WO2014047821A1 - 一种控制信道检测方法及用户设备 - Google Patents

一种控制信道检测方法及用户设备 Download PDF

Info

Publication number
WO2014047821A1
WO2014047821A1 PCT/CN2012/082100 CN2012082100W WO2014047821A1 WO 2014047821 A1 WO2014047821 A1 WO 2014047821A1 CN 2012082100 W CN2012082100 W CN 2012082100W WO 2014047821 A1 WO2014047821 A1 WO 2014047821A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
different
search
resource set
determining
Prior art date
Application number
PCT/CN2012/082100
Other languages
English (en)
French (fr)
Inventor
刘鹍鹏
刘建琴
刘江华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201910204999.4A priority Critical patent/CN110034907A/zh
Priority to KR1020157010825A priority patent/KR101752820B1/ko
Priority to CN201910205472.3A priority patent/CN109921890A/zh
Priority to RU2015115678/07A priority patent/RU2602808C1/ru
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/082100 priority patent/WO2014047821A1/zh
Priority to CA2886245A priority patent/CA2886245C/en
Priority to EP12885350.4A priority patent/EP2894915B1/en
Priority to MX2015003870A priority patent/MX345323B/es
Priority to BR112015006774A priority patent/BR112015006774A8/pt
Priority to CN201910205433.3A priority patent/CN110034908B/zh
Priority to CN201910205454.5A priority patent/CN110034909B/zh
Priority to CN201280006435.6A priority patent/CN103907386B/zh
Publication of WO2014047821A1 publication Critical patent/WO2014047821A1/zh
Priority to US14/668,472 priority patent/US20150200741A1/en
Priority to ZA2015/02317A priority patent/ZA201502317B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0086Search parameters, e.g. search strategy, accumulation length, range of search, thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a control channel detection method and user equipment. Background technique
  • the PDCCH Physical Downlink Control Channel
  • the PDCCH occupies the first OFDM (Orthogonal Frequency Division Multiplexing) symbol of a sub-frame, for example, occupying 3 OFDM.
  • the UE User Equipment
  • the UE User Equipment
  • E-PDCCH Enhanced PDCCH, Enhanced Physical Downlink Control Channel
  • the network side may configure K control channel resource sets for each UE, where K is a positive integer greater than or equal to 1, and each control channel resource set includes at least one physical resource block pair (PRB pair).
  • K is a positive integer greater than or equal to 1
  • each control channel resource set includes at least one physical resource block pair (PRB pair).
  • PRB pair physical resource block pair
  • the network side configures three control channel resource sets for the UE, and each control channel resource set includes four PRBs (physical resource blocks), for example, the control channel resource set 1 includes the PRB.
  • each control channel resource set contains 16 eCCEs, and the eCCEs of each control channel resource set are numbered independently.
  • a method for detecting a control channel including:
  • the control channel resource set includes at least one physical resource block
  • the detection of the control channel is performed within the search interval.
  • a method for transmitting a control channel including:
  • the enhanced control channel is mapped to the search interval and transmitted.
  • a user equipment including:
  • a determining unit configured to determine a search interval of the control channel according to the control channel resource set and/or the control channel type;
  • the control channel resource set includes at least one physical resource block;
  • a detecting unit configured to perform detection of the control channel in the search interval determined by the determining unit.
  • a base station including:
  • a determining module configured to determine, according to a control channel resource set and/or a control channel type, a search interval of the control channel;
  • the control channel resource set includes at least one physical resource block;
  • a transmitting module configured to map the enhanced control channel to the search interval determined by the determining module and send the same.
  • a user equipment including a processor
  • the processor is configured to determine a search interval of a control channel according to a control channel resource set and/or a control channel type, where the control channel resource set includes at least one physical resource block, and perform a control channel in the determined search interval. Detection.
  • a base station including a transceiver, and a processor
  • the processor is configured to determine a search interval of a control channel according to a control channel resource set and/or a control channel type; the control channel resource set includes at least one physical resource block; and the enhanced control channel is mapped to the determined Search interval
  • the transceiver device is configured to send the search interval.
  • the UE may determine the search interval of the E-PDCCH according to the control channel resource set and/or the control channel type, and further implement the control channel detection of the UE.
  • a solution is provided for the case where the network side configures multiple control channel resource sets for the UE.
  • FIG. 1 is a schematic diagram of a network side configuring a plurality of control channel resource sets for a UE
  • FIG. 2 is a flowchart of a method for detecting a control channel according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for determining a search interval in an embodiment of the present invention
  • FIG. 4a is a schematic diagram of different control channel resource sets in different subframes in the embodiment shown in FIG. 3;
  • FIG. 4b is a schematic diagram of different transmission modes of the control channel resource set configured by the upper layer in the embodiment shown in FIG. 3;
  • 4c is a schematic diagram of control channel candidates of a control channel resource set configured by a higher layer in the embodiment shown in FIG. 3;
  • FIG. 5 is a schematic diagram showing a first correspondence relationship between a control channel resource set and a second carrier on a first carrier in the embodiment shown in FIG. 3;
  • FIG. 6 is a schematic diagram showing a second correspondence relationship between a control channel resource set and a second carrier on a first carrier in the embodiment shown in FIG. 3;
  • FIG. 7 is a flowchart of a first embodiment of a method for determining a starting point of a control channel search according to an embodiment of the present invention
  • FIG. 8 is a flowchart of a second embodiment of a method for determining a starting point of a control channel search according to an embodiment of the present invention
  • FIG. 10 is a schematic diagram of another determining a control channel search starting point
  • FIG. 11 is a flowchart of a third embodiment of a method for determining a starting point of a control channel search according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of determining, by using multiple UEs, a search interval by using the same method in different control channel resource sets;
  • FIG. 13 is a flowchart of a method for transmitting a control channel according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a first embodiment of a user equipment according to the present invention.
  • FIG. 15 is a schematic structural diagram of a determining unit according to an embodiment of the present invention.
  • 16 is a schematic structural diagram of a first embodiment of a starting point determining subunit according to the present invention.
  • FIG. 17 is a schematic structural diagram of a second embodiment of a starting point determining subunit according to the present invention.
  • FIG. 18 is a schematic structural view of a third embodiment of a starting point determining subunit according to the present invention.
  • FIG. 19 is a schematic structural diagram of a second embodiment of a user equipment according to the present invention.
  • FIG. 20 is a schematic structural diagram of a first embodiment of a base station according to the present invention.
  • 21 is a schematic structural diagram of a determining module according to an embodiment of the present invention
  • 22 is a schematic structural diagram of a first embodiment of a starting point determining sub-module according to the present invention
  • FIG. 23 is a schematic structural diagram of a second embodiment of a starting point determining sub-module according to the present invention.
  • 24 is a schematic structural diagram of a third embodiment of a starting point determining sub-module according to the present invention.
  • FIG. 25 is a schematic structural diagram of a second embodiment of a base station according to the present invention.
  • FIG. 2 is a flowchart of a method for detecting a control channel according to an embodiment of the present invention.
  • the method can include:
  • Step 201 The UE determines a search area of the control channel according to the control channel resource set and/or the control channel type.
  • the UE may determine the search interval of the control channel according to a control channel resource set or a control channel type, or according to a combination of both the control channel resource set and the control channel type.
  • the control channel resource set includes at least one physical resource block.
  • Step 202 Perform detection of a control channel in a search interval.
  • the UE determines the control channel according to the control channel resource set and/or the control channel type to determine the search interval of the E-PDCCH, and further implements the control channel detection of the UE.
  • a solution is provided for the case where the network side configures multiple control channel resource sets for the UE.
  • the granularity of the search interval of the control channel determined by the UE in the foregoing step 201 is the search interval in the control channel resource set, whether the UE is based on the control channel resource set or the control channel type, or
  • the search interval of the control channel is determined according to the combination of the control channel resource set and the control channel type, wherein the process of determining the search interval may adopt the steps shown in FIG. 3.
  • FIG. 3 it is a flowchart of a method for determining a search interval in an embodiment of the present invention.
  • the method for determining the search interval may include:
  • Step 301 Determine a control channel set in which the control channel search interval is located.
  • the UE determines that the control channel resource set in which the search interval of the control channel is located may be determined according to a function relationship between the control channel resource set and the time, that is, the control channel resource set in which the search interval of the control channel is located
  • the change may be that different time slots (slots) use different control channel resource sets, or different subframes use different control channel resource sets, as shown in FIG. 4a, in subframe 0, control The control channel resource set of the search interval of the channel is set0.
  • the control channel resource set where the search channel of the control channel is located is set1
  • the control channel resource set where the control channel search interval is located is set2.
  • the control channel resource set in which the search interval of the control channel is located is set3.
  • the set of control channel resources in which the search interval of the UE control channel is located may be a function of time, which may be a time slot or a subframe, or may be in a predefined manner, specifically, by using a carrier and/or RNTKradio network temporary identifier, wireless A network temporary identifier) and/or a subframe number to determine a set of control channel resources in which the search interval of the control channel is located.
  • the control channel resource set in which the control channel search interval of the current subframe is located may be M in the control channel resource set of the high-level configuration, according to the subframe number in the N control channel resource sets configured in the upper layer.
  • a positive integer greater than or equal to 1 is a positive integer greater than or equal to 1 and less than or equal to N, and the sets of M control channels in different subframes are the same or different.
  • setO and setl are the control channel resource sets configured in the upper layer.
  • setO is the set of centralized transmission
  • setl is the set of discrete transmission
  • setO is Discrete transmission
  • setl is a centralized transmission.
  • the control channel set in which the control channel search interval is located is determined.
  • the process may also determine, according to the correspondence between the second carrier and the control channel resource set, the control channel resource set on the first carrier corresponding to the control channel of the second carrier.
  • the correspondence between the second carrier and the control channel resource set may be:
  • the control channel resource set of the second carrier is a function of the index number of the second carrier.
  • the location of the control channel resource set on the first carrier is the same as the location of the control channel resource set on the second carrier.
  • the control channel resource set of the second carrier is a function of the index number of the second carrier, and specifically, as shown in FIG. 5, P second carriers and P control channels of the second carrier are scheduled on the first carrier CC0.
  • the set of control channel resources on the first carrier CC0 is a function of the index number of the P second carriers.
  • the first carrier CC0 is configured with four control channel resource sets, namely setO, setl, set2, and set3.
  • the PRB pair in each control channel resource set in the actual transmission may not be continuous, and is discrete, for convenience of representation.
  • the PRB pair in each control channel resource set in Figure 5 is a continuous form.
  • the control channel resource set in which the search channel of the P second carriers is located on the first carrier CC0 is a function of 7.
  • the function index is obtained.
  • the number index of the second carrier CC1 corresponds to set3, setO
  • the number index of the second carrier CC2 corresponds to set2, set3.
  • the number index of the second carrier CC3 corresponds to setl, set2, and the number index of the second carrier CC4 corresponds to setO, setl, and accordingly, the control of the second carrier CC1 is detected on set3, setO on the first carrier CC0.
  • the control channel of the second carrier CC4 is detected on setl.
  • the location of the control channel resource set on the first carrier is the same as the location of the control channel resource set on the second carrier.
  • the second Set2 is configured on the carrier CC2
  • set3 is configured on the second carrier CC3.
  • the control channel of the second carrier CC1 is detected on the first carrier CC0
  • the set1 corresponding to the second carrier CC1 on the first carrier CC0 is set.
  • the position is detected.
  • the control channel of the second carrier CC2 is detected on the first carrier CC0
  • the position of the set2 corresponding to the second carrier CC2 of the first carrier CC0 is detected, and the first carrier CC0 is detected.
  • the control channel of the second carrier CC3 is used, the detection is performed on the position of the set3 of the first carrier CC0 corresponding to the second carrier CC3.
  • Step 302 Determine the number of control channel candidates in the control channel search interval in each control channel set.
  • the number of the control channel candidates may specifically determine the number of control channel candidates in the control channel search interval within each control channel set according to the carrier ID (carrier index or identifier) and/or the wireless network temporary identifier and/or the subframe number.
  • setO and set l are set of control channel resources configured in a higher layer.
  • the number of control channel candidates configured in setO is M, and the number of control channel candidates configured in set l is N.
  • the number of control channel candidates configured in setO is N, and the number of control channel candidates configured in set l is M; or the next subframe, subframe 1 is configured in setO
  • the number of control channel candidates is X, and the number of control channel candidates configured in set l is Y, X is not equal to ⁇ , and ⁇ is not equal to ⁇ .
  • Step 303 Determine a search starting point of the control channel.
  • the process of determining a control channel search starting point may further include the steps shown in FIG.
  • FIG. 7 is a flowchart of a first embodiment of a method for determining a starting point of a control channel search according to an embodiment of the present invention.
  • Step 701 Determine an initial value of a recursive function that generates a starting point of the control channel search.
  • the initial value of the search starting point may be an identifier that can identify the UE.
  • the RNTI allocated by the base station to the UE is recorded as i.
  • the initial value of the search starting point is recorded as; ⁇ , Bay U:
  • the initial value can also be other values, not limited to dishes.
  • Step 702 Determine a search starting point according to an initial value of the recursive function of the search starting point and a recursive function. After obtaining the initial value of the search starting point, the search starting point of the UE in each control channel resource set may be determined according to the initial value and a recursive function, such as a HARSH function.
  • a recursive function such as a HARSH function.
  • J modD where is the search starting point of the UE within the control channel resource set
  • a and D are constants.
  • the process of determining the starting point of the control channel search can also be implemented in other ways.
  • the process of determining the control channel search starting point can also be performed by the embodiment shown in FIG.
  • FIG. 8 is a flowchart of a second embodiment of a method for determining a starting point of a control channel search according to an embodiment of the present invention.
  • the method can include:
  • Step 801 Determine an initial value of a search start point of each control channel resource set in the first subframe.
  • each control channel resource set in each subframe is numbered, for example, in subframe 0.
  • the control channel resource set number is setO, setl; there are also two control channel resource sets in subframe 1, the control channel resource set number is also setO, setl, and so on.
  • Step 802 The search start point of the control channel of the first control channel resource set is obtained by a recursive function from a search start point of the control channel of the second control channel resource set.
  • the subframe in which the second control channel resource set is located is the previous subframe of the subframe in which the first control channel resource set is located, and the first control channel resource set and the second control channel resource set have the respective subframes. The same location.
  • subframe 0 is the previous subframe of subframe 1
  • the search starting point of the control channel in setO of subframe 1 is obtained by the recursive function of the search starting point of the control channel of set0 in subframe 0
  • the search start point of the control channel in set1 of frame 1 is obtained by the recursive function from the search start point of the control channel of set1 in subframe 0.
  • Subframe 2 is the previous subframe of subframe 1, and the search starting point of the control channel in setO of subframe 2 is obtained by the recursive function of the search starting point of the control channel of setO in subframe 1, and the search of the control channel in set1 of subframe 2.
  • the starting point is obtained by the recursive function of the search starting point of the control channel of set1 in subframe 1, and so on.
  • the initial value of the search start point of the specified set of control channel resources in the first subframe may also be determined first.
  • an initial value of a search start point of a first control channel resource set in a first subframe needs to be determined.
  • a control channel resource set in each subframe is numbered, for example, in subframe 0.
  • the search starting point of the partial control channel resource set is obtained by the recursive function of the search starting point of the other control channel resource set of the subframe in which the subframe is located, and the search starting point of the other part of the control channel resource set is
  • the search starting point of the control channel resource set (one set or multiple sets) in the previous subframe of the subframe in which the subframe is located is obtained by a recursive function.
  • the search starting point of the control channel of the third control channel resource set is obtained by the recursive function from the search starting point of the control channel of the fourth control channel resource set.
  • the third control channel resource set and the fourth control channel resource set are located in the same subframe, and in the same subframe, the order of the fourth control channel resource set is located before the order of the third control channel resource set, and The order of the third control channel resource set is adjacent to each other; or the subframe in which the fourth control channel resource set is located is the previous subframe of the subframe in which the third control channel resource set is located, and the fourth control channel resource set is located.
  • the last set of subframes, the third set of control channel resources is the first set of subframes in which it resides.
  • the search starting point of the control channel of set1 is obtained by the recursive function of the search starting point of the control channel of setO.
  • the search starting point of the control channel of set1 is controlled by the setO.
  • the search starting point is obtained by a recursive function, and so on; in an adjacent subframe, the search starting point of the control channel of setO in subframe 1 is obtained by the recursive function of the search starting point of the control channel of set1 in subframe 0, in subframe 2
  • the search starting point of the control channel of setO is obtained by the recursive function from the search starting point of the control channel of set1 in subframe 1.
  • the process of determining the control channel search starting point may also be as shown in FIG. The illustrated embodiment is carried out.
  • FIG. 11 a flow chart of a third embodiment of a method for determining a starting point of a control channel search in an embodiment of the present invention is shown.
  • the method can include:
  • Step 1101 Determine a control channel resource set configured on the first carrier.
  • the UE schedules P second carriers on the first carrier CC0, and configures control channel resource sets of P second carriers on the first carrier CC0. Then, the UE first determines all control channel resource sets on the first carrier CC0.
  • Step 1102 Determine a search start point of a control channel of the multiple second carriers in an interval composed of a set of all control channel resources on the first carrier. After determining all the control channel resource sets on the first carrier cco, the search start points of the control channels of the plurality of second carriers can be determined in the following manner.
  • the search interval of the control channel aggregation level of the " CT carrier" transmitted in the kth subframe on the carrier CC0 is:
  • N CC j ⁇ N m , the number of control channel resource sets configured for the control channel configured for the control channel of the "c/carrier (one of the second carriers) on the first carrier CC0, or is the first
  • the total number of control channel sets configured on carrier CC0, NccE is the kth subframe, and the number of (e) CCEs included in the jth control channel resource set.
  • the above expression is to determine the position of the search start point of the control channel of each second carrier in the interval composed of the set of all control channel resources of the first carrier. And if the search interval of the control channel of each second carrier on the first carrier cco is p control channel resource sets, and the number of control channel candidates in each control channel resource set, each second carrier is The starting point of the search interval of the first carrier is determined by the number of eCCEs in all control channel resource sets of the first carrier or only the number of (e) CCEs in all sets corresponding to the second carrier, and ⁇ TM .
  • the first carrier CC0 has four control channel resource sets, set0, setl, set2, set3, each control channel resource set has 16 eCCEs, and for the second carrier CC1 control channel is transmitted on the first carrier CC0, then A search starting point of the aggregation level of 1 is determined by the above formula in a total of 64 eCCEs is 18, and the second carrier CC 1 is configured to search for two sets of control channel resources on the first carrier CC0, within the first control channel resource set.
  • the number of control channel candidates is 4, the number of control channel candidates in the second control channel resource set is 2, then 18 corresponds to setl, then the control channel of the second carrier CC1 starts searching from set1, and blind detection starts in setl 4 times, blindly detected twice in set2.
  • Step 304 Determine a search interval according to a search start point, a relationship between an aggregation level of the control channel and a number of control channel candidates in the aggregation level, and the relationship may be a relational expression.
  • the aggregation level refers to the control channel with eCCE as the minimum granularity and can be transmitted on L eCCEs.
  • the value of L may be any one of 1, 2, 4, 8, or 16, 32.
  • the searching interval is determined according to the relationship between the aggregation level of the control channel and the number of control channel candidates in the aggregation level, which may be:
  • a search interval is determined according to a relationship between an aggregation level of the control channel and a number of control channel candidates under the aggregation level according to the search starting point.
  • the relationship determining the search space can be:
  • each UE may determine the search interval in each control channel resource set in the same manner, that is, in each control channel resource set.
  • the foregoing step 301 304 is performed, that is, in the different control channel resource sets, the initial values of the recursive functions for generating the control channel search starting point may be the same, and the recursive functions for determining the search starting point in the different control channel resource sets are the same, different control channels.
  • the relationship in the resource set for determining the search interval is the same.
  • a collision may occur.
  • UE2 when UE2, UE3 has an aggregation level control channel candidate, for example, the aggregation level is 4 in setl. The number of internals is 1, and the number in set2 is also 1.
  • UE2 and UE3 use the above search starting point generation method to obtain the same search starting point, for example, eCCEO in the figure, since eCCEO, eCCEl, eCCE2, eCCE3 have been Other users are occupied, so the control channel candidates with aggregation level 4 of UE2 and UE3 are blocked blocks, cannot be transmitted in setl, and can continue to be selected for transmission in set2, if UE2 and UE3 are generated with the same search starting point as in setl.
  • the search starting point in set2 is still eCCEO, and the control channel of one of the two UEs can be placed in eCCEO, eCCEl, eCCE2, eCCE3 in set2.
  • control channel of UE2 in FIG. 12 is placed in set2. Transmission, but since UE3 and UE2 have the same search starting point and there is only one chance of controlling channel candidates, this control channel candidate We can put eCCEO, eCCEl, eCCE2, on eCCE3 transmission, because they have been occupied UE2, UE3 is therefore still unable to transmit the control channel, resulting in even set2 search space as well as spare resources, UE3 still can not use the channel.
  • the manner of determining the search interval in the set of channel resources may be different, and the specific manner may be as follows:
  • the initial values of the recursive functions for generating the control channel search starting point are different in different control channel resource sets.
  • the initial value may include the first feature parameter, and the different control channel resource sets correspond to different first feature parameters.
  • the first characteristic parameter C (j) may specifically be one of the following:
  • CSI-RS channel state information-reference signal
  • the initial value of the control channel search starting point Y of each control channel resource set (a total of k (c) control channel resource sets) may specifically be:
  • the offset value may be an index of an index of a first PRB pair of all PRB pairs included in each control channel resource set relative to a first PRB pair of a 0th control channel resource set, or may be dynamic.
  • the signaling is either a parameter of the high layer signaling notification, or an offset value of an index of each control channel resource set after all control channel resource sets are numbered with respect to an index value of a specific control channel resource set, or is CSI- One parameter associated with the RS configuration.
  • control channel resource set if different control channel types are included in the control channel resource set, the first feature parameters corresponding to different control channel types may be different.
  • the division principle of the different control channel types may be any one of the following groups: a control channel of a normal subframe and a control channel of a multimedia broadcast multicast service single frequency network subframe; a semi-statically scheduled control channel and a dynamically scheduled control channel; Search channel for control interval detection and control channel for UE-specific search interval detection; control channel for uplink scheduling signaling and control channel for downlink scheduling signaling; control channel for centralized transmission and control channel for discrete transmission; different DCI ( Downlink control information, control channel of subframes; control channels of subframes with different cyclic prefixes; control channels in different special subframe types; control channels transmitted in PRB pairs with different number of available REs; e group (e) REG (enhanced resource element group) control channel unit (e) CCE (enhanced control channel element) transmission control channel; different carrier control channel.
