WO2014048184A1 - 基站设备、终端设备及通信系统 - Google Patents

基站设备、终端设备及通信系统 Download PDF

Info

Publication number
WO2014048184A1
WO2014048184A1 PCT/CN2013/081542 CN2013081542W WO2014048184A1 WO 2014048184 A1 WO2014048184 A1 WO 2014048184A1 CN 2013081542 W CN2013081542 W CN 2013081542W WO 2014048184 A1 WO2014048184 A1 WO 2014048184A1
Authority
WO
WIPO (PCT)
Prior art keywords
epdcch
terminal device
indication information
pair
location indication
Prior art date
Application number
PCT/CN2013/081542
Other languages
English (en)
French (fr)
Inventor
崔棋楣
韩江
曾亮
张映霓
Original Assignee
索尼公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司 filed Critical 索尼公司
Priority to US14/430,064 priority Critical patent/US10820308B2/en
Priority to JP2015533422A priority patent/JP6090453B2/ja
Publication of WO2014048184A1 publication Critical patent/WO2014048184A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • Base station equipment terminal equipment and communication system
  • the present invention generally relates to the field of wireless communications, and more particularly to a universal mobile communication system
  • UMTS A base station apparatus and method for configuring an enhanced physical downlink control channel (ePDCCH), a terminal apparatus and method for detecting an ePDCCH, and a communication system in a subsequent evolution of Long Term Evolution (LTE-A).
  • ePDCCH enhanced physical downlink control channel
  • LTE-A Long Term Evolution
  • LTE-A LTE-A
  • 3GPP 3rd Generation Partnership Project
  • LTE-A LTE-A
  • 3GPP completed the technical requirements report of LTE-A, and proposed the minimum requirements of LTE-A: the downlink rate is 1Gbps, the uplink peak rate is 500Mbps, and the uplink and downlink peaks.
  • the spectrum utilization rates are 15 Mbps/Hz and 30 Mbps/Hz, respectively.
  • 3GPP proposes several key technologies for LTE-A, including carrier aggregation, coordinated multi-point transmission and reception, and multiple antenna enhancement.
  • the downlink control information (Downlink Control Information, DCI) is carried in the physical downlink control channel (PDCCH), and includes resource allocation information and other control information on one or more terminal devices.
  • DCI Downlink Control Information
  • PDCCH physical downlink control channel
  • uplink and downlink resource scheduling information is carried by the PDCCH.
  • the terminal device needs to first demodulate the DCI in the PDCCH, and then can demodulate the physical downlink shared channel (PDSCH) belonging to the terminal device itself, where the PDSCH includes a broadcast message, a paging, and a terminal. Device data, etc.
  • PDSCH physical downlink shared channel
  • ePDCCH Enhanced PDCCH
  • 3GPP standardization to increase control information. Capacity, and can support beamforming, diversity, and small-interval interference removal.
  • the number of blind detections of the terminal is increased from 44 in the previous version (Rel.8/Rel.9) to 60 in the current version (Rel.10), and will continue in future versions. increase.
  • the terminal device does not know the placement position of its PDCCH, and can only perform blind detection in the entire search space, and in the design of the PDCCH, there is no regular large number of blank resource particles (Resource Element, RE). Therefore, it is impossible to indicate by means of signaling. Therefore, in the prior art, the operation complexity on the terminal device side is high.
  • RE blank resource particles
  • the present invention provides a method for configuring an enhanced downlink control channel (ePDCCH), which utilizes blank resource particles in the ePDCCH to add new signaling to the blank resource particles, thereby reducing the terminal device side.
  • ePDCCH enhanced downlink control channel
  • the number of blind detections is performed, thereby reducing the computational complexity of the terminal device side.
  • a base station device for configuring an enhanced physical downlink control channel ePDCCH including: a blank resource particle determining portion, configured to determine a physical resource block pair in a PRB-pair according to system configuration information of the communication system An unused blank resource particle; an ePDCCH location indication information determining portion, configured to determine, according to system configuration information, terminal device identifier information, and channel quality information of the communication system, that the ePDCCH is used in a terminal device search space a location of the ePDCCH location indication information; and a bearer portion, configured to carry the ePDCCH location indication information to the blank resource particle to obtain a subframe including additional signaling carrying the ePDCCH location indication information, and The subframe is sent to the terminal device.
  • a blank resource particle determining portion configured to determine a physical resource block pair in a PRB-pair according to system configuration information of the communication system An unused blank resource particle
  • an ePDCCH location indication information determining portion configured to determine, according to system configuration information
  • the ePDCCH location indication information includes a degree of aggregation of the terminal device search space, and the determining is performed according to the aggregation degree of the terminal device search space and the terminal device identifier information.
  • the ePDCCH is in a starting position in the terminal device search space.
  • the degree of aggregation is an integral multiple of the number of enhanced control channel elements eCCE included in the PRB-pair of the physical resource block pair.
  • the ePDCCH location indication information further includes an offset of the ePDCCH in the terminal search space.
  • the additional signaling is centrally placed into one or more consecutive resource block pairs PRB-pair, or the additional signaling is distributedly distributed to multiple resource block pairs by using a distributed mapping manner. PRB-pair.
  • the bearer portion uses different length bit coding for the additional signaling according to the number of the blank resource particles.
  • the bearer portion maps the terminal device and the resource block pair PRB-pair according to any one of the following mapping manners according to the terminal device identifier information:
  • One terminal device corresponds to one resource block pair PRB-pair
  • one terminal corresponds to multiple resource block pairs PRB-pair
  • multiple terminal devices correspond to one resource block pair PRB-pair
  • multiple terminal devices correspond to multiple resource block pairs PRB-pair -pair.
  • the terminal device identifier information is used for scrambling to distinguish between the same resource block pair PRB-pair ePDCCH location indication information of different terminal devices.
  • the system configuration information of the communication system includes: a physical downlink control channel, a number of OFDM symbols carried by the PDCCH, and a port number of a common reference signal.
  • a method for configuring an enhanced physical downlink control channel ePDCCH including: determining, according to system configuration information of a communication system, a blank resource particle that is not used by a physical resource block pair PRB-pair; System configuration information, terminal device identifier information, and channel quality information of the communication system, determining ePDCCH location indication information used to indicate a location of the ePDCCH in a terminal device search space; and carrying the ePDCCH location indication information to The blank resource particles are used to obtain a subframe including additional signaling carrying the ePDCCH location indication information, and the subframe is transmitted to the terminal device.
