is used to indicate configuration parameters of the uplink and downlink data transmission of the terminal device.
  • the downlink control information further includes control channel symbol information.
  • the resource processing apparatus further includes:
  • a mapping module is configured to map a downlink control information in each common search space.
  • the beam determining module is specifically configured to:
  • the width of the beam at least two beams that need to be transmitted are determined.
  • the time-frequency resource determining module is specifically configured to:
  • Part of the time-frequency resources corresponding to each common search space are distributed on at least one symbol in each symbol group.
  • the resource location information includes at least one symbol group information, and frequency domain resource information corresponding to each symbol group information.
  • the time-frequency resource determining module is further configured to:
  • Part of the time-frequency resource is determined in the time-frequency resource corresponding to each beam, and is used to carry control frame format indication information, where the control frame format indication information is used to indicate control channel symbol information, and is used to carry part of the time-frequency of the control frame format indication information.
  • the partial time-frequency resources corresponding to the resources and the common search space do not overlap.
  • the time-frequency resource determining module is further configured to:
  • a part of the time-frequency resource is determined as a dedicated search space in a time-frequency resource corresponding to each beam; and a part of the time-frequency resource corresponding to the dedicated search space is used to carry control information that needs to be received by one terminal device.
  • the time-frequency resource determining module is further configured to:
  • Partial time-frequency resources are determined in a time-frequency resource corresponding to each beam to carry a reference signal, and the reference signal is used to assist the terminal device to acquire control information, and part of the time-frequency resource corresponding to the common search space and the partial time-frequency resource corresponding to the common search space. Do not overlap.
  • the time-frequency resource determining module is further configured to:
  • Part of the time-frequency resource is determined in the time-frequency resource corresponding to each beam to carry the hybrid automatic repeat request feedback information, and the hybrid automatic repeat request feedback information includes the response of the network device to the receiving of the uplink data of the terminal device, and the bearer hybrid automatic
  • the partial time-frequency resources of the retransmission request feedback information do not overlap with the partial time-frequency resources corresponding to the common search space.
  • the symbol is a minimum unit for dividing the time-frequency resource in the time domain.
  • the sending module is specifically configured to send resource location information of a common search space to the terminal device by using high layer signaling.
  • the sending module is specifically configured to broadcast resource location information of a common search space.
  • control channel symbol information is at least one of the following:
  • the sending module is further configured to send control channel symbol information to the terminal device by using high layer signaling.
  • the high layer signaling is any one of the following:
  • Medium access control - control unit signaling non-access stratum signaling, radio resource control signaling, packet data convergence protocol signaling, or radio link control layer protocol signaling.
  • the symbol group corresponding to each beam includes different numbers of symbols.
  • the symbol group corresponding to each beam includes the same number of symbols.
  • control frame format indication information is at least one of the following:
  • a further aspect of the present application further provides a resource processing apparatus, configured to perform the resource processing method corresponding to the terminal device side, including:
  • a receiving module configured to receive resource location information sent by the network device, where the resource location information is used to indicate a location of the at least one common search space in the time-frequency resource;
  • the detecting module is configured to detect, according to the resource location information, whether there is control information carried in the common search space.
  • the resource location information includes frequency domain location information
  • the detection module is specifically configured to:
  • the common search space is determined at a frequency domain position in the frequency domain resource corresponding to the second symbol, and whether the bearer is controlled in the common search space Information until the control information is detected or all symbols indicated by the maximum number of symbols are traversed; the maximum number of symbols is used to indicate the maximum number of symbols in the current subframe in which the common search space is distributed.
  • the resource location information includes at least one symbol group information, and frequency domain location information corresponding to each symbol group information, where one symbol group includes at least one symbol; and the detecting module is specifically configured to:
  • the common search space is determined, and whether the control information is carried in the common search space is detected until the detection is detected. Control information or traverse all symbol groups.
  • the symbol is a minimum unit for dividing the time-frequency resource in the time domain.
  • the receiving module is specifically configured to receive resource location information of a common search space sent by the network device by using high layer signaling.
  • the receiving module is specifically configured to receive resource location information of a public search space that is sent by the network device.
  • control information includes downlink control information, where the downlink control information is used to indicate configuration parameters of the uplink and downlink data transmission of the terminal device.
  • the downlink control information includes control channel symbol information.
  • the receiving module is further configured to receive control channel symbol information that is sent by the network device to the terminal device by using high layer signaling.
  • control channel symbol information is at least one of the following:
  • the high layer signaling is any one of the following:
  • Medium access control - control unit signaling non-access stratum signaling, radio resource control signaling, packet data convergence protocol signaling, or radio link control layer protocol signaling.
  • the detecting module is further configured to:
  • control frame format indication information carried on the physical control format indication channel, and the control frame format indication information is used to indicate control channel symbol information.
  • the detecting module is further configured to:
  • downlink control information carried in the dedicated search space is detected according to the control channel symbol information.
  • the detecting module is further configured to:
  • the detecting module is further configured to:
  • hybrid automatic repeat request feedback information carried on the physical hybrid automatic repeat request channel indication channel in all symbols indicated by the maximum number of symbols of the current subframe, and the hybrid automatic repeat request feedback information includes the network device to the terminal device.
  • the response of the received data of the upstream data includes the network device to the terminal device.
  • the embodiment of the present application further provides a network device and a terminal device, which are used to execute the foregoing resource processing method, and have the same technical features and technical effects. This application will not go into details here.
  • Still another aspect of the application embodiment provides a network device, including: a transmitter, a memory, a processor, and at least one communication bus.
  • the communication bus is used to implement a communication connection between components.
  • Various programs are stored in the memory for performing various processing functions and implementing the method steps of the present embodiment.
  • the processor is used to execute programs stored in the memory.
  • the processor is used to:
  • a part of the time-frequency resource is determined in the time-frequency resource corresponding to each beam.
  • a part of the time-frequency resource corresponding to the common search space is used to carry control information sent to the terminal device.
  • the network device further includes:
  • a transmitter configured to send resource location information to the terminal device; the resource location information is used to indicate a location on the common search space time-frequency resource.
  • the resource location information is used to indicate the location of the physical downlink control channel occupied by the control information in the common search space on the time-frequency resource corresponding to the common search space.
  • control information includes downlink control information, where the downlink control information is used to indicate configuration parameters of the uplink and downlink data transmission of the terminal device.
  • the downlink control information further includes control channel symbol information.
  • the processor is further configured to:
  • a downlink control information is mapped in each common search space.
  • the processor is specifically configured to:
  • the width of the beam at least two beams that need to be transmitted are determined.
  • the processor is further configured to:
  • Part of the time-frequency resources corresponding to each common search space are distributed on at least one symbol in each symbol group.
  • the resource location information includes at least one symbol group information, and frequency domain resource information corresponding to each symbol group information.
  • the processor is further configured to:
  • Part of the time-frequency resource is determined in the time-frequency resource corresponding to each beam, and is used to carry control frame format indication information, where the control frame format indication information is used to indicate control channel symbol information, and is used to carry part of the time-frequency of the control frame format indication information.
  • the partial time-frequency resources corresponding to the resources and the common search space do not overlap.
  • the processor is further configured to:
  • a part of the time-frequency resource is determined as a dedicated search space in a time-frequency resource corresponding to each beam; and a part of the time-frequency resource corresponding to the dedicated search space is used to carry control information that needs to be received by one terminal device.
  • the processor is further configured to determine a part of the time-frequency resource in the time-frequency resource corresponding to each beam to carry the reference signal, where the reference signal is used to assist the terminal device to acquire the control information and carry the reference signal.
  • Some of the time-frequency resources do not overlap with some of the time-frequency resources corresponding to the common search space.
  • the processor is further configured to:
  • Part of the time-frequency resource is determined in the time-frequency resource corresponding to each beam to carry the hybrid automatic repeat request feedback information, and the hybrid automatic repeat request feedback information includes the response of the network device to the receiving of the uplink data of the terminal device, and the bearer hybrid automatic
  • the partial time-frequency resources of the retransmission request feedback information do not overlap with the partial time-frequency resources corresponding to the common search space.
  • the symbol is a minimum unit for dividing the time-frequency resource in the time domain.
  • the transmitter is specifically used to
  • the resource location information of the common search space is sent to the terminal device through the high layer signaling.
  • the transmitter is specifically used to
  • control channel symbol information is at least one of the following:
  • the transmitter is further used,
  • the control channel symbol information is sent to the terminal device through high layer signaling.
  • the high layer signaling is any one of the following:
  • Medium access control - control unit signaling non-access stratum signaling, radio resource control signaling, packet data convergence protocol signaling, or radio link control layer protocol signaling.
  • the symbol group corresponding to each beam includes different numbers of symbols.
  • the symbol group corresponding to each beam includes the same number of symbols.
  • control frame format indication information is at least one of the following:
  • Still another aspect of the application embodiment provides a terminal device, including: a receiver, a memory, a processor, and at least one communication bus.
  • the communication bus is used to implement a communication connection between components.
  • Various programs are stored in the memory for performing various processing functions and implementing the method steps of the present embodiment.
  • the processor is used to execute programs stored in the memory.
  • a receiver configured to receive resource location information sent by the network device, where the resource location information is used to indicate a location of the at least one common search space in the time-frequency resource;
  • a processor configured to detect, according to the resource location information, whether there is control information carried in a common search space.
  • the resource location information includes frequency domain location information; the processor is specifically configured to:
  • the common search space is determined at a frequency domain position in the frequency domain resource corresponding to the second symbol, and whether the bearer is controlled in the common search space Information until the control information is detected or all symbols indicated by the maximum number of symbols are traversed; the maximum number of symbols is used to indicate the maximum number of symbols in the current subframe in which the common search space is distributed.
  • the resource location information includes at least one symbol group information, and frequency domain location information corresponding to each symbol group information, and one symbol group includes at least one symbol;
  • the processor is specifically configured to:
  • the common search space is determined, and whether the control information is carried in the common search space is detected until the detection is detected. Control information or traverse all symbol groups.
  • the symbol is a minimum unit for dividing the time-frequency resource in the time domain.
  • the receiver is specifically configured to receive resource location information of a common search space sent by the network device by using high layer signaling.
  • the receiver is specifically configured to receive resource location information of a public search space that is sent by the network device.
  • control information includes downlink control information, where the downlink control information is used to indicate configuration parameters of the uplink and downlink data transmission of the terminal device.
  • the downlink control information includes control channel symbol information.
  • the receiver is further configured to receive control channel symbol information that is sent by the network device to the terminal device by using high layer signaling.
  • control channel symbol information is at least one of the following:
  • the high layer signaling is any one of the following:
  • Medium access control - control unit signaling non-access stratum signaling, radio resource control signaling, packet data convergence protocol signaling, or radio link control layer protocol signaling.
  • the processor is further configured to:
  • control frame format indication information carried on the physical control format indication channel, and the control frame format indication information is used to indicate control channel symbol information.
  • the processor is further configured to:
  • downlink control information carried in the dedicated search space is detected according to the control channel symbol information.
  • the processor is further configured to:
  • the processor is further configured to:
  • hybrid automatic repeat request feedback information carried on the physical hybrid automatic repeat request channel indication channel in all symbols indicated by the maximum number of symbols of the current subframe, and the hybrid automatic repeat request feedback information includes the network device to the terminal device.
  • the response of the received data of the upstream data includes the network device to the terminal device.
  • the embodiment of the present application further provides a program, when executed by a processor, is used to execute a resource processing method corresponding to the network device side.
  • the embodiment of the present application further provides a program product, such as a computer readable storage medium, including the above program.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores instructions, and when executed on a computer, causes the computer to execute a resource processing method corresponding to the network device side.
  • the embodiment of the present application further provides a program, when executed by the processor, is used to execute the resource processing method corresponding to the terminal device side.
  • the embodiment of the present application further provides a program product, such as a computer readable storage medium, including the above program.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores instructions, and when executed on a computer, causes the computer to execute the resource processing method corresponding to the terminal device side.
  • Embodiment 1 is a schematic diagram of Embodiment 1 of a network architecture to which an embodiment of the present application is applied;
  • FIG. 2 is a schematic diagram of a control resource mapping structure in a communication system
  • FIG. 3 is a schematic flowchart diagram of a resource processing method according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a control resource mapping structure according to Embodiment 1 of the present application.
  • FIG. 5 is a schematic structural diagram of a control resource mapping according to Embodiment 2 of the present application.
  • FIG. 6 is a schematic structural diagram of a control resource mapping structure according to Embodiment 3 of the present application.
  • FIG. 7 is a schematic structural diagram of a control resource mapping according to Embodiment 4 of the present application.
  • FIG. 8 is a schematic structural diagram of a resource processing apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a resource processing apparatus according to another embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a resource processing apparatus according to still another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of Embodiment 1 of a network architecture to which the embodiment of the present application is applied.
  • the network architecture provided by this embodiment includes a network device 10 and at least one terminal device 20.
  • the network device 10 is a device for accessing the terminal device 20 to the wireless network, and may be in Global System of Mobile communication (GSM) or Code Division Multiple Access (CDMA).
  • Base Transceiver Station (BTS) which may also be a base station (NodeB, NB for short) in Wideband Code Division Multiple Access (WCDMA), or Long Term Evolution (referred to as Long Term Evolution).
  • FIG. 1 schematically shows a possible schematic diagram, taking the network device 10 as a base station as an example.
  • the terminal device 20 may be a wireless terminal or a wired terminal, the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a mobile terminal.
  • RAN Radio Access Network
  • the computer for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • FIG. 1 schematically depicts a possible schematic diagram, taking the terminal device 20 as a mobile phone as an example.
  • the terminal device 20 needs to know the downlink control information (DCI) configured by the network device 10 to the terminal device 20 before receiving or transmitting the data information.
  • DCI downlink control information
  • the DCI is used to indicate how the terminal device performs downlink data reception and uplink data transmission.
  • the DCI may include information such as resources, modulation methods, and code rates used by the terminal device for uplink and downlink data transmission.
  • the network device 10 When transmitting the DCI, the network device 10 generally transmits the DCI bearer on the physical downlink control channel (PDCCH).
  • PDCCH physical downlink control channel
  • Time-frequency resources are divided in units of radio frames in the time domain.
  • the information is transmitted in units of radio frames, and one radio frame includes 10 subframes, each subframe has a length of 1 millisecond (ms), and each subframe includes two slots, each slot is 0.5ms.
  • the number of symbols included in each slot is related to the cyclic prefix (CP) length in the subframe. If the CP is a normal (normal) CP, each slot includes 7 symbols, and each subframe is composed of 14 symbols.
  • CP cyclic prefix
  • each subframe has a sequence number of #0, #1, #2, #3, #4, respectively. , #5, #6, #7, #8, #9, #10, #11, #12, #13 symbol composition.
  • each slot includes 6 symbols, and each subframe is composed of 12 symbols.
  • each subframe has a sequence number of #0, #1, #2, #3, #4,# 5, #6, #7, #8, #9, #10, #11 symbol composition.
  • the minimum unit of the time-frequency resource in the frequency domain is a sub-carrier, and the sub-carriers distributed in a time range corresponding to one symbol form a frequency-domain resource corresponding to the symbol, and the frequency-domain resources corresponding to all symbols constitute a time-frequency resource.
  • a Resource Element (RE) is the smallest unit that divides a time-frequency resource and is uniquely identified by an index pair (k, l). Where k is a subcarrier index and l is a symbol index. Of course, resource units can also be identified by other forms of identification.
  • Four consecutive REs (excluding the time-frequency resources occupied by the reference signal) constitute one resource element group (Resource Element Group, REG). The REs that make up the REG can occupy different symbols.
  • the network device 10 also sends information such as Control Formation Indication (CFI) information, Reference Signal (RS), and Hybrid Auto Repeat Request (HARQ) feedback information, while transmitting DCI.
  • CFI Control Formation Indication
  • RS Reference Signal
  • HARQ Hybrid Auto Repeat Request
  • the information such as DCI, RS, CFI, and HARQ feedback information usually occupy the first N symbols of one subframe when transmitting, and the value of N may be 1, 2, or 3.
  • the symbols occupied by the above information such as DCI, RS, CFI, and HARQ feedback information are referred to as symbols of the control channel.
  • the frequency domain resources corresponding to the symbols of all control channels constitute control resources.
  • the network device 10 can also simultaneously transmit data information within a time range corresponding to the symbol in which the control channel is located.
  • the resource processing method in the following embodiments of the present application is still applicable, but only for other time-frequency resources except the time-frequency resources occupied by the data information.
  • the remaining frequency domain resources constitute the control resources.
  • the frequency domain resources corresponding to each symbol also indicate only the remaining frequency domain resources except the frequency domain resources occupied by the data information.
  • the information processing method proposed in the present application is exemplified by taking the information such as DCI, RS, CFI, and HARQ feedback information in the time range corresponding to the symbol of the control channel as an example.
  • the CFI is carried on a Physical Control Formation Indication Channel (PCFICH).
  • PCFICH Physical Control Formation Indication Channel
  • the CFI is used to indicate the number of symbols occupied by the network device 10 when transmitting CFI, RS, DCI, HARQ feedback, etc., that is, the total number of symbols in the control channel.
  • the value of CFI can be exemplified by any of ⁇ 1, 2, 3 ⁇ .
  • the terminal device 20 can determine the total number of symbols of the control channel according to the CFI.
  • the start symbol of the data information may also be determined according to the CFI, that is, the data information is transmitted from the first symbol in one subframe.
  • the PCFICH carrying the CFI is usually mapped on the frequency domain resource corresponding to the first symbol of the subframe, so that the CFI is transmitted within the time range corresponding to the first symbol of the subframe.
  • the terminal device 20 receives the CFI, so that the total number of symbols of the control channel can be determined according to the CFI, thereby determining the total control resources.
  • the HARQ feedback information is carried on a Physical Hybridation Request Channel (PHICH).
  • the HARQ feedback information is feedback of the network device 10 to the reception of the uplink data previously transmitted by the terminal device 20.
  • the PHICH carrying the HARQ feedback information is usually mapped on the frequency domain resource corresponding to the first symbol of the subframe, so that the HARQ feedback information is sent in the time range corresponding to the first symbol of the subframe.
  • the RS is used to help the terminal device 20 demodulate and obtain CFI, DCI, HARQ feedback information and the like to carry information transmitted on the channel.
  • the terminal device 20 measures the quality of the channel on which the information is transmitted according to the RS.
  • the channel quality is used to assist the terminal device in demodulating the information carried on the channel.
  • the RS is usually mapped on a frequency domain resource corresponding to the first symbol of the subframe, and one RS occupies at least one RE.
  • the number of RSs mapped within the control resource is determined by factors such as the number of antennas of the network device 10, the identity, and the like.
  • the antenna can be an antenna port or an actual physical antenna.
  • An antenna port is a logical port used for transmission, which can correspond to one or more actual physical antennas.
  • PCFICH, PHICH, RS, and PDCCH are mapped.
  • the PCFICH, the PHICH, and the RS occupy part of the control resources, and some or all of the remaining control resources may serve as available resources of the PDCCH.
  • the control channel element (CCE) is the smallest unit when the PDCCH occupies control resources.
  • One PDCCH occupies at least one CCE.
  • One CCE includes 9 REGs.
  • the PDCCHs constituting the CCEs may be distributed on the frequency domain resources corresponding to the different symbols. Alternatively, when the REGs constituting the CCEs are distributed on the frequency domain resources corresponding to the same symbol, the PDCCH may occupy the frequency domain corresponding to different symbols. CCE on the resource; therefore, the PDCCH can occupy frequency domain resources corresponding to different symbols.
  • the terminal device 20 may first determine the total number of symbols of the control channel according to the CFI, thereby determining the total control resource.
  • the control resources occupied by the PDCCH that is, the available resources of the PDCCH, can be determined by subtracting the control resources occupied by the RS, the PHICH, and the PCFICH from the total control resources.
  • the LTE system delineates two search spaces in the control resources that the PDCCH can occupy, which are a common search space and a dedicated search space.
  • the common search space refers to a space that all terminal devices 20 in the cell need to monitor, and each terminal device 20 listens to the common search space, and detects whether it carries the DCI that is expected to be carried in the public search space.
  • the DCI carried in the public search space is mainly used to indicate information common to all terminal devices 20 in some cells or common to a plurality of terminal devices 20, such as system information, paging information, and the like.
  • the common search space includes at least one PDCCH, and the DCI carried in the common search space is specifically carried on any PDCCH in the PDCCH included in the common search space.
  • Each terminal device 20 monitors its own dedicated search space, and detects whether it carries the DCI that it expects to carry in the dedicated search space.
  • the DCI carried in the dedicated search space is for indicating information for a specific terminal device 20, such as downlink resource allocation indication information and uplink scheduling grant information.
  • the dedicated search space also includes at least one PDCCH, and the DCI carried in the dedicated search space is also specifically carried on any of the PDCCHs included in the dedicated search space.
  • the PDCCHs included in the common search space and the dedicated search space may overlap, that is, there may be a common PDCCH, that is, belong to a common search space, and also belong to a dedicated search space.
  • the network device 10 may set the DCI planned to be carried in the common search space to be carried by the common PDCCH, and may also set the DCI planned to be carried in the dedicated search space to be carried by the common PDCCH.
  • the terminal device 20 when the terminal device 20 performs DCI reception, the terminal device 20 needs to detect whether the DCI is carried in the common PDCCH when detecting the common search space. If the DCI is already carried in the common PDCCH, the terminal device 20 does not need to detect the public PDCCH when detecting the dedicated search space.
  • the terminal device 20 needs to detect whether the DCI is carried in the common PDCCH when detecting the dedicated search space.
  • the network device 20 may also directly detect all PDCCHs included in the dedicated search space.
  • the number of public PDCCHs may be multiple.
  • the common search space includes 16 CCEs, and the aggregation level (AL) of the CCEs in the common search space is only 4 and 8.
  • the aggregation level is used to indicate how many CCEs in a common search space are used to carry information, that is, the number of CCEs occupied by one PDCCH.
  • the AL is set to 8
  • one PDCCH includes 8 CCEs
  • one common search space may include two PDCCHs, and the two PDCCHs respectively occupy CCEs numbered 0 to 7, and CCEs numbered 8 to 15.
  • the AL of the common search space is not known, and therefore, it is necessary to perform the search in the common search space in units of 4 and 8 CCEs, respectively.
  • CRC Cyclic Redundancy Check
  • the terminal device 20 only needs to perform the CRC check for up to 6 times to retrieve the common search space.
  • the aggregation level of the dedicated search space may be any one of 1, 2, 4, and 8.
  • At least one PDCCH may also be included in a dedicated search space. The number of CCEs occupied by one PDCCH depends on the aggregation level.
  • the control resource occupied by the PDCCH includes a common search space and a dedicated search space corresponding to each terminal device 20.
  • the CRC check process is as follows:
  • the terminal device 20 Upon receiving the DCI, the terminal device 20 knows what state it is currently in and the DCI information that it expects to receive in that state. For example, when the terminal device 20 is in an idle state, the received DCI information is paging information (Paging); after the terminal device 20 initiates the random access request, the received DCI information is expected to be random access response information (Random Access). Channel Response, RACH Response); the terminal device 20 expects the received DCI information to be an uplink scheduling grant when there is uplink data to be transmitted. For different expected information, the terminal device 20 performs a CRC check according to the blind detection method by using a corresponding X-RNTI (Radio Network Temporary Identifier).
  • X-RNTI Radio Network Temporary Identifier
  • X indicates the type of information that the terminal device 20 expects to receive, such as when the terminal device 20 expects to receive the RACH Response (RA), the terminal device performs the CRC check using the RA-RNTI. If the CRC check is successful, the terminal device 20 may determine that the current DCI information is what it expects, and also know the corresponding DCI format, thereby further acquiring the content indicated in the DCI information. Wherein, when the terminal device 20 expects the received DCI to be carried in the common search space, the DCI adopts a RNTI of a user group (cell, intra-cell packet) nature, such as an RA-RNTI. When the terminal device 20 expects to receive the DCI carried in the dedicated search space, X may employ the identity of the terminal device 20.
  • RA RACH Response
  • FIG. 2 is a schematic diagram of a control resource mapping structure in a communication system.
  • Fig. 2 schematically shows a control resource mapping structure in a communication system.