  • REG
  • K (c) control channel resource sets are configured for each carrier of the control channel, where K (c) control channel resource sets have KD (c) discrete control channel resource sets, KL (c) A centralized control channel resource set, each control channel resource set containing at least one PRBpair. Then, in the control channel resource set, the first feature parameter in the centralized control channel resource set is different from the first feature parameter in the discretely transmitted control channel resource set.
  • the recursive functions used to determine the starting point of the search in the different sets of control channel resources are different.
  • the second feature parameter may be included in the recursive function, and the second feature parameter corresponding to the different control channel resource sets is different.
  • the RS configuration is associated with one parameter; an offset value relative to the specified control channel resource set.
  • the recursive function for determining the search starting point in the jth control channel resource set may specifically be:
  • the recursive function of the search starting point can be:
  • Offsets is the offset value of the jth control channel resource set relative to the 0th control channel resource set.
  • the offset value may be an index of an index of a first PRB pair of all PRB pairs included in each control channel resource set relative to a first PRB pair of a 0th control channel resource set, or may be dynamic.
  • the signaling is either a parameter of the high layer signaling notification, or an offset value of an index of each control channel resource set after all control channel resource sets are numbered with respect to an index value of a specific control channel resource set, or is CSI- One parameter associated with the RS configuration.
  • control channel resource set if different control channel types are included in the control channel resource set, the second feature parameters corresponding to different control channel types may be different.
  • the division principle of the different control channel types may be any one of the following groups: a control channel of a normal subframe and a control channel of a multimedia broadcast multicast service single frequency network subframe; a semi-statically scheduled control channel and a dynamically scheduled control channel; Search channel for control interval detection and control channel for UE-specific search interval detection; control channel for uplink scheduling signaling and control channel for downlink scheduling signaling; control channel for centralized transmission and control channel for discrete transmission; different DCI Control channel; control channel of subframes with different cyclic prefixes; control channels in different special subframe types; control channels transmitted in PRB pairs by physical resource blocks with different number of available resource elements; control with different number of resource unit groups Control channel for channel unit transmission; control channel for different carriers.
  • K (c) control channel resource sets are configured for each carrier of the control channel, where K (c) control channel resource sets have KD (c) discrete control channel resource sets, KL (c) A centralized control channel resource set, each control channel resource set containing at least one PRBpair. Then, in the control channel resource set, the second feature parameter in the centralized control channel resource set is different from the second feature parameter in the discretely transmitted control channel resource set.
  • the relationships used to determine the search interval in different sets of control channel resources are different.
  • the third feature parameter may be included in the relationship for determining the search interval, and the third feature parameter corresponding to the different control channel resource sets is different.
  • the index of the first PRB pair of the PRB pair included in the control channel resource set; the parameter of the dynamic signaling or the high layer signaling notification; the set of each control channel resource set after all the control channel resource sets are numbered; A parameter associated with the CSI-RS configuration; an offset value relative to a specified set of control channel resources.
  • the search interval of the aggregation level of the jth control channel resource set is L is
  • ⁇ CCE the number of eCCEs in the jth control channel resource set
  • the jth control channel resource
  • Off Se t'' (j ) is an offset value of the jth control channel resource set relative to the 0th control channel resource set.
  • the offset value may be an index of an index of a first PRB pair of all PRB pairs included in each control channel resource set relative to a first PRB pair of a 0th control channel resource set, or may be dynamic.
  • the signaling is either a parameter of the high layer signaling notification, or an offset value of an index of each control channel resource set after all control channel resource sets are numbered with respect to an index value of a specific control channel resource set, or is CSI- One parameter associated with the RS configuration.
  • control channel resource set if different control channel types are included in the control channel resource set, the third feature parameters corresponding to different control channel types may be different.
  • the division principle of the different control channel types may be any of the following groups:
  • K ( c) control channel resource sets are configured for each carrier of the control channel, where K ( c) control channel resource sets have KD ( c) discrete control channel resource sets, KL (c) A centralized control channel resource set, each control channel resource set containing at least one PRB pair. Then, in the control channel resource set, the third feature parameter in the centralized control channel resource set is different from the third feature parameter in the discretely transmitted control channel resource set.
  • the above 1), 2), 3) can also be applied in the same embodiment.
  • the above embodiment can reduce the collision probability of the control channel between UEs and improve the transmission efficiency.
  • the above is a manner in which the UE determines the search interval in different control channel resource sets when determining the search interval of the control channel according to the control channel resource set.
  • the manner in which the UE determines the control channel search interval in different control channel types may be the same, that is, different control channel types are performed according to the above step 301 304, but in order to avoid conflicts.
  • the manner in which the UE determines the control channel search interval may also be different. Specifically, the following manner may be adopted:
  • the manner in which the control channel set in which the control channel search interval is located is determined differently.
  • determining the control channel set where the control channel search interval is located may specifically be:
  • control channel resource sets in which the control channel search interval is located are the same or different.
  • setO and setl are the control channel resource sets configured in the upper layer.
  • setO is the set of centralized transmission
  • setl is the set of discrete transmission
  • setO is Discrete transmission
  • setl is a centralized transmission.
  • the number of control channel candidates in the control channel search interval in each control channel set may be determined according to the carrier ID and/or the wireless network temporary identifier and/or the subframe number.
  • setO and setl are set of control channel resources configured in a higher layer, in subframe 0.
  • the number of control channel candidates configured in setO is M, and the number of control channel candidates configured in setl is N.
  • the number of control channel candidates configured in setO is N, which is configured in setl.
  • the number of control channel candidates is M; or the next subframe, in subframe 1, the number of control channel candidates configured in setO is X, and the number of control channel candidates configured in setl is Y, X is not equal to ⁇ , ⁇ Equal to ⁇ .
  • the initial values of the recursive functions for generating the control channel search starting point are different among different control channel types.
  • the initial value may include the fourth characteristic parameter, and the fourth characteristic parameter corresponding to the different control channel type is different.
  • the division principle of the different control channel types may be any one of the following groups: a control channel of a normal subframe and a control channel of a multimedia broadcast multicast service single frequency network subframe; a semi-statically scheduled control channel and a dynamically scheduled control channel; Search channel for control interval detection and control channel for UE-specific search interval detection; control channel for uplink scheduling signaling and control channel for downlink scheduling signaling; control channel for centralized transmission and control channel for discrete transmission; different DCI Control channel; control channel of subframes with different cyclic prefixes; control channels in different special subframe types; control channels transmitted in PRB pairs by physical resource blocks with different number of available resource elements; control with different number of resource unit groups Control channel for channel unit transmission; control channel for different carriers.
  • the recursive functions used to determine the starting point of the search are different in different control channel types.
  • the fifth feature parameter may be included in the recursive function for determining the starting point of the search, and the fifth characteristic parameter corresponding to the different control channel types is different.
  • the division principle of the different control channel types may be any one of the following groups: a control channel of a normal subframe and a control channel of a multimedia broadcast multicast service single frequency network subframe; a semi-statically scheduled control channel and a dynamically scheduled control channel; Search channel for control interval detection and control channel for UE-specific search interval detection; control channel for uplink scheduling signaling and control channel for downlink scheduling signaling; control channel for centralized transmission and control channel for discrete transmission; different DCI Control channel; control channel of subframes with different cyclic prefixes; control channels in different special subframe types; control channels transmitted in PRB pairs by physical resource blocks with different number of available resource elements; control with different number of resource unit groups Control channel for channel unit transmission; control channel for different carriers.
  • the relationship for determining the search interval is different among different control channel types.
  • the sixth feature parameter may be included in the relationship for determining the search interval, and the sixth feature parameter corresponding to the different control channel types is different.
  • the division principle of the different control channel types may be any of the following groups: Control channel of normal subframe and control channel of multimedia broadcast multicast service single frequency network subframe; control channel of semi-persistent scheduling and control channel of dynamic scheduling; control channel of common search interval detection and control channel of UE specific search interval detection Control channel for uplink scheduling signaling and control channel for downlink scheduling signaling; control channel for centralized transmission and control channel for discrete transmission; control channel for different DCI; control channel for subframes with different cyclic prefix; Control channel within the subframe type; control channel transmitted within the PRB pair with different RE numbers; control channel unit containing different numbers of resource unit groups (e) REG (e) control channel for CCE transmission; control channel for different carriers.
  • the above 1) to 5) can also be applied in the same embodiment.
  • the above embodiment can reduce the collision probability of the control channel between the UEs and improve the transmission efficiency.
  • the above embodiment is a case where the granularity of the search interval of the control channel determined by the UE is a search interval within the control channel resource set.
  • the UE The process of determining the control channel is the control channel resource set, that is, the granularity of the search interval of the control channel determined by the UE is the control channel resource set.
  • the process of determining the search interval of the control channel by the UE according to the control channel type may specifically include :
  • the control channel resource set corresponding to the user equipment is determined according to the correspondence between the second carrier and the control channel resource set.
  • the correspondence between the second carrier and the control channel resource set may be:
  • the control channel resource set of the second carrier is a function of the index number of the second carrier.
  • the location of the control channel resource set on the first carrier is the same as the location of the control channel resource set on the second carrier.
  • the correspondence between the second carrier and the control channel resource set is similar to the correspondence between the second carrier and the control channel resource set in the foregoing step 301.
  • the control channel resource set of the second carrier is a function of the index number of the second carrier, and specifically, as shown in FIG. 5, P second carriers are scheduled on the first carrier CC0, and control of P second carriers is performed.
  • the set of control channel resources for the channel on the first carrier CC0 is a function of the index number of the P second carriers.
  • control channel resource sets are configured on the first carrier CC0, which are set0, setl, set2, and set3, respectively.
  • the PRB pair in each control channel resource set in the actual transmission may not be continuous, and is discrete, for convenience of representation.
  • the PRB pair in each control channel resource set in Figure 5 is a continuous form. Assuming that the number index of each second carrier is, the search of the control channels of the P second carriers on the first carrier CC0 The control channel resource set in which the interval is located is a function of ". As shown in Fig. 5, the function index is obtained.
  • the number index of the second carrier CC1 corresponds to set3, setO
  • the number index of the second carrier CC2 corresponds to set2, set3
  • the number index of the second carrier CC3 corresponds to setl
  • Channel detecting the control channel of the second carrier CC2 on set2, set3 on the first carrier CC0
  • the control channel of the second carrier CC4 is detected on setl.
  • the location of the control channel resource set on the first carrier is the same as the location of the control channel resource set on the second carrier.
  • the second Set2 is configured on the carrier CC2
  • set3 is configured on the second carrier CC3.
  • the control channel of the second carrier CC1 is detected on the first carrier CC0
  • the set1 corresponding to the second carrier CC1 on the first carrier CC0 is set.
  • the position is detected.
  • the control channel of the second carrier CC2 is detected on the first carrier CC0
  • the position of the set2 corresponding to the second carrier CC2 of the first carrier CC0 is detected, and the first carrier CC0 is detected.
  • the control channel of the second carrier CC3 is used, the detection is performed on the position of the set3 of the first carrier CC0 corresponding to the second carrier CC3.
  • the foregoing is a method for performing control channel detection on the UE side.
  • the base station configures the control channel as follows:
  • FIG. 13 is a flowchart of a method for transmitting a control channel according to an embodiment of the present invention.
  • the method can include:
  • Step 1301 The base station determines, according to the control channel resource set and/or the control channel type, a search interval of the control channel, where the control channel resource set includes at least one physical resource block.
  • This step corresponds to the process of determining the search interval of the control channel according to the control channel resource set and/or the control channel type.
  • This step corresponds to the process of determining the search interval of the control channel according to the control channel resource set and/or the control channel type.
  • Step 1302 Map the enhanced control channel to the search interval and send.
  • FIG. 14 is a schematic structural diagram of a first embodiment of a user equipment according to the present invention.
  • the user equipment 141 can include:
  • a determining unit 1401 configured to determine, according to a control channel resource set and/or a control channel type, a search interval of the control channel; where the control channel resource set includes at least one physical resource block;
  • the detecting unit 1402 is configured to perform a check of the control channel in the search interval determined by the determining unit 1401.
  • the UE may determine, according to the control channel resource set and/or the control channel type, that the control channel can determine the search interval of the E-PDCCH, and further implement the control channel detection of the UE.
  • a solution is provided for the case where the network side configures a plurality of control channel resource sets for the UE.
  • FIG. 15 a schematic structural diagram of a determining unit according to an embodiment of the present invention is shown.
  • the determining unit 151 in the user equipment may further include:
  • a set determining subunit 1511 configured to determine a control channel set in which the control channel search interval is located
  • a number determining subunit 1512 configured to determine a number of control channel candidates in the control channel search interval in each control channel set
  • a starting point determining subunit 1513 configured to determine a search starting point of the control channel
  • the interval determining sub-unit 1514 is configured to determine a search interval according to a search starting point determined by the starting point determining sub-unit, a relationship between an aggregation level of the control channel and a number of control channel candidates under the aggregation level.
  • the set determining sub-unit 1511 may be specifically configured to determine, according to the carrier and/or the wireless network temporary identifier and/or the subframe number, a control channel resource set in which the search interval of the control channel is located, and may also be used to be used as the user equipment.
  • the second carrier is scheduled to be configured on a first carrier, determining, according to the correspondence between the second carrier and the control channel resource set, the control channel corresponding to the second carrier on the first carrier Control channel resource set.
  • the number determining subunit 1512 may be specifically configured to determine, according to the carrier index ID and/or the wireless network temporary identifier and/or the subframe number, the number of control channel candidates in the control channel search interval in each control channel set.
  • FIG. 16 a schematic structural diagram of a first embodiment of a starting point determining subunit in the present invention is shown.
  • the starting point determining subunit 161 in the determining unit may specifically include:
  • a first setting subunit 1611 configured to determine an initial value of a search starting point of each control channel resource set in the first subframe
  • a first calculating subunit 1612 configured to obtain, by using a recursive function, a search starting point of a control channel of the first control channel resource set by a search starting point of the control channel of the second control channel resource set;
  • the subframe in which the second control channel resource set is located is a previous subframe of the subframe in which the first control channel resource set is located, and the first control channel resource set and the second control channel resource set are The same order is in the respective subframes.
  • the starting point determining subunit may also include:
  • a second setting subunit configured to determine an initial value of a search starting point of the first control channel resource set in the first subframe
  • a second calculating subunit configured to obtain, by a recursive function, a search starting point of a control channel of the third control channel resource set by a search starting point of the control channel of the fourth control channel resource set;
  • the third control channel resource set and the fourth control channel resource set are located in the same subframe, and in the same subframe, the fourth control channel resource set is in the third sequence. Before the sequence of the control channel resource set is adjacent to the sequence of the third control channel resource set; or the subframe where the fourth control channel resource set is located is the subframe where the third control channel resource set is located The previous subframe, and the fourth control channel resource set is the last set of subframes in which the third control channel resource is located, and the third control channel resource set is the first set of subframes in which it belongs.
  • FIG. 17 a schematic structural diagram of a second embodiment of a starting point determining subunit in the present invention is shown.
  • the starting point determining subunit 171 in the determining unit may specifically include:
  • a first determining subunit 1711 configured to: when configured to schedule multiple second carriers on a first carrier, determine a control channel resource set configured on the first carrier;
  • the second determining subunit 1712 is configured to determine, in an interval formed by the set of all control channel resources on the first carrier, a search starting point of the control channels of the multiple second carriers.
  • FIG. 18 it is a schematic structural diagram of a third embodiment of a starting point determining subunit in the present invention.
  • the starting point determining subunit 181 in the determining unit may specifically include:
  • the initial value determining subunit 1811 is configured to determine an initial value of a recursive function for generating a control channel search starting point; a starting point calculating subunit 1812, configured to determine a search starting point according to an initial value of the recursive function of the search starting point and a recursive function.
  • FIG. 19 it is a schematic structural diagram of a second embodiment of a user equipment according to the present invention.
  • the user equipment 191 includes a processor 1911:
  • the processor 1911 is configured to determine, according to a control channel resource set and/or a control channel type, a search interval of the control channel, where the control channel resource set includes at least one physical resource block, and perform control in the determined search interval. Channel detection.
  • 20 is a schematic structural diagram of a first embodiment of a base station according to the present invention.
  • the base station 200 can include:
  • a determining module 2001 configured to determine, according to a control channel resource set and/or a control channel type, a search interval of the control channel;
  • the control channel resource set includes at least one physical resource block;
  • the transmission module 2002 is configured to map the enhanced control channel to the search interval determined by the determining module and send the same.
  • the determining module 211 can include:
  • a set determining sub-module 2111 configured to determine a control channel set in which the control channel search interval is located
  • a number determining sub-module 2112 configured to determine a number of control channel candidates in the control channel search interval in each control channel set
  • a starting point determining submodule 2113 configured to determine a search starting point of the control channel
  • the interval determining sub-module 2114 is configured to determine a search interval according to a search starting point determined by the starting point determining sub-module, a relationship between an aggregation level of the control channel and a number of control channel candidates under the aggregation level.
  • the set determining submodule 2111 may be specifically configured to determine, according to the carrier and/or the wireless network temporary identifier and/or the subframe number, a control channel resource set in which the search interval of the control channel is located; and may also be used when configured Determining control channel resources on the first carrier corresponding to the control channel of the second carrier, according to the correspondence between the second carrier and the control channel resource set, when a plurality of second carriers are scheduled on the first carrier set.
  • the number determining sub-module 2112 may be specifically configured to determine, according to the carrier ID and/or the wireless network temporary identifier and/or the subframe number, the number of control channel candidates in the control channel search interval in each control channel set.
  • FIG. 22 it is a schematic structural diagram of a first embodiment of a starting point determining sub-module according to the present invention.
  • the start point determining sub-module 221 in the determining module may include:
  • a first setting sub-module 2211 configured to determine an initial value of a search starting point of each control channel resource set in the first subframe
  • a first calculation sub-module 2212 configured to obtain, by using a recursive function, a search starting point of a control channel of the first control channel resource set by a search starting point of the control channel of the second control channel resource set;
  • the subframe in which the second control channel resource set is located is a previous subframe of the subframe in which the first control channel resource set is located, and the first control channel resource set and the second control channel resource set are The same order is in the respective subframes.
  • the starting point determining submodule may also include:
  • a second setting submodule configured to determine an initial value of a search starting point of the first control channel resource set in the first subframe
  • a second calculating submodule configured to obtain, by a recursive function, a search starting point of a control channel of the third control channel resource set by a search starting point of the control channel of the fourth control channel resource set;
  • the third control channel resource set and the fourth control channel resource set are located in the same subframe, and in the same subframe, the fourth control channel resource set is in the third sequence.
  • the subframe in which the four control channel resource sets are located is the previous subframe of the subframe in which the third control channel resource set is located, and the fourth control channel resource set is the last set of the subframe in which the subframe is located.
  • the three control channel resource sets are the first set of subframes in which they are located.
  • FIG. 23 it is a schematic structural diagram of a second embodiment of a starting point determining sub-module according to the present invention.
  • the starting point determining sub-module 231 in the determining module may include:
  • the first determining sub-module 2311 is configured to: when configured to schedule multiple second carriers on a first carrier, determine a control channel resource set configured on the first carrier;
  • the second determining sub-module 2312 is configured to determine, in an interval formed by the set of all control channel resources on the first carrier, a search starting point of the control channels of the multiple second carriers.
  • FIG. 24 it is a schematic structural diagram of a third embodiment of a starting point determining sub-module according to the present invention.
  • the starting point determining sub-module 241 in the determining module may include:
  • the initial value determining sub-module 2411 is configured to determine an initial value of a recursive function for generating a control channel search starting point; the starting point calculating sub-module 2412 is configured to determine a search starting point according to an initial value of the recursive function of the search starting point and a recursive function.
  • FIG. 25 it is a schematic structural diagram of a second embodiment of a base station according to the present invention.
  • the base station 251 can include a processor 2511 and a transceiver 2512.
  • the processor 2511 is configured to determine, according to a control channel resource set and/or a control channel type, a search interval of the control channel, where the control channel resource set includes at least one physical resource block, and map the enhanced control channel to the determined search. Interval.
  • the transceiver device 2512 is configured to send the search interval.
  • the transceiver device described above may be a transceiver.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example,
  • the division of the elements is only a logical function division. In actual implementation, there may be another division manner. For example, multiple units or components may be combined or integrated into another system, or some features may be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a Read-Only Memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开一种控制信道检测方法及用户设备。一种控制信道的检测方法,包括:用户设备根据控制信道资源集合和/或控制信道类型确定控制信道的搜索区间;在所述搜索区间内进行控制信道的检测;所述控制信道资源集合中包括至少一个物理资源块。本发明实施例中UE根据控制信道资源集合和/或控制信道类型确定控制信道可以确定E-PDCCH的搜索区间,进而实现了UE的控制信道检测。为网络侧为UE配置多个控制信道资源集合的理提供了解决方案。