  • the ePDCCH location indication information includes a degree of aggregation of the terminal device search space, and an aggregation degree of the terminal i search space and the terminal device identifier information. Determining a starting position of the ePDCCH in the terminal i search space.
  • the ePDCCH location indication information further includes an offset of the ePDCCH in a search space of the terminal device.
  • the step of carrying the bearer according to the empty The number of white resource particles is collectively placed in one or more consecutive resource block pairs PRB-pair in a centralized mapping manner, or the additional signaling is distributedly distributed in a distributed mapping manner. Resource blocks are in the PRB-pair.
  • the step of carrying the bearer uses different length bit coding for the additional signaling according to the number of the blank resource particles.
  • the step of the bearer mapping the terminal device and the resource block pair PRB-pair according to any one of the following mapping manners according to the terminal device identifier information:
  • the terminal device corresponds to one resource block pair PRB-pair, one terminal device corresponds to multiple resource block pairs PRB-pair, multiple terminal devices correspond to one resource block pair PRB-pair, or multiple terminal devices are corresponding to multiple resource block pairs.
  • PRB-pair corresponds to one resource block pair PRB-pair
  • one terminal device corresponds to multiple resource block pairs PRB-pair
  • multiple terminal devices correspond to one resource block pair PRB-pair
  • multiple terminal devices are corresponding to multiple resource block pairs.
  • the method for configuring the ePDCCH wherein when the same resource block maps a plurality of terminal devices in the PRB-pair, the terminal device identifier information is used for scrambling to perform PRB-pair on the same resource block.
  • the ePDCCH location indication information of different terminal devices is distinguished.
  • the system configuration information of the communication system includes: a physical downlink control channel, a number of OFDM symbols carried by the PDCCH, and a number of ports of the common reference signal.
  • a terminal device for detecting an enhanced physical downlink control channel ePDCCH including: a demodulation portion, configured to receive, from a base station device, a subframe including additional signaling carrying ePDCCH location indication information And demodulating the ePDCCH location indication information from the subframe, where the ePDCCH location indication information is used to indicate a location of the ePDCCH in a terminal device search space, and the ePDCCH location indication information is carried
  • the additional signaling is obtained by carrying the ePDCCH location indication information to the unused resource resources of the physical resource block pair PRB-pair; and detecting part, according to the demodulated ePDCCH location indication information, at the terminal
  • the ePDCCH is detected in a device search space.
  • the ePDCCH location indication information includes a degree of aggregation of the terminal device search space, and determining, according to the aggregation degree and end of the terminal device search space, the device identifier information, the ePDCCH is at the terminal
  • the start in the device search space is based on the foregoing terminal device, wherein the degree of aggregation is an integral multiple of the number of enhanced control channel elements eCCE included in the PRB-pair of the physical resource block pair.
  • the ePDCCH location indication information further includes an offset of the ePDCCH in the terminal i search space.
  • the demodulation section determines the resource block pair PRB-pair in which the ePDCCH location indication information is placed according to the terminal device identifier information.
  • the terminal device identifier information is used to perform descrambling and perform CRC calibration on the same
  • the resource block pairs the ePDCCH location indication information of the different terminal devices in the PRB-pair.
  • a method for detecting an enhanced physical downlink control channel ePDCCH including: receiving, from a base station device, a subframe including additional signaling carrying ePDCCH location indication information, and from the subframe Demodulating the ePDCCH location indication information, where the ePDCCH location indication information is used to indicate a location of the ePDCCH in a terminal device search space, and additional signaling carrying the ePDCCH location indication information is based on The ePDCCH location indication information is carried by the physical resource block to the unused blank resource particles in the PRB-pair; and the ePDCCH is detected in the terminal device search space according to the demodulated ePDCCH location indication information.
  • the ePDCCH location indication information includes a degree of aggregation of the terminal device search space, and determining, according to the degree of aggregation of the terminal i search space and terminal device identifier information, that the ePDCCH is located The starting position in the terminal search space.
  • the degree of aggregation is an integral multiple of the number of enhanced control channel elements eCCE included in the PRB-pair of the physical resource block pair.
  • the ePDCCH location indication information further includes an offset of the ePDCCH in a search space of the terminal device.
  • the step of demodulating further comprises: determining, according to the terminal device identifier information, a resource block pair PRB-pair in which the ePDCCH location indication information is placed.
  • the terminal identifier information is descrambled and the CRC face is performed,
  • the ePDCCH location indication information of different terminal devices is distinguished in the same resource block pair PRB-pair.
  • a wireless communication system including: The device includes: a blank resource particle determining portion, configured to determine, according to system configuration information of the communication system, a blank resource particle that is not used in the PRB-pair of the physical resource block; and an ePDCCH location indication information determining portion, configured to perform, according to the communication Determining, by the system configuration information of the system, the terminal identifier identifier information and the channel quality information, ePDCCH location indication information indicating a location of the ePDCCH in a terminal device search space; and a bearer portion configured to use the ePDCCH location Instructing information to be carried to the blank resource particle to obtain a subframe including additional signaling carrying the ePDCCH location indication information, and transmitting the subframe to a terminal device, and a terminal device, including: a demodulation portion, And receiving, from the base station device, a subframe including additional signaling carrying ePDCCH location indication information, and demodulating the
  • a computer storage medium including computer readable instructions for causing a computer to execute: determining, according to system configuration information of a communication system, that a physical resource block is not used in a PRB-pair a blank resource particle; phase> determining ePDCCH location indication information indicating a location of the ePDCCH in a terminal device search space according to system configuration information, terminal device identifier information, and channel quality information of the communication system; The ePDCCH location indication information is carried to the blank resource particle to obtain a subframe including additional signaling carrying the ePDCCH location indication information, and the subframe is sent to the terminal device.
  • a computer storage medium comprising computer readable instructions for causing a computer to perform: receiving, from a base station device, a subframe comprising additional signaling carrying ePDCCH location indication information And demodulating the ePDCCH location indication information from the subframe, where the ePDCCH location indication information is used to indicate a location of the ePDCCH in a terminal device search space, and the ePDCCH location indication information is carried
  • the additional signaling is obtained by carrying the ePDCCH location indication information to the unused resource resources of the physical resource block pair PRB-pair; and searching for the space in the terminal device according to the demodulated ePDCCH location indication information.