  • the horizontal axis direction is the time domain
  • a small square represents a symbol in the time domain
  • the vertical axis direction is the frequency domain
  • the frequency domain resource corresponding to one symbol depends on the system bandwidth.
  • the frequency domain is schematically divided in the direction of the vertical axis, and only some of the frequency domain resources are shown.
  • the reference signal RS, the PCFICH carrying the CFI, and the PHICH are all mapped on the frequency domain resource corresponding to the first symbol of the subframe.
  • the available resources of the PDCCH are distributed on different symbols. Referring to FIG. 2, they are distributed over three symbols. Therefore, the common search space may also be distributed over the frequency domain resources corresponding to 3 symbols.
  • the terminal device 20 based on the mapping relationship of the foregoing control resources, specifically includes:
  • the terminal device 20 receives the RS, the HARQ feedback information carried on the PHICH, and the CFI carried on the PCFICH.
  • the terminal device 20 acquires a CCE index according to CFI, and resource information occupied by each of the PCFICH, the RS, and the PHICH.
  • the terminal device 20 first calculates the available REG number N REG,L corresponding to the symbol of the control channel in the Lth subframe according to the system bandwidth and the value of the CFI, that is, the total control resource number of the subframe. Then , the number of available CCEs of the PDCCH in the Lth subframe is obtained by subtracting the number of REGs occupied by the PCFICH and the PHICH in the N REG, L. Where L is a positive integer greater than 0, Indicates that the * is rounded down.
  • the terminal device 20 may obtain an index of the available CCEs of the PDCCH according to the N REG, L and the LTE protocol, that is , the number of each CCE in the N REG, L.
  • the terminal device 20 performs blind detection in the common search space of the Lth subframe according to the index of the CCE, and acquires the DCI carried in the common search space.
  • the terminal device 20 determines the number of each of the 16 CCEs occupied by the common search space according to the CCE index and the LTE protocol, and then performs a maximum of 6 blind checks in the 16 CCEs to obtain the bearer in the public search space. DCI in the middle.
  • the terminal device 20 After the blind detection succeeds, the terminal device 20 performs blind detection in the dedicated search space to acquire the DCI carried in the dedicated search space.
  • n and n+1 are aggregated into one search unit, and the CCEs numbered n+2 and n+3 are aggregated into one search unit, and the CCEs numbered n+4 and n+5 are aggregated into one.
  • a retrieval unit, and so on, a total of 6 searches when AL 2. Where n is a non-negative integer.
  • the terminal device 20 can receive and/or transmit the data information according to the received DCI.
  • Beamforming technology is a technique for achieving higher antenna array gain by controlling the RF link to transmit beams spatially in a particular direction. Beamforming technology can reduce the loss in high-frequency communication transmission and is the development direction of future communication systems.
  • the beam emitted by one RF link can only be oriented in one direction. That is, at the same time, one RF link cannot transmit beams in both directions.
  • the symbol is only a minimum time unit for exemplary description, that is, an RF link cannot transmit beams in two directions within a time range corresponding to the same symbol. The following embodiments of the present application are still applicable when the minimum time unit changes.
  • the location of the terminal device 20 may be in any direction of the network device 10, and the network device 10 typically requires a plurality of terminal devices 20 that are distributed in different directions, such as transmitting DCI to all terminal devices 20 within a cell.
  • the common search space may be distributed across symbols, that is, CCEs constituting a common search space are distributed on frequency domain resources corresponding to different symbols.
  • the REGs constituting the CCE may also be distributed on frequency domain resources corresponding to different symbols. Therefore, DCIs carried in the common search space may be distributed on frequency domain resources corresponding to different symbols.
  • the RF link When the RF link transmits a beam toward the first direction within a time range corresponding to one subframe, only the terminal device 20 in the first direction can successfully detect the common search space, and the terminal device 20 in other directions cannot detect the public. Search space. Further, even if there are multiple RF links, the RF links are oriented in different directions, the number of RF links of the network device is much smaller than the number of directions in which the terminal device may be located, and the terminal device 20 in the partial direction cannot be detected. Go to the public search space.
  • the RF link transmits beams in different directions within a time range corresponding to one subframe
  • the common search space spans the symbol distribution, and the DCI carried in the common search space may be distributed on the frequency domain resources corresponding to different symbols
  • Each terminal device 20 distributed in different directions may not be able to detect a complete common search space, resulting in failure to successfully receive DCIs carried in the common search space.
  • the RF link of the network device 10 keeps the beam sending directions consistent in the time range corresponding to the symbols #0, #1, #2
  • only the terminal device 20 located in the sending direction may detect Go to public search space and dedicated search space.
  • the RF link changes the beam transmission direction within the time range corresponding to the symbols #0, #1, and #2
  • the resources occupied by the common search space are usually distributed on the frequency domain resources corresponding to the symbols #0, #1, and #2. Then, no terminal device 20 can correctly detect the common search space.
  • the terminal device in the partial direction does not detect the common search space, and thus the host device cannot be received in the public search space. DCI problem.
  • the beamforming technology is combined with the fifth generation mobile communication technology (5G) system
  • a dedicated search space is set for each terminal device 20, so that a plurality of terminal devices are notified.
  • the dedicated search space occupies a large amount of control resources.
  • the embodiment of the present application provides a resource processing method.
  • the resource processing method provided by the embodiment of the present application is described in detail below.
  • FIG. 3 is a schematic flowchart diagram of a resource processing method according to an embodiment of the present application. This embodiment relates to allocating a common search space to the terminal devices in the direction corresponding to each beam when the resources are allocated. As shown in FIG. 3, the method includes:
  • the network device determines at least two beams that need to be sent.
  • the network device 10 determines at least two beams that need to be transmitted.
  • the network device 10 may determine the number of beams to be transmitted according to the control information that needs to be sent. For example, when the network device 10 needs to page all the terminal devices 20 in the idle state in the serving cell, since the network device 10 does not know the direction in which the terminal device 20 is located, the network device 10 needs to transmit beams in all possible directions. Further, when the number of beams to be transmitted is large, the network device 10 may also determine that the beams are transmitted within a time range corresponding to different subframes. The round transmission of the beam is realized by transmitting the beams to be transmitted in a plurality of subframes. To further increase the rotational speed at which the network device 10 transmits control information, one beam is typically defined to correspond to one symbol.
  • the network device 10 may also determine the number of beams to be transmitted according to the direction in which the terminal device 20 that needs to be served is located.
  • the network device 10 can determine the beam to be transmitted according to the direction in which the terminal device 20 is located.
  • one symbol group can be assigned to one beam.
  • a symbol group can include at least one symbol.
  • the number of beams to be transmitted may also be determined according to the width of the beam. For example, when the width of the beam transmitted by the network device 10 is wide, that is, the beam has a large coverage angle, the network device 10 only needs to transmit a smaller number of beams to cover all possible directions.
  • one symbol group can be assigned to one beam, and one symbol group can include at least one symbol.
  • the network device 10 may further determine a beam to be sent according to other configurations, which is not limited in this application.
  • the network device determines a time-frequency resource corresponding to each of the at least two beams.
  • the network device determines a corresponding time-frequency resource for each beam.
  • the network device may determine the corresponding time-frequency resource by determining a corresponding symbol group for each beam.
  • the frequency domain resources corresponding to all the symbols in a symbol group constitute the time-frequency resources of the beams corresponding to the symbol group.
  • one symbol group may include at least one symbol.
  • the network device determines, by using a corresponding symbol for each beam, that the time-frequency resource corresponding to each beam is a frequency domain resource corresponding to the symbol corresponding to each beam.
  • the network device 10 transmits the corresponding beam within the time range corresponding to the symbol group or symbol, and the terminal device 20 in the direction corresponding to the beam can receive the beam.
  • the network device determines a part of the time-frequency resource in the time-frequency resource corresponding to each beam as a common search space.
  • the part of the time-frequency resource corresponding to the common search space is used to carry control information sent to the terminal device.
  • the network device 10 selects a part of the time-frequency resource in the time-frequency resource corresponding to each beam.
  • a partial CCE may be selected as part of the time-frequency resource among all available CCEs included in the time-frequency resource.
  • the partial CCEs constitute a common search space, and can be used to carry control information sent by the network device 10 to the terminal device 20.
  • the number of CCEs can be determined according to the control information to be sent. That is, the time-frequency resource corresponding to each beam includes a common search space, and the common search space included in the time-frequency resource corresponding to each beam can carry control information.
  • An embodiment of the present application provides a resource processing method, where each time beam is allocated a time-frequency resource after determining at least two beams to be transmitted. And delineating the time-frequency resource as a common search space in the time-frequency resources corresponding to each beam.
  • the resource processing method provided by the embodiment of the present application can ensure that each terminal device can detect a complete public search space when the terminal devices are distributed in different directions.
  • the network device 10 since the network device 10 transmits at least two beams within a time range corresponding to one subframe, the network device 10 can transmit more beams in one subframe without increasing the RF link, and increases Coverage.
  • the network device 10 determines a beam to be transmitted in each subframe.
  • the network device 10 carries control information in a common search space on the time-frequency resource corresponding to each beam, that is, the control information is copied, so that each beam carries control information.
  • the control information is information that the plurality of terminal devices 10 need to receive, for example, downlink control information that needs to be carried in a common search space. Therefore, the terminal device 20 in the direction corresponding to each beam can detect the common search space, and can receive the control information in the common search space.
  • the mapping process of the DCI carried in the common search space on the time-frequency resource is described in detail.
  • the physical layer process for mapping the DCI on the time-frequency resource may include:
  • the network device acquires a DCI that needs to be mapped on a time-frequency resource, where the DCI is a bit stream in a binary form.
  • the network device adds a CRC check bit to the DCI bit stream, and the CRC length is a reference to the protocol in the LTE system.
  • S003 Perform channel coding on the DCI with the CRC added to obtain coded data.
  • the channel coding process may be a Tail-biting convolutional coding (TBCC code), a polarization code (Polar code), or any coding method in the LTE system, which is not limited in this application.
  • TBCC code Tail-biting convolutional coding
  • Poly code Polar code
  • Channel coding is used to provide error detection and error correction capabilities for information transmission.
  • S004 Perform rate matching on the encoded data to obtain a bit sequence to be transmitted.
  • rate matching is used to select a sequence of bits from the encoded data that really needs to be transmitted.
  • one bit sequence can be aggregated for transmission across multiple CCEs.
  • the number of CCEs is the aggregation level, and the aggregation level may be ⁇ 1, 2, 4, 8 ⁇ .
  • S006 Integrate a plurality of bit sequences to be transmitted together to obtain a multiplexed bit sequence.
  • the length of the i-th bit sequence b (i) is denoted by M (i)
  • the bit sequence is denoted by b (i) (0), ⁇ , b (i) (M (i) -1), where i is a non-negative integer.
  • the bit sequence obtained by integrating the P bit sequences can be expressed as b (0) (0), ⁇ , b (0) (M (0) -1), ⁇ , b (P-1 ) (0), ⁇ ,b (P-1) (M (P-1) -1).
  • this sequence is defined as a multiplexed bit sequence, and the total length of the multiplexed bit sequence is Where N REG indicates the total number of control resources in the time-frequency resource.
  • the CCE corresponding to each bit of data can be determined according to the above integration manner.
  • S007 scrambling the multiplexed bit sequence obtained in S006 to obtain scrambled data.
  • scrambling refers to modulo-adding a multiplexed bitstream with a sequence (exemplary, optionally with a sequence associated with a cell identity) for randomizing interference between neighboring cells. .
  • S008 Modulate the scrambled data to obtain a QPSK symbol sequence or a QAM symbol sequence.
  • the scrambling data can be modulated by Quadrature Phase Shift Keying (QPSK), that is, 2 bits are modulated into one QPSK symbol.
  • QPSK Quadrature Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • the scrambled data is modulated into a sequence of QAM symbols.
  • other modulation methods may also be used, which is not limited in this application.
  • S009 Interleaving and cyclic shifting the QPSK symbol sequence or the QAM symbol sequence.
  • S010 Map the QPSK symbol or the QAM symbol to the antenna port and the physical time-frequency resource according to the QPSK symbol sequence or the QAM symbol sequence and the RE mapping relationship.
  • each bit data and each QPSK symbol or each QAM symbol may be obtained. Mapping relations.
  • each QPSK symbol or each QAM symbol is usually preferentially mapped to an RE having the same subcarrier and different symbols. That is, the DCI is distributed on the frequency domain resources corresponding to different symbols, and only the DCI is mapped once. Therefore, when the terminal device 20 is distributed over different symbols, there is a problem that the terminal device in the partial direction does not receive the DCI carried in the common search space.
  • the network device 10 maps in a common search space in the time-frequency resources corresponding to each beam.
  • QPSK symbol sequence or QAM symbol sequence when one beam corresponds to one symbol, each QPSK symbol or each QAM symbol is sequentially mapped into REs with the same symbol and different subcarriers from the first RE of the common search space corresponding to the symbol.
  • each QPSK symbol or each QAM symbol may be preferentially mapped from the first RE of the common search space corresponding to the symbol.
  • the QPSK symbol or the QAM symbol is mapped into the RE in the frequency domain resource corresponding to the second symbol; or It is also possible to preferentially map each QPSK symbol or each QAM symbol to an RE having the same subcarrier and different symbols. After the mapping of the QPSK symbol sequence or the QAM symbol sequence corresponding to one beam ends, the QPSK symbol sequence or the QAM symbol sequence is mapped in the time-frequency resource corresponding to the second beam, until the common search space in the time-frequency resources corresponding to all the beams The QPSK symbol sequence or QAM symbol sequence mapping in is completed.
  • a DCI is mapped in a time-frequency resource corresponding to each beam, so that the terminal device in the direction corresponding to each beam can receive the DCI.
  • the QPSK symbols on all subcarriers can be modulated into waveform transmission by inverse Fourier transform, thereby realizing the transmission of binary form of DCI in the LTE system.
  • the receiving process exemplarily includes an operation opposite to the above mapping process.
  • the physical layer process of the DCI received by the terminal device mainly includes:
  • the terminal device 20 performs Fourier transform, deinterleave, and cyclic shift, demodulation, descrambling, and the like on the received waveform to obtain a resource mapping structure as shown in FIG. 2. Then, the terminal device 20 performs blind detection of the common search space in the received resource mapping structure to obtain downlink control information.
  • FIG. 4 is a schematic structural diagram of a control resource mapping according to Embodiment 1 of the present application. As shown in FIG. 4, there are three beams to be sent in this embodiment. In this embodiment, the network device 10 needs to simultaneously serve the terminal device 20 in the direction corresponding to three different beams, and the resource processing method is performed. An illustrative description. The number of the terminal devices 20 in the direction corresponding to each beam may be the same or different. Referring to FIG. 4, an embodiment of the present application provides a resource processing method, including:
  • the network device determines a beam to be sent, and determines a part of the frequency domain resource in the frequency domain resource corresponding to each beam as a common search space.
  • the network device 10 transmits information through the RF radio, after determining the beam to be transmitted, a corresponding symbol is assigned to one beam.
  • the network device 10 controls the RF link to transmit the beam corresponding to the symbol, so that the terminal device 20 in the direction corresponding to the beam corresponding to the symbol can receive the time corresponding to the network device 10 at the symbol.
  • the network device 10 determines corresponding time-frequency resources for the three beams. As shown in FIG. 4, the time-frequency resource corresponding to one beam is a frequency domain resource corresponding to the symbol corresponding to the beam.
  • the network device 10 further demarcates part of the frequency domain resources on the frequency domain resources for each beam as a common search space.
  • some of the frequency domain resources occupied by each common search space have the same location on different symbols.
  • multiple CCEs constituting a common search space are distributed on frequency domain resources corresponding to the same symbol. That is, the common search space selects CCEs distributed on the frequency domain resources corresponding to the same symbol, and the REGs constituting each CCE are distributed on the frequency domain resources corresponding to the same symbol.
  • the network device maps the DCI into a common search space.
  • the network device 10 sends a DCI to the terminal device 20.
  • the DCI is a DCI common to at least one terminal device in the cell, such as system information or paging information
  • the network device 10 maps one in each common search space. DCI. In order to ensure that the terminal device 20 in the direction corresponding to the three beams can receive the DCI carried in the common search space.
  • the network device 10 when the network device 10 does not need to transmit the DCI carried in the common search space to the terminal device 20, and only transmits the DCI corresponding to the specific terminal device, the network device 10 can also map a specific terminal in each common search space. The DCI corresponding to the device. At this time, in order to ensure that the terminal device 20 can detect the DCI. The network device 10 can notify the terminal device of the resource location information occupied by the DCI through the high layer signaling, and the identifier required for performing the CRC check, so that the terminal device receives the DCI according to the resource location information and the identifier.
  • the network device 10 further determines a part of the frequency domain resource used for mapping the RS and/or a part of the frequency domain resource used for mapping the HARQ feedback information. Some of the frequency domain resources corresponding to the common search space, part of the frequency domain resources of the mapped RS, and some of the frequency domain resources that map the HARQ feedback information do not overlap each other.
  • at least one RS is carried on the frequency domain resource corresponding to the symbol corresponding to each beam.
  • the RS and HARQ feedback information are mapped on the frequency domain resources corresponding to each beam, so that the terminal device 20 in the direction corresponding to each beam can successfully receive the RS and HARQ feedback information.
  • the RS and HARQ feedback information is usually only mapped to the frequency domain resource corresponding to the first symbol in one subframe, and only the terminal device 20 in the direction corresponding to the beam corresponding to the first symbol can receive the RS.
  • the HARQ feedback information avoids the problem that the terminal device 20 distributed in the direction corresponding to other symbols cannot receive the DCI due to the failure to receive the RS and HARQ feedback information.
  • the network device 10 further determines a part of the frequency domain resource on the frequency domain resource corresponding to the symbol corresponding to each beam, as a dedicated search space.
  • the network device 10 separately allocates the DCI to each terminal device 20, and respectively carries the dedicated search space on the frequency domain resource corresponding to the beam corresponding to the direction in which each terminal device is located.
  • Some of the frequency domain resources corresponding to the dedicated search space, part of the frequency domain resources of the mapped RS, and some of the frequency domain resources that map the HARQ feedback information do not overlap each other.
  • the partial time-frequency resources corresponding to the dedicated search space may overlap with the partial time-frequency resources corresponding to the common search space.
  • the overlapping part is referred to as an overlapping resource.
  • the network device 10 may map the DCI carried in the common search space on the overlapping resource, or map the DCI carried in the dedicated search space on the overlapping resource. .
  • the network device 10 sends the resource location information of the public search space to the terminal device 20.
  • the PCFICH is not mapped on the control resource. Since the terminal device 20 does not receive the CFI carried on the PCFICH, the CCE index cannot be calculated according to the method in the above S202 to acquire the resource location information of the common search space. In order to solve the above problem, in this embodiment, the network device 10 directly transmits the resource location information of the common search space to the terminal device 20.
  • the terminal device 20 obtains REG or CCE location information of a common search space corresponding to each symbol through high layer signaling configuration.
  • the resource location information of the public search space that the network device 10 sends by using the broadcast mode is received when the terminal device 20 initially accesses the network.
  • the high-level signaling may be, for example, Medium Access Control-Control Element (MAC-CE) signaling, Non-Access Stratum (NAS) signaling, and radio resource control. (Radio Resource Control, RRC) signaling, Packet Data Convergence Protocol (PDCP) signaling, or Radio Link Control (RLC) signaling.
  • MAC-CE Medium Access Control-Control Element
  • NAS Non-Access Stratum
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • the terminal device 20 may obtain the resource location information of the frequency domain resource corresponding to the respective symbol in the common search space corresponding to each symbol.
  • the terminal device 20 receives symbol information and frequency domain resource information of resources occupied by each common search space, and the frequency domain resource information may be, for example, subcarrier information.
  • the terminal device 20 may acquire a resource location information as resource location information of a common search space corresponding to each symbol.
  • the common search space occupied by the frequency domain resources corresponding to different symbols has the same resource location.
  • the signaling overhead can be reduced by setting the common search space on the frequency domain resources corresponding to different symbols at the same location.
  • the terminal device 20 receives subcarrier information of resources occupied by each common search space.
  • the resource location information received by the terminal device 20 may be the first resource location information occupied by the common search space corresponding to the first symbol, and the resource location information occupied by the common search space corresponding to each symbol and the first The offset of the resource location information.
  • the resource location information received by the terminal device 20 may be the first resource location information occupied by the common search space corresponding to the first symbol, and the resource location information occupied by the common search space corresponding to the latter symbol corresponds to the previous symbol.
  • the association relationship of resource location information occupied by the common search space, and the association relationship may be an offset.
  • the resource location information of the common search space includes the following possible implementation manners:
  • the network device 10 directly informs the terminal device 20 of the resource location information occupied by the common search space on the frequency domain resource corresponding to each symbol.
  • the resource location information of the public search space is the location information of the CCE or REG occupied by the public search space.
  • the public search space can occupy 16 CCEs in the same manner as in the LTE protocol, and the aggregation level can be 4 or 8.
  • the terminal device 20 acquires the DCI carried in the common search space after a maximum of 6 blind checks according to the location information of the CCE.
  • the public search space can also occupy other CCEs according to actual requirements, and set other aggregation levels. This application does not limit this.
  • the terminal device can directly determine the common search space according to the resource location information, without calculating the location of the common search space, reducing the workload of the terminal device, and improving the terminal device.
  • the speed at which control information carried in the common search space is received.
  • the network device 10 may directly send the resource location information occupied by the PDCCH occupied by the DCI that is carried in the common search space in the common search space to the frequency domain resource corresponding to each symbol, to the terminal device 20 .
  • the resource location information of the public search space is the location information of the REG or CCE occupied by the public search space. Therefore, different from the common search space in the LTE system, the number of CCEs occupied by the common search space in this embodiment may not be 16 CCEs, and may be adaptively set according to DCIs carried in the common search space. At the same time, the common search space in this embodiment may also not set the aggregation level.
  • the terminal device 20 can directly perform CRC check according to the location information of the REG or the CCE, and acquire the DCI carried in the PDCCH without performing blind detection. It can reduce the number of blind detections of terminal devices and reduce the complexity of DCI detection.
  • the network device 10 may only send the resource location information of the common search space once.
  • S403 can also be executed before S401.
  • S404 The terminal device 20 acquires the DCI carried in the public search space according to the received resource location information of the common search space.
  • the terminal device 20 determines the public search according to the received resource location information, starting from the first symbol of the current subframe, at the location indicated by the resource location information on the frequency domain resource corresponding to the first symbol. Space, then try to detect whether DCI is carried in the common search space.
  • the terminal device 20 may receive the bearer in the public search. DCI in space.
  • the terminal device 20 stops trying to detect the DCI carried in the common search space.
  • the terminal device 20 When the terminal device 20 does not detect the DCI carried in the common search space within the time range corresponding to the first symbol, the terminal device 20 continues to try to detect the bearer according to the resource location information on the frequency domain resource corresponding to the second symbol. DCI in the public search space.
  • the maximum number of symbols is pre-set in the terminal device 20, and the maximum number of symbols can be configured on the terminal device 20 when the terminal device 20 is produced.
  • the terminal device 20 can also be configured by the network device 10 through higher layer signaling. It can also be transmitted by the network device 10 by means of the broadcast when the terminal device 20 initially accesses the network.
  • the terminal device 20 stops detecting the DCI carried in the common search space.
  • control channel symbol information is also carried, where the control channel symbol information is used to indicate the number of symbols required by the network device 10 to send RS, DCI, and HARQ feedback information, that is, where the control channel is located.
  • the total number of symbols may be CFI information in an LTE system.
  • the control channel symbol information can be carried as a new field of the DCI and carried on the PDCCH.
  • control channel symbol information may be at least one of the following:
  • the number of indications is not greater than the maximum number of symbols except the number of start symbols of the data channel.
  • the data channel indicates the time-frequency resource occupied by the network device 10 when transmitting the data information.
  • the total number of control channel symbols is used to indicate how many symbols the network device 10 occupies to transmit RS, DCI, and HARQ feedback information.
  • the terminal device 20 searches for the DCI on the frequency domain resource corresponding to the first M symbols of the current subframe, and starts receiving the data information in the M+1th symbol of the current subframe. .
  • M is a positive integer greater than zero.