Description

一种控制信道柃测方法及用户设备
技术领域 本发明涉及通信技术领域, 尤其涉及一种控制信道检测方法及用户设备。 背景技术
现有技术中, PDCCH (Physical Downlink Control Channel ,物理下行控制信道) 占用的是一个子巾贞的前几个 OFDM (Orthogonal Frequency Division Multiplexing, 正 交频分复用技术) 符号, 例如占用 3个 OFDM符号, 根据这三个 OFDM符号去除 CRS (common reference signal,公共参考信号)开销后,剩余的 RE (Resource Element, 资源单元)构成的资源对应于 PDCCH整个的搜索区间,整个搜索区间以 CCE( control channel element, 控制信道单元) 为最小的粒度, UE (User Equipment, 用户设备) 在该确定的搜索空间中进行控制信道检测。
而随着非均匀网络的大规模部署, Rel-11中, PDCCH在容量、 覆盖以及干扰协 调方面受到了较大的挑战。 在 3GPP 标准中研究和讨论了 E-PDCCH ( Enhanced PDCCH , 增强的物理下行控制信道) 的设计。
对于 E-PDCCH, 网络侧可能会为每个 UE配置 K个控制信道资源集合(set), K 为大于等于 1 的正整数, 每个控制信道资源集合包含至少一个物理资源块对 (PRB pair). 例如图 1所示, 网络侧为 UE配置 3个控制信道资源集合, 每个控制信道资源 集合内的包含 4个 PRB (physical resource block, 物理资源块), 例如控制信道资源集 合 1内包含 PRB pairl,4,7,10; 控制信道资源集合 2内包含的 PRB pair 2,5,8,11 ; 控制 信道资源集合 3 内包含 PRB pair 3,6,9,12; 每个 PRB pair 内包含 4 个 eCC (Eenhanced-CCE, 增强控制信道单元), 则可以看到每个控制信道资源集合内包含 16个 eCCE, 每个控制信道资源集合的 eCCE独立进行编号。
然而, 现有技术中并没有提供如何确定 E-PDCCH的搜索区间, 进而 UE也就无 法进行控制信道检测。 发明内容 本发明实施例提供一种控制信道检测方法及用户设备,能够实现 UE在 E-PDCCH 的搜索区间进行控制信道检测。 第一方面, 提供了一种控制信道的检测方法, 包括:
用户设备根据控制信道资源集合和 /或控制信道类型确定控制信道的搜索区间; 所述控制信道资源集合中包括至少一个物理资源块;
在所述搜索区间内进行控制信道的检测。
第二方面, 还提供了一种控制信道的传输方法, 包括:
基站根据控制信道资源集合和 /或控制信道类型确定控制信道的搜索区间, 其中, 所述控制信道资源集合中包括至少一个物理资源块;
将增强的控制信道映射到所述搜索区间并发送。
第三方面, 还提供了一种用户设备, 包括:
确定单元, 用于根据控制信道资源集合和 /或控制信道类型确定控制信道的搜索 区间; 所述控制信道资源集合中包括至少一个物理资源块;
检测单元, 用于在所述确定单元确定的搜索区间内进行控制信道的检测。
第四方面, 还提供了一种基站, 包括:
确定模块, 用于根据控制信道资源集合和 /或控制信道类型确定控制信道的搜索 区间; 所述控制信道资源集合中包括至少一个物理资源块;
传输模块, 用于将增强的控制信道映射到所述确定模块确定的搜索区间并发送。 第六方面, 还提供了一种用户设备, 包括处理器,
所述处理器, 用于根据控制信道资源集合和 /或控制信道类型确定控制信道的搜 索区间; 所述控制信道资源集合中包括至少一个物理资源块; 在所述确定的搜索区间 内进行控制信道的检测。
第七方面, 还提供了一种基站, 包括收发装置和处理器,
所述处理器, 用于根据控制信道资源集合和 /或控制信道类型确定控制信道的搜 索区间; 所述控制信道资源集合中包括至少一个物理资源块; 将增强的控制信道映射 到所述确定的搜索区间;
所述收发装置, 用于发送所述搜索区间。
本发明实施例中 UE 根据控制信道资源集合和 /或控制信道类型可以确定 E-PDCCH的搜索区间, 进而实现了 UE的控制信道检测。 为网络侧为 UE配置多个 控制信道资源集合的情况提供了解决方案。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前 提下, 还可以根据这些附图获得其他的附图。
图 1为网络侧为 UE配置多个控制信道资源集合的示意图;
图 2为本发明实施例一种控制信道的检测方法的流程图;
图 3为本发明实施例中确定搜索区间的方法流程图;
图 4a为图 3所示实施例中不同子帧采用不同的控制信道资源集合的示意图; 图 4b为图 3所示实施例中高层配置的控制信道资源集合的不同传输方式的示意 图;
图 4c为图 3所示实施例中高层配置的控制信道资源集合的控制信道候选的示意 图;
图 5为图 3所示实施例中第一载波上的控制信道资源集合与第二载波的第一种对 应关系示意图;
图 6为图 3所示实施例中第一载波上的控制信道资源集合与第二载波的第二种对 应关系示意图;
图 7为本发明实施例中确定控制信道搜索起点的方法的第一实施例流程图; 图 8为本发明实施例中确定控制信道搜索起点的方法的第二实施例流程图; 图 9为图 8所示实施例中确定控制信道搜索起点的示意图;
图 10为另一确定控制信道搜索起点的示意图;
图 11为本发明实施例中确定控制信道搜索起点的方法的第三实施例流程图; 图 12为多个 UE在不同控制信道资源集合均采用相同方法确定搜索区间的示意 图;
图 13为本发明实施例一种控制信道的传输方法流程图;
图 14为本发明一种用户设备的第一实施例的结构示意图;
图 15为本发明实施例一种确定单元的结构示意图;
图 16为本发明中起点确定子单元的第一实施例的结构示意图;
图 17为本发明中起点确定子单元的第二实施例的结构示意图;
图 18为本发明中起点确定子单元的第三实施例结构示意图;
图 19为本发明一种用户设备的第二实施例的结构示意图;
图 20为本发明一种基站的第一实施例的结构示意图;
图 21为本发明实施例的一种确定模块的结构示意图; 图 22为本发明中一种起点确定子模块的第一实施例的结构示意图;
图 23为本发明中一种起点确定子模块的第二实施例的结构示意图;
图 24为本发明中一种起点确定子模块的第三实施例的结构示意图;
图 25为本发明一种基站的第二实施例的结构示意图。 具体实施方式 为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明实 施例的上述目的、特征和优点能够更加明显易懂, 下面结合附图对本发明实施例中技 术方案作进一步详细的说明。
参见图 2, 为本发明实施例一种控制信道的检测方法的流程图。
该方法可以包括:
步骤 201, UE根据控制信道资源集合和 /或控制信道类型确定控制信道的搜索区 间。
UE可以根据控制信道资源集合或者控制信道类型, 或者根据控制信道资源集合 和控制信道类型两者的结合确定控制信道的搜索区间。其中,控制信道资源集合中包 括至少一个物理资源块。
步骤 202, 在搜索区间内进行控制信道的检测。
本发明实施例中 UE根据控制信道资源集合和 /或控制信道类型确定控制信道可 以确定 E-PDCCH的搜索区间, 进而实现了 UE的控制信道检测。 为网络侧为 UE配 置多个控制信道资源集合的情况提供了解决方案。
在本发明实施例中,如果 UE在上述步骤 201中确定的控制信道的搜索区间的粒 度为控制信道资源集合内的搜索区间,则无论 UE是根据控制信道资源集合或控制信 道类型,再或者是根据控制信道资源集合和控制信道类型两者的结合确定控制信道的 搜索区间, 其中, 确定搜索区间的过程均可以采用如图 3所示的步骤。
参见图 3, 为本发明实施例中确定搜索区间的方法流程图。
该确定搜索区间的方法可以包括:
步骤 301, 确定控制信道搜索区间所在的控制信道集合。
在本发明的一实施例中, UE确定控制信道的搜索区间所在的控制信道资源集合 可以根据控制信道资源集合与时间的函数关系确定,也即控制信道的搜索区间所在的 控制信道资源集合随时间变化, 可以是不同时隙 (slot) 采用不同的控制信道资源集 合, 或者不同子帧采用不同的控制信道资源集合, 如图 4a所示, 在子帧 0时, 控制 信道的搜索区间所在控制信道资源集合为 set0, 子帧 1时, 控制信道的搜索区间所在 的控制信道资源集合为 setl ,子帧 2时,控制信道的搜索区间所在的控制信道资源集 合为 set2, 子帧 3时, 控制信道的搜索区间所在的控制信道资源集合为 set3。
UE控制信道的搜索区间所在的控制信道资源集合可以是时间的函数, 该时间可 以是时隙或者子帧,或者采用预定义的方式,具体的,可以通过载波和 /或 RNTKradio network temporary identifier, 无线网络临时标识)和 /或子帧号来确定控制信道的搜索 区间所在的控制信道资源集合。 例如, 可以根据在高层配置的 N个控制信道资源集 合内,通过子帧号来确定当前子帧的控制信道搜索区间所在的控制信道资源集合是高 层配置的控制信道资源集合中的 M个, N为大于等于 1的正整数, M为大于等于 1 小于等于 N的正整数, 并且不同子帧内的 M个控制信道集合相同或不同。
如图 4b, setO和 setl 为高层配置的控制信道资源集合, 在子帧 0内, setO是 集中式传输的 set, setl是离散式传输的 set , 则下个子帧, 子帧 1内, setO是离散 式传输, setl是集中式传输。
在本发明的另一实施例中, 在多载波的情况下也即在 UE配置了在一个第一载波 上调度多个第二载波的数据时,该确定控制信道搜索区间所在的控制信道集合的过程 也可以根据第二载波与控制信道资源集合的对应关系,确定第二载波的控制信道对应 的在第一载波上的控制信道资源集合。
该第二载波与控制信道资源集合的对应关系可以为:
第二载波的控制信道资源集合是第二载波的索引编号的函数; 或者,
控制信道资源集合在第一载波上的位置与该控制信道资源集合在第二载波上的 位置相同。
其中, 第二载波的控制信道资源集合是第二载波的索引编号的函数, 具体可以是 如图 5所示, 在第一载波 CC0上调度 P个第二载波, P个第二载波的控制信道在第 一载波 CC0上的控制信道资源集合是 P个第二载波的索引编号的函数。
例如第一载波 CC0上配置了 4个控制信道资源集合, 分别为 setO, setl , set2, set3 , 实际传输中每个控制信道资源集合内的 PRB pair可能不是连续的, 是离散的, 为了表示方便, 图 5中每个控制信道资源集合内的 PRB pair是连续的形式。 假设 是每个第二载波的编号索引, 则 P个第二载波的控制信道在第一载波 CC0上的搜索 区间所在的控制信道资源集合是 7的函数。 如 5图中, 通过函数关系得到, 第二载 波 CC1的编号索引对应的是 set3, setO,第二载波 CC2的编号索引对应的是 set2, set3 , 第二载波 CC3的编号索引对应的是 setl, set2,第二载波 CC4的编号索引对应的是 setO, setl , 则相应的, 在第一载波 CC0上的 set3, setO上检测第二载波 CC1的控制信道, 在第一载波 CC0上的 set2, set3上检测第二载波 CC2的控制信道, 在第一载波 CC0 上的 setl, set2上检测第二载波 CC3的控制信道,在第一载波 CC0上的 setO, setl上检 测第二载波 CC4的控制信道。
其中,控制信道资源集合在第一载波上的位置与该控制信道资源集合在第二载波 上的位置相同, 具体可以是如图 6所示, 如果在第二载波 CC1上配置了 setl , 第二 载波 CC2上配置了 set2,第二载波 CC3上配置了 set3,则在第一载波 CC0上检测第二 载波 CC1 的控制信道时, 在在第一载波 CC0的对应于第二载波 CC1上配置的 setl 的位置进行检测, 在第一载波 CC0上检测第二载波 CC2的控制信道时, 在第一载波 CC0的对应于第二载波 CC2上配置的 set2的位置进行检测,在第一载波 CC0上检测 第二载波 CC3的控制信道时,在第一载波 CC0的对应于第二载波 CC3上配置的 set3 的位置进行检测。
步骤 302,确定控制信道搜索区间在各个控制信道集合内的控制信道候选的个数。 该控制信道候选的个数具体可以根据载波 ID (载波索引或标识) 和 /或无线网络 临时标识和 /或子帧号确定控制信道搜索区间在各个控制信道集合内的控制信道候选 的个数。
例如图 4c所示, setO和 set l 为高层配置的控制信道资源集合, 在子帧 0内, setO内配置的控制信道候选个数为 M, set l内配置的控制信道候选个数为 N, 则下个 子帧, 子帧 1 内, setO内配置的控制信道候选个数为 N, set l 内配置的控制信道候 选个数为 M;或者则下个子帧,子帧 1内, setO内配置的控制信道候选个数为 X, set l 内配置的控制信道候选个数为 Y, X不等于 Ν, Υ不等于 Μ。
步骤 303, 确定控制信道的搜索起点。
一种方式, 该确定控制信道搜索起点的过程还可以进一步包括如图 7 所示的步 骤。参见图 7,为本发明实施例中确定控制信道搜索起点的方法的第一实施例流程图。
步骤 701, 确定生成控制信道搜索起点的递归函数的初始值。
该搜索起点的初始值可以是能够标识该 UE 的标识码, 例如基站为 UE分配的 RNTI, 记为 i 该搜索起点的初始值记为; ^ , 贝 U:
1 -1 11 RNTI
当然, 该初始值也还可以是其它值, 并非仅限于 皿 。
步骤 702, 根据搜索起点的递归函数的初始值及递归函数确定搜索起点。 在获得搜索起点的初始值后,即可根据该初始值及递归函数,例如 HARSH函数, 确定 UE在各控制信道资源集合的搜索起点。
例如, J modD , 其中, 为 UE在控制信道资源集合内的搜索起点,
A、 D为常数。
该确定控制信道搜索起点的过程也还可以采用其它方式实现。
在本发明另一实施例中,该确定控制信道搜索起点的过程也可以通过如图 8所示 的实施例进行。
参见图 8,为本发明实施例中确定控制信道搜索起点的方法的第二实施例流程图。 该方法可以包括:
步骤 801, 确定第一个子帧中各控制信道资源集合的搜索起点的初始值。
如图 9所示,首先需要确定第一个子帧中各控制信道资源集合的搜索起点的初始 值, 为了便于描述, 将各个子帧内的控制信道资源集合进行编号, 例如, 子帧 0中有 两个控制信道资源集合, 各控制信道资源集合的编号为 setO, setl ; 子帧 1中也有两 个控制信道资源集合, 各控制信道资源集合的编号也为 setO, setl , 以此类推。
则在本步骤中, 需要首先确定子帧 0中 setO和 setl各自的搜索起点的初始值。 步骤 802, 第一控制信道资源集合的控制信道的搜索起点由第二控制信道资源集 合的控制信道的搜索起点通过递归函数获得。
其中,第二控制信道资源集合所在的子帧为第一控制信道资源集合所在的子帧的 前一个子帧,且第一控制信道资源集合与第二控制信道资源集合在各自的子帧中具有 相同的位置。
如图 9所示的示意图,子帧 0为子帧 1的前一个子帧,则子帧 1的 setO中控制信 道的搜索起点由子帧 0中 setO的控制信道的搜索起点通过递归函数获得, 子帧 1 的 setl 中控制信道的搜索起点由子帧 0中 setl 的控制信道的搜索起点通过递归函数获 得。 子帧 2为子帧 1 的前一个子帧, 子帧 2的 setO中控制信道的搜索起点由子帧 1 中 setO的控制信道的搜索起点通过递归函数获得, 子帧 2中 setl中控制信道的搜索 起点由子帧 1中 setl的控制信道的搜索起点通过递归函数获得, 以此类推。
在另一实施例中,也还可以首先确定第一个子帧中指定控制信道资源集合的搜索 起点的初始值。
如图 10, 首先需要确定第一个子帧中第一个控制信道资源集合的搜索起点的初 始值, 为了便于描述, 将各个子帧内的控制信道资源集合进行编号, 例如, 子帧 0 中有两个控制信道资源集合, 各控制信道资源集合的编号为 set0, setl ; 子帧 1中也 有两个控制信道资源集合, 各控制信道资源集合的编号也为 set0, setl , 以此类推。 则首先需要确定子帧 0中第一个控制信道资源集合 setO的搜索起点的初始值。 然后, 子帧中的控制信道资源集合中, 部分控制信道资源集合的搜索起点由其所 在子帧的其它控制信道资源集合的搜索起点通过递归函数获得,另一部分控制信道资 源集合的搜索起点由其所在子帧的前一个子帧中控制信道资源集合(一个集合或多个 集合) 的搜索起点通过递归函数获得。
具体的可以是第三控制信道资源集合的控制信道的搜索起点由第四控制信道资 源集合的控制信道的搜索起点通过递归函数获得。
其中,第三控制信道资源集合与第四控制信道资源集合位于相同的子帧, 且在相 同的子帧中, 第四控制信道资源集合的次序位于第三控制信道资源集合的次序之前, 且与第三控制信道资源集合的次序相邻; 或者,第四控制信道资源集合所在的子帧为 第三控制信道资源集合所在的子帧的前一个子帧,且第四控制信道资源集合为其所在 子帧的最后一个集合, 第三控制信道资源集合为其所在子帧的第一个集合。
如图 10所示, 同一子帧 0中, setl的控制信道的搜索起点由 setO的控制信道的 搜索起点通过递归函数获得, 同一子帧 1中, setl的控制信道的搜索起点由 setO的控 制信道的搜索起点通过递归函数获得, 以此类推; 在相邻子帧中, 子帧 1中 setO的控 制信道的搜索起点由子帧 0中 setl的控制信道的搜索起点通过递归函数获得,子帧 2 中 setO的控制信道的搜索起点由子帧 1中 setl的控制信道的搜索起点通过递归函数 获得。
在本发明另一实施例中, 在多载波的情况下也即在 UE配置了在一个第一载波上 调度多个第二载波时, 该确定控制信道搜索起点的过程也可以通过如图 11所示的实 施例进行。