  • the ePDCCH is detected in the middle.
  • the number of blind detections on the terminal device side can be reduced, thereby reducing the terminal The computational complexity of the device side.
  • 1 is a schematic diagram showing a search space of a terminal device
  • FIG. 2 is a block diagram showing a base station device configured to configure an ePDCCH according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the use of additional signaling to carry ePDCCH position indication information
  • FIG. 4A is a diagram showing addition of bearer ePDCCH position indication information. Schematic diagram of centralized mapping of signaling;
  • 4B is a schematic diagram showing a distribution mapping manner of additional signaling carrying ePDCCH location indication information
  • FIG. 5 is a schematic diagram showing a mapping manner of mapping a terminal device and a resource block to a PRB-pair;
  • Figure 6 is a diagram showing the placement of additional signaling in a blank resource particle in a PRB-pair
  • FIG. 7 is a schematic diagram showing an encoding and mapping process of additional signaling carrying ePDCCH location indication information
  • FIG. 8 is a flowchart illustrating a method of configuring an ePDCCH according to an embodiment of the present invention
  • FIG. 9 is a block diagram showing a terminal device for detecting an ePDCCH according to an embodiment of the present invention
  • FIG. 10 is a diagram showing an embodiment of the present invention according to an embodiment of the present invention; 3 ⁇ 4 ⁇ 2 map of the method of detecting ePDCCH;
  • FIG 11 is a block diagram showing a communication system in accordance with an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a search space of a terminal device.
  • a search space is a set of optional control channel sets consisting of several Control Channel Elements (CCEs) at a given degree of aggregation.
  • the terminal equipment should attempt to decode these sets.
  • the degree of aggregation refers to the number of times DCI information diversity is sent, that is, the number of CCEs included in one PDCCH.
  • a terminal device may have multiple search spaces. In each subframe, the terminal device attempts to decode all possible control channel formats composed of CCEs in each search space, and if the CRC face is successful, the content of the control channel is considered to be valid for the terminal device, and The terminal device will process related information (eg, scheduling assignments, scheduling requests, etc.).
  • each row represents a PDCCH
  • each block in each row represents a CCE in the PDCCH.
  • every 8 CCEs constitute a control channel set, so the first line of the terminal device 1 corresponds to the degree of aggregation level 8.
  • every 4 CCEs constitute a control channel set, so the second row of the terminal device 1 corresponds to the degree of aggregation level 4; in the third row of the terminal device 1, every 2 The CCEs constitute a set of control channels, so the third line of the terminal device 1 corresponds to the degree of aggregation level 2; in the fourth line of the terminal device 1, one CCE constitutes a control channel set, so the fourth of the terminal device 1
  • the row corresponds to the degree of polymerization level 1.
  • the first to fourth rows of the terminal device 2 correspond to the degree of aggregation levels 8, 4, 2, and 1, respectively.
  • Each downlink control channel can support multiple formats, and these formats are not known to the terminal device in advance. Therefore, the terminal device needs to perform blind detection on the format of the downlink control channel.
  • the description of the CCE structure helps to reduce the number of blind checks, there is still a need for some mechanism to limit the number of CCE sets that the terminal device needs to listen to.
  • restrictions on CCE sets may affect scheduling flexibility and require additional processing at the transmitting end.
  • the search space is for the scheduler Propose as few restrictions as possible while limiting the maximum number of blind checks at the terminal.
  • each terminal device When there are enough CCEs in the system, the search space of each terminal device will be different, and each terminal device in the system has a terminal device-specific search space at each aggregation level. In some cases, it is necessary to address a group or all of the terminal devices in the system, such as scheduling of system information, transmission of paging information, transmission of power control commands, etc., so the common search space is common to all terminal devices, and the control information cell All terminal devices in the device need to listen to CCEs in the public search space. As shown in FIG.
  • the terminal device-specific search spaces in the terminal device 1 and the terminal device 2 are different, and may be partially overlapped, but since the terminal device-specific search space varies with sub-frames, The overlapped parts of the next sub-frame are likely to be no longer overlapping.
  • Table 1 describes the monitoring of DCI. Among them, the public search space is defined only for CCEs with aggregation degrees 4 and 8, and minimum DCI formats (such as 0/1A/3/3A and 1C).
  • Table 1 DCI format in which the terminal device listens in different search spaces
  • FIG. 2 is a block diagram showing a base station device configuring an ePDCCH according to an embodiment of the present invention.
  • the base station device 200 includes a blank resource particle determining portion 202, an ePDCCH position indicating information determining portion 204, and a bearer portion 206.
  • the blank resource particle determining portion 202 is configured to determine, based on the system configuration information of the communication system, the blank resource particles that are not used in the physical resource block pair PRB-pair.
  • the system configuration information of the communication system may be the number of OFDM symbols carried by the PDCCH.
  • the system configuration information of the communication system can be the number of ports of the common reference signal.
  • the base station device may obtain the number of OFDM symbols carried by the PDCCH from a Physical Control Format Indication Channel (PCFICH).
  • PCFICH Physical Control Format Indication Channel
  • the base station device can obtain the number of ports of the common reference signal from the higher layer signaling. It should be understood by those skilled in the art that the system configuration information of the communication system is not limited to the number of OFDM symbols carried by the PDCCH or the number of ports of the common reference signal, and may be other system configuration information known in the art.
  • the base station device can determine the number of resource particles available to the ePDCCH for each physical resource block pair PRB-pair in the system configuration. Specifically, for example, according to the obtained number of OFDM symbols carried by the PDCCH and the number of ports of the common reference signal, the base station device may determine, by using the following Table 2, each of the number of OFDM symbols carried by the PDCCH and the number of ports of the common reference signal. The number of resource particles that can be used by the ePDCCH in the PRB-pair.
  • Table 2 Resources available for ePDCCH in each physical resource block pair in different system configurations Number of particles
  • each eCCE (Enhanced Control Channel Element) includes 36 resource particles, and the number of ports of the demodulation reference signal DMRS is 4.
  • Table 2 for example, if the number of OFDM symbols carried by the PDCCH is 1 and the number of ports of the common reference signal is 4, each physical resource block in the configuration is used for the resource particles available for the ePDCCH in the PRB-pair. The number is 112. For another example, if the number of OFDM symbols carried by the PDCCH is 3 and the number of ports of the common reference signal is 2, each physical resource block in the configuration is used for the resource particles available for the ePDCCH in the PRB-pair. The number is 96.