  • the number of remaining control channel symbols is used to indicate how many symbols the network device 10 needs to occupy from the current symbol to transmit RS, DCI, and HARQ feedback information.
  • the terminal device 20 after receiving the total number of control channel symbols, the terminal device 20 searches for the DCI on the frequency domain resource corresponding to the first M symbols of the current subframe, and starts receiving the data information in the M+1th symbol of the current subframe. .
  • the total number of control channel symbols in the current subframe is used to indicate how many symbols are occupied by the network device 10 in the current subframe to transmit RS, DCI, and HARQ feedback information.
  • the number of remaining control channel symbols in the current subframe is used to indicate how many symbols are used by the network device 10 in the current subframe from the current symbol to transmit RS, DCI, and HARQ feedback information.
  • the total number of current beam control channel symbols is used to indicate how many symbols the network device 10 occupies on the current beam to transmit RS, DCI, and HARQ feedback information.
  • network device 10 occupies only one symbol on each beam to transmit RS, DCI, and HARQ feedback information.
  • the current beam residual control channel symbol number is used to indicate to the network device 10 how many symbols are needed to transmit RS, DCI, and HARQ feedback information from the current symbol on the current beam.
  • the network device 10 occupies only one symbol on each beam to transmit RS, DCI, and HARQ feedback information, so the current beam residual control channel symbol number takes a value of zero.
  • the data channel start symbol number is used to instruct the terminal device 20 to start receiving data information at the first symbol of the current subframe.
  • the control channel symbol information needs to indicate which symbols are used by the network device 10 to send RS, DCI, and HARQ feedback information, and also indicates occupation. Which symbols send data information.
  • the control channel symbol information can be simultaneously received.
  • the control channel symbol information is the total number of control channel symbols, for example, the total number of control channel symbols is 3.
  • the total number of symbols required to be used by the network device 10 in the current subframe to transmit RS, DCI, and HARQ feedback information is 3.
  • the control channel symbol information is the number of remaining control channel symbols, the number of remaining control channel symbols is 2, indicating that the network device 10 still needs to occupy 2 symbols to transmit RS, DCI, and HARQ feedback information.
  • control channel symbol information may also be configured by the network device 10 through high layer signaling.
  • the network device sets a common search space on the time-frequency resource corresponding to the symbol corresponding to each beam according to the determined beam to be sent, and a common search space occupies one symbol, and multiple terminal devices are required.
  • the received DCI is mapped in each common search space.
  • the network device sets a common search space on the time-frequency resource corresponding to the symbol corresponding to each beam, so that the terminal devices in the directions corresponding to different beams can detect the common search space, and further can detect whether the public search space is in the common search space. Carrying DCI improves the coverage of communication systems based on beamforming technology.
  • the embodiment of the present application further provides a resource processing method. After the terminal device 20 obtains the DCI carried in the public search space, the method further includes:
  • the terminal device 20 On detecting the time range and the frequency domain resource corresponding to the symbol of the DCI carried in the common search space, the terminal device 20 acquires the dedicated search space resource location information, and attempts to blindly check the DCI carried in the dedicated search space.
  • the manner in which the dedicated search space is constructed may be similar to the manner in which the dedicated search space in the LTE system is constructed.
  • the aggregation level of the dedicated search space may be any one of 1, 2, 4, and 8, and the total number of CCEs of the corresponding dedicated search space is 6, 12, 8, and 16, respectively.
  • the CCEs constituting the dedicated search space are distributed on the frequency domain resources corresponding to the same symbol, and the REGs constituting one CCE are distributed on the frequency domain resources corresponding to the same symbol.
  • the starting point of the dedicated search space in the CCE included in the current symbol may be exemplarily dependent on the identity of the terminal device 20, the current subframe number, and the like.
  • the terminal device 20 may calculate the starting point position of the dedicated search space on the frequency domain resource corresponding to the current symbol, and then perform 16 blind inspections from the starting point position. To get the DCI hosted in the dedicated search space.
  • the configuration of the dedicated search space may be similar to the configuration of the dedicated search space in the 5G.
  • the total number of CCEs in the dedicated search space is 16, and the aggregation level of the dedicated search space may be any one of 2, 4, 8, or 16.
  • the CCEs that make up the dedicated search space are also distributed over one symbol.
  • the dedicated search space may employ a method of determining the starting point of the dedicated search space in 5G at the starting point in the CCE included in the current symbol.
  • the dedicated search space may also occupy other numbers of CCEs according to actual requirements, and set other aggregation levels, which is not limited in this application.
  • FIG. 5 is a schematic diagram of a control resource mapping structure provided by Embodiment 2 of the present application.
  • the network device 10 transmits RS, DCI, and HARQ feedback information in the direction corresponding to each beam, and the number of symbols occupied by the network device 10 is different.
  • the network device 10 determines that two beams need to be sent, that is, the terminal device 20 that needs to serve in the direction corresponding to two different beams is taken as an example, and the mapping of RS, DCI, and HARQ feedback information on the control resources is performed.
  • the mode is exemplified.
  • the number of the terminal devices 20 in the direction corresponding to each beam may be the same or different. Only the differences between the embodiment shown in FIG. 5 and the embodiment shown in FIG. 4 will be described in detail below.
  • an embodiment of the present application provides a resource processing method, including:
  • the network device determines a beam to be sent, and determines a part of the frequency domain resource in the frequency domain resource corresponding to each beam as a common search space.
  • the network device 10 when the network device 10 sends information through the RF radio, one beam corresponds to one symbol group, and the number of symbols included in each symbol group may be different, that is, the number of symbols occupied by each beam may be different.
  • the network device 10 controls the RF link to transmit a beam corresponding to the symbol group, so that the terminal device 20 in the direction corresponding to the beam can receive the information transmitted within the time range corresponding to the symbol group.
  • the network device 10 determines corresponding time-frequency resources for the two beams.
  • network device 10 determines a respective set of symbols for beam 1 and beam 2. Referring to FIG. 5, the symbol group corresponding to beam 1 includes symbol #0 and symbol #1.
  • the symbol group corresponding to beam 2 includes symbol #2.
  • the time-frequency resource corresponding to each beam is a frequency domain resource corresponding to the corresponding symbol group.
  • the network device 10 further delimits the frequency domain resources corresponding to the common search space on the frequency domain resources for each beam.
  • the common search space on the frequency domain resource corresponding to beam 1 can occupy one symbol.
  • the common search space on the frequency domain resource corresponding to the beam 1 can also occupy two symbols. In this case, two symbols can be occupied for the REG constituting the CCE, and the common search space is composed of at least one CCE; The REG of the CCE occupies one symbol, and the common search space is composed of CCEs distributed on frequency domain resources corresponding to different symbols.
  • the network device maps the DCI into a common search space.
  • network device 10 when network device 10 transmits DCI to terminal device 20, network device 10 maps one DCI in each common search space. In order to ensure that the terminal device 20 in the direction corresponding to the two beams can receive the DCI carried in the common search space.
  • the common search space when the common search space is distributed on the frequency domain resources corresponding to the two symbols, the DCI carried in the common search space may be mapped on the frequency domain resources corresponding to the two symbols, or may be mapped in two symbols. Any one of the symbols corresponds to the frequency domain resource.
  • the network device 10 when a symbol group corresponding to one beam includes at least two symbols, the network device 10 generally determines, in a first symbol of the symbol group, a part of the frequency domain resource used for mapping the RS, and the part used for mapping the HARQ feedback information. Frequency domain resources. Some of the frequency domain resources corresponding to the common search space, part of the frequency domain resources of the mapped RS, and some of the frequency domain resources that map the HARQ feedback information do not overlap each other.
  • at least one RS is carried on the frequency domain resource corresponding to the symbol group corresponding to each beam.
  • the network device 10 further determines a part of the frequency domain resource on the frequency domain resource corresponding to the symbol group corresponding to each beam, as a dedicated search space.
  • the dedicated search space may be distributed on the frequency domain resources corresponding to the at least two symbols.
  • the REG constituting the CCE may occupy at least two symbols, and the dedicated search space is composed of at least one CCE; or the REG constituting the CCE may occupy one symbol, and the dedicated search space is distributed in the frequency domain corresponding to at least two symbols.
  • the composition of CCEs on resources are described by the dedicated search space.
  • the network device 10 sends the resource location information of the public search space to the terminal device 20.
  • the terminal device 20 acquires resource location information of a common search space on a frequency domain resource corresponding to the corresponding symbol group.
  • the terminal device 20 receives symbol information and frequency domain resource information of resources occupied by each common search space, and the frequency domain resource information may be, for example, subcarrier information.
  • the common search space may be distributed on frequency domain resources corresponding to at least one symbol included in the symbol group.
  • the common search space is set on the frequency domain resource corresponding to the first symbol of each symbol group, and each common search space is in each symbol group.
  • the frequency domain resources occupied on the corresponding time-frequency resources have the same location.
  • the network device 10 may send only one resource location information, such as subcarrier information, to enable the terminal device 20 to use the acquired resource location information as the resource location information of the common search space on the frequency domain resource corresponding to each symbol. .
  • the terminal device 20 acquires the DCI carried in the public search space according to the received resource location information of the common search space.
  • the resource location information includes symbol information and subcarrier information, and the symbol indicated in the symbol information corresponding to a common search space may be different. Then, according to the time sequence corresponding to each symbol, the common search space is determined at the subcarrier corresponding to each symbol, and then try to detect whether the DCI is carried in the common search space. If the terminal device 20 detects the DCI carried in the common search space, the attempt to detect is stopped, or until all resource locations indicated by the resource location information are tried.
  • the terminal device 20 when the terminal device 20 receives the frequency domain resource information occupied by each common search space, such as subcarrier information, according to the resource location information, starting from the first symbol, within a time range corresponding to each symbol, At the location indicated by the resource location information, the common search space is determined, and then it is attempted to detect whether the DCI is carried in the common search space. If the terminal device 20 detects the DCI, the attempted detection is stopped, or until all the symbols indicated by the maximum number of symbols are traversed.
  • the frequency domain resource information occupied by each common search space such as subcarrier information
  • Control channel symbol information is also carried in the common search space corresponding to each symbol group. Similar to the embodiment shown in FIG. 4, the control channel symbol information may be at least one of the following:
  • the network device 10 may transmit the current total number of beam steering channel symbols or the number of current beam residual control channel symbols as control channel symbol information. Referring to FIG. 5, when the current beam is beam 1 and the current symbol is symbol #0, the total number of current beam control channel symbols is 2, and the current beam residual control channel symbol number is 1.
  • the beam that needs to be sent by the network device sets a common search space on the time-frequency resource corresponding to the symbol group corresponding to each beam, and one common search space occupies one symbol group, and one symbol group corresponds to at least one.
  • the network device sets a common search space on the time-frequency resources corresponding to the symbol groups corresponding to each beam, so that the terminal devices in the directions corresponding to different beams can detect the common search space, and can further detect in the common search space. Whether or not DCI is carried, the coverage capability of the communication system based on beamforming technology is improved.
  • the network device can transmit the beam in a time range corresponding to the symbol group including different symbol numbers according to actual requirements, so that the common search space and the DCI carried in the common search space are more flexible in time-frequency resources distribution. Sex.
  • the embodiment of the present application further provides a resource processing method. After the terminal device 20 obtains the DCI carried in the public search space, the method further includes:
  • the terminal device 20 On detecting a time range and a frequency domain resource corresponding to the symbol group of the DCI in the common search space, the terminal device 20 acquires the dedicated search space resource location information, and attempts to blindly check the DCI carried in the dedicated search space.
  • the configuration manner of the dedicated search space in any of the symbol groups in this embodiment may be similar to the configuration of the dedicated search space in the LTE system, or similar to the configuration of the dedicated search space in the 5G.
  • the dedicated search space may occupy other CCEs according to actual requirements, and set other aggregation levels, which is not limited in this application.
  • FIG. 6 is a schematic diagram of a control resource mapping structure according to Embodiment 3 of the present application.
  • the resource processing method provided by the present application is also applicable to the case where the number of beams determined by the network device is 1. .
  • the network device 10 in this embodiment no longer transmits the beam 2.
  • the symbol group corresponding to the beam in this embodiment includes at least one symbol. Only the differences between the embodiment shown in FIG. 6 and the embodiment shown in FIG. 5 will be described in detail below.
  • an embodiment of the present application provides a resource processing method, including:
  • the network device determines a beam to be sent, and determines a part of the frequency domain resource in the frequency domain resource corresponding to each beam as a common search space.
  • the network device 10 determines that only one beam needs to be transmitted as an example.
  • the network device 10 may determine that each terminal device 20 is in the direction corresponding to the same beam, or may be only one terminal device 20 that needs to be served.
  • the direction of the beam is consistent with the direction of the terminal device 20 that needs to be served.
  • the beam corresponds to one symbol group, and the symbol group includes at least one symbol.
  • the three symbols corresponding to the beam 1 are taken as an example.
  • the network device maps the DCI into a common search space.
  • the network device 10 first determines the beam to be transmitted, that is, the beam 1. Then, the time-frequency resource corresponding to the beam 1 is determined, and part of the time-frequency resource occupied by the common search space is determined in the time-frequency resource.
  • the DCI bearer that needs to be carried in the common search space is sent in the common search space.
  • the time-frequency resource occupied by the common search space can be as shown in FIG. 6 and occupies 3 symbols.
  • the DCIs carried in the common search space may also be distributed on frequency domain resources corresponding to three symbols.
  • the network device 10 sends the resource location information of the public search space to the terminal device 20.
  • the terminal device 20 acquires the DCI carried in the public search space according to the received resource location information of the common search space.
  • the terminal device 20 On detecting a time range and a frequency domain resource corresponding to the symbol group of the DCI in the common search space, the terminal device 20 acquires the dedicated search space resource location information, and attempts to blindly check the DCI carried in the dedicated search space.
  • the S603 to S605 are similar to the S505 to S505 in the embodiment shown in FIG. 5, and details are not described herein again.
  • the network device determines a common search space in a time-frequency resource corresponding to a symbol group according to a beam that needs to be sent, and then carries the DCI in the common search space.
  • the network device sends the beam in a time range corresponding to the symbol group, so that the terminal device located in the direction corresponding to the beam can detect the common search space, and further can detect whether the DCI is carried in the common search space.
  • the common search space is distributed across symbols, which can reduce the frequency domain resource occupation.
  • FIG. 7 is a schematic diagram of a control resource mapping structure provided by Embodiment 4 of the present application.
  • a PCFICH is also mapped, and the CFI is carried on the PCFICH. Only the differences between the embodiment shown in Fig. 7 and the embodiment shown in Fig. 4 will be described in detail below.
  • an embodiment of the present application provides a resource processing method, including:
  • the network device determines a beam to be sent, and determines a part of the frequency domain resource in the frequency domain resource corresponding to each beam as a common search space.
  • This step is similar to S401 in the embodiment shown in FIG. 4, and details are not described herein again.
  • the network device maps the DCI and the CFI in a time frequency.
  • the network device 10 maps the DCI into a common search space, and the mapping manner is similar to that in S702, and details are not described herein again.
  • the network device 10 further determines a part of the frequency domain resource used for mapping the CFI.
  • the CFI is carried on the PCFICH.
  • the partial frequency domain resources of the mapping CFI do not overlap with part of the frequency domain resources corresponding to the common search space, part of the frequency domain resources of the mapped RS, some frequency domain resources that map the HARQ feedback information, and some frequency domain resources corresponding to the dedicated search space.
  • the network device 10 maps the CFI on the frequency domain resource corresponding to each beam corresponding symbol, and the CFI is carried in the PCFICH.
  • the control channel symbol information is no longer carried in the common search space.
  • each beam may have multiple symbols.
  • the configuration information of the PCFICH is configured by the network device 10 through high layer signaling.
  • the CFI is the same as the control channel symbol information in the embodiment shown in FIG. 4 to FIG. 6 , and is used to indicate the number of symbols occupied by the network device 10 for transmitting RS, DCI, and HARQ feedback information.
  • the CFI is the same as the control channel symbol information, and may also be at least one of the following:
  • the total number of control channel symbols, the number of remaining control channel symbols, the total number of control channel symbols in the current subframe, the number of remaining control channel symbols in the current subframe, the total number of current beam control channel symbols, the number of current beam residual control channel symbols, and the data channel start symbol number This application will not go into details here.
  • the terminal device 20 attempts to receive the RS on each symbol, the HARQ feedback information carried on the PHICH, and the CFI carried on the PCFICH.
  • the terminal device 20 When the terminal device 20 receives the RS, the HARQ feedback information, and the CFI, the terminal device 20 acquires the CCE index according to the CFI, and the resource information occupied by the PCFICH, the RS, and the PHICH, in the time range corresponding to the current symbol.
  • the manner of obtaining the CCE index may be similar to that of S202 in the embodiment shown in FIG. 2, and details are not described herein again.
  • the terminal device 20 determines, according to the index of the CCE, the common search space in the frequency domain resource corresponding to the current symbol, performs blind detection in the common search space, and acquires the bearer in the public search space. DCI.
  • the terminal device 20 acquires the dedicated search space resource location information, and attempts to blindly check the DCI carried in the dedicated search space.
  • S705 and S706 are similar to S203 to S204 in the embodiment shown in FIG. 2, and details are not described herein again.
  • the network device determines the common search space in the time-frequency resources corresponding to one symbol or symbol group according to the beam to be transmitted, and then carries the DCI in the common search space.
  • the time-frequency resource for carrying the CFI is determined in the time-frequency resource corresponding to one symbol or symbol group, and the CFI is carried on the PCFICH.
  • the CFI is carried in the time-frequency resource corresponding to each beam, which facilitates the terminal device 20 to obtain the resource location information of the common search space in each time-frequency resource of each beam according to the CFI. Therefore, the common search space corresponding to each symbol is in the time-frequency resource.
  • the location in the can be different and has a higher flexibility. It also prevents the network device from transmitting the resource location information of the common search space corresponding to each symbol to the terminal device, which reduces the signaling overhead.
  • the other aspect of the present application further provides a resource processing apparatus for performing the resource processing method on the network device side in the foregoing embodiment, which has the same technical features and technical effects, and is not further described herein.
  • FIG. 8 is a schematic structural diagram of a resource processing apparatus according to an embodiment of the present disclosure.
  • the resource processing device may be implemented by software, hardware, or a combination of software and hardware.
  • the resource processing apparatus includes:
  • a beam determining module 801 configured to determine at least two beams that need to be sent
  • the time-frequency resource determining module 802 is configured to determine a time-frequency resource corresponding to each of the at least two beams;
  • the common search space determining module 803 is configured to determine a part of the time-frequency resource in the time-frequency resource corresponding to each beam, and serve as a common search space, and the part of the time-frequency resource corresponding to the common search space is used to carry the control information sent to the terminal device. .
  • FIG. 9 is a schematic structural diagram of a resource processing apparatus according to another embodiment of the present application. As shown in FIG. 9, the resource processing apparatus further includes:
  • the sending module 804 is configured to send resource location information to the terminal device, where the resource location information is used to indicate a location on the common search space time-frequency resource.
  • the resource location information is used to indicate the location of the physical downlink control channel occupied by the control information in the common search space on the time-frequency resource corresponding to the common search space.
  • control information includes downlink control information, where the downlink control information is used to indicate configuration parameters of the uplink and downlink data transmission of the terminal device.
  • the downlink control information further includes control channel symbol information.
  • the resource processing apparatus further includes:
  • the mapping module 805 is configured to map one downlink control information in each common search space.
  • the beam determining module 801 is specifically configured to:
  • the width of the beam at least two beams that need to be transmitted are determined.
  • the time-frequency resource determining module 802 is specifically configured to:
  • Part of the time-frequency resources corresponding to each common search space are distributed on at least one symbol in each symbol group.
  • the time-frequency resource determining module 802 is further configured to: determine, in a time-frequency resource corresponding to each beam, a part of the time-frequency resource, where the control frame format indication information is used, and the control frame format indication information is used to indicate the control channel symbol information, where The part of the time-frequency resource carrying the control frame format indication information does not overlap with the partial time-frequency resource corresponding to the common search space.
  • the time-frequency resource determining module 802 is further configured to:
  • a part of the time-frequency resource is determined as a dedicated search space in a time-frequency resource corresponding to each beam; and a part of the time-frequency resource corresponding to the dedicated search space is used to carry control information that needs to be received by one terminal device.
  • the time-frequency resource determining module 802 is further configured to:
  • Partial time-frequency resources are determined in a time-frequency resource corresponding to each beam to carry a reference signal, and the reference signal is used to assist the terminal device to acquire control information, and part of the time-frequency resource corresponding to the common search space and the partial time-frequency resource corresponding to the common search space. Do not overlap.
  • the time-frequency resource determining module 802 is further configured to:
  • Part of the time-frequency resource is determined in the time-frequency resource corresponding to each beam to carry the hybrid automatic repeat request feedback information, and the hybrid automatic repeat request feedback information includes the response of the network device to the receiving of the uplink data of the terminal device, and the bearer hybrid automatic
  • the partial time-frequency resources of the retransmission request feedback information do not overlap with the partial time-frequency resources corresponding to the common search space.
  • the symbol is a minimum unit for dividing the time-frequency resource in the time domain.
  • the sending module 804 is specifically configured to send the resource location information of the common search space to the terminal device by using the high layer signaling.
  • the sending module 804 is specifically configured to broadcast the resource location information of the public search space.
  • control channel symbol information is at least one of the following:
  • the sending module 804 is further configured to send control channel symbol information to the terminal device by using high layer signaling.
  • the high layer signaling is any one of the following:
  • Medium access control - control unit signaling non-access stratum signaling, radio resource control signaling, packet data convergence protocol signaling, or radio link control layer protocol signaling.
  • the symbol group corresponding to each beam includes different numbers of symbols.
  • the symbol group corresponding to each beam includes the same number of symbols.
  • control frame format indication information is at least one of the following:
  • the other aspect of the present application further provides a resource processing apparatus for performing the resource processing method on the terminal device side in the foregoing embodiment, which has the same technical features and technical effects, and is not further described herein.
  • FIG. 10 is a schematic structural diagram of a resource processing apparatus according to still another embodiment of the present application.
  • the resource processing device may be implemented by software, hardware, or a combination of software and hardware.
  • the resource processing apparatus includes:
  • the receiving module 1001 is configured to receive resource location information sent by the network device, where the resource location information is used to indicate a location of the at least one public search space in the time-frequency resource;
  • the detecting module 1002 is configured to detect, according to the resource location information, whether there is control information carried in the common search space.
  • the resource location information includes frequency domain location information
  • the detecting module 1002 is specifically configured to:
  • the common search space is determined at a frequency domain position in the frequency domain resource corresponding to the second symbol, and whether the bearer is controlled in the common search space Information until the control information is detected or all symbols indicated by the maximum number of symbols are traversed; the maximum number of symbols is used to indicate the maximum number of symbols in the current subframe in which the common search space is distributed.
  • the resource location information includes at least one symbol group information, and frequency domain location information corresponding to each symbol group information, where one symbol group includes at least one symbol; and the detecting module 1002 is specifically configured to:
  • the common search space is determined, and whether the control information is carried in the common search space is detected until the detection is detected. Control information or traverse all symbol groups.
  • the symbol is a minimum unit for dividing the time-frequency resource in the time domain.
  • the receiving module 1001 is specifically configured to receive resource location information of a common search space that is sent by the network device by using the high layer signaling.
  • the receiving module 1001 is specifically configured to receive resource location information of a public search space that is sent by the network device.
  • control information includes downlink control information, where the downlink control information is used to indicate configuration parameters of the uplink and downlink data transmission of the terminal device.
  • the downlink control information includes control channel symbol information.
  • the receiving module 1001 is further configured to receive control channel symbol information that is sent by the network device to the terminal device by using the high layer signaling.
  • control channel symbol information is at least one of the following:
  • the high layer signaling is any one of the following:
  • Medium access control - control unit signaling non-access stratum signaling, radio resource control signaling, packet data convergence protocol signaling, or radio link control layer protocol signaling.
  • the detecting module 1002 is further configured to:
  • control frame format indication information carried on the physical control format indication channel, and the control frame format indication information is used to indicate control channel symbol information.
  • the detecting module 1002 is further configured to:
  • downlink control information carried in the dedicated search space is detected according to the control channel symbol information.