参见图 11, 为本发明实施例中确定控制信道搜索起点的方法的第三实施例流程 图。
该方法可以包括:
步骤 1101, 确定第一载波上配置的控制信道资源集合。
UE在第一载波 CC0上调度 P个第二载波, 第一载波 CC0上配置了 P个第二载 波的控制信道资源集合, 则 UE首先确定该第一载波 CC0上的所有控制信道资源集 合。
步骤 1102, 在第一载波上所有控制信道资源集合组成的区间内确定多个第二载 波的控制信道的搜索起点。 在确定第一载波 cco上的所有控制信道资源集合后, 即可通过以下方式确定多 个第二载波的控制信道的搜索起点。 在载波 CC0上第 k子帧传输的第" CT载波的控制信道聚合级别为 L的搜索区间 为:
L { (Yh i + m ) mod [NCCE,fc }+ i m' = m +M(L · (nCI )
K (nCI)-l
NCC j = ∑Nm , 为第" c/载波 (第二载波之一) 的控制信道在第一 载波 CC0上传输, 为其控制信道配置的控制信道资源集合的个数, 或者就是第一载 波 CC0上配置的控制信道集合总数, NccE 为第 k子帧, 第 j个控制信道资源集合 内包含的 (e) CCE的个数。
上述的表达式即,在第一载波所有控制信道资源集合组成的区间内确定各个第二 载波的控制信道的搜索起点的位置。并且如果配置了各个第二载波的控制信道在第一 载波 cco上的搜索区间为 p 个控制信道资源集合, 及各个控制信道资源集合内的 控制信道候选的个数,则每个第二载波在第一载波的搜索区间的起点由第一载波的所 有控制信道资源集合内的 eCCE个数或者只是第二载波对应的所有 set 内的(e) CCE 的个数, 及 Λ™来确定。 例如第一载波 CC0有 4个控制信道资源集合, set0, setl , set2, set3 , 每个控制信道资源集合有 16个 eCCE, 对于第二载波 CC1的控制信道在 第一载波 CC0上传输, 则在总共 64个 eCCE内通过上述公式确定聚合级别为 1的搜 索起点为 18,并且配置了第二载波 CC 1在第一载波 CC0上搜索两个控制信道资源集 合, 第一个控制信道资源集合内的控制信道候选个数为 4, 第二控制信道资源集合内 的控制信道候选个数为 2, 则 18对应于 setl , 则第二载波 CC1的控制信道从 setl上 开始搜索, 并且在 setl开始盲检测 4次, 在 set2内盲检测两次。
步骤 304, 根据搜索起点, 控制信道的聚合级别及所述聚合级别下的控制信道候 选个数之间的关系确定搜索区间, 该关系可以是关系式。
其中, 聚合级别是指控制信道以 eCCE为最小粒度, 可以在 L个 eCCE上传输,
L的取值可以为 1,2,4,8, 16,32中的任意一种。 其中, 根据所述搜索起点, 控制信道的聚合级别及所述聚合级别下的控制信道候 选个数之间的关系确定搜索区间, 具体可以为:
根据所述搜索起点,控制信道的聚合级别及所述聚合级别下的控制信道候选个数 之间的关系式确定搜索区间。
该确定搜索空间的关系式可以为:
L对应的搜索区间 S 为:
Figure imgf000012_0001
其中, m、 = m +ML ' nCI, = (V "M(i) - l。 M(i)为聚合级别 L下的控制信道 候选的个数, wC/为与多载波聚合载波索引相关的一个参数。 Nea 为 k时刻搜索区 间内总共的 eCCE的个数。 = 0, · · ·Ζ - 1 ο
在上述实施例中,对于 UE根据控制信道资源集合确定控制信道搜索区间的方式, 每个 UE在各个控制信道资源集合内确定搜索区间的方式可以相同, 也即在各个控制 信道资源集合中均按照上述步骤 301 304执行, 也即不同控制信道资源集合中, 生成 控制信道搜索起点的递归函数的初始值可以相同,不同控制信道资源集合中用于确定 所述搜索起点的递归函数相同,不同控制信道资源集合中用于确定所述搜索区间的关 系式相同。
但是当多个 UE在不同控制信道资源集合均采用相同方法确定搜索区间时可能会 导致冲突, 例如图 12所示, 当 UE2, UE3的某一聚合级别控制信道候选, 例如聚 合级别为 4在 setl内个数为 1, 在 set2内的个数也为 1, 则当 UE2与 UE3采用上面 的搜索起点生成方式得到相同的搜索起点例如图中为 eCCEO,则由于 eCCEO, eCCEl, eCCE2, eCCE3已经被其他用户占用了, 因此 UE2和 UE3的聚合级别为 4的控制信 道候选被阻塞 block, 无法放在 setl内传输, 可以继续选择在 set2内传输, 如果 UE2 与 UE3采用与 setl 内相同的搜索起点生成方式, 例如在 set2 内的搜索起点仍然是 eCCEO,两个 UE中的一个 UE的控制信道可以放入 set2内的 eCCEO, eCCEl, eCCE2, eCCE3 , 例如图 12中的 UE2的控制信道放在 set2内传输, 但是由于 UE3与 UE2的 搜索起点相同, 并且只有一个控制信道候选的机会, 这个控制信道候选只能放在 eCCEO, eCCEl, eCCE2, eCCE3上传输, 由于已经被 UE2占用了, 因此 UE3的控制 信道还是无法传输, 造成即使 set2的搜索区间还有空余资源, UE3 的控制信道仍然 无法使用。
基于此, UE在根据控制信道资源集合确定控制信道的搜索区间时, 不同控制信 道资源集合中确定搜索区间的方式可以不同, 具体的可以采用以下方式:
1) 在本发明的一实施例中, 不同控制信道资源集合中, 生成控制信道搜索起点 的递归函数的初始值不同。 具体的, 可以使初始值包含第一特征参数, 不同的控制信 道资源集合对应不同的第一特征参数。
该第一特征参数 C (j) 具体可以是下列之一:
控制信道资源集合中包含的 PRB pair的第一个 PRB pair的索引; 动态信令或高 层信令通知的参数; 将所有控制信道资源集合编号后的每个控制信道资源集合的索 弓 I; 与 CSI-RS ( channel state information-reference signal, 信道状态信息参考信号 ) 配置相关联的一个参数; 相对于指定控制信道资源集合的偏移值。
每个控制信道资源集合(共 k(c)个控制信道资源集合)的控制信道搜索起点 Y的 初始值具体可以为:
-1 = NTI 0
Y-v J = %NTI +C (j) , J = 0,L..K (c)-l. 或者, Y-v J = %NTI*C (j) , j = 0,L..K (c)-l 若 C (j) 为相对于指定控制信道资源集合的偏移值 Qffset (J}, 假定指定控制信 道资源集合为 j=0的控制信道资源集合, 则
7-1,0 = ¾NTI' J = °, 其他控制信道资源集合的搜索起点为
Y_v j = nRmi + offset (j) , j = 1...K (c)-l
或者 , j = "RNTI* offset (j) , j = l...K (c)-l offset (」)为第 j个控制信道资源集合相对于第 0个控制信道资源集合的偏移值。 该偏移值又可以是每个控制信道资源集合的包含的所有 PRB pair 中的第一个 PRB pair的索引相对于第 0个控制信道资源集合的第一个 PRB pair的索引值,或者是动态 信令或者是高层信令通知的参数,或者是将所有控制信道资源集合编号后的每个控制 信道资源集合的索引相对于特定控制信道资源集合的索引值的偏移值, 或者是与 CSI-RS 配置相关联的一个参数。
另外,在控制信道资源集合中若还包含不同控制信道类型, 则不同控制信道类型 对应的第一特征参数又可以不同。 该不同控制信道类型的划分原则可以为下列任一组: 正常子帧的控制信道与多媒体广播多播服务单频网子帧的控制信道;半静态调度 的控制信道与动态调度的控制信道; 公共搜索区间检测的控制信道与 UE特定搜索区 间检测的控制信道; 上行调度信令的控制信道与下行调度信令的控制信道; 集中式传 输的控制信道与离散式传输的控制信道; 不同的 DCI (Downlink control information, 下行控制信号)的控制信道; 不同循环前缀的子帧的控制信道; 不同特殊子帧类型内 的控制信道; 可用 RE数目不同的 PRB pair内传输的控制信道; 包含不同数目资源单 兀组 (e) REG ( enhanced resource element group)的控制信道单兀 (e) CCE ( enhanced control channel element ) 传输的控制信道; 不同载波的控制信道。
例如, 对于控制信道每个载波配置 K (c) 个控制信道资源集合, 其中, K (c) 个控制信道资源集合中有 KD (c)个离散式传输的控制信道资源集合, KL (c)个集 中式传输的控制信道资源集合, 每个控制信道资源集合内包含至少一个 PRBpair。则 控制信道资源集合中,集中式传输的控制信道资源集合中的第一特征参数与离散式传 输的控制信道资源集合中的第一特征参数不同。
2) 在本发明的另一实施例中, 不同控制信道资源集合中用于确定搜索起点的递 归函数不同。 具体的, 可以使递归函数中包含第二特征参数, 不同控制信道资源集合 对应的第二特征参数不同。
该第二特征参数具体可以是下列之一:
控制信道资源集合中包含的 PRB pair的第一个 PRB pair的索引; 动态信令或高 层信令通知的参数; 将所有控制信道资源集合编号后的每个控制信道资源集合的索 引; 与 CSI-RS 配置相关联的一个参数; 相对于指定控制信道资源集合的偏移值。
第 j个控制信道资源集合 (共 k(c)个控制信道资源集合) 内的确定搜索起点的递 归函数具体可以为:
Yk> j =(AYk_1. +C'(j) ) modD, j = 0,l...K (c)-l, 或者
Yk> j =(A (Yk_1. +C'(j) ) ) modD, j = 0,l...K (c)-l
或者
Yk j =(AYk1J *C'(j) ) modD, j = 0,l...K (c)-l
或者
Ykj j =(C'(j) Yk—w) modD, j = 0,l...K (c)-l 其中, C'(j)即为该第二特征参数。
若 C'(j)为相对于指定控制信道资源集合的偏移值 offset^), 假定指定的控制信 道资源集合为 j=0的控制信道资源集合, 则第 j个控制信道资源集合内的确定搜索起 点的递归函数的可以为:
Yk> j =(AYk_1. + offset' (j) ) modD, j = 0,l...K (c)-l, 或者
Yk> j =(A (Yk_1. + offset' (j) ) ) modD, j = 0,l...K (c)-l
或者
Yk j =(AYk1J *offset'(j) ) modD, j = 0,l...K (c)-l
offsets)为第 j个控制信道资源集合相对于第 0个控制信道资源集合的偏移值。 该偏移值又可以是每个控制信道资源集合的包含的所有 PRB pair 中的第一个 PRB pair的索引相对于第 0个控制信道资源集合的第一个 PRB pair的索引值,或者是动态 信令或者是高层信令通知的参数,或者是将所有控制信道资源集合编号后的每个控制 信道资源集合的索引相对于特定控制信道资源集合的索引值的偏移值, 或者是与 CSI-RS 配置相关联的一个参数。
另外,在控制信道资源集合中若还包含不同控制信道类型, 则不同控制信道类型 对应的第二特征参数又可以不同。
该不同控制信道类型的划分原则可以为下列任一组: 正常子帧的控制信道与多媒体广播多播服务单频网子帧的控制信道;半静态调度 的控制信道与动态调度的控制信道; 公共搜索区间检测的控制信道与 UE特定搜索区 间检测的控制信道; 上行调度信令的控制信道与下行调度信令的控制信道; 集中式传 输的控制信道与离散式传输的控制信道; 不同的 DCI 的控制信道; 不同循环前缀的 子帧的控制信道; 不同特殊子帧类型内的控制信道; 可用资源单元 RE数目不同的物 理资源块对 PRB pair内传输的控制信道; 包含不同数目资源单元组的控制信道单元 传输的控制信道; 不同载波的控制信道。
例如, 对于控制信道每个载波配置 K (c) 个控制信道资源集合, 其中, K (c) 个控制信道资源集合中有 KD (c)个离散式传输的控制信道资源集合, KL (c)个集 中式传输的控制信道资源集合, 每个控制信道资源集合内包含至少一个 PRBpair。则 控制信道资源集合中,集中式传输的控制信道资源集合中的第二特征参数与离散式传 输的控制信道资源集合中的第二特征参数不同。 3 ) 在本发明的另一实施例中, 不同控制信道资源集合中用于确定搜索区间的关 系式不同。 具体的, 可以使用于确定搜索区间的关系式中包含第三特征参数, 不同的 控制信道资源集合对应的第三特征参数不同。
该该第三特征参数具体可以是下列之一:
控制信道资源集合中包含的 PRB pair的第一个 PRB pair的索引; 动态信令或高 层信令通知的参数; 将所有控制信道资源集合编号后的每个控制信道资源集合的索 弓 I; 与 CSI-RS 配置相关联的一个参数; 相对于指定控制信道资源集合的偏移值。
第 j个控制信道资源集合的聚合级别为 L的搜索区间为
{ (7fc j + » mod LNCCE,fc 」}+ '
, m = m +M- - nCI + C (j ) 其中, 即为第三特征参数, ^CCE 为第 j个控制信道资源集合内的 eCCE 的个数, Μ 为在第 j个控制信道资源集合内聚合级别为 L个控制信道候选的个数。 若 为相对于指定控制信道资源集合的偏移值 0ffSet'' (j ),假定选定的控制信 道资源集合为 j=0的控制信道资源集合, 则用于产生搜索区间的关系式可以为:
L { (Yh i + m')mod [Nm /
Figure imgf000016_0001
}+ i ,
, m = m +M - nC} + offset (j )
offSet'' (j )为第 j个控制信道资源集合相对于第 0个控制信道资源集合的偏移值。 该偏移值又可以是每个控制信道资源集合的包含的所有 PRB pair 中的第一个 PRB pair的索引相对于第 0个控制信道资源集合的第一个 PRB pair的索引值,或者是动态 信令或者是高层信令通知的参数,或者是将所有控制信道资源集合编号后的每个控制 信道资源集合的索引相对于特定控制信道资源集合的索引值的偏移值, 或者是与 CSI-RS 配置相关联的一个参数。
另外,在控制信道资源集合中若还包含不同控制信道类型, 则不同控制信道类型 对应的第三特征参数又可以不同。
该不同控制信道类型的划分原则可以为下列任一组:
正常子帧的控制信道与多媒体广播多播服务单频网子帧的控制信道;半静态调度 的控制信道与动态调度的控制信道; 公共搜索区间检测的控制信道与 UE特定搜索区 间检测的控制信道; 上行调度信令的控制信道与下行调度信令的控制信道; 集中式传 输的控制信道与离散式传输的控制信道; 不同的 DCI 的控制信道; 不同循环前缀的 子帧的控制信道; 不同特殊子帧类型内的控制信道; 可用资源单元 RE数目不同的物 理资源块对 PRB pair内传输的控制信道; 包含不同数目资源单元组的控制信道单元 传输的控制信道; 不同载波的控制信道。
例如, 对于控制信道每个载波配置 K ( c) 个控制信道资源集合, 其中, K ( c) 个控制信道资源集合中有 KD ( c)个离散式传输的控制信道资源集合, KL ( c)个集 中式传输的控制信道资源集合, 每个控制信道资源集合内包含至少一个 PRB pair。则 控制信道资源集合中,集中式传输的控制信道资源集合中的第三特征参数与离散式传 输的控制信道资源集合中的第三特征参数不同。
为了实现在不同控制信道资源集合中确定搜索区间的方式不同,上述 1 )、 2)、 3 ) 也可以在同一实施例中应用。 上述实施例可以减低 UE间控制信道的碰撞概率, 提高 传输效率。
以上是 UE在根据控制信道资源集合确定控制信道的搜索区间时,在不同控制信 道资源集合中确定搜索区间的方式。当 UE根据控制信道类型确定控制信道的搜索区 间时, 对于 UE在不同控制信道类型中确定控制信道搜索区间的方式可以相同, 也即 不同控制信道类型均按照上述步骤 301 304执行,但是为了避免冲突,在不同的控制 信道类型中, UE确定控制信道搜索区间的方式也可以不同, 具体的可以采用以下方 式:
1 ) 在本发明的一实施例中, 不同控制信道类型中, 确定控制信道搜索区间所在 的控制信道集合的方式不同。
其中, 确定控制信道搜索区间所在的控制信道集合具体可以是:
根据在高层配置的 N个控制信道资源集合内, 通过子帧号来确定当前子帧的不 同控制信道类型的控制信道搜索区间分别所在的控制信道资源集合,不同子帧内的不 同控制信道类型的控制信道搜索区间分别所在的控制信道资源集合相同或不同。
如图 4b, setO和 setl 为高层配置的控制信道资源集合, 在子帧 0内, setO是 集中式传输的 set, setl是离散式传输的 set , 则下个子帧, 子帧 1内, setO是离散 式传输, setl是集中式传输。
2) 在本发明的另一实施例中, 不同控制信道类型中, 确定控制信道搜索区间在 各个控制信道集合内的控制信道候选的个数的方式不同。
其中,具体可以根据载波 ID和 /或无线网络临时标识和 /或子帧号确定控制信道搜 索区间在各个控制信道集合内的控制信道候选的个数。
例如图 4c所示, setO和 setl 为高层配置的控制信道资源集合, 在子帧 0内, setO内配置的控制信道候选个数为 M, setl内配置的控制信道候选个数为 N, 则下个 子帧, 子帧 1 内, setO内配置的控制信道候选个数为 N, setl 内配置的控制信道候 选个数为 M;或者则下个子帧,子帧 1内, setO内配置的控制信道候选个数为 X, setl 内配置的控制信道候选个数为 Y, X不等于 Ν, Υ不等于 Μ。
3 ) 在本发明的另一实施例中, 不同控制信道类型中, 生成控制信道搜索起点的 递归函数的初始值不同。 具体的, 可以使初始值包含第四特征参数, 不同的控制信道 类型对应的第四特征参数不同。