  • the number of OFDM symbols carried by the PDCCH is 3 and the number of ports of the common reference signal is 1, the number of resource particles available to the ePDCCH in the PRB-pair for each physical resource block pair in the configuration is 102.
  • Table 2 is merely exemplary, and may have different values according to actual conditions.
  • the number of ports of the demodulation reference signal DMRS is 2, the values in Table 2 above will have The corresponding change.
  • the upper 2 may have corresponding changes depending on the system configuration.
  • the base station device can also determine the number of blank resource particles in each physical resource pair PRB-pair under the system configuration.
  • Physical resource pairs The blank resource particles in the PRB-pair refer to resource particles in the PRB-pair that are not occupied by other signaling, data, or pilots.
  • the base station device may determine, by using Table 3 below, each of the number of OFDM symbols carried by the PDCCH and the number of ports of the common reference signal. The number of physical resources to the number of blank resource particles in the PRB-pair.
  • Table 3 Number of blank resource particles in each physical resource block pair in different system configurations
  • each resource particle is included in each eCCE, and the number of ports of the demodulation reference signal DMRS is 4.
  • Table 3 for example, if the number of OFDM symbols carried by the PDCCH is 1 and the number of ports of the common reference signal is 4, according to Table 2 above, each physical resource block pair in the configuration is available in the PRB-pair.
  • each physical resource block in the configuration is used for the resource particles available for the ePDCCH in the PRB-pair
  • each physical resource block in the configuration is used for the resource particles available for the ePDCCH in the PRB-pair.
  • the number of eCCEs carried in the physical resource block pair PRB-pair is fixed to a certain value, or the number of resource particles included in each eCCE is fixed to a value other than 36 or according to
  • a criterion adopts a dynamically changing value, the number of remaining blank resource particles in each configuration will change accordingly.
  • those skilled in the art should be able to make corresponding changes to the above 3 in the spirit of the present disclosure.
  • the ePDCCH location indication information determining portion 204 is configured to determine ePDCCH location indication information indicating a location of the ePDCCH in a terminal device search space according to system configuration information, terminal device identifier information, and channel quality information of the communication system.
  • the system configuration information of the communication system may be the number of OFDM symbols carried by the PDCCH or the number of ports of the common reference signal.
  • the number of eCCEs in each physical resource block pair is dynamically settable. For example, based on the obtained system configuration information of the communication system, the base station device can determine the number of eCCEs in each physical resource block pair PRB-pair under the system configuration. Specifically, for example, according to the obtained number of OFDM symbols carried by the PDCCH and the number of ports of the common reference signal, the base station device may determine, by using the following Table 4, each of the number of OFDM symbols carried by the PDCCH and the number of ports of the common reference signal. The number of physical resource blocks to eCCEs in the PRB-pair.
  • Table 4 Number of eCCEs in each physical resource block pair in different system configurations eCCEs/physical resources Number of OFDM symbols carried by the PDCCH Source block pair 0 1 2 3
  • each resource particle is included in each eCCE, and the number of ports of the demodulation reference signal DMRS is 4.
  • Table 4 for example, if the number of OFDM symbols carried by the PDCCH is 1 and the number of ports of the common reference signal is 4, according to Table 2 above, each physical resource block pair in the configuration is available in the PRB-pair.
  • the number of resource particles used by the ePDCCH is 112.
  • the number of eCCEs that can be carried by the physical resource pair PRB-pair in the configuration is 3, so that the remaining number is The number of blank resource particles is as small as possible.
  • each physical resource block in the configuration is used for the resource particles available for the ePDCCH in the PRB-pair
  • the number of eCCEs that can be carried by the physical resource pair PRB-pair in the configuration is 2, so that the number of remaining blank resource particles is The number is as small as possible.
  • each physical resource block in the configuration is used for the resource particles available for the ePDCCH in the PRB-pair.
  • the number of eCCEs that can be carried by the physical resource pair PRB-pair in the configuration is 2, so that the number of remaining blank resource particles is 2, because each resource in the eCCE includes 36 resource particles.
  • the number is as small as possible.
  • each degree of aggregation in the set of degrees of aggregation may be an integral multiple of the number of enhanced control channel elements eCCE included in the physical resource block pair PRB-pair, so as to be suitable for the terminal device UE to perform reasonable blind detection and further decoding.
  • the base station device may perform each physical resource block pair according to the determined The number of eCCEs in the PRB-pair is the corresponding aggregation degree set. Specifically, for example, according to the determined number of eCCEs in the PRB-pair for each physical resource block, the base station device can obtain the corresponding aggregation degree set by the following Table 5.
  • the demodulation reference letter is The number of ports of the DMRS is 4.
  • the aggregation degree included in the corresponding aggregation degree set of each type of eCCE/physical resource block pair is the number of the eCCEs included in the physical resource block pair PRB-pair
  • the integral multiple is suitable for the terminal device UE to perform reasonable blind detection and further decoding.
  • the corresponding aggregation degree set under the configuration is ⁇ 1, 3, 6, 9 ⁇ .
  • the determined number of eCCEs in the PRB-pair is 2 for each physical resource block pair (for example, a system configuration corresponding to the number of OFDM symbols carried by the PDCCH is 3 and the number of ports of the common reference signal is 2) , the corresponding aggregation degree set under the configuration is ⁇ 1, 2, 4, 8 ⁇ .
  • the ePDCCH location indication information includes a degree of aggregation of the terminal device search space, and the ePDCCH is determined at the terminal device according to the degree of aggregation of the terminal i search space and the terminal device identifier information. The starting position in the search space.
  • the base station device can obtain a corresponding aggregation set according to the system configuration information of the communication system. After obtaining the corresponding aggregation degree set, the base station device may determine the degree of aggregation of the terminal device search space from the corresponding aggregation degree set according to certain conditions. Specifically, for example, the base station device may determine the degree of aggregation of the terminal device search space from the corresponding aggregation degree set according to the channel quality information measured by the terminal device and fed back to the base station device. If the channel quality is worse, the determined degree of aggregation is correspondingly higher; if the channel quality is better, the determined degree of convergence is correspondingly lower.