  • the detecting module 1002 is further configured to:
  • the detecting module 1002 is further configured to:
  • hybrid automatic repeat request feedback information carried on the physical hybrid automatic repeat request channel indication channel in all symbols indicated by the maximum number of symbols of the current subframe, and the hybrid automatic repeat request feedback information includes the network device to the terminal device.
  • the response of the received data of the upstream data includes the network device to the terminal device.
  • Another embodiment of the present application further provides a network device for performing the resource processing method in the foregoing embodiment shown in FIG. 3 to FIG.
  • the same technical features and technical effects are provided, and the details are not described herein again.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device includes a transmitter 1101, a memory 1102, a processor 1103, and at least one communication bus 1104.
  • Communication bus 1104 is used to implement a communication connection between components.
  • Memory 1102 may include high speed random access memory, and may also include non-volatile memory, such as at least one disk storage, in which various programs may be stored for performing various processing functions and implementing the method steps of the present embodiments.
  • the processor 1103 is for executing a program stored in the memory 1102.
  • the transmitter 1101 may be a radio frequency processing module or a baseband processing module in the network device.
  • the transmitter 1101 is coupled to the processor 1103.
  • the processor 1101 is configured to:
  • Determining at least two beams to be transmitted determining a time-frequency resource corresponding to each of the at least two beams; determining a part of the time-frequency resource in the time-frequency resource corresponding to each beam, as a common search space, corresponding to the common search space Part of the time-frequency resource, used to carry control information sent to the terminal device.
  • the transmitter 1102 is configured to send resource location information to the terminal device, where the resource location information is used to indicate a location on the common search space time-frequency resource.
  • the resource location information is used to indicate the location of the physical downlink control channel occupied by the control information in the common search space on the time-frequency resource corresponding to the common search space.
  • control information includes downlink control information, where the downlink control information is used to indicate configuration parameters of the uplink and downlink data transmission of the terminal device.
  • the downlink control information further includes control channel symbol information.
  • processor 1101 is further configured to:
  • a downlink control information is mapped in each common search space.
  • the processor 1101 is specifically configured to:
  • the width of the beam at least two beams that need to be transmitted are determined.
  • processor 1101 is further configured to:
  • Part of the time-frequency resources corresponding to each common search space are distributed on at least one symbol in each symbol group.
  • the resource location information includes at least one symbol group information, and frequency domain resource information corresponding to each symbol group information.
  • processor 1101 is further configured to:
  • Part of the time-frequency resource is determined in the time-frequency resource corresponding to each beam, and is used to carry control frame format indication information, where the control frame format indication information is used to indicate control channel symbol information, and is used to carry part of the time-frequency of the control frame format indication information.
  • the partial time-frequency resources corresponding to the resources and the common search space do not overlap.
  • processor 1101 is further configured to:
  • a part of the time-frequency resource is determined as a dedicated search space in a time-frequency resource corresponding to each beam; and a part of the time-frequency resource corresponding to the dedicated search space is used to carry control information that needs to be received by one terminal device.
  • processor 1101 is further configured to:
  • Partial time-frequency resources are determined in a time-frequency resource corresponding to each beam to carry a reference signal, and the reference signal is used to assist the terminal device to acquire control information, and part of the time-frequency resource corresponding to the common search space and the partial time-frequency resource corresponding to the common search space. Do not overlap.
  • processor 1101 is further configured to:
  • Part of the time-frequency resource is determined in the time-frequency resource corresponding to each beam to carry the hybrid automatic repeat request feedback information, and the hybrid automatic repeat request feedback information includes the response of the network device to the receiving of the uplink data of the terminal device, and the bearer hybrid automatic
  • the partial time-frequency resources of the retransmission request feedback information do not overlap with the partial time-frequency resources corresponding to the common search space.
  • the symbol is a minimum unit for dividing the time-frequency resource in the time domain.
  • the transmitter 1102 is specifically configured to:
  • the resource location information of the common search space is sent to the terminal device through the high layer signaling.
  • the transmitter 1102 is specifically configured to:
  • control channel symbol information is at least one of the following:
  • the transmitter 1102 is further configured to:
  • the control channel symbol information is sent to the terminal device through high layer signaling.
  • the high layer signaling is any one of the following:
  • Medium access control - control unit signaling non-access stratum signaling, radio resource control signaling, packet data convergence protocol signaling, or radio link control layer protocol signaling.
  • the symbol group corresponding to each beam includes different numbers of symbols.
  • the symbol group corresponding to each beam includes the same number of symbols.
  • control frame format indication information is at least one of the following:
  • Another embodiment of the present application further provides a terminal device for performing the resource processing method in the foregoing embodiment shown in FIG. 3 to FIG.
  • the same technical features and technical effects are provided, and the details are not described herein again.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the terminal device includes a receiver 1201, a memory 1202, a processor 1203, and at least one communication bus 1204.
  • Communication bus 1204 is used to implement a communication connection between components.
  • Memory 1202 may include high speed random access memory, and may also include non-volatile memory, such as at least one disk storage, in which various programs may be stored for performing various processing functions and implementing the method steps of the present embodiments.
  • the processor 1203 is configured to execute a program stored in the memory 1202.
  • the receiver 1201 may be a radio frequency processing module or a baseband processing module in the terminal device. Therein, a receiver 1201 is coupled to the processor 1203.
  • the receiver 1201 is configured to receive resource location information sent by the network device, where the resource location information is used to indicate a location of the at least one common search space in the time-frequency resource;
  • the processor 1202 is configured to detect, according to the resource location information, whether there is control information carried in the common search space.
  • the resource location information includes frequency domain location information; the processor 1202 is specifically configured to:
  • the common search space is determined at a frequency domain position in the frequency domain resource corresponding to the second symbol, and whether the bearer is controlled in the common search space Information until the control information is detected or all symbols indicated by the maximum number of symbols are traversed; the maximum number of symbols is used to indicate the maximum number of symbols in the current subframe in which the common search space is distributed.
  • the resource location information includes at least one symbol group information, and frequency domain location information corresponding to each symbol group information, where one symbol group includes at least one symbol; and the processor 1202 is specifically configured to:
  • the common search space is determined, and whether the control information is carried in the common search space is detected until the detection is detected. Control information or traverse all symbol groups.
  • the symbol is a minimum unit for dividing the time-frequency resource in the time domain.
  • the receiver 1201 is specifically configured to receive resource location information of a common search space that is sent by the network device by using the high layer signaling.
  • the receiver 1201 is specifically configured to receive resource location information of a public search space that is sent by the network device.
  • control information includes downlink control information, where the downlink control information is used to indicate configuration parameters of the uplink and downlink data transmission of the terminal device.
  • the downlink control information includes control channel symbol information.
  • the receiver 1201 is further configured to receive control channel symbol information that is sent by the network device to the terminal device by using the high layer signaling.
  • control channel symbol information is at least one of the following:
  • the high layer signaling is any one of the following:
  • Medium access control - control unit signaling non-access stratum signaling, radio resource control signaling, packet data convergence protocol signaling, or radio link control layer protocol signaling.
  • the processor 1202 is further configured to:
  • control frame format indication information carried on the physical control format indication channel, and the control frame format indication information is used to indicate control channel symbol information.
  • the processor 1202 is further configured to:
  • downlink control information carried in the dedicated search space is detected according to the control channel symbol information.
  • the processor 1202 is further configured to:
  • the processor 1202 is further configured to:
  • hybrid automatic repeat request feedback information carried on the physical hybrid automatic repeat request channel indication channel in all symbols indicated by the maximum number of symbols of the current subframe, and the hybrid automatic repeat request feedback information includes the network device to the terminal device.
  • the response of the received data of the upstream data includes the network device to the terminal device.
  • each module of the above network device and terminal device is only a division of logical functions, and may be further divided in actual implementation, for example, multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the embodiment of the present application further provides a program for executing the resource processing method on the network device side in the embodiment shown in FIG. 3 to FIG. 7 when executed by the processor.
  • the embodiment of the present application also provides a program product, such as a computer readable storage medium, including the program as described above.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores instructions, when executed on a computer, causing the computer to execute the network device in the embodiment shown in FIG. 3 to FIG. 7 Side resource processing method.
  • the embodiment of the present application further provides a program for executing the resource processing method on the terminal device side in the embodiment shown in FIG. 3 to FIG. 7 when executed by the processor.
  • the embodiment of the present application also provides a program product, such as a computer readable storage medium, including the program as described above.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores instructions, when executed on a computer, causing the computer to execute the terminal device in the embodiment shown in FIG. 3 to FIG. 7 Side resource processing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种资源处理方法和装置,该方法包括:网络设备确定需要发送的至少两个波束;网络设备确定至少两个波束中每个波束对应的时频资源;网络设备在每个波束对应的时频资源中确定部分时频资源,作为公共搜索空间,公共搜索空间对应的部分时频资源,用于承载向终端设备发送的控制信息。本申请实施例提供的资源处理方法和装置,可在终端设备分布在不同方向时,保证各终端设备均可检测到完整的公共搜索空间。同时,由于在一个子帧对应的时间范围内网络设备发送了至少两个波束,使得网络设备在不增加RF链路的情况下,可在一个子帧内发送更多的波束,增加了覆盖范围。