该不同控制信道类型的划分原则可以为下列任一组: 正常子帧的控制信道与多媒体广播多播服务单频网子帧的控制信道;半静态调度 的控制信道与动态调度的控制信道; 公共搜索区间检测的控制信道与 UE特定搜索区 间检测的控制信道; 上行调度信令的控制信道与下行调度信令的控制信道; 集中式传 输的控制信道与离散式传输的控制信道; 不同的 DCI 的控制信道; 不同循环前缀的 子帧的控制信道; 不同特殊子帧类型内的控制信道; 可用资源单元 RE数目不同的物 理资源块对 PRB pair内传输的控制信道; 包含不同数目资源单元组的控制信道单元 传输的控制信道; 不同载波的控制信道。
4) 在本发明的另一实施例中, 不同的控制信道类型中用于确定搜索起点的递归 函数不同。 具体的, 可以使用于确定搜索起点的递归函数中包含第五特征参数, 不同 控制信道类型对应的第五特征参数不同。
该不同控制信道类型的划分原则可以为下列任一组: 正常子帧的控制信道与多媒体广播多播服务单频网子帧的控制信道;半静态调度 的控制信道与动态调度的控制信道; 公共搜索区间检测的控制信道与 UE特定搜索区 间检测的控制信道; 上行调度信令的控制信道与下行调度信令的控制信道; 集中式传 输的控制信道与离散式传输的控制信道; 不同的 DCI 的控制信道; 不同循环前缀的 子帧的控制信道; 不同特殊子帧类型内的控制信道; 可用资源单元 RE数目不同的物 理资源块对 PRB pair内传输的控制信道; 包含不同数目资源单元组的控制信道单元 传输的控制信道; 不同载波的控制信道。
5 ) 在本发明的另一实施例中, 不同的控制信道类型中用于确定搜索区间的关系 式不同。 具体的, 可以使用于确定搜索区间的关系式中包含第六特征参数, 不同的控 制信道类型对应的第六特征参数不同。
该不同控制信道类型的划分原则可以为下列任一组: 正常子帧的控制信道与多媒体广播多播服务单频网子帧的控制信道;半静态调度 的控制信道与动态调度的控制信道; 公共搜索区间检测的控制信道与 UE特定搜索区 间检测的控制信道; 上行调度信令的控制信道与下行调度信令的控制信道; 集中式传 输的控制信道与离散式传输的控制信道; 不同的 DCI 的控制信道; 不同循环前缀的 子帧的控制信道; 不同特殊子帧类型内的控制信道; 可用 RE数目不同的 PRB pair 内传输的控制信道; 包含不同数目资源单元组 (e) REG 的控制信道单元 (e) CCE 传输的控制信道; 不同载波的控制信道。
为了实现在不同控制信道类型中确定搜索区间的方式不同, 上述 1 ) ~5 ) 也可以 在同一实施例中应用。 上述实施例可以减低 UE间控制信道的碰撞概率, 提高传输效 率。
以上实施例是在 UE确定的控制信道的搜索区间的粒度为控制信道资源集合内的 搜索区间的情况,在本发明另一实施例中, 当控制信道的类型为不同载波的控制信道 时, UE确定的控制信道的搜索区间为控制信道资源集合, 也即 UE确定的控制信道 的搜索区间的粒度为控制信道资源集合, 此时, UE根据控制信道类型确定控制信道 的搜索区间的过程具体可以包括:
当 UE配置了在一个第一载波上调度多个第二载波时, 根据第二载波与控制信道 资源集合的对应关系, 确定用户设备对应的控制信道资源集合。
其中, 第二载波与控制信道资源集合的对应关系可以为:
第二载波的控制信道资源集合是第二载波的索引编号的函数; 或者,
控制信道资源集合在第一载波上的位置与该控制信道资源集合在第二载波上的 位置相同。
该第二载波与控制信道资源集合的对应关系与前述步骤 301 中的第二载波与控 制信道资源集合的对应关系类似。其中,第二载波的控制信道资源集合是第二载波的 索引编号的函数, 具体也可以是如图 5所示, 在第一载波 CC0上调度 P个第二载波, P个第二载波的控制信道在第一载波 CC0上的控制信道资源集合是 P个第二载波的 索引编号的函数。
例如第一载波 CC0上配置了 4个控制信道资源集合, 分别为 set0, setl , set2, set3 , 实际传输中每个控制信道资源集合内的 PRB pair可能不是连续的, 是离散的, 为了表示方便, 图 5中每个控制信道资源集合内的 PRB pair是连续的形式。 假设 是每个第二载波的编号索引, 则 P个第二载波的控制信道在第一载波 CC0上的搜索 区间所在的控制信道资源集合是" 的函数。 如 5图中, 通过函数关系得到, 第二载 波 CC1的编号索引对应的是 set3, setO,第二载波 CC2的编号索引对应的是 set2, set3 , 第二载波 CC3的编号索引对应的是 setl, set2,第二载波 CC4的编号索引对应的是 setO, setl , 则相应的, 在第一载波 CC0上的 set3, setO上检测第二载波 CC1的控制信道, 在第一载波 CC0上的 set2, set3上检测第二载波 CC2的控制信道, 在第一载波 CC0 上的 setl, set2上检测第二载波 CC3的控制信道,在第一载波 CC0上的 setO, setl上检 测第二载波 CC4的控制信道。
其中,控制信道资源集合在第一载波上的位置与该控制信道资源集合在第二载波 上的位置相同, 具体可以是如图 6所示, 如果在第二载波 CC1上配置了 setl , 第二 载波 CC2上配置了 set2,第二载波 CC3上配置了 set3,则在第一载波 CC0上检测第二 载波 CC1 的控制信道时, 在在第一载波 CC0的对应于第二载波 CC1上配置的 setl 的位置进行检测, 在第一载波 CC0上检测第二载波 CC2的控制信道时, 在第一载波 CC0的对应于第二载波 CC2上配置的 set2的位置进行检测,在第一载波 CC0上检测 第二载波 CC3的控制信道时,在第一载波 CC0的对应于第二载波 CC3上配置的 set3 的位置进行检测。
以上为 UE侧进行控制信道检测的方法实施例, 在基站侧, 基站对控制信道的配 置方法如下:
参见图 13, 为本发明实施例一种控制信道的传输方法流程图。
该方法可以包括:
步骤 1301, 基站根据控制信道资源集合和 /或控制信道类型确定控制信道的搜索 区间, 其中, 所述控制信道资源集合中包括至少一个物理资源块。
该步骤与 UE侧根据控制信道资源集合和 /或控制信道类型确定控制信道的搜索 区间的过程完全对应, 具体请参照前述 UE侧的相应部分的描述, 此处不再赘述。
步骤 1302, 将增强的控制信道映射到搜索区间并发送。
以上是对本发明方法实施例的描述, 下面对实现上述方法的装置进行介绍。 参见图 14, 为本发明一种用户设备的第一实施例的结构示意图。
该用户设备 141可以包括:
确定单元 1401, 用于根据控制信道资源集合和 /或控制信道类型确定控制信道的 搜索区间; 所述控制信道资源集合中包括至少一个物理资源块;
检测单元 1402, 用于在所述确定单元 1401确定的搜索区间内进行控制信道的检 本发明实施例中 UE通过上述单元可以根据控制信道资源集合和 /或控制信道类 型确定控制信道可以确定 E-PDCCH的搜索区间, 进而实现了 UE的控制信道检测。 为网络侧为 UE配置多个控制信道资源集合的情况提供了解决方案。
参见图 15, 为本发明实施例一种确定单元的结构示意图。
该用户设备中确定单元 151又可以进一步包括:
集合确定子单元 1511, 用于确定控制信道搜索区间所在的控制信道集合; 个数确定子单元 1512, 用于确定控制信道搜索区间在各个控制信道集合内的控 制信道候选的个数;
起点确定子单元 1513, 用于确定控制信道的搜索起点;
区间确定子单元 1514, 用于根据所述起点确定子单元确定的搜索起点, 控制信 道的聚合级别及所述聚合级别下的控制信道候选个数之间的关系确定搜索区间。
其中, 集合确定子单元 1511, 具体可以用于根据载波和 /或无线网络临时标识和 / 或子帧号来确定控制信道的搜索区间所在的控制信道资源集合;还可以用于当所述用 户设备配置了在一个第一载波上调度多个第二载波时,根据所述第二载波与控制信道 资源集合的对应关系,确定所述第二载波的控制信道对应的在所述第一载波上的控制 信道资源集合。
个数确定子单元 1512,具体可以用于根据载波索引 ID和 /或无线网络临时标识和 /或子帧号确定所述控制信道搜索区间在各个控制信道集合内的控制信道候选的个 数。
参见图 16, 为本发明中起点确定子单元的第一实施例的结构示意图。
该确定单元中的起点确定子单元 161又具体可以包括:
第一设置子单元 1611, 用于确定第一个子帧中各控制信道资源集合的搜索起点 的初始值;
第一计算子单元 1612, 用于由第二控制信道资源集合的控制信道的搜索起点通 过递归函数获得第一控制信道资源集合的控制信道的搜索起点;
其中,所述第二控制信道资源集合所在的子帧为所述第一控制信道资源集合所在 的子帧的前一个子帧,且所述第一控制信道资源集合与第二控制信道资源集合在各自 的子帧中具有相同的次序。
在另一实施例中, 该起点确定子单元也可以包括:
第二设置子单元,用于确定第一个子帧中第一个控制信道资源集合的搜索起点的 初始值; 第二计算子单元,用于由第四控制信道资源集合的控制信道的搜索起点通过递归 函数获得第三控制信道资源集合的控制信道的搜索起点;
其中, 所述第三控制信道资源集合与所述第四控制信道资源集合位于相同的子 帧, 且在所述相同的子帧中,所述第四控制信道资源集合的次序位于所述第三控制信 道资源集合的次序之前, 且与所述第三控制信道资源集合的次序相邻; 或者, 所述第 四控制信道资源集合所在的子帧为所述第三控制信道资源集合所在的子帧的前一个 子帧, 且所述第四控制信道资源集合为其所在子帧的最后一个集合,所述第三控制信 道资源集合为其所在子帧的第一个集合。
参见图 17, 为本发明中起点确定子单元的第二实施例的结构示意图。
该确定单元中的起点确定子单元 171又具体可以包括:
第一确定子单元 1711, 用于当配置了在一个第一载波上调度多个第二载波时, 确定所述第一载波上配置的控制信道资源集合;
第二确定子单元 1712, 用于在所述第一载波上所有控制信道资源集合组成的区 间内确定所述多个第二载波的控制信道的搜索起点。
参见图 18, 为本发明中起点确定子单元的第三实施例结构示意图。
该确定单元中的起点确定子单元 181又具体可以包括:
初始值确定子单元 1811, 用于确定生成控制信道搜索起点的递归函数的初始值; 起点计算子单元 1812, 用于根据所述搜索起点的递归函数的初始值及递归函数 确定搜索起点。
参见图 19, 为本发明一种用户设备的第二实施例的结构示意图。
该用户设备 191包括处理器 1911 :
所述处理器 1911, 用于根据控制信道资源集合和 /或控制信道类型确定控制信道 的搜索区间; 所述控制信道资源集合中包括至少一个物理资源块; 在所述确定的搜索 区间内进行控制信道的检测。
参见图 20, 为本发明一种基站的第一实施例的结构示意图。
该基站 200可以包括:
确定模块 2001, 用于根据控制信道资源集合和 /或控制信道类型确定控制信道的 搜索区间; 所述控制信道资源集合中包括至少一个物理资源块;
传输模块 2002, 用于将增强的控制信道映射到所述确定模块确定的搜索区间并 发送。
参见图 21, 为本发明实施例的一种确定模块的结构示意图。 该确定模块 211可以包括:
集合确定子模块 2111, 用于确定控制信道搜索区间所在的控制信道集合; 个数确定子模块 2112, 用于确定控制信道搜索区间在各个控制信道集合内的控 制信道候选的个数;
起点确定子模块 2113, 用于确定控制信道的搜索起点;
区间确定子模块 2114, 用于根据所述起点确定子模块确定的搜索起点, 控制信 道的聚合级别及所述聚合级别下的控制信道候选个数之间的关系确定搜索区间。
其中, 集合确定子模块 2111, 具体可以用于根据载波和 /或无线网络临时标识和 / 或子帧号来确定控制信道的搜索区间所在的控制信道资源集合;也还可以用于当配置 了在一个第一载波上调度多个第二载波时,根据所述第二载波与控制信道资源集合的 对应关系,确定所述第二载波的控制信道对应的在所述第一载波上的控制信道资源集 合。
个数确定子模块 2112, 具体可以用于根据载波 ID和 /或无线网络临时标识和 /或 子帧号确定所述控制信道搜索区间在各个控制信道集合内的控制信道候选的个数。
参见图 22, 为本发明中一种起点确定子模块的第一实施例的结构示意图。
该确定模块中的起点确定子模块 221可以包括:
第一设置子模块 2211, 用于确定第一个子帧中各控制信道资源集合的搜索起点 的初始值;
第一计算子模块 2212, 用于由第二控制信道资源集合的控制信道的搜索起点通 过递归函数获得第一控制信道资源集合的控制信道的搜索起点;
其中,所述第二控制信道资源集合所在的子帧为所述第一控制信道资源集合所在 的子帧的前一个子帧,且所述第一控制信道资源集合与第二控制信道资源集合在各自 的子帧中具有相同的次序。
在另一实施例中, 该起点确定子模块也可以包括:
第二设置子模块,用于确定第一个子帧中第一个控制信道资源集合的搜索起点的 初始值;
第二计算子模块,用于由第四控制信道资源集合的控制信道的搜索起点通过递归 函数获得第三控制信道资源集合的控制信道的搜索起点;
其中, 所述第三控制信道资源集合与所述第四控制信道资源集合位于相同的子 帧, 且在所述相同的子帧中,所述第四控制信道资源集合的次序位于所述第三控制信 道资源集合的次序之前, 且与所述第三控制信道资源集合的次序相邻; 或者, 所述第 四控制信道资源集合所在的子帧为所述第三控制信道资源集合所在的子帧的前一个 子帧, 且所述第四控制信道资源集合为其所在子帧的最后一个集合,所述第三控制信 道资源集合为其所在子帧的第一个集合。
参见图 23, 为本发明中一种起点确定子模块的第二实施例的结构示意图。
该确定模块中的起点确定子模块 231可以包括:
第一确定子模块 2311, 用于当配置了在一个第一载波上调度多个第二载波时, 确定所述第一载波上配置的控制信道资源集合;
第二确定子模块 2312, 用于在所述第一载波上所有控制信道资源集合组成的区 间内确定所述多个第二载波的控制信道的搜索起点。
参见图 24, 为本发明中一种起点确定子模块的第三实施例的结构示意图。
该确定模块中的起点确定子模块 241可以包括:
初始值确定子模块 2411, 用于确定生成控制信道搜索起点的递归函数的初始值; 起点计算子模块 2412, 用于根据所述搜索起点的递归函数的初始值及递归函数 确定搜索起点。
参见图 25, 为本发明一种基站的第二实施例的结构示意图。
该基站 251可以包括处理器 2511和收发装置 2512。
处理器 2511, 用于根据控制信道资源集合和 /或控制信道类型确定控制信道的搜 索区间; 所述控制信道资源集合中包括至少一个物理资源块; 将增强的控制信道映射 到所述确定的搜索区间。
收发装置 2512, 用于发送该搜索区间。
以上装置中各单元、模块等部分的具体实现过程请参见前述方法实施例中的对应 描述, 此处不再赘述。 上述收发装置可以是收发器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单 元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结合来实现。这些功 能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专 业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实 现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、 装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和方法, 可 以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例如, 所 述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如 多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或不执 行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些 接口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显 示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到 多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例 方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以 是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以 存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或 者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现 出来, 该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机 设备 (可以是个人计算机, 服务器, 或者网络设备等) 或处理器 (processor)执行本 发明各个实施例所述方法的全部或部分步骤。 而前述的存储介质包括: U盘、移动硬 盘、只读存储器(ROM, Read-Only Memory ) 随机存取存储器(RAM, Random Access Memory), 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于此, 任 何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保 护范围为准。