  • the base station device may determine the degree of aggregation of the terminal device search space from the corresponding aggregation degree set according to the category of the control signaling. If the importance of control signaling is higher, the determined degree of aggregation is correspondingly higher; if the importance of control signaling is lower, the determined degree of aggregation is correspondingly lower. It should be understood by those skilled in the art that the base station apparatus can also determine the degree of aggregation of the terminal device search space based on the aggregation degree set of the combination of the channel quality information and the control signaling level measured by the terminal device and fed back to the base station device. In addition, those skilled in the art should understand that the types of the channel information and the control signaling are only exemplary, and the base station device may determine the degree of aggregation of the terminal device search space from the corresponding aggregation degree set according to other conditions.
  • the base station device can according to the channel quality information measured by the terminal device and fed back to the base station device. And/or the category of control signaling determines that the degree of aggregation of the terminal device search space is 3 from the corresponding aggregation degree set ⁇ 1, 3, 6, 9 ⁇ .
  • the base station device may The class of channel quality information and/or control signaling measured by the terminal device and fed back to the base station device determines that the degree of aggregation of the terminal device search space is 4 from the corresponding aggregation degree set ⁇ 1, 2, 4, 8 ⁇ .
  • the corresponding aggregation degree set in each configuration is fixed, for example, ⁇ 1, 2, 4, 8 ⁇ , and those skilled in the art can understand that the base station device does not have to be specialized.
  • the corresponding aggregation degree set is obtained according to the system configuration information of the communication system, and the station device can directly determine the degree of aggregation of the terminal device search space from the predetermined aggregation degree set according to the predetermined aggregation degree set according to the foregoing manner.
  • the base station device may determine the start position of the ePDCCH in the search space of the terminal device according to the degree of aggregation of the terminal device search space and the terminal device identifier information.
  • the terminal device identifier information may be, for example, a network temporary coding RNTI of the terminal device. It should be understood by those skilled in the art that the network temporary coding RNTI of the terminal device is merely exemplary, and other information of the terminal device may also be used as the terminal device identifier information.
  • the ePDCCH location indication information further includes an offset of the ePDCCH in the terminal search space.
  • the base station device may be in the terminal device search space, and according to the resource utilization situation, the ePDCCH is placed at an appropriate location, thereby determining the offset of the ePDCCH in the terminal search space. For example, as shown in FIG. 2, the offset of the ePDCCH in the terminal device search space is 2.
  • the bearer part 206 is configured to carry the ePDCCH location indication information to the blank resource particle to obtain a subframe including the additional signaling carrying the ePDCCH location indication information, and send the subframe to the terminal device.
  • the ePDCCH location indication information may include the degree of aggregation of the terminal device search space and the offset of the ePDCCH in the terminal device search space. Therefore, the ePDCCH will be
  • the location indication information is carried to the blank resource particle to obtain the subframe that includes the additional signaling that carries the ePDCCH location indication information, which may include: the degree of aggregation of the terminal device search space, and/or the ePDCCH in the terminal device search space.
  • the offset in the bearer is carried to the blank resource particle to obtain a subframe containing additional signaling carrying the degree of aggregation and/or offset.
  • the location indication information of the ePDCCH-UE 1 is mapped to the PRB-pair-B.
  • the additional signaling (indicated by black dots) in PRB-pair-B may indicate the degree of aggregation of ePDCCH-UE 1 in PRB-pair-A (e.g., the degree of aggregation in Figure 3 is 3).
  • the additional signaling in the PRB-pair-B may also indicate the offset of the ePDCCH-UE 1 in the search space (e.g., the offset in Figure 3 is 2).
  • the ePDCCH location indication information may be appropriately encoded.
  • the ePDCCH position indication information may be encoded in a two-bit coding manner. It should be understood by those skilled in the art that the two-bit coding mode is merely exemplary, and the ePDCCH position indication information may also be encoded by other suitable coding methods.
  • the size of the additional signaling i.e., the coding mode
  • the coding mode varies correspondingly depending on the number of blank resource particles.
  • the following table 6 may be used for the ePDCCH bit.
  • the degree of aggregation is encoded in two bits.
  • Table 6 Two-bit coding table for degree of aggregation
  • Table 6 36 resource particles are included in each eCCE, and the number of ports of the demodulation reference signal DMRS is 4. As shown in Table 6, for example, if the degree of aggregation is 3 in the aggregation degree set ⁇ 1, 3, 6, 9 ⁇ , the corresponding degree of polymerization is encoded as 01. Those skilled in the art will appreciate that the above Table 6 is merely illustrative and may have different values depending on the actual situation. Additionally, those skilled in the art will appreciate that the above Table 6 can be predetermined based on prior knowledge.
  • table 7 may be used to perform two-bit encoding on the offset of the ePDCCH included in the ePDCCH location indication information in the terminal device search space.
  • Table 7 Two-bit coding table of the offset of the ePDCCH in the terminal device search space
  • Table 7 36 resource particles are included in each eCCE, and the number of ports of the demodulation reference signal DMRS is 4. As shown in Table 7, for example, if the offset of the ePDCCH in the terminal device search space is 2, its corresponding offset is encoded as 10. Those skilled in the art will appreciate that Table 7 above is merely illustrative and may have different values depending on the actual situation. Additionally, those skilled in the art will appreciate that Table 7 above may be predetermined based on prior knowledge.
  • bit encoding of different lengths may be employed for additional signals based on the number of blank resource particles.
  • the additional signaling may be encoded with different lengths according to the number of blank resource particles, so that the ePDCCH location indication information is encoded.
  • the bits are expanded to more bits. For example, it is assumed that the bit obtained by encoding the degree of aggregation included in the ePDCCH position indication information is 2 bits, and the bit obtained by encoding the offset included in the ePDCCH position indication information is 2 bits, that is, the ePDCCH position indication is performed.
  • the obtained bit is 4 bits, and the additional signaling may be encoded with 16 bits, 24 bits, 32 bits or other bit numbers according to Table 8 or Table 9 below, so that the ePDCCH position indication information is performed.
  • the 4-bit obtained after encoding is expanded to more bits. In this way, the robustness of data transmission in the channel can be improved. In general, the more bits that are extended, the stronger the robustness, but the greater the resource usage. In view of the fact that the number of remaining blank resource particles in each physical resource block pair changes in the present invention, an extension method in which the number of bits of the coded bits is variable is employed in the present invention.