Description

资源处理方法和装置
本申请要求于2017年03月24日提交中国专利局、申请号为201710184796.4、发明名称为“资源处理方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种资源处理方法和装置。
背景技术
在波束成型技术中,可以通过控制射频(Radio frequency,RF)链路在空间上朝向特定的方向发送波束,来实现更高的天线阵列增益。因此,波束成型技术成为减少通信传输时的损耗的研究热点。但是,波束成型技术中,在一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号对应的时间范围内,一个RF链路打出的波束只能朝向一个方向。即,在一个符号对应的时间范围内,一个RF链路无法向两个方向发送波束。
在通信系统中,终端设备在接收或发送数据之前,需要获取网络设备配置给该终端设备的承载在公共搜索空间中的下行控制信息。公共搜索空间占用的时频资源被划分为多个控制信道单元(Control Channel Element,CCE),且构成公共搜索空间的CCE通常分布在不同的符号对应的频域资源上。即公共搜索空间中承载的下行控制信息可能分布在不同符号对应的频域资源上。
因此,当将波束成型技术应用在通信系统中时,以网络设备仅有一个RF链路发送波束为例,当公共搜索空间占用的符号所对应的波束均朝向第一方向时,仅第一方向上的终端设备可以检测到公共搜索空间,其他方向上的终端设备无法检测到公共搜索空间;当公共搜索空间占用的符号所对应的波束朝向不同的方向时,分布在不同方向上的每个终端设备都检测不到完整的公共搜索空间。但是,网络设备的RF链路的数目远小于终端设备可能所在的方向的数目,即使不同的RF链路朝向不同的方向,仍存在无法覆盖所有可能的方向的问题。因此,现有技术中,当终端设备分布在不同的方向上时,存在部分方向上的终端设备检测不到完整公共搜索空间,进而无法接收到承载在公共搜索空间中的下行控制信息的问题。
发明内容
本申请提供一种资源处理方法和装置,用于解决在将波束成型技术应用到现有通信系统中时,存在部分方向上的终端设备检测不到完整公共搜索空间,进而无法接收到承载在公共搜索空间中的下行控制信息的问题。
本申请一方面提供一种资源处理方法,应用于网络设备,包括:
网络设备根据终端设备所在的方向的信息,确定需要发送的至少两个波束;
确定至少两个波束中每个波束对应的时频资源;
在各波束对应的时频资源中划定作为公共搜索空间的时频资源,公共搜索空间对应的部分时频资源, 用于承载向终端设备发送的控制信息。
网络设备根据需要接收到控制信息的终端设备的方向信息,确定需要发送的至少两个波束,所述至少两个波束用于保证各需要接收控制信息的终端设备都能接收到控制信息。网络设备根据终端设备所在的方向的数量,适应性的调整波束的数量。通过为各波束分配一个公共搜索空间,使得终端设备分布在不同方向时,各终端设备均可检测到完整的公共搜索空间。同时,使得网络设备在不增加射频链路的情况下,可在一个子帧内发送更多的波束,增加了覆盖范围,加快了控制信息的发送速度,减少了控制信息的传输延时。
在一种可能的实施方式中,资源处理方法还包括:
网络设备向终端设备发送资源位置信息;资源位置信息用于指示公共搜索空间在时频资源上的位置。
通过将公共搜索空间的资源位置信息直接发送给终端设备,使得终端设备可直接根据资源位置信息,确定公共搜索空间,无需计算公共搜索空间的位置,减少了终端设备的工作量,提高了终端设备接收承载在公共搜索空间中的控制信息的速度。
在一种可能的实施方式中,资源位置信息用于指示,承载在公共搜索空间中的控制信息在公共搜索空间中占用的物理下行控制信道在公共搜索空间对应的时频资源上的位置。
通过将公共搜索空间中承载有多个终端设备待接收的下行控制信息的物理下行控制信道的资源位置信息直接发送给终端设备,使得终端设备可直接进行校验,获取承载在物理下行控制信道中的下行控制,而无需进行盲检,可以减少终端设备的盲检次数、降低下行控制信息检测的复杂度。
在一种可能的实施方式中,控制信息中包含下行控制信息,下行控制信息用于指示终端设备的上下行数据传输的配置参数。
在一种可能的实施方式中,下行控制信息还中包含控制信道符号信息。
通过在公共搜索空间中承载下行控制信息,并将控制信道符号信息作为下行控制信息的一部分,使得终端设备可根据接收到的控制信道符号信息确定网络设备发送参考信号、下行控制信息及混合自动重传请求反馈信息占用的符号的信息,以及网络设备发送数据信息时占用的符号的信息。
在一种可能的实施方式中,资源处理方法还包括:
网络设备在每个公共搜索空间中都映射一个下行控制信息。
在一种可能的实施方式中,映射在各公共搜索空间中的下行控制信息为小区中至少一个终端设备通用的下行控制信息。示例性的,如系统信息或寻呼信息。
在一种可能的实施方式中,映射在各公共搜索空间中的下行控制信息可以为特定终端设备的下行控制信息。此时,网络设备通过高层信令通知终端设备该下行控制信息占用的资源位置信息,以及进行冗余循环检查校验的标识,以使终端设备根据资源位置信息和标识,来接收该下行控制信息。
通过在所有公共搜索空间中都映射一个下行控制信息,使得各波束对应的方向上的终端设备均可检测到公共搜索空间,并可进一步接收到承载公共搜索空间中的下行控制信息。
在一种可能的实施方式中,网络设备确定需要发送的至少两个波束,包括:
网络设备根据控制信息的类型,确定需要发送的至少两个波束;或者,
网络设备根据终端设备所在的方向信息,确定需要发送的至少两个波束;或者,
网络设备根据波束的宽度,确定需要发送的至少两个波束。
在一种可能的实施方式中,网络设备确定至少两个波束中每个波束对应的时频资源,具体包括:
网络设备确定至少两个波束中每个波束对应的符号组,根据符号组对应的时频资源得到至少两个波束中每个波束对应的时频资源,每个符号组包括至少一个符号;
各公共搜索空间对应的部分时频资源分布在各符号组内的至少一个符号上。
在一种可能的实施方式中,符号为时域中划分时频资源的最小单位。
在一种可能的实施方式中,资源位置信息包括至少一个符号组信息,以及与各符号组信息对应的频域资源信息。
通过向终端设备发送各公共搜索空间的符号组信息和对应的频域资源信息,使得终端设备可直接根据符号组信息和频域资源信息确定公共搜索空间的位置信息,也使得网络设备在时频资源中确定各波束对应的公共搜索空间时,可灵活设置不同波束对应的公共搜索空间的位置。
在一种可能的实施方式中,资源处理方法还包括:
网络设备在每个波束对应的时频资源中确定部分时频资源,用于承载控制帧格式指示信息,控制帧格式指示信息用于指示控制信道符号信息,用于承载控制帧格式指示信息的部分时频资源与公共搜索空间对应的部分时频资源不重叠。
由于各波束对应的时频资源中承载有控制帧格式指示信息,方便了终端设备根据控制帧格式指示信息获取各波束对应时频资源中的公共搜索空间的资源位置信息,因此,各符号对应的公共搜索空间在时频资源中的位置可以不同,具有较高的灵活性。也避免了网络设备向终端设备发送各符号对应的公共搜索空间的资源位置信息,减少了信令开销。
在一种可能的实施方式中,资源处理方法还包括:
网络设备在每个波束对应的时频资源中确定部分时频资源,作为专用搜索空间;专用搜索空间对应的部分时频资源,用于承载需要一个终端设备接收的控制信息。
在一种可能的实施方式中,资源处理方法还包括:
网络设备在每个波束对应的时频资源中确定部分时频资源,以承载参考信号,参考信号用于辅助终端设备获取控制信息,承载参考信号的部分时频资源与公共搜索空间对应的部分时频资源不重叠。
在一种可能的实施方式中,资源处理方法还包括:
网络设备在每个波束对应的时频资源中确定部分时频资源,以承载混合自动重传请求反馈信息,混合自动重传请求反馈信息包含网络设备对终端设备的上行数据的接收的响应,承载混合自动重传请求反馈信息的部分时频资源与公共搜索空间对应的部分时频资源不重叠。
通过在每个波束对应的频域资源上,映射有参考信号和混合自动重传请求反馈信息,使得每个波束对应的方向上的终端设备可成功接收到参考信号和混合自动重传请求反馈信息。避免了存在部分方向上的终端设备由于未接收参考信号和混合自动重传请求反馈信息,而存在无法完成下行控制信息的接收的问题。
在一种可能的实施方式中,资源位置信息包括频域资源信息。
网络设备通过将不同符号对应的频域资源上的公共搜索空间占用的资源位置设置为一致,在发送资源位置信息时仅发送频域资源信息,减少信令开销。
在一种可能的实施方式中,网络设备向终端设备发送资源位置信息,包括:网络设备通过高层信令向终端设备发送公共搜索空间的资源位置信息。
在一种可能的实施方式中,网络设备向终端设备发送资源位置信息,包括:网络设备广播发送公共搜索空间的资源位置信息。
在一种可能的实施方式中,控制信道符号信息为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
在一种可能的实施方式中,资源处理方法还包括:
网络设备通过高层信令向终端设备发送控制信道符号信息。
在一种可能的实施方式中,高层信令为如下中的任一种:
介质接入控制-控制单元信令、非接入层信令、无线资源控制信令、分组数据汇聚协议信令或无线链路控制层协议信令。
在一种可能的实施方式中,各波束对应的符号组包括的符号数不同。
通过为不同波束分配包含的符号数不同的符号组,使得网络设备在占用不同符号数发送波束,使得共搜索空间、以及承载在公共搜索空间中的下行控制信息在时频资源上分布更具有灵活性。
在一种可能的实施方式中,各波束对应的符号组包括的符号数相同。
在一种可能的实施方式中,控制帧格式指示信息为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
本申请实施例还提供一种资源处理方法,应用于终端设备,与上述应用于网络设备侧的资源处理方法相对应,具有对应的技术特征和技术效果。本申请对此不再赘述。
本申请实施例另一方面还提供一种资源处理方法,包括:
终端设备接收网络设备发送的资源位置信息,资源位置信息用于指示至少一个公共搜索空间在时频资源中的位置;根据资源位置信息,检测是否存在承载在公共搜索空间中的控制信息。
在一种可能的实施方式中,资源位置信息包括频域位置信息;终端设备根据资源位置信息,检测是否存在承载在公共搜索空间中的控制信息,包括:
终端设备自当前子帧的第一个符号起,在第一个符号对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息;
若否,则在当前子帧的下一个符号对应的时间范围内,在第二个符号对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息,直至检测到控制信息或遍历完最大符号数指示的所有符号;最大符号数用于指示当前子帧中分布有公共搜索空间的符号的数量的最大值。
在一种可能的实施方式中,资源位置信息包括至少一个符号组信息,以及与各符号组信息对应的频域位置信息,一个符号组包括至少一个符号;终端设备根据资源位置信息,检测是否存在承载在公共搜索空间中的控制信息,包括:
终端设备在第一个符号组对应的时间范围内,在第一个符号组对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息;
若否,则在下一个符号组对应的时间范围内,在下一个符号组对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息,直至检测到控制信息或遍历完所有符号组。
在一种可能的实施方式中,符号为时域中划分时频资源的最小单位。
在一种可能的实施方式中,终端设备接收网络设备发送的资源位置信息,包括:
终端设备接收网络设备通过高层信令发送的公共搜索空间的资源位置信息。
在一种可能的实施方式中,终端设备接收网络设备发送的资源位置信息,包括:
终端设备接收网络设备广播发送的公共搜索空间的资源位置信息。
在一种可能的实施方式中,控制信息中包含下行控制信息,下行控制信息用于指示终端设备的上下行数据传输的配置参数。
在一种可能的实施方式中,下行控制信息中包含控制信道符号信息。
在一种可能的实施方式中,资源处理方法还包括:
终端设备接收网络设备通过高层信令发送的控制信道符号信息。
在一种可能的实施方式中,控制信道符号信息为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
在一种可能的实施方式中,高层信令为如下中的任一种:
介质接入控制-控制单元信令、非接入层信令、无线资源控制信令、分组数据汇聚协议信令或无线链路控制层协议信令。
在一种可能的实施方式中,资源处理方法还包括:
终端设备在当前子帧的最大符号数指示的所有符号内,检测是否存在承载在物理控制格式指示信道上的控制帧格式指示信息,控制帧格式指示信息用于指示控制信道符号信息。
在一种可能的实施方式中,资源处理方法还包括:
终端设备在检测到控制信息的符号组上,根据控制信道符号信息,检测专用搜索空间中承载的下行控制信息。
在一种可能的实施方式中,资源处理方法还包括:
终端设备在当前子帧的最大符号数指示的所有符号内,检测是否存在参考信号,参考信号用于辅助终端设备获取控制信息。
在一种可能的实施方式中,资源处理方法还包括:
终端设备在当前子帧的最大符号数指示的所有符号,检测是否存在承载在物理混合自动重传请求信道指示信道上的混合自动重传请求反馈信息,混合自动重传请求反馈信息包含网络设备对终端设备的上行数据的接收的响应。
本申请实施例还提供一种资源处理装置,用于执行上述资源处理方法,具有相同的技术特征和技术效果。本申请对此不再赘述。
申请实施例再一方面还提供一种资源处理装置,用于执行上述网络设备侧对应的资源处理方法,包括:
波束确定模块,用于确定需要发送的至少两个波束;
时频资源确定模块,用于确定至少两个波束中每个波束对应的时频资源;
公共搜索空间确定模块,用于在每个波束对应的时频资源中确定部分时频资源,作为公共搜索空间,公共搜索空间对应的部分时频资源,用于承载向终端设备发送的控制信息。
在一种可能的实施方式中,资源处理装置还包括:
发送模块,用于向终端设备发送资源位置信息;资源位置信息用于指示公共搜索空间时频资源上的位置。
在一种可能的实施方式中,资源位置信息用于指示,承载在公共搜索空间中的控制信息在公共搜索空间中占用的物理下行控制信道在公共搜索空间对应的时频资源上的位置。
在一种可能的实施方式中,控制信息中包含下行控制信息,下行控制信息用于指示终端设备的上下行数据传输的配置参数。
在一种可能的实施方式中,下行控制信息还中包含控制信道符号信息。
在一种可能的实施方式中,资源处理装置还包括;
映射模块,用于在每个公共搜索空间中都映射一个下行控制信息。
在一种可能的实施方式中,波束确定模块,具体用于,
根据控制信息的类型,确定需要发送的至少两个波束;或者,
根据终端设备所在的方向信息,确定需要发送的至少两个波束;或者,
根据波束的宽度,确定需要发送的至少两个波束。
在一种可能的实施方式中,时频资源确定模块具体用于,
确定至少两个波束中每个波束对应的符号组,根据符号组对应的时频资源得到至少两个波束中每个波束对应的时频资源,每个符号组包括至少一个符号;
各公共搜索空间对应的部分时频资源分布在各符号组内的至少一个符号上。
在一种可能的实施方式中,资源位置信息包括至少一个符号组信息,以及与各符号组信息对应的频域资源信息。
在一种可能的实施方式中,时频资源确定模块还用于,
在每个波束对应的时频资源中确定部分时频资源,用于承载控制帧格式指示信息,控制帧格式指示信息用于指示控制信道符号信息,用于承载控制帧格式指示信息的部分时频资源与公共搜索空间对应的部分时频资源不重叠。
在一种可能的实施方式中,时频资源确定模块还用于,
在每个波束对应的时频资源中确定部分时频资源,作为专用搜索空间;专用搜索空间对应的部分时频资源,用于承载需一个终端设备接收的控制信息。
在一种可能的实施方式中,时频资源确定模块还用于,
在每个波束对应的时频资源中确定部分时频资源,以承载参考信号,参考信号用于辅助终端设备获取控制信息,承载参考信号的部分时频资源与公共搜索空间对应的部分时频资源不重叠。
在一种可能的实施方式中,时频资源确定模块还用于,
在每个波束对应的时频资源中确定部分时频资源,以承载混合自动重传请求反馈信息,混合自动重传请求反馈信息包含网络设备对终端设备的上行数据的接收的响应,承载混合自动重传请求反馈信息的部分时频资源与公共搜索空间对应的部分时频资源不重叠。
在一种可能的实施方式中,符号为时域中划分时频资源的最小单位。
在一种可能的实施方式中,发送模块具体用于,通过高层信令向终端设备发送公共搜索空间的资源位置信息。
在一种可能的实施方式中,发送模块具体用于,广播发送公共搜索空间的资源位置信息。
在一种可能的实施方式中,控制信道符号信息为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
在一种可能的实施方式中,发送模块还用于,通过高层信令向终端设备发送控制信道符号信息。
在一种可能的实施方式中,高层信令为如下中的任一种:
介质接入控制-控制单元信令、非接入层信令、无线资源控制信令、分组数据汇聚协议信令或无线链路控制层协议信令。
在一种可能的实施方式中,各波束对应的符号组包括的符号数不同。
在一种可能的实施方式中,各波束对应的符号组包括的符号数相同。
在一种可能的实施方式中,控制帧格式指示信息为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
申请实施例又一方面还提供一种资源处理装置,用于执行上述终端设备侧对应的资源处理方法,包括:
接收模块,用于接收网络设备发送的资源位置信息,资源位置信息用于指示至少一个公共搜索空间在时频资源中的位置;
检测模块,用于根据资源位置信息,检测是否存在承载在公共搜索空间中的控制信息。
在一种可能的实施方式中,资源位置信息包括频域位置信息;检测模块具体用于,
自当前子帧的第一个符号起,在第一个符号对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息;
若否,则在当前子帧的下一个符号对应的时间范围内,在第二个符号对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息,直至检测到控制信息或遍历完最大符号数指示的所有符号;最大符号数用于指示当前子帧中分布有公共搜索空间的符号的数量的最大值。
在一种可能的实施方式中,资源位置信息包括至少一个符号组信息,以及与各符号组信息对应的频域位置信息,一个符号组包括至少一个符号;检测模块具体用于,
在第一个符号组对应的时间范围内,在第一个符号组对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息;
若否,则在下一个符号组对应的时间范围内,在下一个符号组对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息,直至检测到控制信息或遍历完所有符号组。
在一种可能的实施方式中,符号为时域中划分时频资源的最小单位。
在一种可能的实施方式中,接收模块具体用于,接收网络设备通过高层信令发送的公共搜索空间的资源位置信息。
在一种可能的实施方式中,接收模块具体用于,接收网络设备广播发送的公共搜索空间的资源位置信息。
在一种可能的实施方式中,控制信息中包含下行控制信息,下行控制信息用于指示终端设备的上下行数据传输的配置参数。
在一种可能的实施方式中,下行控制信息中包含控制信道符号信息。
在一种可能的实施方式中,接收模块还用于,接收网络设备通过高层信令向终端设备发送的控制信道符号信息。
在一种可能的实施方式中,控制信道符号信息为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
在一种可能的实施方式中,高层信令为如下中的任一种:
介质接入控制-控制单元信令、非接入层信令、无线资源控制信令、分组数据汇聚协议信令或无线链路控制层协议信令。
在一种可能的实施方式中,检测模块还用于,
在当前子帧的最大符号数指示的所有符号内,检测是否存在承载在物理控制格式指示信道上的控制帧格式指示信息,控制帧格式指示信息用于指示控制信道符号信息。
在一种可能的实施方式中,检测模块还用于,
在检测到控制信息的符号组上,根据控制信道符号信息,检测专用搜索空间中承载的下行控制信息。
在一种可能的实施方式中,检测模块还用于,
在当前子帧的最大符号数指示的所有符号内,检测是否存在参考信号,参考信号用于辅助终端设备获取控制信息。
在一种可能的实施方式中,检测模块还用于,
在当前子帧的最大符号数指示的所有符号,检测是否存在承载在物理混合自动重传请求信道指示信道上的混合自动重传请求反馈信息,混合自动重传请求反馈信息包含网络设备对终端设备的上行数据的接收的响应。
本申请实施例还提供一种网络设备和终端设备,用于执行上述资源处理方法,具有相同的技术特征和技术效果。本申请对此不再赘述。
申请实施例又一方面还提供一种网络设备,包括:发送器、存储器、处理器和至少一个通信总线。通信总线用于实现元件之间的通信连接。存储器中存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。处理器用于执行存储器中存储的程序。
处理器用于:
确定需要发送的至少两个波束;
确定至少两个波束中每个波束对应的时频资源;
在每个波束对应的时频资源中确定部分时频资源,作为公共搜索空间,公共搜索空间对应的部分时频资源,用于承载向终端设备发送的控制信息。
在一种可能的实施方式中,网络设备还包括:
发送器,用于向终端设备发送资源位置信息;资源位置信息用于指示公共搜索空间时频资源上的位置。
在一种可能的实施方式中,资源位置信息用于指示,承载在公共搜索空间中的控制信息在公共搜索空间中占用的物理下行控制信道在公共搜索空间对应的时频资源上的位置。
在一种可能的实施方式中,控制信息中包含下行控制信息,下行控制信息用于指示终端设备的上下行数据传输的配置参数。
在一种可能的实施方式中,下行控制信息还中包含控制信道符号信息。
在一种可能的实施方式中,处理器还用于,
在每个公共搜索空间中都映射一个下行控制信息。
在一种可能的实施方式中,处理器具体用于,
根据控制信息的类型,确定需要发送的至少两个波束;或者,
根据终端设备所在的方向信息,确定需要发送的至少两个波束;或者,
根据波束的宽度,确定需要发送的至少两个波束。
在一种可能的实施方式中,处理器还用于,
确定至少两个波束中每个波束对应的符号组,根据符号组对应的时频资源得到至少两个波束中每个波束对应的时频资源,每个符号组包括至少一个符号;
各公共搜索空间对应的部分时频资源分布在各符号组内的至少一个符号上。
在一种可能的实施方式中,资源位置信息包括至少一个符号组信息,以及与各符号组信息对应的频域资源信息。
在一种可能的实施方式中,处理器还用于,
在每个波束对应的时频资源中确定部分时频资源,用于承载控制帧格式指示信息,控制帧格式指示信息用于指示控制信道符号信息,用于承载控制帧格式指示信息的部分时频资源与公共搜索空间对应的部分时频资源不重叠。
在一种可能的实施方式中,处理器还用于,
在每个波束对应的时频资源中确定部分时频资源,作为专用搜索空间;专用搜索空间对应的部分时频资源,用于承载需一个终端设备接收的控制信息。
在一种可能的实施方式中,处理器还用于,在每个波束对应的时频资源中确定部分时频资源,以承载参考信号,参考信号用于辅助终端设备获取控制信息,承载参考信号的部分时频资源与公共搜索空间对应的部分时频资源不重叠。
在一种可能的实施方式中,处理器还用于,
在每个波束对应的时频资源中确定部分时频资源,以承载混合自动重传请求反馈信息,混合自动重传请求反馈信息包含网络设备对终端设备的上行数据的接收的响应,承载混合自动重传请求反馈信息的部分时频资源与公共搜索空间对应的部分时频资源不重叠。
在一种可能的实施方式中,符号为时域中划分时频资源的最小单位。
在一种可能的实施方式中,发送器具体用于,
通过高层信令向终端设备发送公共搜索空间的资源位置信息。
在一种可能的实施方式中,发送器具体用于,
广播发送公共搜索空间的资源位置信息。
在一种可能的实施方式中,控制信道符号信息为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
在一种可能的实施方式中,发送器还用于,
通过高层信令向终端设备发送控制信道符号信息。
在一种可能的实施方式中,高层信令为如下中的任一种:
介质接入控制-控制单元信令、非接入层信令、无线资源控制信令、分组数据汇聚协议信令或无线链路控制层协议信令。
在一种可能的实施方式中,各波束对应的符号组包括的符号数不同。
在一种可能的实施方式中,各波束对应的符号组包括的符号数相同。
在一种可能的实施方式中,控制帧格式指示信息为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
申请实施例又一方面还提供一种终端设备,包括:接收器、存储器、处理器和至少一个通信总线。通信总线用于实现元件之间的通信连接。存储器中存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。处理器用于执行存储器中存储的程序。
接收器,用于接收网络设备发送的资源位置信息,资源位置信息用于指示至少一个公共搜索空间在时频资源中的位置;
处理器,用于根据资源位置信息,检测是否存在承载在公共搜索空间中的控制信息。
在一种可能的实施方式中,资源位置信息包括频域位置信息;处理器具体用于,
自当前子帧的第一个符号起,在第一个符号对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息;
若否,则在当前子帧的下一个符号对应的时间范围内,在第二个符号对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息,直至检测到控制信息或遍历完最大符号数指示的所有符号;最大符号数用于指示当前子帧中分布有公共搜索空间的符号的数量的最大值。
在一种可能的实施方式中,资源位置信息包括至少一个符号组信息,以及与各符号组信息对应的频域位置信息,一个符号组包括至少一个符号;处理器具体用于,
在第一个符号组对应的时间范围内,在第一个符号组对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息;
若否,则在下一个符号组对应的时间范围内,在下一个符号组对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息,直至检测到控制信息或遍历完所有符号组。
在一种可能的实施方式中,符号为时域中划分时频资源的最小单位。
在一种可能的实施方式中,接收器具体用于,接收网络设备通过高层信令发送的公共搜索空间的资源位置信息。
在一种可能的实施方式中,接收器具体用于,接收网络设备广播发送的公共搜索空间的资源位置信息。
在一种可能的实施方式中,控制信息中包含下行控制信息,下行控制信息用于指示终端设备的上下行数据传输的配置参数。
在一种可能的实施方式中,下行控制信息中包含控制信道符号信息。
在一种可能的实施方式中,接收器还用于,接收网络设备通过高层信令向终端设备发送的控制信道符号信息。
在一种可能的实施方式中,控制信道符号信息为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
在一种可能的实施方式中,高层信令为如下中的任一种:
介质接入控制-控制单元信令、非接入层信令、无线资源控制信令、分组数据汇聚协议信令或无线链路控制层协议信令。
在一种可能的实施方式中,处理器还用于,
在当前子帧的最大符号数指示的所有符号内,检测是否存在承载在物理控制格式指示信道上的控制帧格式指示信息,控制帧格式指示信息用于指示控制信道符号信息。
在一种可能的实施方式中,处理器还用于,
在检测到控制信息的符号组上,根据控制信道符号信息,检测专用搜索空间中承载的下行控制信息。
在一种可能的实施方式中,处理器还用于,
在当前子帧的最大符号数指示的所有符号内,检测是否存在参考信号,参考信号用于辅助终端设备获取控制信息。
在一种可能的实施方式中,处理器还用于,
在当前子帧的最大符号数指示的所有符号,检测是否存在承载在物理混合自动重传请求信道指示信道上的混合自动重传请求反馈信息,混合自动重传请求反馈信息包含网络设备对终端设备的上行数据的 接收的响应。
本申请实施例还提供一种程序,该程序在被处理器执行时用于执行上述网络设备侧对应的资源处理方法。
本申请实施例还提供一种程序产品,例如计算机可读存储介质,包括上述程序。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述网络设备侧对应的资源处理方法。
本申请实施例还提供一种程序,该程序在被处理器执行时用于执行上述终端设备侧对应的资源处理方法。
本申请实施例还提供一种程序产品,例如计算机可读存储介质,包括上述程序。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述终端设备侧对应的资源处理方法。
附图说明
图1为本申请实施例适用的网络架构实施例一的示意图;
图2为通信系统中一种控制资源映射结构示意图;
图3为本申请实施例提供的资源处理方法的流程示意图;
图4为本申请实施例一提供的控制资源映射结构示意图;
图5为本申请实施例二提供的控制资源映射结构示意图;
图6为本申请实施例三提供的控制资源映射结构示意图;
图7为本申请实施例四提供的控制资源映射结构示意图;
图8为本申请一实施例提供的资源处理装置的结构示意图;
图9为本申请另一实施例提供的资源处理装置的结构示意图;
图10为本申请再一实施例提供的资源处理装置的结构示意图;
图11为本申请一实施例提供的网络设备的结构示意图;
图12为本申请一实施例提供的终端设备的结构示意图。
具体实施方式
图1为本申请实施例适用的网络架构实施例一的示意图。如图1所示,本实施例提供的网络架构包括网络设备10和至少一个终端设备20。
其中,网络设备10是一种将终端设备20接入到无线网络的设备,可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是长期演进(Long Term Evolution,简称LTE)中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来第五代移动通信(the 5th Generation Mobile Communication,5G)网络中的基站等,本申请在此并不限定。图1示意性的绘出了一种可能的示意,以网络设备10为基站为例进行了绘示。