Claims

权 利 要 求
1、 一种控制信道的检测方法, 其特征在于, 包括:
用户设备根据控制信道资源集合和 /或控制信道类型确定控制信道的搜索区 间; 所述控制信道资源集合中包括至少一个物理资源块;
在所述搜索区间内进行控制信道的检测。
2、 根据权利要求 1所述的方法, 其特征在于, 所述确定控制信道的搜索区 间包括:
确定控制信道搜索区间所在的控制信道集合;
确定控制信道搜索区间在各个控制信道集合内的控制信道候选的个数; 确定控制信道的搜索起点;
根据所述搜索起点,控制信道的聚合级别及所述聚合级别下的控制信道候选 个数之间的关系确定搜索区间。
3、 根据权利要求 2所述的方法, 其特征在于, 所述确定控制信道搜索区间 所在的控制信道集合, 包括:
根据载波和 /或无线网络临时标识和 /或子帧号来确定控制信道的搜索区间所 在的控制信道资源集合。
4、 根据权利要求 3所述的方法, 其特征在于, 所述确定控制信道搜索区间 所在的控制信道集合, 包括:
根据在高层配置的 N个控制信道资源集合内, 通过子帧号来确定当前子帧 的控制信道搜索区间所在的控制信道资源集合是高层配置的控制信道资源集合 中的 M个, N为大于等于 1的正整数, M为大于等于 1小于等于 N的正整数, 并且不同子帧内的 M个控制信道集合相同或不同。
5、 根据权利要求 2所述的方法, 其特征在于, 所述确定控制信道搜索区间 所在的控制信道集合, 包括:
当所述用户设备配置了在一个第一载波上调度多个第二载波时,根据所述第 二载波与控制信道资源集合的对应关系,确定所述第二载波的控制信道对应的在 所述第一载波上的控制信道资源集合。
6、 根据权利要求 5所述的方法, 其特征在于, 所述第二载波与控制信道资 源集合的对应关系为:
所述第二载波的控制信道资源集合是所述第二载波的索引编号的函数; 或 者, 控制信道资源集合在所述第一载波上的位置与该控制信道资源集合在所述 第二载波上的位置相同。
7、 根据权利要求 2所述的方法, 其特征在于, 所述确定控制信道搜索区间 在各个控制信道集合内的控制信道候选的个数, 包括:
根据载波索引 ID 和 /或无线网络临时标识和 /或子帧号确定所述控制信道搜 索区间在各个控制信道集合内的控制信道候选的个数。
8、 根据权利要求 2所述的方法, 其特征在于, 所述确定控制信道的搜索起 点包括:
确定第一个子帧中各控制信道资源集合的搜索起点的初始值;
第一控制信道资源集合的控制信道的搜索起点由第二控制信道资源集合的 控制信道的搜索起点通过递归函数获得;
其中,所述第二控制信道资源集合所在的子帧为所述第一控制信道资源集合 所在的子帧的前一个子帧,且所述第一控制信道资源集合与第二控制信道资源集 合在各自的子帧中具有相同的位置。
9、 根据权利要求 2所述的方法, 其特征在于, 所述确定控制信道的搜索起 点包括:
确定第一个子帧中指定控制信道资源集合的搜索起点的初始值;
子帧中的控制信道资源集合中,部分控制信道资源集合的搜索起点由其所在 子帧的其它控制信道资源集合的搜索起点通过递归函数获得,另一部分控制信道 资源集合的搜索起点由其所在子帧的前一个子帧中控制信道资源集合的搜索起 点通过递归函数获得。
10、 根据权利要求 2所述的方法, 其特征在于, 所述确定控制信道的搜索起 点包括:
当所述用户设备配置了在一个第一载波上调度多个第二载波时,确定所述第 一载波上配置的控制信道资源集合;
在所述第一载波上所有控制信道资源集合组成的区间内确定所述多个第二 载波的控制信道的搜索起点。
11、 根据权利要求 2所述的方法, 其特征在于, 所述确定控制信道的搜索起 点包括:
确定生成控制信道搜索起点的递归函数的初始值;
根据所述搜索起点的递归函数的初始值及递归函数确定搜索起点。
12、 根据权利要求 11所述的方法, 其特征在于, 不同控制信道资源集合中, 所述生成控制信道搜索起点的递归函数的初始值相同。
13、 根据权利要求 11所述的方法, 其特征在于, 不同控制信道资源集合中, 所述生成控制信道搜索起点的递归函数的初始值不同。
14、 根据权利要求 13所述的方法, 其特征在于, 所述初始值包含第一特征 参数, 所述不同的控制信道资源集合对应的所述第一特征参数不同。
15、 根据权利要求 14所述的方法, 其特征在于, 在所述控制信道资源集合 中不同控制信道类型对应的所述第一特征参数不同。
16、 根据权利要求 15所述的方法, 其特征在于, 所述不同控制信道类型的 划分原则为下列任一组: 正常子帧的控制信道与多媒体广播多播服务单频网子帧的控制信道;半静态 调度的控制信道与动态调度的控制信道; 公共搜索区间检测的控制信道与 UE特 定搜索区间检测的控制信道;上行调度信令的控制信道与下行调度信令的控制信 道; 集中式传输的控制信道与离散式传输的控制信道; 不同的下行控制信息 DCI 的控制信道;不同循环前缀的子帧的控制信道;不同特殊子帧类型内的控制信道; 可用资源单元 RE数目不同的物理资源块对 PRB pair内传输的控制信道;包含不 同数目资源单元组的控制信道单元传输的控制信道; 不同载波的控制信道。
17、 根据权利要求 14至 16中任意一项所述的方法, 其特征在于, 所述第一 特征参数为下列之一:
所述控制信道资源集合中包含的 PRB pair的第一个 PRB pair的索引; 动态 信令或高层信令通知的参数; 物理资源块集合的编号索引; 相对于指定控制信道 资源集合的偏移值。
18、 根据权利要求 11所述的方法, 其特征在于, 不同控制信道资源集合中 用于确定所述搜索起点的递归函数相同。
19、 根据权利要求 11所述的方法, 其特征在于, 不同控制信道资源集合中 用于确定所述搜索起点的递归函数不同。
20、 根据权利要求 19述的方法, 其特征在于, 所述递归函数中包含第二特 征参数, 所述不同控制信道资源集合对应的所述第二特征参数不同。
21、 根据权利要求 20所述的方法, 其特征在于, 在所述控制信道资源集合 中不同控制信道类型对应的所述第二特征参数不同。
22、 根据权利要求 21所述的方法, 其特征在于, 所述不同控制信道类型的 划分原则为下列任一组: 正常子帧的控制信道与多媒体广播多播服务单频网子帧的控制信道;半静态 调度的控制信道与动态调度的控制信道; 公共搜索区间检测的控制信道与 UE特 定搜索区间检测的控制信道;上行调度信令的控制信道与下行调度信令的控制信 道; 集中式传输的控制信道与离散式传输的控制信道; 不同的 DCI的控制信道; 不同循环前缀的子帧的控制信道; 不同特殊子帧类型内的控制信道; 可用资源单 元 RE数目不同的物理资源块对 PRB pair内传输的控制信道;包含不同数目资源 单元组的控制信道单元传输的控制信道; 不同载波的控制信道。
23、 根据权利要求 20至 22中任意一项所述的方法, 其特征在于, 所述第二 特征参数为下列之一:
所述控制信道资源集合中包含的 PRB pair的第一个 PRB pair的索引; 动态 信令或高层信令通知的参数; 物理资源块集合的编号索引; 相对于指定控制信道 资源集合的偏移值。
24、 根据权利要求 11所述的方法, 其特征在于, 不同控制信道资源集合中 用于确定所述搜索区间的关系式相同。
25、 根据权利要求 11所述的方法, 其特征在于, 所述根据所述搜索起点, 控制信道的聚合级别及所述聚合级别下的控制信道候选个数之间的关系确定搜 索区间, 具体为:
根据所述搜索起点,控制信道的聚合级别及所述聚合级别下的控制信道候选 个数之间的关系式确定搜索区间;
其中, 不同控制信道资源集合中用于确定所述搜索区间的关系式不同。
26、 根据权利要求 25所述的方法, 其特征在于, 所述用于确定所述搜索区 间的关系式中包含第三特征参数,所述不同的控制信道资源集合对应的所述第三 特征参数不同。
27、 根据权利要求 26所述的方法, 其特征在于, 在所述控制信道资源集合 中不同控制信道类型对应的所述第三特征参数不同。
28、 根据权利要求 27所述的方法, 其特征在于, 所述不同控制信道类型的 划分原则为下列任一组: 正常子帧的控制信道与多媒体广播多播服务单频网子帧的控制信道;半静态 调度的控制信道与动态调度的控制信道; 公共搜索区间检测的控制信道与 UE特 定搜索区间检测的控制信道;上行调度信令的控制信道与下行调度信令的控制信 道; 集中式传输的控制信道与离散式传输的控制信道; 不同的 DCI的控制信道; 不同循环前缀的子帧的控制信道; 不同特殊子帧类型内的控制信道; 可用资源单 元 RE数目不同的物理资源块对 PRB pair内传输的控制信道;包含不同数目资源 单元组的控制信道单元传输的控制信道; 不同载波的控制信道。
29、 根据权利要求 26至 28中任意一项所述的方法, 其特征在于, 所述第三 特征参数为下列之一:
所述控制信道资源集合中包含的 PRB pair的第一个 PRB pair的索引; 动态 信令或高层信令通知的参数; 物理资源块集合的编号索引; 相对于指定控制信道 资源集合的偏移值。
30、 根据权利要求 2所述的方法, 其特征在于, 不同的控制信道类型中, 所 述确定控制信道搜索区间所在的控制信道集合的方式不同。
31、 根据权利要求 30所述的方法, 其特征在于, 所述确定控制信道搜索区 间所在的控制信道集合, 包括:
根据在高层配置的 N个控制信道资源集合内, 通过子帧号来确定当前子帧 的不同控制信道类型的控制信道搜索区间分别所在的控制信道资源集合,不同子 帧内的不同控制信道类型的控制信道搜索区间分别所在的控制信道资源集合相 同或不同。
32、 根据权利要求 30所述的方法, 其特征在于, 不同的控制信道类型中, 所述确定控制信道搜索区间在各个控制信道集合内的控制信道候选的个数的方 式不同。
33、 根据权利要求 32述的方法, 其特征在于, 根据载波 ID和 /或无线网络 临时标识和 /或子帧号确定所述控制信道搜索区间在各个控制信道集合内的控制 信道候选的个数。
34、 根据权利要求 11所述的方法, 其特征在于, 不同的控制信道类型中, 所述生成控制信道搜索起点的递归函数的初始值不同。
35、 根据权利要求 34所述的方法, 其特征在于, 所述初始值包含第四特征 参数, 所述不同的控制信道类型对应的所述第四特征参数不同。
36、 根据权利要求 11所述的方法, 其特征在于, 不同的控制信道类型中用 于确定所述搜索起点的递归函数不同。
37、 根据权利要求 36所述的方法, 其特征在于, 所述用于确定所述搜索起 点的所述递归函数中包含第五特征参数,所述不同控制信道类型对应的所述第五 特征参数不同。
38、 根据权利要求 11所述的方法, 其特征在于, 所述根据所述搜索起点, 控制信道的聚合级别及所述聚合级别下的控制信道候选个数之间的关系确定搜 索区间, 具体为:
根据所述搜索起点,控制信道的聚合级别及所述聚合级别下的控制信道候选 个数之间的关系式确定搜索区间;
其中, 不同的控制信道类型中用于确定所述搜索区间的关系式不同。
39、 根据权利要求 38所述的方法, 其特征在于, 所述用于确定所述搜索区 间的关系式中包含第六特征参数,所述不同的控制信道类型对应的所述第六特征 参数不同。
40、 根据权利要求 30至 39中任意一项所述的方法, 其特征在于, 所述不同 控制信道类型的划分原则为下列任一组:
正常子帧的控制信道与多媒体广播多播服务单频网子帧的控制信道;半静态 调度的控制信道与动态调度的控制信道; 公共搜索区间检测的控制信道与 UE特 定搜索区间检测的控制信道;上行调度信令的控制信道与下行调度信令的控制信 道; 集中式传输的控制信道与离散式传输的控制信道; 不同的 DCI的控制信道; 不同循环前缀的子帧的控制信道; 不同特殊子帧类型内的控制信道; 可用资源单 元 RE数目不同的物理资源块对 PRB pair内传输的控制信道;包含不同数目资源 单元组的控制信道单元传输的控制信道; 不同载波的控制信道。
41、 根据权利要求 1所述的方法, 其特征在于, 当所述控制信道的类型为不 同载波的控制信道时,所述用户设备确定的控制信道的搜索区间为控制信道资源 鱼采 A
42、 根据权利要求 41所述的方法, 其特征在于, 所述用户设备根据控制信 道类型确定控制信道的搜索区间, 包括:
当所述用户设备配置了在一个第一载波上调度多个第二载波时,根据所述第 二载波与控制信道资源集合的对应关系,确定所述第二载波的控制信道对应的在 所述第一载波上的控制信道资源集合。
43、 根据权利要求 42所述的方法, 其特征在于, 所述第二载波与控制信道 资源集合的对应关系为:
所述第二载波的控制信道资源集合是所述第二载波的索引编号的函数; 或 者,
控制信道资源集合在所述第一载波上的位置与该控制信道资源集合在所述 第二载波上的位置相同。
44、 一种控制信道的传输方法, 其特征在于, 包括: 基站根据控制信道资源集合和 /或控制信道类型确定控制信道的搜索区间, 其中, 所述控制信道资源集合中包括至少一个物理资源块; 将增强的控制信道映射到所述搜索区间并发送。
45、 根据权利要求 44所述的方法, 其特征在于, 所述确定控制信道的搜索 区间包括:
确定控制信道搜索区间所在的控制信道集合;
确定控制信道搜索区间在各个控制信道集合内的控制信道候选的个数; 确定控制信道的搜索起点;
根据所述搜索起点,控制信道的聚合级别及所述聚合级别下的控制信道候选 个数之间的关系确定搜索区间。
46、 根据权利要求 44所述的方法, 其特征在于, 所述确定控制信道搜索区 间所在的控制信道集合, 包括:
根据载波和 /或无线网络临时标识和 /或子帧号来确定控制信道的搜索区间所 在的控制信道资源集合。
47、 根据权利要求 46所述的方法, 其特征在于, 所述确定控制信道搜索区 间所在的控制信道集合, 包括:
根据在高层配置的 N个控制信道资源集合内, 通过子帧号来确定当前子帧 的控制信道搜索区间所在的控制信道资源集合是高层配置的控制信道资源集合 中的 M个, N为大于等于 1的正整数, M为大于等于 1小于等于 N的正整数, 并且不同子帧内的 M个控制信道集合相同或不同。
48、 根据权利要求 44所述的方法, 其特征在于, 所述确定控制信道搜索区 间所在的控制信道集合, 包括:
当配置了在一个第一载波上调度多个第二载波时,根据所述第二载波与控制 信道资源集合的对应关系,确定所述第二载波的控制信道对应的在所述第一载波 上的控制信道资源集合。
49、 根据权利要求 48所述的方法, 其特征在于, 所述第二载波与控制信道 资源集合的对应关系为:
所述第二载波的控制信道资源集合是所述第二载波的索引编号的函数; 或 者,
控制信道资源集合在所述第一载波上的位置与该控制信道资源集合在所述 第二载波上的位置相同。
50、 根据权利要求 44所述的方法, 其特征在于, 所述确定控制信道搜索区 间在各个控制信道集合内的控制信道候选的个数, 包括:
根据载波 ID 和 /或无线网络临时标识和 /或子帧号确定所述控制信道搜索区 间在各个控制信道集合内的控制信道候选的个数。
51、 根据权利要求 44所述的方法, 其特征在于, 所述确定控制信道的搜索 起点包括:
确定第一个子帧中各控制信道资源集合的搜索起点的初始值;
第一控制信道资源集合的控制信道的搜索起点由第二控制信道资源集合的 控制信道的搜索起点通过递归函数获得;
其中,所述第二控制信道资源集合所在的子帧为所述第一控制信道资源集合 所在的子帧的前一个子帧,且所述第一控制信道资源集合与第二控制信道资源集 合在各自的子帧中具有相同的位置。
52、 根据权利要求 44所述的方法, 其特征在于, 所述确定控制信道的搜索 起点包括:
确定第一个子帧中指定控制信道资源集合的搜索起点的初始值; 子帧中的控制信道资源集合中,部分控制信道资源集合的搜索起点由其所在 子帧的其它控制信道资源集合的搜索起点通过递归函数获得,另一部分控制信道 资源集合的搜索起点由其所在子帧的前一个子帧中控制信道资源集合的搜索起 点通过递归函数获得。
53、 根据权利要求 44所述的方法, 其特征在于, 所述确定控制信道的搜索 起点包括:
当配置了在一个第一载波上调度多个第二载波时,确定所述第一载波上配置 的控制信道资源集合;
在所述第一载波上所有控制信道资源集合组成的区间内确定所述多个第二 载波的控制信道的搜索起点。
54、 根据权利要求 44所述的方法, 其特征在于, 所述确定控制信道的搜索 起点包括:
确定生成控制信道搜索起点的递归函数的初始值;
根据所述搜索起点的递归函数的初始值及递归函数确定搜索起点。
55、 根据权利要求 54所述的方法, 其特征在于, 不同控制信道资源集合中, 所述生成控制信道搜索起点的递归函数的初始值相同。
56、 根据权利要求 54所述的方法, 其特征在于, 不同控制信道资源集合中, 所述生成控制信道搜索起点的递归函数的初始值不同。
57、 根据权利要求 56所述的方法, 其特征在于, 所述初始值包含第一特征 参数, 所述不同的控制信道资源集合对应的所述第一特征参数不同。
58、 根据权利要求 57所述的方法, 其特征在于, 在所述控制信道资源集合 中不同控制信道类型对应的所述第一特征参数不同。
59、 根据权利要求 58所述的方法, 其特征在于, 所述不同控制信道类型的 划分原则为下列任一组: 正常子帧的控制信道与多媒体广播多播服务单频网子帧的控制信道;半静态 调度的控制信道与动态调度的控制信道; 公共搜索区间检测的控制信道与 UE特 定搜索区间检测的控制信道;上行调度信令的控制信道与下行调度信令的控制信 道; 集中式传输的控制信道与离散式传输的控制信道; 不同的 DCI的控制信道; 不同循环前缀的子帧的控制信道; 不同特殊子帧类型内的控制信道; 可用资源单 元 RE数目不同的物理资源块对 PRB pair内传输的控制信道;包含不同数目资源 单元组的控制信道单元传输的控制信道; 不同载波的控制信道。
60、 根据权利要求 57至 59中任意一项所述的方法, 其特征在于, 所述第一 特征参数为下列之一: 所述控制信道资源集合中包含的 PRB pair的第一个 PRB pair的索引; 动态 信令或高层信令通知的参数; 物理资源块集合的编号索引; 相对于指定控制信道 资源集合的偏移值。