  • Table 8 is an explanatory table for expanding and mapping the ePDCCH location indication information to the blank resource particles in the PRB-pair by using the centralized mapping manner
  • Table 9 is for expanding and mapping the ePDCCH location indication information to the PRB by using the distribution mapping manner.
  • the additional signaling is distributed to multiple resource block pairs PRB-pair.
  • FIG. 4A is a schematic diagram showing a centralized mapping manner of additional signaling carrying ePDCCH location indication information.
  • Table 8 is an explanatory table for expanding and mapping the ePDCCH position indication information to the blank resource particles in the PRB-pair by using the centralized mapping method.
  • the additional signaling can be collectively placed in one PRB-pair by using a centralized mapping method.
  • a centralized mapping method As shown in Table 8, for example, the number of blank resource particles in the PRB-pair is 18, and the number of resource particles required for additional signaling is 16, so as shown in FIG. 4A, a centralized mapping method may be adopted.
  • the additional signaling carrying the ePDCCH-UE_8 location indication information is placed into a PRB-pair-A.
  • the centralized mapping method mentioned here is not an absolute concept, as long as it is a mapping method in which additional signaling is placed in a centralized manner in one or more consecutive physical resource block pairs.
  • the ePDCCH position indication information may be expanded to a larger number of bits as much as possible to improve the robustness.
  • the number of extension bits in the configuration in which the number of blank resource particles is 4 can also be set to 16 bits.
  • a blank RE of a physical resource block pair can only carry 8 bits, and at least two physical resource block pairs are required to carry the extended ePDCCH position indication information.
  • the additional signaling can be placed into two consecutive resource block pairs PRB-pair, which is a centralized mapping mode with respect to the distribution mapping mode for obtaining the diversity gain.
  • the distribution mapping method refers to the following mapping manner: even if the number of blank resource particles in the PRB-pair is larger than the number of data particles required for additional signaling, the additional signaling is split, and Distributedly placed in different PRB-pairs to obtain frequency diversity gain. As shown in Table 9, for example, the number of blank source particles in the PRB-pair is 18, and the number of resource particles required for additional signaling is 16, so that as shown in FIG. 4B, the terminal device 1 can be The additional signaling is split into 4 parts, and the 4 parts after the split are placed in the PRB-pair-A, PRB-pair-B, PRB-pair-C and PRB-pair-D. In the pair.
  • the additional signaling of the terminal device 2 to the terminal device 4 may be separately split into four parts, and the four parts after the splitting are also placed in the PRB-pair-A, PRB-pair-B, respectively.
  • PRB-pair-C and PRB-pair-D are among the 4 PRB-pairs. Therefore, a part of the additional signaling of the terminal device 1 to the terminal device 4 will be carried in one PRB-pair.
  • Table 9 the ePDCCH position indication information additional signaling that allows up to 4 terminal devices in a signaling space is defined, so the terminal device only needs to detect at most 4 times. Although distributed mapping adds complexity, frequency diversity gain is obtained.
  • the terminal device and the resource block pair PRB-pair are mapped according to any one of the following mapping manners according to the terminal device identifier information:
  • One terminal device corresponds to one resource block pair PRB-pair
  • One terminal device corresponds to multiple resource block pairs PRB-pair
  • multiple terminal devices correspond to one resource block pair PRB-pair
  • multiple terminal devices correspond to multiple resource block pairs PRB-pair e
  • FIG. Fig. 5 is a diagram showing a mapping manner of mapping a terminal device and a resource block to a PRB-pair.
  • the direct mapping relationship between the terminal device and the placement of the ePDCCH location indication information additional signaling PRB-pair is only related to the terminal device identifier information.
  • the following four situations are allowed: 1) As shown in Figure 5 (a), one terminal device corresponds to one PRB-pair; 2) as shown in Figure 5 (b), one terminal device corresponds to multiple PRB-pairs; As shown in FIG. 5(c), a plurality of terminal devices correspond to one PRB-pair; and 4) as shown in FIG. 5(d), a plurality of UEs correspond to a plurality of PRB-pairs.
  • a mapped PRB-pair space includes multiple terminal devices, the current terminal device needs to perform several blind detections in the ePDCCH location indication signaling space to obtain a final result.
  • the specific mapping rules for terminal devices to PRB-pair can be flexibly set according to actual needs. For example, it is assumed that the terminal device identifier information is: UE1, UE2, UE3, ...; the PRB-pair number in the ePDCCH signaling space is PRB1, PRB2, PRB3, and the terminal device identifier information is between the number value of the PRB-pair
  • the mapping relationship can be as shown in Table 10 or Table 11 or Table 12.
  • Table 10 Block relationship between terminal device identifier information and PRB -pair 1 Terminal device identifier
  • PRB number PRB1 PRB2 PRB3 Table 11 Block relationship between terminal device identifier information and PRB-pair 2
  • Table 12 Block relationship between terminal device identifier information and PRB -pair 3
  • a blank resource particle in a PRB-pair can be placed at the top of the PRB-pair.
  • it can be placed in the order of the post-time domain (shown by the horizontal axis in FIG. 6) in the pre-frequency domain (as shown by the vertical axis in FIG. 6). Additional signaling.
  • the terminal device identifier information is used for scrambling to distinguish ePDCCHs of different terminal devices in the same resource block pair PRB-pair. Location indication information.
  • the ePDCCH location indication For information additional signaling additional signaling between different terminal devices is distinguished by scrambling using terminal device identifier information. In this case, the terminal device needs to perform several times of detection to obtain its own ePDCCH position indication information additional signaling. As shown in Table 9 above, the ePDCCH location indication information additional signaling that allows a maximum of 4 UEs to be carried in one signaling space is defined. Therefore, the terminal device needs to detect up to 4 times to obtain its own ePDCCH location indication information additional signaling.
  • FIG. 7 is a schematic diagram showing an encoding and mapping process of additional signaling carrying ePDCCH location indication information.
  • the base station device can determine the bearer and mapping manner of the ePDCCH location indication information of the terminal device in the current system configuration according to Table 8 or Table 9. Then, as shown in FIG. 7, the base station device may calculate, according to the terminal device identifier information, a PRB-pair position of the ePDCCH position indication information that carries the terminal device in the current system configuration, and after the bits are QPSK modulated, sequentially placed in the corresponding PRB-pair.