终端设备20可以是无线终端也可以是有线终端,无线终端可以为向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终 端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent),本申请在此不作限定。图1示意性的绘出了一种可能的示意,以终端设备20为移动电话为例进行了绘示。
在LTE系统或5G系统中,终端设备20在接收或发送数据信息之前,需要获知网络设备10配置给该终端设备20的下行控制信息(Downlink control information,DCI)。DCI用于指示终端设备如何进行下行的数据接收以及上行的数据传输。DCI示例性的可以包括终端设备进行上下行数据传输时使用的资源、调制方式,码率等信息。网络设备10在发送DCI时,通常将DCI承载在物理下行控制信道(Physical Downlink Control channel,PDCCH)上发送,下面对DCI传输的具体实现方式及本申请涉及到的相关基础概念进行详细说明。
在LTE系统或5G系统中,信息在发送时占用一定时间和带宽,可被信息占用的所有时间和带宽称为时频资源。时频资源在时域上,以无线帧(radio frame)为单位进行划分。信息的发送以无线帧为单位,一个无线帧包括10个子帧(subframe),每一个子帧的长度为1毫秒(ms),每个子帧均包括两个时隙(slot),每个slot为0.5ms。每个slot包括的符号的个数与子帧中循环前缀(cyclic prefix,CP)长度相关。如果CP为normal(普通)CP,则每个slot包括7个符号,每个子帧由14个符号组成,例如,每个子帧由序号分别为#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11,#12,#13的符号组成。如果CP为extended(长)CP,每个slot包括6个符号,每个子帧由12个符号组成,例如每个子帧由序号分别为#0,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11的符号组成。时频资源在频域上的最小单元为子载波,分布在一个符号对应的时间范围内的子载波,构成了该符号对应的频域资源,所有符号对应的频域资源构成时频资源。资源单元(Resource Element,RE)是划分时频资源的最小的单元,由索引对(k,l)唯一标识。其中,k为子载波索引,l为符号索引。当然,资源单元也可以通过其他形式的标识来标识。4个连续的RE(不计算参考信号所占用的时频资源在内)构成1个资源元素组(Resource Element Group,REG)。构成REG的RE可占用不同的符号。
网络设备10在发送DCI的同时,通常还发送控制格式指示(Control Formation Indication,CFI)信息,参考信号(Reference signal,RS)和混合自动重传请求(Hybrid auto repeat request,HARQ)反馈信息等信息。DCI、RS、CFI、HARQ反馈信息等信息在发送时通常占用一个子帧的前N个符号,N的取值示例性的可以为1、2或3。本申请以下各实施例中将上述DCI、RS、CFI、HARQ反馈信息等信息占用的符号称为控制信道所在符号。所有控制信道所在符号对应的频域资源构成控制资源。
示例性的,网络设备10还可在控制信道所在符号对应的时间范围内,同时发送数据信息。此时,本申请以下各实施例中的资源处理方法仍适用,只是仅针对除数据信息占用的时频资源外的其他时频资源进行分析。此时,在所有控制信道所在符号对应的频域资源中,除数据信息占用的频域资源外,剩余的频域资源构成控制资源。各符号对应的频域资源也仅指示除数据信息占用的频域资源外,剩余的频域资源。本申请以下各实施例以控制信道所在符号对应的时间范围内,仅发送DCI、RS、CFI、HARQ反 馈信息等信息为例,对本申请提出的资源处理方法进行示例性的说明。
其中,CFI承载在物理控制格式指示信道(Physical Control Formation Indication Channel,PCFICH)上。CFI用于指示网络设备10发送CFI、RS、DCI、HARQ反馈等信息时所占的符号数,即控制信道所在符号总数。CFI的取值示例性的可以为{1,2,3}中的任一个。终端设备20在接收到CFI后,可根据CFI确定控制信道所在符号总数。还可根据CFI确定数据信息的起始符号,即一个子帧中从第几个符号开始传输数据信息。承载CFI的PCFICH通常映射在子帧的第一个符号对应的频域资源上,使得CFI在子帧的第一个符号对应的时间范围内发送。终端设备20接收到CFI,从而可根据CFI确定控制信道所在符号总数,进而确定总控制资源。
其中,HARQ反馈信息承载在物理混合自动重传请求信道指示信道(Physical HARQ indication channel,PHICH)上。HARQ反馈信息为网络设备10对终端设备20之前发送的上行数据的接收的反馈。承载HARQ反馈信息的PHICH通常映射在子帧的第一个符号对应的频域资源上,使得HARQ反馈信息在子帧的第一个符号对应的时间范围内发送。
其中,RS用于帮助终端设备20解调得到CFI、DCI、HARQ反馈信息等承载在信道上传输的信息。终端设备20在接收到RS时,根据RS测量发送信息的信道的质量。信道质量用于辅助终端设备解调出承载在信道上的信息。RS通常映射在子帧的第一个符号对应的频域资源上,一个RS占用至少一个RE。控制资源内映射的RS的数量由网络设备10的天线数目、标识等因素决定。此处,天线可以为天线端口,或实际的物理天线。天线端口是指用于传输的逻辑端口,它可以对应一个或多个实际的物理天线。
综上,在控制资源中,映射有PCFICH、PHICH、RS和PDCCH。PCFICH、PHICH和RS占用部分控制资源,剩余的控制资源中的部分或全部可以作为PDCCH的可用资源。控制信道元素(control channel element,CCE)是PDCCH占用控制资源时的最小单元。一个PDCCH占用至少一个CCE。1个CCE包括9个REG。由于构成CCE的REG可分布在不同的符号对应的频域资源上;或者,当构成CCE的REG分布在同一个符号对应的频域资源上时,PDCCH可占用分布在不同的符号对应的频域资源上的CCE;因此PDCCH可占用不同的符号对应的频域资源。
终端设备20在接收DCI之前,可首先根据CFI确定控制信道所在符号总数,进而确定总控制资源。在总控制资源中减去RS、PHICH和PCFICH分别占用的控制资源,即可确定可供PDCCH占用的控制资源,即PDCCH的可用资源。LTE系统在PDCCH可占用的控制资源中划定了两种搜索空间,分别是公共搜索空间和专用搜索空间。
其中,公共搜索空间是指小区内所有终端设备20都需要监听的空间,各终端设备20监听公共搜索空间,检测其中是否承载有自己期待的承载在公共搜索空间中的DCI。公共搜索空间中承载的DCI主要用于指示一些小区内所有终端设备20共同的或者多个终端设备20通用的信息,如系统信息、寻呼信息等。公共搜索空间中包括至少一个PDCCH,承载在公共搜索空间中的DCI具体承载在公共搜索空间包括的PDCCH中的任一PDCCH上。
各终端设备20分别监听自己的专用搜索空间,检测其中是否承载有自己期待的承载在专用搜索空间中的DCI。专用搜索空间中承载的DCI是为了指示针对特定终端设备20的信息,例如下行资源分配指示信息、上行调度授权信息。专用搜索空间也包括至少一个PDCCH,承载在专用搜索空间中的DCI同样具体承载在专用搜索空间包括的PDCCH中的任一PDCCH上。
值得注意的是,公共搜索空间和专用搜索空间包括的PDCCH可能重叠,也即可能存在公共PDCCH即属于公共搜索空间,也属于专用搜索空间。网络设备10可将计划在公共搜索空间中承载的DCI设置为由该公共PDCCH承载,也可将计划在专用搜索空间中承载的DCI设置为由该公共PDCCH承载。示 例性的,当终端设备20进行DCI接收时,终端设备20在检测公共搜索空间时,需检测该公共PDCCH中是否承载有DCI。若该公共PDCCH中已承载有DCI,则终端设备20在检测专用搜索空间时,则无需检测该公共PDCCH。若该公共PDCCH中未承载有DCI,则终端设备20在检测专用搜索空间时,还需检测该公共PDCCH中是否承载有DCI。可选的,网络设备20还可直接对专用搜索空间中包括的所有PDCCH进行检测。可选的,公共PDCCH的数量可以为多个。
LTE系统中,公共搜索空间包括16个CCE,并且约定公共搜索空间中CCE的聚合等级(Aggregation level,AL)只有4和8两种。聚合等级用于指示公共搜索空间中以多少个CCE为一个单元来承载信息,即一个PDCCH占用的CCE数量。例如,当AL设置为8时,一个PDCCH包括8个CCE,一个公共搜索空间中可包括两个PDCCH,两个PDCCH分别占用编号为0至7的CCE,以及编号为8至15的CCE。终端设备20在检索公共搜索空间时,也不清楚公共搜索空间的AL,因此,需分别以4个和8个CCE为单位在公共搜索空间中进行检索。当认为AL=8时,只需在编号为0至7的CCE,以及编号为8至15的CCE上进行两次冗余循环检查(Cyclic redundancy check,CRC)校验。当认为AL=4时,只需在编号为0至3的CCE、4至7的CCE、8至11的CCE,以及编号为12至15的CCE上进行四次CRC校验。这一过程可称为终端设备20的盲检过程。终端设备20只需最多进行6次CRC校验即可检索完公共搜索空间。
专用搜索空间的聚合级别可以为1、2、4、8中任一种,对应的专用搜索空间的CCE总数分别为6、12、8、16。参考上述公共搜索空间中的盲检工作量的计算,可知,终端设备20为获取承载在专用搜索空间中的DCI信息,需最多进行(6/1+12/2+8/4+16/8)=16次盲检。一个专用搜索空间中也可包括至少一个PDCCH。一个PDCCH占用的CCE数量取决于聚合等级。
故LTE系统中,可供PDCCH占用的控制资源中包括一个公共搜索空间和各终端设备20各自对应的专用搜索空间。
其中,CRC校验过程具体如下:
在接收DCI时,终端设备20知道自己当前处于何种状态以及在该状态下期待收到的DCI信息。例如当终端设备20在空闲状态时,期待收到的DCI信息为寻呼信息(Paging);终端设备20在发起随机接入请求后,期待接收到的DCI信息是随机接入响应信息(Random Access Channel Response,RACH Response);终端设备20在有上行数据待发送时期待接收到的DCI信息为上行调度授权等。对于不同的期望信息,终端设备20用相应的X-RNTI(Radio Network Temporary Identifier,无线网络临时身份认证),根据上述盲检方式,进行CRC校验。其中X指示终端设备20期待接收的信息的类型,如当终端设备20期待接收到RACH Response(RA)时,终端设备采用RA-RNTI进行CRC校验。如果CRC校验成功,那么终端设备20可确定当前DCI信息是自己期待的,也知道了相应的DCI格式,从而进一步获取DCI信息中指示的内容。其中,当终端设备20期待接收到的DCI承载在公共搜索空间中时,DCI采用用户组(小区、小区内分组)性质的RNTI,如RA-RNTI。当终端设备20期待接收到承载在专用搜索空间中的DCI时,X可采用终端设备20的标识。
结合上述介绍,下面对DCI的传输方法进行简单说明。图2为通信系统中一种控制资源映射结构示意图。
图2示意性的示出了通信系统中一种控制资源映射结构。其中,横轴方向为时域,一个小方格在时域上表示一个符号,纵轴方向上为频域,一个符号对应的频域资源取决于系统带宽。图2中纵轴方向上仅示意性的对频域进行了划分,也仅示出了部分频域资源。如图2所示,参考信号RS、承载CFI的PCFICH,以及PHICH均映射在子帧的第一个符号对应的频域资源上。PDCCH的可用资源分布在不同的符号上, 参考图2,分布在3个符号上。因此,公共搜索空间同样可能分布在3个符号对应的频域资源上。
示例性的,终端设备20基于上述控制资源的映射关系,在进行DCI的接收时,具体包括:
S201、终端设备20接收RS,承载在PHICH上的HARQ反馈信息,以及承载在PCFICH上的CFI。
S202、终端设备20根据CFI,以及PCFICH、RS、PHICH各自占用的资源信息,获取CCE索引。
具体的,终端设备20首先根据系统带宽和CFI的取值计算出第L个子帧中控制信道所在符号所对应的可用REG数N REG,L,即该子帧的总控制资源数。然后在N REG,L中减去PCFICH和PHICH所占用的REG数,即可得到第L个子帧中PDCCH的可用CCE数
Figure PCTCN2018079779-appb-000001
其中,L为大于0的正整数,
Figure PCTCN2018079779-appb-000002
表示对*进行向下取整。终端设备20可根据N REG,L以及LTE协议中的约定,得到PDCCH的可用CCE的索引,即N REG,L中每个CCE的编号。
S203、终端设备20根据CCE的索引,在第L个子帧的公共搜索空间中盲检,获取承载在公共搜索空间中的DCI。
具体的,终端设备20根据CCE的索引及LTE协议约定,确定公共搜索空间所占用的16个CCE各自的编号,然后在该16个CCE内进行最多6次盲检,以获取承载在公共搜索空间中的DCI。
S204、终端设备20在盲检成功后,在专用搜索空间中盲检,获取承载在专用搜索空间中的DCI。
具体的,终端设备20根据CCE索引及LTE协议约定,确定专用搜索空间的起始CCE的编号。然后从该CCE处起,进行最多16次盲检,以获取承载在专用搜索空间中的DCI。例如,当AL=2时,对应的专用搜索空间的CCE总数为12。则从该编号为n的CCE处起,在编号为n至n+11的CCE上,检索是否存在承载在专用搜索空间中的DCI。且检索过程中将编号为n和n+1的CCE聚合为一个检索单元,编号为n+2和n+3的CCE聚合为一个检索单元,编号为n+4和n+5的CCE聚合为一个检索单元,依此类推,当AL=2时共检索6次。其中,n为非负整数。
终端设备20在得到承载在公共搜索空间和专用搜索空间中的DCI后,可根据接收到的DCI进行数据信息的接收和/或发送。
波束成型技术是一种,通过控制RF链路在空间上朝向特定的方向发送波束,来实现更高的天线阵列增益的技术。波束成型技术可减少高频通信传输中的损耗,是未来通信系统的发展方向。在波束成型技术中,在同一时刻,一个RF链路打出的波束只能朝向一个方向。即,在同一时刻,一个RF链路无法向两个方向发送波束。本申请以下实施例中仅以符号为最小时间单位进行示例性说明,即在同一符号对应的时间范围内,一个RF链路无法向两个方向发送波束。当最小时间单位发生改变时,本申请以下各实施例仍可适用。
终端设备20的位置可能在网络设备10的任意方向上,且网络设备10通常需要服务分布在不同方向的多个终端设备20,如,向一个小区内的所有终端设备20发送DCI。但是,LTE系统中,仅在时频资源上约定了一个公共搜索空间。且该公共搜索空间可能跨符号分布,即构成公共搜索空间的CCE分布在不同符号对应的频域资源上。构成CCE的REG也可能分布在不同符号对应的频域资源上。因此,公共搜索空间中承载的DCI可能分布在不同符号对应的频域资源上。
当RF链路在一个子帧对应的时间范围内均朝向第一方向发送波束时,仅第一方向上的终端设备20可以成功检测到公共搜索空间,其他方向上的终端设备20无法检测到公共搜索空间。进一步地,即使存在多个RF链路,各RF链路朝向不同的方向,网络设备的RF链路的数目远小于终端设备可能所在的方向的数目,仍存在部分方向上的终端设备20无法检测到公共搜索空间。
当RF链路在一个子帧对应的时间范围内朝向不同的方向发送波束时,由于公共搜索空间跨符号分布,以及公共搜索空间中承载的DCI可能分布在不同符号对应的频域资源上,因此分布在不同方向上 的每个终端设备20可能无法检测到完整的公共搜索空间,从而导致无法成功接收承载在公共搜索空间中的DCI。
示例性的,参照图2,当网络设备10的RF链路在符号#0、#1、#2对应的时间范围内保持波束发送方向一致,则仅位于该发送方向上的终端设备20可能检测到公共搜索空间和专用搜索空间。当RF链路在符号#0、#1、#2对应的时间范围内改变波束发送方向时,由于公共搜索空间占用的资源通常分布在符号#0、#1、#2对应的频域资源上,则没有终端设备20可正确检测到公共搜索空间。
因此,在LTE系统中应用波束成型技术时,当终端设备20分布在不同的方向上时,存在部分方向上的终端设备检测不到公共搜索空间,进而导致无法接收到承载在公共搜索空间中的DCI的问题。
若将波束成型技术与第五代移动通信技术(5G)系统相结合,由于5G系统中不设置公共搜索空间,而是为每一个终端设备20设置专用搜索空间,因此,在通知多个终端设备20通用的一些信息时,需要为每一个终端设备20分别设置单独的专用搜索空间。5G系统中,专用搜索空间占用的控制资源开销很大。
针对上述问题,为实现在一个子帧对应的时间范围内,分布在多个方向上的终端设备20可检测到公共搜索空间,本申请实施例提供一种资源处理方法。下面对本申请实施例提供的资源处理方法进行详细说明。
图3为本申请实施例提供的资源处理方法的流程示意图。本实施例涉及的是,在资源分配时,为每个波束对应的方向上的终端设备均分配一个公共搜索空间。如图3所示,该方法包括:
S301、网络设备确定需要发送的至少两个波束。
示例性的,当网络设备10需要向终端设备20发送控制信息时,网络设备10确定需要发送的至少两个波束。可选的,网络设备10可根据需要发送的控制信息来确定需要发送的波束的个数。例如当网络设备10需寻呼服务小区内的所有空闲状态的终端设备20时,由于网络设备10不清楚终端设备20所在的方向,网络设备10需向所有可能的方向发送波束。进一步地,当需要发送的波束数量较多时,网络设备10还可确定波束在不同的子帧对应的时间范围内发送。通过将需要发送的波束在多个子帧内分别发送,实现波束的轮转发送。为进一步提高网络设备10发送控制信息的轮转速度,通常限定一个波束对应一个符号。
可选的,网络设备10还可根据需要服务的终端设备20所在的方向来确定需要发送的波束的个数。当网络设备10清楚需要服务的终端设备20所在的方向时,网络设备10可根据终端设备20所在的方向确定需要发送的波束。当终端设备所在的方向数量较少时,可为一个波束分配一个符号组。一个符号组可包括至少一个符号。
可选的,还可根据波束的宽度确定需要发送的波束的数量。例如,当网络设备10发送的波束的宽度较宽,即波束具有较大的覆盖角度时,网络设备10只需要发送较少数量的波束,即可覆盖所有可能的方向。同样的,可为一个波束分配一个符号组,一个符号组可包括至少一个符号。
可选的,网络设备10还可根据其他配置确定需要发送的波束,本申请对此不做限定。
S302、网络设备确定至少两个波束中每个波束对应的时频资源。
示例性的,网络设备为每个波束确定对应的时频资源。可选的,网络设备可以通过为每个波束确定对应符号组,来确定对应的时频资源。一个符号组内所有符号对应的频域资源构成了该符号组对应的波束的时频资源。其中,一个符号组可以包括至少一个符号。可选的,网络设备通过为每个波束确定一个对应的符号,确定了每个波束对应的时频资源为各波束对应的符号对应的频域资源。当为每个波束确定对应的符号组或符号后,网络设备10便在符号组或符号对应的时间范围内,发送对应的波束,波束对 应的方向上的终端设备20即可接收到该波束。
S303、网络设备在每个波束对应的时频资源中确定部分时频资源,作为公共搜索空间。
其中,所述公共搜索空间对应的部分时频资源,用于承载向终端设备发送的控制信息。
示例性的,网络设备10在每个波束对应的时频资源中选择部分时频资源。例如,可在时频资源包括的所有可用CCE中选择部分CCE作为部分时频资源。所述部分CCE构成公共搜索空间,可用于承载网络设备10向终端设备20发送的控制信息。CCE数量可根据待发送的控制信息决定。即每个波束对应的时频资源包括一个公共搜索空间,每个波束对应的时频资源中包括的公共搜索空间可承载控制信息。
本申请实施例提供一种资源处理方法,在确定需要发送的至少两个波束后,为每个波束分配各自的时频资源。并在各波束对应的时频资源中划定作为公共搜索空间的时频资源。本申请实施例提供的资源处理方法,可在终端设备分布在不同方向时,保证各终端设备均可检测到完整的公共搜索空间。同时,由于在一个子帧对应的时间范围内网络设备10发送了至少两个波束,使得网络设备10在不增加RF链路的情况下,可在一个子帧内发送更多的波束,增加了覆盖范围。
进一步地,在上述资源处理方法实施例中,当网络设备10需要同时向分布在多个方向的终端设备20发送控制信息时,网络设备10确定每个子帧内需要发送的波束。网络设备10在每个波束对应的时频资源上的公共搜索空间中均承载控制信息,即将控制信息进行复制,使得每个波束均携带有控制信息。其中,控制信息为多个终端设备10均需接收的信息,例如,需要承载在公共搜索空间中的下行控制信息。因此,各波束对应的方向上的终端设备20,可以检测到公共搜索空间,进而可以接收到承载公共搜索空间中的控制信息。
参照上述资源处理方法,下面对网络设备10发送承载在公共搜索空间中的DCI时,承载在公共搜索空间中的DCI在时频资源上的映射流程进行详细说明。示例性的,将DCI映射在时频资源上的物理层流程,可以包括:
S001:网络设备获取需映射在时频资源上的DCI,此时DCI为二进制形式的比特流。
S002:在DCI比特流中添加CRC。
示例性的,网络设备对DCI比特流添加CRC校验比特,CRC长度是可参照LTE系统中的协议约定。
S003:对添加了CRC的DCI进行信道编码,得到编码数据。
信道编码过程可采用咬尾卷积码(Tail-biting convolutional coding,TBCC码)、极化码(Polar码),或LTE系统中的任一编码方式,本申请不做限定。信道编码用于为信息传输提供检错和纠错能力。
S004:对编码数据进行速率匹配,得到待传输比特序列。
示例性的,速率匹配用于从编码数据中选择真正需要传输的比特序列。
S005:确定各比特序列对应的CCE。
示例性的,一个比特序列可在多个CCE聚合传输。CCE的个数即为聚合等级,聚合等级示例性的可以为{1,2,4,8}。
S006:将多个待传输比特序列整合在一起,得到复用比特序列。
例如第i个比特序列b (i)的长度记为M (i),比特序列表示为b (i)(0),···,b (i)(M (i)-1),其中,i为非负整数。那么,将P个比特序列整合之后得到的比特序列可以表示为b (0)(0),···,b (0)(M (0)-1),···,b (P-1)(0),···,b (P-1)(M (P-1)-1)。本申请中将这个序列定义为复用比特序列,复用比特序列的总长度为
Figure PCTCN2018079779-appb-000003
其中N REG指示时频资源中的总控 制资源数。
适应性的,根据上述整合方式可确定各比特数据对应的CCE。
S007:对S006中得到的复用比特序列进行加扰,得到加扰数据。
示例性的,加扰是指用一个序列(示例性的,可选用与小区标识相关的序列)对复用得到的比特流进行模二加的操作,用于随机化相邻小区之间的干扰。
S008:对加扰数据进行调制,得到QPSK符号序列或QAM符号序列。
示例性的,可以对得到加扰数据采用正交相移键控(Quadrature Phase Shift Keying,QPSK)的调制方式,即2个比特调制成一个QPSK符号。示例性的,若采用正交幅度调制(Quadrature Amplitude Modulation,QAM)方式,则将加扰数据调制成一个QAM符号序列。可选的,还可采用其他调制方式,本申请对此不做限制。
S009:对QPSK符号序列或QAM符号序列进行交织和循环移位。
S010:根据QPSK符号序列或QAM符号序列与RE映射关系,将QPSK符号或QAM符号映射天线端口和物理时频资源上。
示例性的,可根据CCE与各比特数据的对应关系、各比特数据与各QPSK符号或各QAM符号的对应关系,以及RE与CCE的映射关系,可得到各QPSK符号或各QAM符号与RE的映射关系。
在LTE系统中,在进行DCI映射时,通常优先将各QPSK符号或各QAM符号依次映射到子载波相同,符号不同的RE中。即,DCI分布在不同符号对应的频域资源上,且仅映射一次DCI。因此,当终端设备20分布在不同符号上时,存在部分方向上的终端设备接收不到承载在公共搜索空间中的DCI的问题。
本申请实施例中,当网络设备10确定需要发送的至少两个波束,以及每个波束对应的时频资源后,网络设备10在每个波束对应的时频资源中的公共搜索空间中,映射QPSK符号序列或QAM符号序列。可选的,当一个波束对应一个符号,自该符号对应的公共搜索空间的第一个RE起,将各QPSK符号或各QAM符号依次映射在符号相同,子载波不同的RE中。可选的,当一个波束对应一个符号组,以符号组中包括两个符号为例,自该符号对应的公共搜索空间的第一个RE起,可优先将各QPSK符号或各QAM符号依次映射在符号相同,子载波不同的RE中,当一个符号对应的频域资源中的RE数量不足时,再将QPSK符号或QAM符号映射在第二个符号对应的频域资源中的RE中;或者,还可优先将各QPSK符号或各QAM符号依次映射子载波相同,符号不同的RE中。当一个波束对应的QPSK符号序列或QAM符号序列映射结束后,再在第二个波束对应的时频资源中映射QPSK符号序列或QAM符号序列,直至所有波束对应的时频资源中的公共搜索空间中的QPSK符号序列或QAM符号序列映射完成。
本申请实施例中在每一个波束对应的时频资源中映射一份DCI,保证了各波束对应的方向上的终端设备可接收到DCI。
S011:对映射结果进行反傅里叶变换。
示例性的,通过反傅里叶变换可将所有的子载波上的QPSK符号调制成波形发送,从而实现了二进制形式的DCI在LTE系统中的发送。
对应的,终端设备20在接收DCI时,接收流程示例性的包括与上述映射流程相反的操作。终端设备的DCI接收的物理层流程主要包括:
终端设备20将接收到的波形进行傅里叶变换、解交织和循环移位、解调、解扰等操作,得到如图2所示的资源映射结构。然后终端设备20在接收得到的资源映射结构中进行公共搜索空间的盲检,以得到下行控制信息。
下面结合多个具体的DCI的传输实施例对本申请提供的资源处理方法进行详细说明。
图4为本申请实施例一提供的控制资源映射结构示意图。如图4所示,本实施例中需发送的波束为3个,即本实施例以网络设备10需同时服务位于3个不同波束对应的方向上的终端设备20为例,对资源处理方法进行示例性说明。其中,各波束对应的方向上的终端设备20的数量可以相同,也可以不同。参照图4,本申请实施例提供一种资源处理方法,包括:
S401:网络设备确定需要发送的波束,在每个波束对应的频域资源中确定部分频域资源,作为公共搜索空间。
示例性的,网络设备10通过RF射频发送信息时,在确定需要发送的波束后,为一个波束分配对应的一个符号。在一个符号对应的时间范围内,网络设备10控制RF链路发送该符号对应的波束,以使该符号对应的波束对应的方向上的终端设备20可接收到网络设备10在该符号对应的时间范围内发送的信息。本实施例中,网络设备10在确定三个波束后,为三个波束分别确定对应的时频资源。如图4所示,一个波束对应的时频资源为该波束对应的符号所对应的频域资源。网络设备10进一步为每个波束,在频域资源上划定部分频域资源,作为公共搜索空间。如图4所示,每个公共搜索空间占用的部分频域资源在不同符号上具有相同的位置。为使一个公共搜索空间只分布在一个符号对应的频域资源上,本实施例中构成公共搜索空间的多个CCE分布在同一个符号对应的频域资源上。即公共搜索空间选用分布在同一个符号对应的频域资源上的CCE,构成各CCE的REG分布在同一个符号对应的频域资源上。
S402:网络设备将DCI映射到公共搜索空间中。
示例性的,网络设备10向终端设备20发送DCI,当该DCI为小区中至少一个终端设备通用的DCI,如系统信息或寻呼信息时,网络设备10在每个公共搜索空间中都映射一个DCI。以保证三个波束对应的方向上的终端设备20均可接收到承载在公共搜索空间中的DCI。
示例性的,当网络设备10无需向终端设备20发送承载在公共搜索空间中的DCI,仅发送特定终端设备对应的DCI时,网络设备10同样可在每个公共搜索空间中都映射一个特定终端设备对应的DCI。此时,为保证终端设备20可检测到该DCI。网络设备10可通过高层信令通知终端设备该DCI占用的资源位置信息,以及进行CRC校验所需的标识,以使终端设备根据资源位置信息和标识,来接收该DCI。
可选的,在每个波束对应的符号对应的频域资源上,网络设备10还确定用于映射RS的部分频域资源和/或用于映射HARQ反馈信息的部分频域资源。公共搜索空间对应的部分频域资源、映射RS的部分频域资源、映射HARQ反馈信息的部分频域资源相互之间均不交叠。可选的,各波束对应的符号对应的频域资源上承载有至少一个RS。通过在每个波束对应的频域资源上,均映射有RS和HARQ反馈信息,使得每个波束对应的方向上的终端设备20可成功接收到RS和HARQ反馈信息。相比LTE系统中RS和HARQ反馈信息通常只映射在一个子帧中的第一个符号对应的频域资源上,仅第一个符号对应的波束对应的方向上的终端设备20可接收到RS和HARQ反馈信息,本实施例避免了分布在其他符号对应的方向上的终端设备20由于未接收RS和HARQ反馈信息,而存在无法完成DCI的接收的问题。
可选的,本申请实施例中,网路设备10在各波束对应的符号对应的频域资源上还确定部分频域资源,作为专用搜索空间。网络设备10将单独分配给每个终端设备20的DCI,分别承载在每个终端设备所在的方向对应的波束所对应的频域资源上的专用搜索空间中。专用搜索空间对应的部分频域资源、映射RS的部分频域资源、映射HARQ反馈信息的部分频域资源相互之间均不交叠。示例性的,专用搜索空间对应的部分时频资源可与公共搜索空间对应的部分时频资源重叠。重叠部分称为重叠资源,在具 体映射过程中,网络设备10可将承载在公共搜索空间中的DCI映射在该重叠资源上,或者,将承载在专用搜索空间中的DCI映射在该重叠资源上。
S403、网络设备10向终端设备20发送公共搜索空间的资源位置信息。