61、 根据权利要求 54所述的方法, 其特征在于, 不同控制信道资源集合中 用于确定所述搜索起点的递归函数相同。
62、 根据权利要求 54所述的方法, 其特征在于, 不同控制信道资源集合中 用于确定所述搜索起点的递归函数不同。
63、 根据权利要求 62所述的方法, 其特征在于, 所述递归函数中包含第二 特征参数, 所述不同控制信道资源集合对应的所述第二特征参数不同。
64、 根据权利要求 63所述的方法, 其特征在于, 在所述控制信道资源集合 中不同控制信道类型对应的所述第二特征参数不同。
65、 根据权利要求 64所述的方法, 其特征在于, 所述不同控制信道类型的 划分原则为下列任一组: 正常子帧的控制信道与多媒体广播多播服务单频网子帧的控制信道;半静态 调度的控制信道与动态调度的控制信道; 公共搜索区间检测的控制信道与 UE特 定搜索区间检测的控制信道;上行调度信令的控制信道与下行调度信令的控制信 道; 集中式传输的控制信道与离散式传输的控制信道; 不同的 DCI的控制信道; 不同循环前缀的子帧的控制信道; 不同特殊子帧类型内的控制信道; 可用资源单 元 RE数目不同的物理资源块对 PRB pair内传输的控制信道;包含不同数目资源 单元组的控制信道单元传输的控制信道; 不同载波的控制信道。
66、 根据权利要求 63至 65中任意一项所述的方法, 其特征在于, 所述第二 特征参数为下列之一:
所述控制信道资源集合中包含的 PRB pair的第一个 PRB pair的索引; 动态 信令或高层信令通知的参数; 物理资源块集合的编号索引; 相对于指定控制信道 资源集合的偏移值。
67、 根据权利要求 54所述的方法, 其特征在于, 所述根据所述搜索起点, 控制信道的聚合级别及所述聚合级别下的控制信道候选个数之间的关系确定搜 索区间, 具体为:
根据所述搜索起点,控制信道的聚合级别及所述聚合级别下的控制信道候选 个数之间的关系式确定搜索区间;
其中, 不同控制信道资源集合中用于确定所述搜索区间的关系式相同。
68、 根据权利要求 54所述的方法, 其特征在于, 不同控制信道资源集合中 用于确定所述搜索区间的关系式不同。
69、 根据权利要求 68所述的方法, 其特征在于, 所述用于确定所述搜索区 间的关系式中包含第三特征参数,所述不同的控制信道资源集合对应的所述第三 特征参数不同。
70、 根据权利要求 69所述的方法, 其特征在于, 在所述控制信道资源集合 中不同控制信道类型对应的所述第三特征参数不同。
71、 根据权利要求 70所述的方法, 其特征在于, 所述不同控制信道类型的 划分原则为下列任一组: 正常子帧的控制信道与多媒体广播多播服务单频网子帧的控制信道;半静态 调度的控制信道与动态调度的控制信道; 公共搜索区间检测的控制信道与 UE特 定搜索区间检测的控制信道;上行调度信令的控制信道与下行调度信令的控制信 道; 集中式传输的控制信道与离散式传输的控制信道; 不同的 DCI的控制信道; 不同循环前缀的子帧的控制信道; 不同特殊子帧类型内的控制信道; 可用资源单 元 RE数目不同的物理资源块对 PRB pair内传输的控制信道;包含不同数目资源 单元组的控制信道单元传输的控制信道; 不同载波的控制信道。
72、 根据权利要求 69至 71中任意一项所述的方法, 其特征在于, 所述第三 特征参数为下列之一:
所述控制信道资源集合中包含的 PRB pair的第一个 PRB pair的索引; 动态 信令或高层信令通知的参数; 物理资源块集合的编号索引; 相对于指定控制信道 资源集合的偏移值。
73、 根据权利要求 44所述的方法, 其特征在于, 不同的控制信道类型中, 所述确定控制信道搜索区间所在的控制信道集合的方式不同。
74、 根据权利要求 73所述的方法, 其特征在于, 所述确定控制信道搜索区 间所在的控制信道集合, 包括:
根据在高层配置的 N个控制信道资源集合内, 通过子帧号来确定当前子帧 的不同控制信道类型的控制信道搜索区间分别所在的控制信道资源集合,不同子 帧内的不同控制信道类型的控制信道搜索区间分别所在的控制信道资源集合相 同或不同。
75、 根据权利要求 44所述的方法, 其特征在于, 不同的控制信道类型中, 所述确定控制信道搜索区间在各个控制信道集合内的控制信道候选的个数的方 式不同。
76、 根据权利要求 75述的方法, 其特征在于, 根据载波 ID和 /或无线网络 临时标识和 /或子帧号确定所述控制信道搜索区间在各个控制信道集合内的控制 信道候选的个数。
77、 根据权利要求 54所述的方法, 其特征在于, 不同的控制信道类型中, 所述生成控制信道搜索起点的递归函数的初始值不同。
78、 根据权利要求 77所述的方法, 其特征在于, 所述初始值包含第四特征 参数, 所述不同的控制信道类型对应的所述第四特征参数不同。
79、 根据权利要求 54所述的方法, 其特征在于, 不同的控制信道类型中用 于确定所述搜索起点的递归函数不同。
80、 根据权利要求 79所述的方法, 其特征在于, 所述用于确定所述搜索起 点的所述递归函数中包含第五特征参数,所述不同控制信道类型对应的所述第五 特征参数不同。
81、 根据权利要求 54所述的方法, 其特征在于, 所述根据所述搜索起点, 控制信道的聚合级别及所述聚合级别下的控制信道候选个数之间的关系确定搜 索区间, 具体为:
根据所述搜索起点,控制信道的聚合级别及所述聚合级别下的控制信道候选 个数之间的关系式确定搜索区间;
其中, 不同的控制信道类型中用于确定所述搜索区间的关系式不同。
82、 根据权利要求 81所述的方法, 其特征在于, 所述用于确定所述搜索区 间的关系式中包含第六特征参数,所述不同的控制信道类型对应的所述第六特征 参数不同。
83、 根据权利要求 73至 82中任意一项所述的方法, 其特征在于, 所述不同 控制信道类型的划分原则为下列任一组: 正常子帧的控制信道与多媒体广播多播服务单频网子帧的控制信道;半静态 调度的控制信道与动态调度的控制信道; 公共搜索区间检测的控制信道与 UE特 定搜索区间检测的控制信道;上行调度信令的控制信道与下行调度信令的控制信 道; 集中式传输的控制信道与离散式传输的控制信道; 不同的 DCI的控制信道; 不同循环前缀的子帧的控制信道; 不同特殊子帧类型内的控制信道; 可用资源单 元 RE数目不同的物理资源块对 PRB pair内传输的控制信道;包含不同数目资源 单元组的控制信道单元传输的控制信道; 不同载波的控制信道。
84、 根据权利要求 44所述的方法, 其特征在于, 当所述控制信道的类型为 不同载波的控制信道时, 所述确定的控制信道的搜索区间为控制信道资源集合。
85、 根据权利要求 84所述的方法, 其特征在于, 所述根据控制信道类型确 定控制信道的搜索区间, 包括:
当配置了在一个第一载波上调度多个第二载波时,根据所述第二载波与控制 信道资源集合的对应关系,确定所述第二载波的控制信道对应的在所述第一载波 上的控制信道资源集合。
86、 根据权利要求 85所述的方法, 其特征在于, 所述第二载波与控制信道 资源集合的对应关系为:
所述第二载波的控制信道资源集合是所述第二载波的索引编号的函数; 或 者,
控制信道资源集合在所述第一载波上的位置与该控制信道资源集合在所述 第二载波上的位置相同。
87、 一种用户设备, 其特征在于, 包括:
确定单元, 用于根据控制信道资源集合和 /或控制信道类型确定控制信道的 搜索区间; 所述控制信道资源集合中包括至少一个物理资源块;
检测单元, 用于在所述确定单元确定的搜索区间内进行控制信道的检测。
88、 根据权利要求 87所述的用户设备, 其特征在于, 所示确定单元包括: 集合确定子单元, 用于确定控制信道搜索区间所在的控制信道集合; 个数确定子单元,用于确定控制信道搜索区间在各个控制信道集合内的控制 信道候选的个数;
起点确定子单元, 用于确定控制信道的搜索起点;
区间确定子单元, 用于根据所述起点确定子单元确定的搜索起点, 控制信道 的聚合级别及所述聚合级别下的控制信道候选个数之间的关系确定搜索区间。
89、 根据权利要求 88所述的用户设备, 其特征在于, 所述集合确定子单元, 具体用于根据载波和 /或无线网络临时标识和 /或子帧 号来确定控制信道的搜索区间所在的控制信道资源集合。
90、 根据权利要求 88所述的用户设备, 其特征在于,
所述集合确定子单元,具体用于当所述用户设备配置了在一个第一载波上调 度多个第二载波时, 根据所述第二载波与控制信道资源集合的对应关系, 确定所 述第二载波的控制信道对应的在所述第一载波上的控制信道资源集合。
91、 根据权利要求 88所述的用户设备, 其特征在于,
所述个数确定子单元, 具体用于根据载波索引 ID和 /或无线网络临时标识和 /或子帧号确定所述控制信道搜索区间在各个控制信道集合内的控制信道候选的 个数。
92、 根据权利要求 88所述的用户设备, 其特征在于, 所述起点确定子单元 包括:
第一设置子单元,用于确定第一个子帧中各控制信道资源集合的搜索起点的 初始值;
第一计算子单元,用于由第二控制信道资源集合的控制信道的搜索起点通过 递归函数获得第一控制信道资源集合的控制信道的搜索起点;
其中,所述第二控制信道资源集合所在的子帧为所述第一控制信道资源集合 所在的子帧的前一个子帧,且所述第一控制信道资源集合与第二控制信道资源集 合在各自的子帧中具有相同的位置。
93、 根据权利要求 88所述的用户设备, 其特征在于, 所述起点确定子单元 包括:
第二设置子单元,用于确定第一个子帧中指定控制信道资源集合的搜索起点 的初始值;
第二计算子单元, 用于子帧中的控制信道资源集合中, 部分控制信道资源集 合的搜索起点由其所在子帧的其它控制信道资源集合的搜索起点通过递归函数 获得,另一部分控制信道资源集合的搜索起点由其所在子帧的前一个子帧中控制 信道资源集合的搜索起点通过递归函数获得。
94、 根据权利要求 88所述的用户设备, 其特征在于, 所述起点确定子单元 包括:
第一确定子单元, 用于当配置了在一个第一载波上调度多个第二载波时, 确 定所述第一载波上配置的控制信道资源集合;
第二确定子单元,用于在所述第一载波上所有控制信道资源集合组成的区间 内确定所述多个第二载波的控制信道的搜索起点。
95、 根据权利要求 88所述的用户设备, 其特征在于, 所述起点确定子单元 包括:
初始值确定子单元, 用于确定生成控制信道搜索起点的递归函数的初始值; 起点计算子单元,用于根据所述搜索起点的递归函数的初始值及递归函数确 定搜索起点。
96、 一种基站, 其特征在于, 包括:
确定模块, 用于根据控制信道资源集合和 /或控制信道类型确定控制信道的 搜索区间; 所述控制信道资源集合中包括至少一个物理资源块;
传输模块,用于将增强的控制信道映射到所述确定模块确定的搜索区间并发 送。
97、 根据权利要求 96所述的基站, 其特征在于, 所示确定模块包括: 集合确定子模块, 用于确定控制信道搜索区间所在的控制信道集合; 个数确定子模块,用于确定控制信道搜索区间在各个控制信道集合内的控制 信道候选的个数;
起点确定子模块, 用于确定控制信道的搜索起点;
区间确定子模块, 用于根据所述起点确定子模块确定的搜索起点, 控制信道 的聚合级别及所述聚合级别下的控制信道候选个数之间的关系确定搜索区间。
98、 根据权利要求 97所述的基站, 其特征在于,
所述集合确定子模块, 具体用于根据载波和 /或无线网络临时标识和 /或子帧 号来确定控制信道的搜索区间所在的控制信道资源集合。
99、 根据权利要求 97所述的基站, 其特征在于,
所述集合确定子模块,具体用于当配置了在一个第一载波上调度多个第二载 波时, 根据所述第二载波与控制信道资源集合的对应关系, 确定所述第二载波的 控制信道对应的在所述第一载波上的控制信道资源集合。
100、 根据权利要求 97所述的基站, 其特征在于,
所述个数确定子模块,具体用于根据载波 ID和 /或无线网络临时标识和 /或子 帧号确定所述控制信道搜索区间在各个控制信道集合内的控制信道候选的个数。
101、根据权利要求 97所述的基站,其特征在于,所述起点确定子模块包括: 第一设置子模块,用于确定第一个子帧中各控制信道资源集合的搜索起点的 初始值;
第一计算子模块,用于由第二控制信道资源集合的控制信道的搜索起点通过 递归函数获得第一控制信道资源集合的控制信道的搜索起点; 其中,所述第二控制信道资源集合所在的子帧为所述第一控制信道资源集合 所在的子帧的前一个子帧,且所述第一控制信道资源集合与第二控制信道资源集 合在各自的子帧中具有相同的位置。
102、根据权利要求 97所述的基站,其特征在于,所述起点确定子模块包括: 第二设置子模块,用于确定第一个子帧中指定控制信道资源集合的搜索起点 的初始值;
第二计算子模块, 用于子帧中的控制信道资源集合中, 部分控制信道资源集 合的搜索起点由其所在子帧的其它控制信道资源集合的搜索起点通过递归函数 获得,另一部分控制信道资源集合的搜索起点由其所在子帧的前一个子帧中控制 信道资源集合的搜索起点通过递归函数获得。
103、根据权利要求 97所述的基站,其特征在于,所述起点确定子模块包括: 第一确定子模块, 用于当配置了在一个第一载波上调度多个第二载波时, 确 定所述第一载波上配置的控制信道资源集合;
第二确定子模块,用于在所述第一载波上所有控制信道资源集合组成的区间 内确定所述多个第二载波的控制信道的搜索起点。
104、根据权利要求 97所述的基站,其特征在于,所述起点确定子模块包括: 初始值确定子模块, 用于确定生成控制信道搜索起点的递归函数的初始值; 起点计算子模块,用于根据所述搜索起点的递归函数的初始值及递归函数确 定搜索起点。
105、 一种用户设备, 其特征在于, 包括处理器,
所述处理器, 用于根据控制信道资源集合和 /或控制信道类型确定控制信道 的搜索区间; 所述控制信道资源集合中包括至少一个物理资源块; 在所述确定的 搜索区间内进行控制信道的检测。
106、 一种基站, 其特征在于, 包括收发装置和处理器,
所述处理器, 用于根据控制信道资源集合和 /或控制信道类型确定控制信道 的搜索区间; 所述控制信道资源集合中包括至少一个物理资源块; 将增强的控制 信道映射到所述确定的搜索区间;
所述收发装置, 用于发送所述搜索区间。
PCT/CN2012/082100 2012-09-26 2012-09-26 一种控制信道检测方法及用户设备 WO2014047821A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CA2886245A CA2886245C (en) 2012-09-26 2012-09-26 Control channel detection method and user equipment
CN201910205472.3A CN109921890A (zh) 2012-09-26 2012-09-26 一种控制信道检测方法及用户设备
RU2015115678/07A RU2602808C1 (ru) 2012-09-26 2012-09-26 Способ обнаружения канала управления и пользовательское устройство
MX2015003870A MX345323B (es) 2012-09-26 2012-09-26 Método de detección de canal de control y equipo de usuario.
PCT/CN2012/082100 WO2014047821A1 (zh) 2012-09-26 2012-09-26 一种控制信道检测方法及用户设备
KR1020157010825A KR101752820B1 (ko) 2012-09-26 2012-09-26 채널 검출 방법 및 사용자 장비
EP12885350.4A EP2894915B1 (en) 2012-09-26 2012-09-26 Control channel detection method and user equipment
CN201910204999.4A CN110034907A (zh) 2012-09-26 2012-09-26 一种控制信道检测方法及用户设备
BR112015006774A BR112015006774A8 (pt) 2012-09-26 2012-09-26 método de detecção de canal de controle e equipamento de usuário e estação base
CN201910205433.3A CN110034908B (zh) 2012-09-26 2012-09-26 一种控制信道检测方法及用户设备
CN201910205454.5A CN110034909B (zh) 2012-09-26 2012-09-26 一种控制信道的传输方法及装置
CN201280006435.6A CN103907386B (zh) 2012-09-26 2012-09-26 一种控制信道检测方法及用户设备
US14/668,472 US20150200741A1 (en) 2012-09-26 2015-03-25 Control channel detection method and user equipment
ZA2015/02317A ZA201502317B (en) 2012-09-26 2015-04-07 Control channel detection method and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/082100 WO2014047821A1 (zh) 2012-09-26 2012-09-26 一种控制信道检测方法及用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/668,472 Continuation US20150200741A1 (en) 2012-09-26 2015-03-25 Control channel detection method and user equipment