  • adding new signaling to the blank resource particles can reduce the number of blind detections performed by the terminal device side, thereby reducing the computational complexity of the terminal device side.
  • FIG. 8 is a flowchart illustrating a method of configuring an ePDCCH according to an embodiment of the present invention.
  • the method begins at step 800.
  • the blank resource particles that are not used in the PRB-pair are determined according to the system configuration information of the communication system.
  • step 804 ePDCCH location indication information for indicating a location of the ePDCCH in the terminal device search space is determined according to system configuration information, terminal device identifier information, and information information of the communication system.
  • step 806 the ePDCCH location indication information is carried to the blank resource particle to obtain a subframe including additional signaling carrying the ePDCCH location indication information, and the subframe is sent to the terminal device. .
  • the method ends at step 808.
  • the method for configuring the ePDCCH according to the embodiment of the present invention is a method corresponding to the base station device 200 configuring the ePDCCH according to the embodiment of the present invention, and thus specific details thereof are not described herein again.
  • FIG. 9 is a block diagram showing a terminal device that detects an ePDCCH according to an embodiment of the present invention. As shown as shown in FIG. 9, the terminal device 900 that detects the ePDCCH includes a demodulation portion 902 and a detection portion 904.
  • the demodulation section 902 is configured to receive, from the base station device, a subframe that includes additional signaling carrying ePDCCH location indication information, and demodulate the ePDCCH location indication information from the subframe, where the ePDCCH location indication information And indicating that the ePDCCH is located in a terminal device search space, and the additional signaling that carries the ePDCCH location indication information is based on carrying the ePDCCH location indication information to a physical resource block pair that is not used in the PRB-pair Blank resource particles are obtained.
  • the terminal device receives data from the base station device.
  • the terminal device determines the number of OFDM symbols occupied by the PDCCH by demodulating the PCFICH (Physical Control Format Indicator Channel).
  • the terminal device obtains the number of ports of the system common reference signal and the number of ports of the demodulation reference signal DMRS from the high layer signaling, or the number of ports of the system common reference signal when the terminal device knows the number of DMRS ports.
  • the terminal device determines the number of blank resource particles in a PRB-pair according to Table 3 above. In addition, the terminal device obtains the aggregation degree set corresponding to the terminal device itself according to the above Table 5. In addition, the terminal device determines the mapping manner of the ePDCCH location indication information in the current system configuration according to Table 8 or Table 9 above.
  • the resource block pair PRB-pair e to which the ePDCCH location indication information is placed may be determined according to the terminal device identifier information.
  • the terminal device may pass the above Table 10, Table 11, or Table 12.
  • the PRB-pair location of the ePDCCH location indication information of the bearer terminal device in the current system configuration is obtained according to the terminal device identifier information and the current ePDCCH location indication information mapping manner.
  • the terminal device demodulates the ePDCCH position indication information of the terminal device in the corresponding PRB-pair in a certain order, for example, in the order of the pre-frequency domain back time domain shown in FIG. 6 at the location of the additional signaling. .
  • the ePDCCH location indication information may include a degree of aggregation of the terminal device search space.
  • the ePDCCH location indication information may further include an offset of the ePDCCH in the terminal device search space. After demodulating the ePDCCH location indication information of the terminal device, the degree of aggregation of the terminal device and the offset of the ePDCCH in the terminal device search space may be obtained by using Table 6 and Table 7 above.
  • the starting position of the ePDCCH in the terminal device search space may be determined according to the degree of aggregation of the terminal device search space and the terminal device identifier information.
  • the calculation method of the starting position of the search space refer to the protocol TS 36.213 in the PDCCH.
  • the formula and content for calculating the starting position of the search space in Section 9.1.1 are not described here.
  • the offset of the ePDCCH in the terminal device search space may be combined to obtain the location of the ePDCCH in the terminal device search space.
  • the additional signaling carrying the ePDCCH location indication information may be demodulated according to the location of the ePDCCH in the terminal i search space to obtain the ePDCCH location indication information. It should be understood by those skilled in the art that the above-mentioned offset is not necessary, that is, an additional signal carrying the ePDCCH location indication information may be performed by blindly checking only the possible locations after the initial location according to the ePDCCH search space start location. Let the demodulation.
  • the terminal device identifier information is used to perform descrambling and CRC face correction, in the same resource block pair.
  • the PRB-pair distinguishes ePDCCH location indication information of different terminal devices.
  • the detecting part 904 is configured to detect the ePDCCH in the terminal search space by using the ePDCCH position indication information obtained by demodulation.
  • the ePDCCH location indication information is demodulated from the new signaling added by the blank resource particles in the ePDCCH, and the ePDCCH location indication information obtained by the demodulation is detected in the terminal device search space.
  • the ePDCCH can reduce the number of blind detections performed by the terminal device side, thereby reducing the computational complexity of the terminal device side.
  • FIG. 10 is a flowchart illustrating a method of detecting an ePDCCH according to an embodiment of the present invention.
  • the method begins at step 1000.
  • step 1002 a subframe including the additional signaling carrying the ePDCCH location indication information is received from the base station device, and the ePDCCH location indication information is demodulated from the subframe, where the ePDCCH location indication information is used to indicate that the ePDCCH is searched at the terminal device.
  • the location in the space, and the additional signaling carrying the ePDCCH location indication information is based on the fact that the ePDCCH location indication information is carried to the physical resource block pair unused resource fragments in the PRB-pair.
  • step 1004 detecting ePDCCHo in the terminal device search space according to the demodulated ePDCCH location indication information, the method ends at step 1006.
  • a method for detecting an ePDCCH according to an embodiment of the present invention is a method corresponding to a terminal device that detects an ePDCCH according to an embodiment of the present invention, and thus specific details thereof are not described herein again.
  • a communication system according to an embodiment of the present invention will be described below with reference to FIG. 11 is a block diagram showing a communication system in accordance with an embodiment of the present invention.
  • the communication system 1100 includes a base station device 200 and a terminal device 900 that perform wireless communication with each other.
  • the base station device 200 includes: a blank resource particle determining portion 202, configured to determine, according to system configuration information of the communication system, a blank resource particle that is not used in the physical resource block pair PRB-pair; and an ePDCCH location indication information determining portion 204, configured to System configuration information, terminal device identifier information, and channel quality information of the communication system, determining ePDCCH location indication information used to indicate a location of the ePDCCH in a terminal device search space; and a bearer portion 206, configured to use the ePDCCH
  • the location indication information is carried to the blank resource particle to obtain a subframe including additional signaling carrying the ePDCCH location indication information, and the subframe is transmitted to the terminal device.