与LTE系统中的控制资源映射结构不同的是,本实施例中,控制资源上未映射PCFICH。由于终端设备20未接收到承载在PCFICH上的CFI,因此无法按照上述S202中的方法计算CCE索引,来获取公共搜索空间的资源位置信息。为解决上述问题,本实施例中,网络设备10直接向终端设备20发送公共搜索空间的资源位置信息。
示例性的,终端设备20通过高层信令配置得到每一个符号对应的公共搜索空间的REG或CCE位置信息。可选的,还可以是终端设备20初始接入网络时,接收网络设备10通过广播方式发送的公共搜索空间的资源位置信息。
其中,高层信令示例性的可以为介质接入控制-控制单元(Medium Access Control–Control Element,MAC-CE)信令、非接入层(Non-Access Stratum,NAS)信令、无线资源控制(Radio Resource Control,RRC)信令、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)信令或无线链路控制层协议(Radio Link Control,RLC)信令。
可选的,终端设备20可获取各符号对应的公共搜索空间占用各自符号对应的频域资源的资源位置信息。例如,终端设备20接收到每个公共搜索空间占用的资源的符号信息和频域资源信息,频域资源信息例如可以为子载波信息。可选的,终端设备20可获取一个资源位置信息,作为各个符号对应的公共搜索空间的资源位置信息。此时,不同符号对应的频域资源上的公共搜索空间占用的资源位置一致。通过将不同符号对应的频域资源上的公共搜索空间设置在同一位置处,可减少信令开销。例如,终端设备20接收每个公共搜索空间占用的资源的子载波信息。当不同子帧中各符号对应的频域资源上的公共搜索空间的资源位置均相同,则可进一步减少信令开销。可选的,终端设备20接收到的资源位置信息,可以为第一个符号对应的公共搜索空间占用的第一资源位置信息,以及其他各符号对应的公共搜索空间占用的资源位置信息与第一资源位置信息的偏移量。或者,终端设备20接收到的资源位置信息,可以为第一个符号对应的公共搜索空间占用的第一资源位置信息,以及后一个符号对应的公共搜索空间占用的资源位置信息与前一个符号对应的公共搜索空间占用的资源位置信息的关联关系,关联关系可以为偏移量。
示例性的,公共搜索空间的资源位置信息包括如下可能的实施方式:
一种实施方式中,网络设备10直接将公共搜索空间在各符号对应的频域资源上占用的资源位置信息告知终端设备20。公共搜索空间的资源位置信息为公共搜索空间占用的CCE或REG的位置信息。此时公共搜索空间可与LTE协议中相同占用16个CCE,聚合级别可以为4或8。终端设备20根据CCE的位置信息,经过最多6次盲检获取承载在公共搜索空间中的DCI。公共搜索空间还可根据实际需求占用其他数量的CCE,设置其他聚合级别,本申请对此不做限定。通过将公共搜索空间的资源位置信息直接发送给终端设备,使得终端设备可直接根据资源位置信息,确定公共搜索空间,无需计算公共搜索空间的位置,减少了终端设备的工作量,提高了终端设备接收承载在公共搜索空间中的控制信息的速度。
另一种实施方式中,网络设备10可直接将承载在公共搜索空间中的DCI在该公共搜索空间中占用的PDCCH在各符号对应的频域资源上占用的资源位置信息,发送给终端设备20。公共搜索空间的资源位置信息为公共搜索空间占用的REG或CCE的位置信息。因此,与LTE系统中的公共搜索空间不同的是,本实施例中的公共搜索空间占用的CCE的数量可以不是16个CCE,可根据承载在公共搜索空间中的DCI进行适应性设置。同时,本实施例中的公共搜索空间也可不再设置聚合级别。终端设备 20可直接根据REG或CCE的位置信息,进行CRC校验,获取承载在PDCCH中的DCI,而无需进行盲检。可以减少终端设备的盲检次数、降低DCI检测的复杂度。
值得注意的是,当网络设备10在不同子帧中配置的各公共搜索空间的资源位置信息一致时,网络设备10可仅发送一次公共搜索空间的资源位置信息。此时,S403也可在S401之前执行。
S404:终端设备20根据接收到的公共搜索空间的资源位置信息,获取承载在公共搜索空间中的DCI。
示例性的,终端设备20根据接收到的资源位置信息,从当前子帧的第一个符号开始,在第一个符号对应的频域资源上所述资源位置信息指示的位置处,确定公共搜索空间,再尝试在公共搜索空间中检测是否承载有DCI。当终端设备20位于网络设备10在第一个符号发送的波束对应的方向上,且该符号对应的公共搜索空间中承载有该终端设备20的DCI时,终端设备20可接收到承载在公共搜索空间中的DCI。终端设备20在检测到承载在公共搜索空间中的DCI时,停止尝试检测承载在公共搜索空间中的DCI。当终端设备20在第一个符号对应的时间范围内未检测到承载在公共搜索空间中的DCI时,终端设备20继续在第二符号对应的频域资源上,根据资源位置信息,尝试检测承载在公共搜索空间中的DCI。终端设备20中预设有最大符号数,最大符号数可在终端设备20生产时配置在终端设备20上。也可由网络设备10通过高层信令为终端设备20配置。还可在终端设备20初始接入网络时,由网络设备10通过广播方式发送。当终端设备20在最大符号数包括的所有符号对应的时间范围内都未检测到承载在公共搜索空间中的DCI时,终端设备20停止检测承载在公共搜索空间中的DCI。
可选的,在各符号对应的公共搜索空间中,还承载有控制信道符号信息,控制信道符号信息用于指示网络设备10发送RS、DCI和HARQ反馈信息所需的符号数,即控制信道所在符号总数。示例性的,控制信道符号信息可以为LTE系统中的CFI信息。示例性的,控制信道符号信息可作为DCI的一个新字段,承载在PDCCH上。
示例性的,控制信道符号信息可以为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
上述控制信道符号信息中,除数据信道开始符号数外,指示的数目都不大于最大符号数。数据信道指示网络设备10传输数据信息时占用的时频资源。
其中,控制信道符号总数用于指示网络设备10占用多少个符号来发送RS、DCI和HARQ反馈信息。可选的,终端设备20在接收到控制信道符号总数M后,在当前子帧的前M个符号对应的频域资源上检索DCI,在当前子帧的第M+1个符号开始接收数据信息。其中M为大于0的正整数。
剩余控制信道符号数用于指示网络设备10从当前符号处起,还需占用多少个符号来发送RS、DCI和HARQ反馈信息。可选的,终端设备20在接收到控制信道符号总数M后,在当前子帧的前M个符号对应的频域资源上检索DCI,在当前子帧的第M+1个符号开始接收数据信息。
当前子帧内的控制信道符号总数用于指示当前子帧内网络设备10占用多少个符号来发送RS、DCI和HARQ反馈信息。
当前子帧内剩余控制信道符号数用于指示当前子帧内网络设备10从当前符号处起,还需占用多少个符号来发送RS、DCI和HARQ反馈信息。
当前波束控制信道符号总数用于指示网络设备10在当前波束上,占用多少个符号来发送RS、DCI和HARQ反馈信息。在本实施例中,网络设备10在各个波束上只占用一个符号来发送RS、DCI和HARQ反馈信息。
当前波束剩余控制信道符号数用于指示网络设备10在当前波束上,从当前符号处起,还需占用多 少个符号来发送RS、DCI和HARQ反馈信息。在本实施例中,网络设备10在各个波束上只占用一个符号来发送RS、DCI和HARQ反馈信息,故当前波束剩余控制信道符号数取值为0。
数据信道开始符号数用于指示终端设备20在当前子帧的第几个符号处开始接收数据信息。
示例性的,当一个符号对应的频域资源上既承载了DCI也承载了数据信息,则控制信道符号信息需既指示网络设备10占用哪些符号来发送RS、DCI和HARQ反馈信息,也指示占用哪些符号发送数据信息。
示例性的,参照图4,当终端设备20在符号#0上检测到DCI后,可同时接收到控制信道符号信息,当控制信道符号信息为控制信道符号总数时,例如,控制信道符号总数为3,指示当前子帧内网络设备10发送RS、DCI和HARQ反馈信息需占用的总符号数为3。当控制信道符号信息为剩余控制信道符号数时,剩余控制信道符号数为2,指示网络设备10还需占用2个符号来发送RS、DCI和HARQ反馈信息。
可选的,还可由网络设备10通过高层信令配置控制信道符号信息。
本申请实施例中,网络设备根据确定的需要发送的波束,在各波束对应的符号对应的时频资源上设置一个公共搜索空间,且一个公共搜索空间占用一个符号,将多个终端设备都需要接收的DCI在各公共搜索空间中均进行映射。网络设备通过在每一个波束对应的符号对应的时频资源上设置公共搜索空间,保证了位于不同波束对应的方向上的终端设备均能检测到公共搜索空间,进一步可以在公共搜索空间中检测是否承载有DCI,提高了基于波束成型技术的通信系统的覆盖能力。
进一步地,在上述实施例的基础上,本申请实施例还提供一种资源处理方法,在终端设备20获取到承载在公共搜索空间中的DCI之后,还包括:
S405:在检测到承载在公共搜索空间中的DCI的符号对应的时间范围和频域资源上,终端设备20获取专用搜索空间资源位置信息,并尝试盲检承载在专用搜索空间中的DCI。
一种实施方式中,专用搜索空间的构成方式,可以与LTE系统中的专用搜索空间的构成方式类似。例如,专用搜索空间的聚合级别可以为1、2、4、8中任一种,对应的专用搜索空间的CCE总数分别为6、12、8、16。构成专用搜索空间的CCE分布在同一个符号对应的频域资源上,且构成一个CCE的REG分布在同一个符号对应的频域资源上。专用搜索空间在当前符号包括的CCE中的起始点,示例性的可以取决于终端设备20的标识、当前子帧编号等。终端设备20可在检测到承载在公共搜索空间中的DCI后,计算得到当前符号对应的频域资源上,专用搜索空间的起始点位置,然后从该起始点位置处起,进行16次盲检,以获取承载在专用搜索空间中的DCI。
另一种实施方式中,专用搜索空间的构成方式,还可以与5G中的专用搜索空间的构成方式类似。其中,专用搜索空间的CCE总数为16,专用搜索空间的聚合级别可以为2、4、8、16中任一种。构成专用搜索空间的CCE同样分布在一个符号上。此种情况下,在当前符号对应的时间范围内,终端设备20需最多进行(16/2+16/4+16/8+16/16)=15次盲检。专用搜索空间在当前符号包括的CCE中的起始点可采用5G中的确定专用搜索空间的起始点的方法。
再一种实施方式中,专用搜索空间还可根据实际需求占用其他数量的CCE,设置其他聚合级别,本申请对此不做限定。
本申请还提供一种资源处理方法实施例,图5为本申请实施例二提供的控制资源映射结构示意图。如图5所示,与图4所示实施例不同的是,本实施例中网络设备10在每个波束对应的方向上发送RS、DCI和HARQ反馈信息占用的符号数不同。本实施例中网络设备10确定需要发送的波束为两个,即以需服务位于两个不同波束对应的方向上的终端设备20为例,对RS、DCI和HARQ反馈信息在控制资 源上的映射方式进行示例性说明。其中,各波束对应的方向上的终端设备20的数量可以相同,也可以不同。下面仅对图5所示实施例与图4所示实施例中不一致的地方进行详细说明。
参照图5,本申请实施例提供一种资源处理方法,包括:
S501:网络设备确定需要发送的波束,在每个波束对应的频域资源中确定部分频域资源,作为公共搜索空间。
示例性的,网络设备10通过RF射频发送信息时,一个波束对应一个符号组,各符号组中包括的符号数可以不同,即每个波束占用的符号数可以不同。在一个符号组内,网络设备10控制RF链路发送该符号组对应的波束,以使该波束对应的方向上的终端设备20可接收到在该符号组对应的时间范围内发送的信息。本实施例中,网络设备10在确定两个波束后,为两个波束分别确定对应的时频资源。示例性的,网络设备10确定波束1和波束2各自对应的符号组。参照图5,波束1对应的符号组包括符号#0和符号#1。波束2对应的符号组包括符号#2。各波束对应的时频资源为对应的符号组所对应的频域资源。网络设备10进一步为每个波束,在频域资源上划定公共搜索空间对应的频域资源。如图5所示,波束1对应的频域资源上的公共搜索空间可占用一个符号。可选的,波束1对应的频域资源上的公共搜索空间也可占用两个符号,此时,可以为构成CCE的REG占用两个符号,公共搜索空间由至少一个CCE构成;也可以为构成CCE的REG占用一个符号,公共搜索空间由分布在不同符号对应的频域资源上的CCE构成。
S502:网络设备将DCI映射到公共搜索空间中。
示例性的,当网络设备10向终端设备20发送DCI时,网络设备10在每个公共搜索空间中都映射一个DCI。以保证两个波束对应的方向上的终端设备20均可接收到承载在公共搜索空间中的DCI。示例性的,当公共搜索空间分布在两个符号对应的频域资源上时,承载在该公共搜索空间中的DCI可映射在两个符号对应的频域资源上,也可映射在两个符号中任一个符号对应的频域资源上。
可选的,当一个波束对应的符号组包括至少两个符号时,网络设备10通常在符号组的第一个符号中确定用于映射RS的部分频域资源、用于映射HARQ反馈信息的部分频域资源。公共搜索空间对应的部分频域资源、映射RS的部分频域资源、映射HARQ反馈信息的部分频域资源相互之间均不交叠。可选的,各波束对应的符号组对应的频域资源上承载有至少一个RS。
可选的,网路设备10在各波束对应的符号组对应的频域资源上还确定部分频域资源,作为专用搜索空间。当波束对应的符号组包括至少两个符号时,专用搜索空间可分布在至少两个符号对应的频域资源上。示例性的,可以为构成CCE的REG占用至少两个符号,专用搜索空间由至少一个CCE构成;也可以为构成CCE的REG占用一个符号,专用搜索空间由分布在至少两个符号对应的频域资源上的CCE构成。
S503、网络设备10向终端设备20发送公共搜索空间的资源位置信息。
示例性的,终端设备20获取公共搜索空间在对应的符号组对应的频域资源上的资源位置信息。例如,终端设备20接收到每个公共搜索空间占用的资源的符号信息和频域资源信息,频域资源信息例如可以为子载波信息。当符号组包括至少两个符号时,公共搜索空间可分布在符号组包括的至少一个符号对应的频域资源上。可选的,为减少信令开销,可如图5所示,将公共搜索空间均设置在每个符号组的第一个符号对应的频域资源上,且各公共搜索空间在的各符号组对应的时频资源上占用的频域资源位置相同。此时,网络设备10可仅发送一个资源位置信息,如子载波信息,以使终端设备20可将获取到的资源位置信息,作为各个符号对应的频域资源上的公共搜索空间的资源位置信息。
S504:终端设备20根据接收到的公共搜索空间的资源位置信息,获取承载在公共搜索空间中的DCI。
示例性的,当终端设备20接收到每个公共搜索空间占用的CCE或REG的资源位置信息,资源位置信息包括符号信息和子载波信息,此时一个公共搜索空间对应的符号信息中指示的符号可以不同。则按各符号对应的时间的先后顺序,在各符号对应的子载波处,确定公共搜索空间,再尝试在公共搜索空间中检测是否承载有DCI。若终端设备20检测到承载在公共搜索空间中的DCI,则停止尝试检测,或直至尝试了资源位置信息指示的所有资源位置。
示例性的,当终端设备20接收到每个公共搜索空间占用的频域资源信息,如子载波信息,则根据资源位置信息,从第一个符号开始,在每个符号对应的时间范围内,资源位置信息指示的位置处,确定公共搜索空间,再尝试在公共搜索空间中检测是否承载有DCI。若终端设备20检测到DCI,则停止尝试检测,或直至遍历了最大符号数所指示的所有符号。
在各符号组对应的公共搜索空间中,还承载有控制信道符号信息。与图4所示实施例相似,控制信道符号信息可以为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
在本实施例中,网路设备10可发送当前波束控制信道符号总数或当前波束剩余控制信道符号数作为控制信道符号信息。结合图5,当当前波束为波束1,且当前符号为符号#0时,当前波束控制信道符号总数取值为2,当前波束剩余控制信道符号数取值为1。
本申请实施例中,网络设备确定的需要发送的波束,在各波束对应的符号组对应的时频资源上设置一个公共搜索空间,且一个公共搜索空间占用一个符号组,一个符号组对应至少一个符号,将多个终端设备都需要接收的DCI在各公共搜索空间中均进行映射。网络设备通过在每一个波束对应的符号组对应的时频资源上设置公共搜索空间,保证了位于不同波束对应的方向上的终端设备均能检测到公共搜索空间,进一步可以在公共搜索空间中检测是否承载有DCI,提高了基于波束成型技术的通信系统的覆盖能力。本实施例中网络设备可根据实际需求,在包含不同符号数的符号组对应的时间范围内发送波束,使得共搜索空间、以及承载在公共搜索空间中的DCI在时频资源上分布更具有灵活性。
进一步地,在上述实施例的基础上,本申请实施例还提供一种资源处理方法,在终端设备20获取到承载在公共搜索空间中的DCI之后,还包括:
S505:在检测到公共搜索空间中的DCI的符号组对应的时间范围和频域资源上,终端设备20获取专用搜索空间资源位置信息,并尝试盲检承载在专用搜索空间中的DCI。
可选的,本实施例中的任一符号组中的专用搜索空间的构成方式,均可以与LTE系统中的专用搜索空间的构成方式类似,或与5G中的专用搜索空间的构成方式类似。可选的,专用搜索空间还可根据实际需求占用其他数量的CCE,设置其他聚合级别,本申请对此不做限定。
本申请还提供一种资源处理方法实施例,图6为本申请实施例三提供的控制资源映射结构示意图。如图6所示,与图5所示实施例不同的是,本实施例中只有朝向一个方向的波束,即本申请提供的资源处理方法也适用于当网络设备确定的波束数目为1的情况。相比图5所示实施例,本实施例中网络设备10不再发送波束2。其中,本实施例中的波束对应的符号组包括至少一个符号。下面仅对图6所示实施例与图5所示实施例中不一致的地方进行详细说明。
参照图6,本申请实施例提供一种资源处理方法,包括:
S601:网络设备确定需要发送的波束,在每个波束对应的频域资源中确定部分频域资源,作为公共搜索空间。
本实施例中,以网络设备10确定只需要发送一个波束为例。示例性的,可能为网络设备10确定各 终端设备20处于同一波束对应的方向,也可以为只有一个需服务的终端设备20,该波束的方向与该需要服务的终端设备20的方向一致。当只需发送一个波束时,该波束对应一个符号组,符号组中包括至少一个符号。示例性的,图6中以波束1对应3个符号为例进行绘示。
S602:网络设备将DCI映射到公共搜索空间中。
具体的,本实施例中网络设备10首先确定需要发送的波束,即波束1。然后确定波束1对应的时频资源,在时频资源中确定公共搜索空间占用的部分时频资源。将需要承载在公共搜索空间中发送的DCI承载在该公共搜索空间中发送。公共搜索空间占用的时频资源可以如图6所示,占用3个符号。承载在该公共搜索空间中的DCI也可分布在3个符号对应的频域资源上。
S603、网络设备10向终端设备20发送公共搜索空间的资源位置信息。
S604:终端设备20根据接收到的公共搜索空间的资源位置信息,获取承载在公共搜索空间中的DCI。
S605:在检测到公共搜索空间中的DCI的符号组对应的时间范围和频域资源上,终端设备20获取专用搜索空间资源位置信息,并尝试盲检承载在专用搜索空间中的DCI。
其中,S603至S605与图5所示实施例中的S505至S505相似,本申请不再赘述。
本实施例中,网络设备根据需要发送的一个波束,控制波束在一个符号组对应的时频资源中确定公共搜索空间,再在公共搜索空间中承载DCI。网络设备在符号组对应的时间范围内发送该波束,保证了位于该波束对应的方向上的终端设备能检测到公共搜索空间,进一步可以在公共搜索空间中检测是否承载有DCI。同时,网络设备在一个子帧内只需要发送一个波束时,将公共搜索空间跨符号分布,可减少频域资源占用。
本申请还提供一种资源处理方法实施例,图7为本申请实施例四提供的控制资源映射结构示意图。如图7所示,与图4所示实施例不同的是,本实施例中每个波束对应的符号对应的频域资源上,还映射有PCFICH,PCFICH上承载有CFI。下面仅对图7所示实施例与图4所示实施例中不一致的地方进行详细说明。
参照图7,本申请实施例提供一种资源处理方法,包括:
S701:网络设备确定需要发送的波束,在每个波束对应的频域资源中确定部分频域资源,作为公共搜索空间。
本步骤与图4所示实施例中的S401相似,本申请不再赘述。
S702:网络设备在时频中映射DCI和CFI。
示例性的,网络设备10将DCI映射到公共搜索空间中,映射方式与S702中相似,本申请不再赘述。
与图4所示实施例不同的是,本实施例中,在每个波束对应的符号对应的频域资源上,网络设备10还确定用于映射CFI的部分频域资源。CFI承载在PCFICH上。映射CFI的部分频域资源与公共搜索空间对应的部分频域资源、映射RS的部分频域资源、映射HARQ反馈信息的部分频域资源以及专用搜索空间对应的部分频域资源均不交叠。网络设备10在每个波束对应符号对应的频域资源上,均映射有CFI,且CFI承载在PCFICH中。本实施例中公共搜索空间中不再承载控制信道符号信息。可选的,各波束对应的符号也可以多个。
可选的,PCFICH的配置信息由网络设备10通过高层信令配置。CFI与上述图4至图6所示实施例中的控制信道符号信息相同,均用于指示网络设备10发送RS、DCI、HARQ反馈信息所占用的符号数。示例性的,CFI与控制信道符号信息相同,也可以为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制 信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。本申请对此不再赘述。
S703、终端设备20在各符号上尝试接收RS,承载在PHICH上的HARQ反馈信息,以及承载在PCFICH上的CFI。
S704、当终端设备20接收到RS、HARQ反馈信息、CFI时,在当前符号对应的时间范围内,终端设备20根据CFI,以及PCFICH、RS、PHICH各自占用的资源信息,获取CCE索引。
示例性的,获取CCE索引的方式可以与图2所示实施例中的S202相似,本申请不再赘述。
S705、在当前符号对应的时间范围内,终端设备20根据CCE的索引,确定当前符号对应的频域资源中的公共搜索空间,在公共搜索空间中进行盲检,获取承载在公共搜索空间中的DCI。
S706、在当前符号对应的时间范围和频域资源上,终端设备20获取专用搜索空间资源位置信息,并尝试盲检承载在专用搜索空间中的DCI。
其中,S705和S706与图2所示实施例中的S203至S204相似,本申请不再赘述。
本实施例中,网络设备根据需要发送的波束,控制波束在一个符号或符号组对应的时频资源中确定公共搜索空间,再在公共搜索空间中承载DCI。同时,在一个符号或符号组对应的时频资源中确定用于承载CFI的时频资源,CFI承载在PCFICH上。由于各波束对应的时频资源中承载有CFI,方便了终端设备20根据CFI获取各波束对应时频资源中的公共搜索空间的资源位置信息,因此,各符号对应的公共搜索空间在时频资源中的位置可以不同,具有较高的灵活性。也避免了网络设备向终端设备发送各符号对应的公共搜索空间的资源位置信息,减少了信令开销。
本申请实施例另一方面还提供一种资源处理装置,用于执行上述实施例中的网络设备侧的资源处理方法,具有相同的技术特征和技术效果,本申请不再赘述。
图8为本申请一实施例提供的资源处理装置的结构示意图。本实施例中,该资源处理装置可以通过软件、硬件或者软硬件结合的方式实现。如图8所示,资源处理装置,包括:
波束确定模块801,用于确定需要发送的至少两个波束;
时频资源确定模块802,用于确定至少两个波束中每个波束对应的时频资源;
公共搜索空间确定模块803,用于在每个波束对应的时频资源中确定部分时频资源,作为公共搜索空间,公共搜索空间对应的部分时频资源,用于承载向终端设备发送的控制信息。
进一步地,在图8所示实施例的基础上,图9为本申请另一实施例提供的资源处理装置的结构示意图。如图9所示,资源处理装置还包括:
发送模块804,用于向终端设备发送资源位置信息;资源位置信息用于指示公共搜索空间时频资源上的位置。
可选的,资源位置信息用于指示,承载在公共搜索空间中的控制信息在公共搜索空间中占用的物理下行控制信道在公共搜索空间对应的时频资源上的位置。
可选的,控制信息中包含下行控制信息,下行控制信息用于指示终端设备的上下行数据传输的配置参数。
可选的,下行控制信息还中包含控制信道符号信息。
可选的,如图9所示,资源处理装置还包括:
映射模块805,用于在每个公共搜索空间中都映射一个下行控制信息。
可选的,波束确定模块801,具体用于,
根据控制信息的类型,确定需要发送的至少两个波束;或者,
根据终端设备所在的方向信息,确定需要发送的至少两个波束;或者,
根据波束的宽度,确定需要发送的至少两个波束。
可选的,时频资源确定模块802具体用于,
确定至少两个波束中每个波束对应的符号组,根据符号组对应的时频资源得到至少两个波束中每个波束对应的时频资源,每个符号组包括至少一个符号;
各公共搜索空间对应的部分时频资源分布在各符号组内的至少一个符号上。
时频资源确定模块802还用于,在每个波束对应的时频资源中确定部分时频资源,用于承载控制帧格式指示信息,控制帧格式指示信息用于指示控制信道符号信息,用于承载控制帧格式指示信息的部分时频资源与公共搜索空间对应的部分时频资源不重叠。
可选的,时频资源确定模块802还用于,
在每个波束对应的时频资源中确定部分时频资源,作为专用搜索空间;专用搜索空间对应的部分时频资源,用于承载需一个终端设备接收的控制信息。
可选的,时频资源确定模块802还用于,
在每个波束对应的时频资源中确定部分时频资源,以承载参考信号,参考信号用于辅助终端设备获取控制信息,承载参考信号的部分时频资源与公共搜索空间对应的部分时频资源不重叠。
可选的,时频资源确定模块802还用于,
在每个波束对应的时频资源中确定部分时频资源,以承载混合自动重传请求反馈信息,混合自动重传请求反馈信息包含网络设备对终端设备的上行数据的接收的响应,承载混合自动重传请求反馈信息的部分时频资源与公共搜索空间对应的部分时频资源不重叠。
可选的,符号为时域中划分时频资源的最小单位。
可选的,发送模块804具体用于,通过高层信令向终端设备发送公共搜索空间的资源位置信息。
可选的,发送模块804具体用于,广播发送公共搜索空间的资源位置信息。
可选的,控制信道符号信息为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
可选的,发送模块804还用于,通过高层信令向终端设备发送控制信道符号信息。
可选的,高层信令为如下中的任一种:
介质接入控制-控制单元信令、非接入层信令、无线资源控制信令、分组数据汇聚协议信令或无线链路控制层协议信令。
可选的,各波束对应的符号组包括的符号数不同。
可选的,各波束对应的符号组包括的符号数相同。
可选的,控制帧格式指示信息为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
本申请实施例另一方面还提供一种资源处理装置,用于执行上述实施例中的终端设备侧的资源处理方法,具有相同的技术特征和技术效果,本申请不再赘述。
图10为本申请再一实施例提供的资源处理装置的结构示意图。本实施例中,该资源处理装置可以通过软件、硬件或者软硬件结合的方式实现。如图10所示,资源处理装置,包括:
接收模块1001,用于接收网络设备发送的资源位置信息,资源位置信息用于指示至少一个公共搜 索空间在时频资源中的位置;
检测模块1002,用于根据资源位置信息,检测是否存在承载在公共搜索空间中的控制信息。
可选的,资源位置信息包括频域位置信息;检测模块1002具体用于,
自当前子帧的第一个符号起,在第一个符号对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息;
若否,则在当前子帧的下一个符号对应的时间范围内,在第二个符号对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息,直至检测到控制信息或遍历完最大符号数指示的所有符号;最大符号数用于指示当前子帧中分布有公共搜索空间的符号的数量的最大值。
可选的,资源位置信息包括至少一个符号组信息,以及与各符号组信息对应的频域位置信息,一个符号组包括至少一个符号;检测模块1002具体用于,
在第一个符号组对应的时间范围内,在第一个符号组对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息;
若否,则在下一个符号组对应的时间范围内,在下一个符号组对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息,直至检测到控制信息或遍历完所有符号组。
可选的,符号为时域中划分时频资源的最小单位。
可选的,接收模块1001具体用于,接收网络设备通过高层信令发送的公共搜索空间的资源位置信息。
可选的,接收模块1001具体用于,接收网络设备广播发送的公共搜索空间的资源位置信息。
可选的,控制信息中包含下行控制信息,下行控制信息用于指示终端设备的上下行数据传输的配置参数。
可选的,下行控制信息中包含控制信道符号信息。
可选的,接收模块1001还用于,接收网络设备通过高层信令向终端设备发送的控制信道符号信息。
可选的,控制信道符号信息为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
可选的,高层信令为如下中的任一种:
介质接入控制-控制单元信令、非接入层信令、无线资源控制信令、分组数据汇聚协议信令或无线链路控制层协议信令。
可选的,检测模块1002还用于,
在当前子帧的最大符号数指示的所有符号内,检测是否存在承载在物理控制格式指示信道上的控制帧格式指示信息,控制帧格式指示信息用于指示控制信道符号信息。
可选的,检测模块1002还用于,
在检测到控制信息的符号组上,根据控制信道符号信息,检测专用搜索空间中承载的下行控制信息。
可选的,检测模块1002还用于,
在当前子帧的最大符号数指示的所有符号内,检测是否存在参考信号,参考信号用于辅助终端设备获取控制信息。
可选的,检测模块1002还用于,
在当前子帧的最大符号数指示的所有符号,检测是否存在承载在物理混合自动重传请求信道指示信 道上的混合自动重传请求反馈信息,混合自动重传请求反馈信息包含网络设备对终端设备的上行数据的接收的响应。
本申请实施例另一方面还提供一种网络设备,用于执行上述图3至图7所示实施例中的资源处理方法。具有相同的技术特征和技术效果,本申请不再赘述。