Publications (1)

Publication Number Publication Date
WO2014047821A1 true WO2014047821A1 (zh) 2014-04-03

Family

ID=50386806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082100 WO2014047821A1 (zh) 2012-09-26 2012-09-26 一种控制信道检测方法及用户设备

Country Status (10)

Country Link
US (1) US20150200741A1 (zh)
EP (1) EP2894915B1 (zh)
KR (1) KR101752820B1 (zh)
CN (5) CN110034907A (zh)
BR (1) BR112015006774A8 (zh)
CA (1) CA2886245C (zh)
MX (1) MX345323B (zh)
RU (1) RU2602808C1 (zh)
WO (1) WO2014047821A1 (zh)
ZA (1) ZA201502317B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019029746A1 (zh) * 2017-08-11 2019-02-14 中兴通讯股份有限公司 信息传输方法及装置
CN109417819A (zh) * 2016-09-22 2019-03-01 Oppo广东移动通信有限公司 传输系统信息的方法、网络设备和终端设备
CN110603836A (zh) * 2017-05-02 2019-12-20 Oppo广东移动通信有限公司 传输信号的方法、网络设备和终端设备

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014048503A1 (en) * 2012-09-28 2014-04-03 Huawei Technologies Co., Ltd. Transmission and reception of enhanced pdcch
US10756940B2 (en) * 2016-09-29 2020-08-25 Lg Electronics Inc. Method and device for transceiving wireless signal in wireless communication system
EP3522654B1 (en) * 2016-09-29 2022-06-01 NTT DoCoMo, Inc. User terminal and wireless communications method
US11825482B2 (en) * 2016-10-03 2023-11-21 Qualcomm Incorporated Techniques for improved control channels
CN110352621B (zh) 2017-03-23 2024-01-26 Oppo广东移动通信有限公司 资源分配方法、装置及系统
CN108633028B (zh) * 2017-03-24 2023-08-11 中兴通讯股份有限公司 一种信道配置方法及通信节点
CN110463327A (zh) * 2017-04-03 2019-11-15 瑞典爱立信有限公司 在无线通信网络中信令发送下行链路控制信息
US10863522B2 (en) 2017-05-03 2020-12-08 Huawei Technologies Co., Ltd. System and method for coexistence of low latency and latency tolerant communications
JP2019004245A (ja) * 2017-06-13 2019-01-10 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN109089316B (zh) * 2017-06-14 2020-11-17 华为技术有限公司 调度方法及相关装置
CN107147457A (zh) * 2017-07-17 2017-09-08 中磊电子(苏州)有限公司 一种信道扫描方法、装置及无线设备
US10588148B2 (en) 2017-08-10 2020-03-10 At&T Intellectual Property I, L.P. Configurable groups of control channel resource sets for wireless communication
CN109587791B (zh) * 2017-09-29 2022-10-14 北京紫光展锐通信技术有限公司 一种控制资源集合的检测方法及装置、介质、设备
JP2021501545A (ja) 2017-11-14 2021-01-14 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co.,Ltd. 残りの最小システム情報の共通制御リソースセットの周波数領域情報を示すための方法
WO2019095140A1 (zh) 2017-11-15 2019-05-23 北京小米移动软件有限公司 剩余关键系统信息的公共控制资源集合的周期信息指示方法
CN109451799B (zh) 2017-11-16 2021-07-06 北京小米移动软件有限公司 剩余关键系统信息的公共控制资源集合的时域信息指示方法
CN111108763A (zh) * 2017-12-15 2020-05-05 Oppo广东移动通信有限公司 一种信道资源集的指示方法及装置、计算机存储介质
US20240172250A1 (en) * 2021-03-26 2024-05-23 Nokia Technologies Oy Control channel detection in terminal device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170703A (zh) * 2011-05-11 2011-08-31 电信科学技术研究院 一种物理下行控制信道上的信息收发方法及设备
CN102355732A (zh) * 2011-08-12 2012-02-15 电信科学技术研究院 一种下行控制信息传输方法及装置
CN102395206A (zh) * 2011-11-08 2012-03-28 电信科学技术研究院 下行控制信息的传输方法和设备
CN102469048A (zh) * 2010-11-18 2012-05-23 中兴通讯股份有限公司 一种确定下行控制信道搜索空间的方法及系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722078A (en) * 1993-11-01 1998-02-24 Ericsson Inc. Method and apparatus for locating a digital control channel in a downbanded cellular radiocommunication system
JP4855985B2 (ja) * 2007-03-20 2012-01-18 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおけるセル情報送信方法およびユーザ装置
US9344259B2 (en) * 2007-06-20 2016-05-17 Google Technology Holdings LLC Control channel provisioning and signaling
KR100943908B1 (ko) 2008-02-19 2010-02-24 엘지전자 주식회사 Pdcch를 통한 제어 정보 송수신 방법
CN101771462A (zh) * 2008-12-31 2010-07-07 华为技术有限公司 一种多载波系统中下行控制信道资源分配方法及设备
WO2010141611A1 (en) 2009-06-02 2010-12-09 Research In Motion Limited System and method for reducing blind decoding for carrier aggregation
CN102801504B (zh) * 2009-08-13 2016-03-30 华为技术有限公司 控制信道映射的方法、控制信道检测的方法和装置
CN102036262A (zh) * 2009-09-25 2011-04-27 中兴通讯股份有限公司 一种下行控制信息的检测方法和装置
CN102056185B (zh) * 2009-10-31 2014-12-10 华为技术有限公司 信道盲检测方法、分配方法和装置
CN102111880A (zh) * 2009-12-29 2011-06-29 电信科学技术研究院 一种下行控制信道资源分配的方法、系统和设备
CN101790190B (zh) * 2010-01-08 2014-12-10 中兴通讯股份有限公司 下行控制信息的检测方法和装置
US8989026B2 (en) * 2010-03-18 2015-03-24 Qualcomm Incorporated User-specific search space design for multi-carrier operation
CN102215507B (zh) * 2010-04-02 2015-07-22 中兴通讯股份有限公司 下行控制信道的检测方法和系统
US20110267948A1 (en) * 2010-05-03 2011-11-03 Koc Ali T Techniques for communicating and managing congestion in a wireless network
CN102123432B (zh) * 2011-03-29 2016-01-06 电信科学技术研究院 一种下行控制信道的资源指示及检测方法、设备
CN102355340B (zh) * 2011-08-12 2017-02-08 中兴通讯股份有限公司 下行控制信息发送、接收方法及装置
CN102547738B (zh) * 2011-12-07 2015-02-25 北京邮电大学 控制信道资源分配方法以及基于其的终端盲检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469048A (zh) * 2010-11-18 2012-05-23 中兴通讯股份有限公司 一种确定下行控制信道搜索空间的方法及系统
CN102170703A (zh) * 2011-05-11 2011-08-31 电信科学技术研究院 一种物理下行控制信道上的信息收发方法及设备
CN102355732A (zh) * 2011-08-12 2012-02-15 电信科学技术研究院 一种下行控制信息传输方法及装置
CN102395206A (zh) * 2011-11-08 2012-03-28 电信科学技术研究院 下行控制信息的传输方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2894915A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417819A (zh) * 2016-09-22 2019-03-01 Oppo广东移动通信有限公司 传输系统信息的方法、网络设备和终端设备
CN109417819B (zh) * 2016-09-22 2020-12-11 Oppo广东移动通信有限公司 传输系统信息的方法、网络设备、终端设备和存储介质
CN110603836A (zh) * 2017-05-02 2019-12-20 Oppo广东移动通信有限公司 传输信号的方法、网络设备和终端设备
CN110603836B (zh) * 2017-05-02 2022-08-12 Oppo广东移动通信有限公司 传输信号的方法、网络设备和终端设备
US11425703B2 (en) 2017-05-02 2022-08-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting signal, network device and terminal device
WO2019029746A1 (zh) * 2017-08-11 2019-02-14 中兴通讯股份有限公司 信息传输方法及装置
US11743902B2 (en) 2017-08-11 2023-08-29 Zte Corporation Information transmission method and apparatus

Also Published As

Publication number Publication date
EP2894915A4 (en) 2015-07-29
US20150200741A1 (en) 2015-07-16
CN103907386A (zh) 2014-07-02
ZA201502317B (en) 2016-10-26
CN110034908A (zh) 2019-07-19
KR20150063118A (ko) 2015-06-08
CA2886245A1 (en) 2014-04-03
CN110034907A (zh) 2019-07-19
MX2015003870A (es) 2015-10-22
EP2894915A1 (en) 2015-07-15
BR112015006774A8 (pt) 2019-09-17
KR101752820B1 (ko) 2017-07-11
BR112015006774A2 (pt) 2017-07-04
CN110034909A (zh) 2019-07-19
CA2886245C (en) 2020-10-27
CN110034909B (zh) 2021-05-14
CN110034908B (zh) 2021-05-18
CN109921890A (zh) 2019-06-21
CN103907386B (zh) 2019-03-26
RU2602808C1 (ru) 2016-11-20
MX345323B (es) 2017-01-25
EP2894915B1 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
WO2014047821A1 (zh) 一种控制信道检测方法及用户设备
JP7345196B2 (ja) ワイヤレス通信システムのためのチャネル多重化方法および多重化チャネル送信方法、ならびにそれらを使用するデバイス
CN113424474B (zh) 在无线通信系统中发送上行链路控制信道的装置和方法
KR102650205B1 (ko) 무선 통신 시스템의 데이터 전송 방법, 수신 방법 및 이를 이용하는 장치
CN110266453B (zh) 盲检公共搜索空间和ue特定搜索空间的方法及设备
KR20230005437A (ko) 무선 통신 시스템의 harq-ack 코드북 생성 방법 및 이를 이용하는 장치
KR20230062886A (ko) 무선 통신 시스템의 상향링크 제어 정보 전송 방법 및 이를 이용하는 장치
KR20200142526A (ko) 무선 통신 시스템의 상향 링크 제어 정보 멀티플렉싱 방법 및 이를 이용하는 장치
CN113966587B (zh) 无线通信系统中的下行数据接收和harq-ack传输的方法、装置和系统
BR112017019486B1 (pt) Dl baseado em dmrs para latência baixa
WO2014019539A1 (zh) 增强的物理下行控制信道的发送及检测方法和设备
TW202116032A (zh) 在無線通訊系統中傳送實體上行共享通道之方法及使用者設備
TW201911786A (zh) 上行鏈路控制通道中的跳頻
WO2013091414A1 (zh) 一种传输信息的方法、系统及设备
TW201804836A (zh) 基於無線網絡的通信方法、終端設備和網絡設備
KR20210039476A (ko) 무선 통신 시스템의 물리 제어 채널 수신 방법 및 이를 이용하는 장치
CN116368761A (zh) 在无线通信系统中生成harq-ack码本的方法、装置和系统
WO2013107267A1 (zh) 一种上行解调导频控制信令的通知方法及系统
JP7515921B2 (ja) ワイヤレス通信システムのリソース割振り方法、デバイス、およびシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2886245

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/003870

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015006774

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2012885350

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012885350

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157010825

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015115678

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015006774

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150326