图11为本申请一实施例提供的网络设备的结构示意图。如图11所示,网络设备包括:发送器1101、存储器1102、处理器1103和至少一个通信总线1104。通信总线1104用于实现元件之间的通信连接。存储器1102可能包含高速随机存储器,也可能还包括非易失性存储器,例如至少一个磁盘存储器,存储器1102中可以存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。处理器1103用于执行存储器1102中存储的程序。本实施例中,发送器1101可以为网络设备中的射频处理模块或者基带处理模块。其中,发送器1101耦合至所述处理器1103。
处理器1101,用于,
确定需要发送的至少两个波束;确定至少两个波束中每个波束对应的时频资源;在每个波束对应的时频资源中确定部分时频资源,作为公共搜索空间,公共搜索空间对应的部分时频资源,用于承载向终端设备发送的控制信息。
可选的,发送器1102,用于向终端设备发送资源位置信息;资源位置信息用于指示公共搜索空间时频资源上的位置。
可选的,资源位置信息用于指示,承载在公共搜索空间中的控制信息在公共搜索空间中占用的物理下行控制信道在公共搜索空间对应的时频资源上的位置。
可选的,控制信息中包含下行控制信息,下行控制信息用于指示终端设备的上下行数据传输的配置参数。
可选的,下行控制信息还中包含控制信道符号信息。
可选的,处理器1101还用于,
在每个公共搜索空间中都映射一个下行控制信息。
可选的,处理器1101具体用于,
根据控制信息的类型,确定需要发送的至少两个波束;或者,
根据终端设备所在的方向信息,确定需要发送的至少两个波束;或者,
根据波束的宽度,确定需要发送的至少两个波束。
可选的,处理器1101还用于,
确定至少两个波束中每个波束对应的符号组,根据符号组对应的时频资源得到至少两个波束中每个波束对应的时频资源,每个符号组包括至少一个符号;
各公共搜索空间对应的部分时频资源分布在各符号组内的至少一个符号上。
可选的,资源位置信息包括至少一个符号组信息,以及与各符号组信息对应的频域资源信息。
可选的,处理器1101还用于,
在每个波束对应的时频资源中确定部分时频资源,用于承载控制帧格式指示信息,控制帧格式指示信息用于指示控制信道符号信息,用于承载控制帧格式指示信息的部分时频资源与公共搜索空间对应的部分时频资源不重叠。
可选的,处理器1101还用于,
在每个波束对应的时频资源中确定部分时频资源,作为专用搜索空间;专用搜索空间对应的部分时频资源,用于承载需一个终端设备接收的控制信息。
可选的,处理器1101还用于,
在每个波束对应的时频资源中确定部分时频资源,以承载参考信号,参考信号用于辅助终端设备获取控制信息,承载参考信号的部分时频资源与公共搜索空间对应的部分时频资源不重叠。
可选的,处理器1101还用于,
在每个波束对应的时频资源中确定部分时频资源,以承载混合自动重传请求反馈信息,混合自动重传请求反馈信息包含网络设备对终端设备的上行数据的接收的响应,承载混合自动重传请求反馈信息的部分时频资源与公共搜索空间对应的部分时频资源不重叠。
可选的,符号为时域中划分时频资源的最小单位。
可选的,发送器1102具体用于,
通过高层信令向终端设备发送公共搜索空间的资源位置信息。
可选的,发送器1102具体用于,
广播发送公共搜索空间的资源位置信息。
可选的,控制信道符号信息为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
可选的,发送器1102还用于,
通过高层信令向终端设备发送控制信道符号信息。
可选的,高层信令为如下中的任一种:
介质接入控制-控制单元信令、非接入层信令、无线资源控制信令、分组数据汇聚协议信令或无线链路控制层协议信令。
可选的,各波束对应的符号组包括的符号数不同。
可选的,各波束对应的符号组包括的符号数相同。
可选的,控制帧格式指示信息为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
本申请实施例另一方面还提供一种终端设备,用于执行上述图3至图7所示实施例中的资源处理方法。具有相同的技术特征和技术效果,本申请不再赘述。
图12为本申请一实施例提供的网络设备的结构示意图。如图12所示,终端设备,包括:接收器1201、存储器1202、处理器1203和至少一个通信总线1204。通信总线1204用于实现元件之间的通信连接。存储器1202可能包含高速随机存储器,也可能还包括非易失性存储器,例如至少一个磁盘存储器,存储器1202中可以存储各种程序,用于完成各种处理功能以及实现本实施例的方法步骤。处理器1203用于执行存储器1202中存储的程序。本实施例中,接收器1201可以为终端设备中的射频处理模块或者基带处理模块。其中,接收器1201耦合至所述处理器1203。
接收器1201,用于接收网络设备发送的资源位置信息,资源位置信息用于指示至少一个公共搜索空间在时频资源中的位置;
处理器1202,用于根据资源位置信息,检测是否存在承载在公共搜索空间中的控制信息。
可选的,资源位置信息包括频域位置信息;处理器1202具体用于,
自当前子帧的第一个符号起,在第一个符号对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息;
若否,则在当前子帧的下一个符号对应的时间范围内,在第二个符号对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息,直至检测到控制信息或遍历完最大符号数指示的所有符号;最大符号数用于指示当前子帧中分布有公共搜索空间的符号的数量的最大值。
可选的,资源位置信息包括至少一个符号组信息,以及与各符号组信息对应的频域位置信息,一个符号组包括至少一个符号;处理器1202具体用于,
在第一个符号组对应的时间范围内,在第一个符号组对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息;
若否,则在下一个符号组对应的时间范围内,在下一个符号组对应的频域资源中的频域位置处,确定公共搜索空间,在公共搜索空间中检测是否承载有控制信息,直至检测到控制信息或遍历完所有符号组。
可选的,符号为时域中划分时频资源的最小单位。
可选的,接收器1201具体用于,接收网络设备通过高层信令发送的公共搜索空间的资源位置信息。
可选的,接收器1201具体用于,接收网络设备广播发送的公共搜索空间的资源位置信息。
可选的,控制信息中包含下行控制信息,下行控制信息用于指示终端设备的上下行数据传输的配置参数。
可选的,下行控制信息中包含控制信道符号信息。
可选的,接收器1201还用于,接收网络设备通过高层信令向终端设备发送的控制信道符号信息。
可选的,控制信道符号信息为如下中的至少一项:
控制信道符号总数、剩余控制信道符号数、当前子帧内的控制信道符号总数、当前子帧内剩余控制信道符号数、当前波束控制信道符号总数、当前波束剩余控制信道符号数、数据信道开始符号数。
可选的,高层信令为如下中的任一种:
介质接入控制-控制单元信令、非接入层信令、无线资源控制信令、分组数据汇聚协议信令或无线链路控制层协议信令。
可选的,处理器1202还用于,
在当前子帧的最大符号数指示的所有符号内,检测是否存在承载在物理控制格式指示信道上的控制帧格式指示信息,控制帧格式指示信息用于指示控制信道符号信息。
可选的,处理器1202还用于,
在检测到控制信息的符号组上,根据控制信道符号信息,检测专用搜索空间中承载的下行控制信息。
可选的,处理器1202还用于,
在当前子帧的最大符号数指示的所有符号内,检测是否存在参考信号,参考信号用于辅助终端设备获取控制信息。
可选的,处理器1202还用于,
在当前子帧的最大符号数指示的所有符号,检测是否存在承载在物理混合自动重传请求信道指示信道上的混合自动重传请求反馈信息,混合自动重传请求反馈信息包含网络设备对终端设备的上行数据的接收的响应。
另外,需要说明的是,应理解以上网络设备、终端设备的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本申请实施例还提供一种程序,该程序在被处理器执行时用于执行上述图3至图7所示实施例中网络设备侧的资源处理方法。本申请实施例还提供一种程序产品,例如计算机可读存储介质,包括如上所述的程序。本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述图3至图7所示实施例中网络设备侧的资源处理方法。
本申请实施例还提供一种程序,该程序在被处理器执行时用于执行上述图3至图7所示实施例中终端设备侧的资源处理方法。本申请实施例还提供一种程序产品,例如计算机可读存储介质,包括如上所述的程序。本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述图3至图7所示实施例中终端设备侧的资源处理方法。

Claims (30)

  1. 一种资源处理方法,其特征在于,包括:
    网络设备确定需要发送的至少两个波束;
    所述网络设备确定所述至少两个波束中每个波束对应的时频资源;
    所述网络设备在所述每个波束对应的时频资源中确定部分时频资源,作为公共搜索空间,所述公共搜索空间对应的部分时频资源,用于承载向终端设备发送的控制信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送资源位置信息;所述资源位置信息用于指示所述公共搜索空间在时频资源上的位置。
  3. 根据权利要求2所述的方法,其特征在于,所述资源位置信息用于指示,承载在公共搜索空间中的控制信息在所述公共搜索空间中占用的物理下行控制信道在所述公共搜索空间对应的时频资源上的位置。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述控制信息中包含下行控制信息,所述下行控制信息用于指示所述终端设备的上下行数据传输的配置参数。
  5. 根据权利要求4所述的方法,其特征在于,所述下行控制信息还中包含控制信道符号信息。
  6. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述网络设备在每个所述公共搜索空间中都映射一个下行控制信息。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述网络设备确定需要发送的至少两个波束,包括:
    所述网络设备根据所述控制信息的类型,确定需要发送的至少两个波束;或者,
    所述网络设备根据所述终端设备所在的方向信息,确定需要发送的至少两个波束;或者,
    所述网络设备根据波束的宽度,确定需要发送的至少两个波束。
  8. 根据权利要求2所述的方法,其特征在于,所述网络设备确定所述至少两个波束中每个波束对应的时频资源,具体包括:
    所述网络设备确定所述至少两个波束中每个波束对应的符号组,根据所述符号组对应的时频资源得到所述至少两个波束中每个波束对应的时频资源,每个所述符号组包括至少一个符号;
    各所述公共搜索空间对应的部分时频资源分布在各符号组内的至少一个符号上。
  9. 根据权利要求8所述的方法,其特征在于,所述资源位置信息包括至少一个符号组信息,以及与各所述符号组信息对应的频域资源信息。
  10. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备在每个波束对应的时频资源中确定部分时频资源,用于承载控制帧格式指示信息,所述控制帧格式指示信息用于指示控制信道符号信息,所述用于承载控制帧格式指示信息的部分时频资源与所述公共搜索空间对应的部分时频资源不重叠。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备在每个波束对应的时频资源中确定部分时频资源,作为专用搜索空间;所述专用搜索空间对应的部分时频资源,用于承载需要一个终端设备接收的控制信息。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备在每个波束对应的时频资源中确定部分时频资源,以承载参考信号,所述参考信号用 于辅助所述终端设备获取所述控制信息,承载参考信号的部分时频资源与所述公共搜索空间对应的部分时频资源不重叠;和/或
    所述网络设备在每个波束对应的时频资源中确定部分时频资源,以承载混合自动重传请求反馈信息,所述混合自动重传请求反馈信息包含所述网络设备对所述终端设备的上行数据的接收的响应,承载混合自动重传请求反馈信息的部分时频资源与所述公共搜索空间对应的部分时频资源不重叠。
  13. 一种资源处理方法,其特征在于,包括:
    终端设备接收网络设备发送的资源位置信息,所述资源位置信息用于指示至少一个公共搜索空间在时频资源中的位置;
    所述终端设备根据所述资源位置信息,检测是否存在承载在公共搜索空间中的控制信息。
  14. 根据权利要求13所述的方法,其特征在于,所述资源位置信息包括频域位置信息;所述终端设备根据所述资源位置信息,检测是否存在承载在公共搜索空间中的控制信息,包括:
    所述终端设备自当前子帧的第一个符号起,在所述第一个符号对应的频域资源中的所述频域位置处,确定公共搜索空间,在所述公共搜索空间中检测是否承载有控制信息;
    若否,则在当前子帧的下一个符号对应的时间范围内,在所述下一个符号对应的频域资源中的所述频域位置处,确定公共搜索空间,在所述公共搜索空间中检测是否承载有控制信息,直至检测到所述控制信息或遍历完最大符号数指示的所有符号;所述最大符号数用于指示当前子帧中分布有公共搜索空间的符号的数量的最大值。
  15. 根据权利要求13所述的方法,其特征在于,所述资源位置信息包括至少一个符号组信息,以及与各所述符号组信息对应的频域位置信息,一个符号组包括至少一个符号;所述终端设备根据所述资源位置信息,检测是否存在承载在公共搜索空间中的控制信息,包括:
    所述终端设备在第一个符号组对应的时间范围内,在所述第一个符号组对应的频域资源中的频域位置处,确定公共搜索空间,在所述公共搜索空间中检测是否承载有控制信息;
    若否,则在下一个符号组对应的时间范围内,在所述下一个符号组对应的频域资源中的所述频域位置处,确定公共搜索空间,在所述公共搜索空间中检测是否承载有控制信息,直至检测到所述控制信息或遍历完所有符号组。
  16. 一种网络设备,其特征在于,包括:处理器,所述处理器用于,
    确定需要发送的至少两个波束;
    确定所述至少两个波束中每个波束对应的时频资源;
    公共搜索空间确定模块,用于在所述每个波束对应的时频资源中确定部分时频资源,作为公共搜索空间,所述公共搜索空间对应的部分时频资源,用于承载向终端设备发送的控制信息。
  17. 根据权利要求16所述的网络设备,其特征在于,所述网络设备还包括:
    发送模块,用于向所述终端设备发送资源位置信息;所述资源位置信息用于指示所述公共搜索空间时频资源上的位置。
  18. 根据权利要求17所述的网络设备,其特征在于,所述资源位置信息用于指示,承载在公共搜索空间中的控制信息在所述公共搜索空间中占用的物理下行控制信道在所述公共搜索空间对应的时频资源上的位置。
  19. 根据权利要求16至18任一项所述的网络设备,其特征在于,所述控制信息中包含下行控制信息,所述下行控制信息用于指示所述终端设备的上下行数据传输的配置参数。
  20. 根据权利要求19所述的网络设备,其特征在于,所述下行控制信息还中包含控制信道符号信 息。
  21. 根据权利要求19所述的网络设备,其特征在于,所述处理器还用于,
    在每个所述公共搜索空间中都映射一个下行控制信息。
  22. 根据权利要求16至21任一项所述的网络设备,其特征在于,所述处理器具体用于,
    根据所述控制信息的类型,确定需要发送的至少两个波束;或者,
    根据所述终端设备所在的方向信息,确定需要发送的至少两个波束;或者,
    根据波束的宽度,确定需要发送的至少两个波束。
  23. 根据权利要求17所述的网络设备,其特征在于,所述处理器还用于,
    确定所述至少两个波束中每个波束对应的符号组,根据所述符号组对应的时频资源得到所述至少两个波束中每个波束对应的时频资源,每个所述符号组包括至少一个符号;
    各所述公共搜索空间对应的部分时频资源分布在各符号组内的至少一个符号上。
  24. 根据权利要求23所述的网络设备,其特征在于,所述资源位置信息包括至少一个符号组信息,以及与各所述符号组信息对应的频域资源信息。
  25. 根据权利要求16所述的网络设备,其特征在于,所述处理器还用于,
    在每个波束对应的时频资源中确定部分时频资源,用于承载控制帧格式指示信息,所述控制帧格式指示信息用于指示控制信道符号信息,所述用于承载控制帧格式指示信息的部分时频资源与所述公共搜索空间对应的部分时频资源不重叠。
  26. 根据权利要求16至25任一项所述的网络设备,其特征在于,所述处理器还用于,
    在每个波束对应的时频资源中确定部分时频资源,作为专用搜索空间;所述专用搜索空间对应的部分时频资源,用于承载需一个终端设备接收的控制信息。
  27. 根据权利要求16至26任一项所述的网络设备,其特征在于,所述处理器还用于,
    在每个波束对应的时频资源中确定部分时频资源,以承载参考信号,所述参考信号用于辅助所述终端设备获取所述控制信息,承载参考信号的部分时频资源与所述公共搜索空间对应的部分时频资源不重叠;和/或
    在每个波束对应的时频资源中确定部分时频资源,以承载混合自动重传请求反馈信息,所述混合自动重传请求反馈信息包含所述网络设备对所述终端设备的上行数据的接收的响应,承载混合自动重传请求反馈信息的部分时频资源与所述公共搜索空间对应的部分时频资源不重叠。
  28. 一种终端设备,其特征在于,所述终端设备包括:
    接收器,用于接收网络设备发送的资源位置信息,所述资源位置信息用于指示至少一个公共搜索空间在时频资源中的位置;
    处理器,用于根据所述资源位置信息,检测是否存在承载在公共搜索空间中的控制信息。
  29. 根据权利要求28所述的终端设备,其特征在于,所述资源位置信息包括频域位置信息;所述处理器具体用于,
    自当前子帧的第一个符号起,在所述第一个符号对应的频域资源中的所述频域位置处,确定公共搜索空间,在所述公共搜索空间中检测是否承载有控制信息;
    若否,则在当前子帧的下一个符号对应的时间范围内,在所述下一个符号对应的频域资源中的所述频域位置处,确定公共搜索空间,在所述公共搜索空间中检测是否承载有控制信息,直至检测到所述控制信息或遍历完最大符号数指示的所有符号;所述最大符号数用于指示当前子帧中分布有公共搜索空间的符号的数量的最大值。
  30. 根据权利要求28所述的终端设备,其特征在于,所述资源位置信息包括至少一个符号组信息,以及与各所述符号组信息对应的频域位置信息,一个符号组包括至少一个符号;所述处理器具体用于,
    在第一个符号组对应的时间范围内,在所述第一个符号组对应的频域资源中的频域位置处,确定公共搜索空间,在所述公共搜索空间中检测是否承载有控制信息;
    若否,则在下一个符号组对应的时间范围内,在所述下一个符号组对应的频域资源中的所述频域位置处,确定公共搜索空间,在所述公共搜索空间中检测是否承载有控制信息,直至检测到所述控制信息或遍历完所有符号组。
PCT/CN2018/079779 2017-03-24 2018-03-21 资源处理方法和装置 WO2018171618A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18770794.8A EP3582431B1 (en) 2017-03-24 2018-03-21 Resource processing method and apparatus
US16/579,585 US11206679B2 (en) 2017-03-24 2019-09-23 Resource processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184796.4A CN108631992B (zh) 2017-03-24 2017-03-24 资源处理方法和装置
CN201710184796.4 2017-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/579,585 Continuation US11206679B2 (en) 2017-03-24 2019-09-23 Resource processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2018171618A1 true WO2018171618A1 (zh) 2018-09-27

Family

ID=63584180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079779 WO2018171618A1 (zh) 2017-03-24 2018-03-21 资源处理方法和装置

Country Status (4)

Country Link
US (1) US11206679B2 (zh)
EP (1) EP3582431B1 (zh)
CN (1) CN108631992B (zh)
WO (1) WO2018171618A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436101A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种通信方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075958B (zh) * 2018-07-26 2022-06-10 北京小米移动软件有限公司 下行控制信息发送方法、接收方法、装置及存储介质
US11617198B2 (en) * 2019-02-15 2023-03-28 Qualcomm Incorporated Physical uplink shared channel repetition across slot boundary
WO2020199223A1 (zh) * 2019-04-04 2020-10-08 Oppo广东移动通信有限公司 一种信道传输方法、设备及存储介质
CN114501621A (zh) * 2020-10-23 2022-05-13 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN112713980A (zh) * 2020-12-04 2021-04-27 成都金诺信高科技有限公司 车联网通信传输控制方法
US11509381B2 (en) * 2021-11-12 2022-11-22 Ultralogic 6G, Llc Resource-efficient beam selection in 5G and 6G
CN116471684A (zh) * 2022-01-10 2023-07-21 维沃移动通信有限公司 资源确定方法、装置、终端、网络侧设备和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130039188A1 (en) * 2011-08-11 2013-02-14 Daniel Larsson Radio network node, user equipment and methods therein
US20130242882A1 (en) * 2012-03-19 2013-09-19 Research In Motion Limited Enhanced Common Downlink Control Channels

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2996276B1 (en) * 2009-08-14 2018-12-05 InterDigital Technology Corporation Dl backhaul control channel design for relays
US9699668B2 (en) 2012-04-24 2017-07-04 Lg Electronics Inc. Methods for measuring and transmitting downlink signals and apparatuses therefor
EP3496443B1 (en) * 2016-08-04 2024-01-03 NTT DoCoMo, Inc. User terminal and wireless communication method
US10701671B2 (en) * 2017-10-31 2020-06-30 Qualcomm Incorporated Overhead reduction in millimeter wave systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130039188A1 (en) * 2011-08-11 2013-02-14 Daniel Larsson Radio network node, user equipment and methods therein
US20130242882A1 (en) * 2012-03-19 2013-09-19 Research In Motion Limited Enhanced Common Downlink Control Channels

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUANGDONG OPPO MOBILE TELECOM: "Search Space Design Consideration for NR PDCCH", 3GPPTSG RAN WG1 MEETING #88, R1-1701951, 17 February 2017 (2017-02-17), XP051209113 *
HUAWEI ET AL.: "Search Space Design Aspects", 3GPP TSG RAN WG1 MEETING #88, R1-1701640, 17 February 2017 (2017-02-17), XP051208807 *
See also references of EP3582431A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436101A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种通信方法及装置
CN111436101B (zh) * 2019-01-11 2024-06-04 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
EP3582431A4 (en) 2020-03-11
EP3582431A1 (en) 2019-12-18
US20200022171A1 (en) 2020-01-16
EP3582431B1 (en) 2022-06-22
US11206679B2 (en) 2021-12-21
CN108631992A (zh) 2018-10-09
CN108631992B (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
US11563609B2 (en) Method and user equipment for receiving downlink signal, method and base station for transmitting downlink signal
TWI690222B (zh) 用於窄頻通訊的窄頻分時雙工訊框結構
WO2018171618A1 (zh) 资源处理方法和装置
KR101927791B1 (ko) 다수의 톤 홉핑 거리들을 갖는 협대역 prach
JP6163554B2 (ja) 端末装置、基地局装置、および通信方法
JP6162244B2 (ja) 端末装置、基地局装置、および通信方法
US11102705B2 (en) Communication device, communication method, and program
JP2018139429A (ja) 拡張干渉管理およびトラフィック適応における制限付き非周期csi測定報告
WO2018128065A1 (ja) 無線通信装置、無線通信方法及びコンピュータプログラム
JP6446743B2 (ja) 端末、基地局、および、通信方法
US11196495B2 (en) Communication device, communication method, and program
KR20180080221A (ko) 협대역 업링크 단일 톤 송신들을 위한 시스템 및 방법
WO2017195483A1 (ja) 基地局装置、端末装置、方法及び記憶媒体
US20230057016A1 (en) Master Information Block (MIB) Type Determination
CN113316913A (zh) 在无线通信系统中发送上行链路共享信道的方法以及使用该方法的装置
US20140045507A1 (en) Code rate adaptation in wireless communication systems
WO2013172369A1 (ja) 基地局装置、移動局装置、無線通信方法、無線通信システムおよび集積回路
JP2015070342A (ja) 基地局、端末、および通信方法
US12074742B2 (en) Method and user equipment for receiving downlink signal, method and base station for transmitting downlink signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018770794

Country of ref document: EP

Effective date: 20190909

NENP Non-entry into the national phase

Ref country code: DE