  • the terminal device 900 includes: a demodulation portion 902, configured to receive, from a base station device, a subframe that includes additional signaling that carries ePDCCH location indication information, and demodulate the ePDCCH location indication information from the subframe, where The ePDCCH location indication information is used to indicate a location of the ePDCCH in a terminal device search space, and the additional signaling carrying the ePDCCH location indication information is based on carrying the ePDCCH location indication information to a physical resource block pair PRB And the detection part 904 is configured to detect the ePDCCH in the terminal device search space according to the ePDCCH position indication information obtained by the demodulation.
  • a demodulation portion 902 configured to receive, from a base station device, a subframe that includes additional signaling that carries ePDCCH location indication information, and demodulate the ePDCCH location indication information from the subframe, where The ePDCCH location indication information is used to indicate a location of the

Abstract

公开了一种基站设备、终端设备及通信系统。配置ePDCCH的基站设备包括:空白资源粒子确定部分,用于根据通信系统的系统配置信息,确定物理资源块对PRB-pair中未使用的空白资源粒子;ePDCCH位置指示信息确定部分,用于根据通信系统的系统配置信息、终端设备标识符信息和信道质量信息,确定用于指示ePDCCH在终端设备搜索空间中的位置的ePDCCH位置指示信息;以及承载部分,用于将ePDCCH位置指示信息承载到空白资源粒子以得到包含承载有ePDCCH位置指示信息的附加信令的子帧,并且将子帧发送到终端设备。

Description

基站设备、 终端设备及通信系统
技术领域
本发明一般涉及无线通信领域, 更具体地涉及通用移动通信系统
( UMTS )长期演进的后续演进 (LTE-A ) 中配置增强物理下行控制信 道(ePDCCH ) 的基站设备和方法、 检测 ePDCCH的终端设备和方法及 通信系统。
背景技术
通用移动通信系统 ( Universal Mobile Telecommunication System, UMTS )技术的长期演进 ( Long Term Evolution, LTE )是第 3代合作伙 伴计划 (3rd Generation Partnership Project, 3GPP )近几年来启动的最 大的新技术研发项目, 这项技术可以被看成是 "准 4G技术"。 LTE-A ( LTE-Advanced )是 LTE的后续演进, 3GPP在 2008年完成了 LTE-A 的技术需求报告, 提出了 LTE-A的最小需求: 下 值速率 lGbps, 上 行峰值速率 500Mbps, 上下行峰值频谱利用率分别达到 15Mbps/Hz和 30Mbps/Hz。 为了满足 4G技术的各种需求指标, 3GPP针对 LTE-A提出 了几个关键技术, 包括载波聚合、 协作多点发送和接收、 多天线增强等。
物理下行控制信道( Physical Downlink Control Channel, PDCCH ) 中承载的是下行控制信息 (Downlink Control Information, DCI ), 包含一 个或多个终端设备上的资源分配信息和其他的控制信息。 在 LTE中, 上 下行的资源调度信息都是由 PDCCH来承载的。一般来说,在一个子帧内, 可以有多个 PDCCH。 终端设备需要首先解调 PDCCH中的 DCI, 然后才 能够在相应的资源位置上解调属于终端设备自己的物理下行共享信道 ( Physical Downlink Shared Channel, PDSCH ), 其中 PDSCH包括广播 消息, 寻呼, 终端设备的数据等。
现在, 针对 LTE-R10之后的版本中对载波聚合、 协作多点发送和接 收、 多天线增强等关键技术的调度需求, 在 3GPP 标准化中提出了 ePDCCH ( Enhanced PDCCH ), 用以增大控制信息的容量, 并且可以支 持波束赋形、 分集、 小区间干扰删除等技术。 鉴于 ePDCCH支持的格式 越来越多, 终端设^ 】盲检测次数从先前版本 ( Rel.8/Rel.9 ) 中的 44 次 增加到当前版本(Rel.10 ) 中的 60次, 并且在未来版本中还会继续增加。 在 PDCCH的设计中,终端设备不知道其 PDCCH的放置位置,只能在整 个搜索空间中进行盲检测,并且在 PDCCH的设计中,不存在有规律的大 量空白资源粒子( Resource Element, RE ), 因此无法通过信令的方式进行 指示。 因此, 在现有技术中终端设备侧的运算复杂度高。
发明内容
与现有技术中的 PDCCH相比, 在 ePDCCH的设计中, 在大多数系 统配置下, 会存在有规律的数量可观的空白资源粒子。基于此, 本发明提 出了一种配置增强下行控制信道(ePDCCH ) 的方法, 该方法通过对 ePDCCH 中的空白资源粒子进行充分利用, 在空白资源粒子中增加新的 信令,减少了终端设备侧进行盲检测的次数,从而降低了终端设备侧的运 算复杂度。
根据本发明的一个实施例, 提供了一种配置增强物理下行控制信道 ePDCCH 的基站设备, 包括: 空白资源粒子确定部分, 用于根据通信系 统的系统配置信息, 确定物理资源块对 PRB-pair中未使用的空白资源粒 子; ePDCCH位置指示信息确定部分, 用于根据所述通信系统的系统配 置信息、 终端设备标识符信息和信道质量信息, 确定用于指示所述 ePDCCH在终端设备搜索空间中的位置的 ePDCCH位置指示信息; 以及 承载部分, 用于将所述 ePDCCH位置指示信息承载到所述空白资源粒子 以得到包含承载有所述 ePDCCH位置指示信息的附加信令的子帧, 并且 将所述子帧发送到终端设备。
才艮据上述基站 i殳备, 其中, 所述 ePDCCH位置指示信息包括所述终 端设备搜索空间的聚合度,以及根据所述终端设备搜索空间的聚合度和所 述终端设备标识符信息确定所述 ePDCCH在所述终端设备搜索空间中的 起始位置。
才艮据上述基站设备,其中,所述聚合度为所述物理资源块对 PRB-pair 中包含的增强控制信道单元 eCCE的个数的整倍数。
才艮据上述基站 i史备, 其中, 所述 ePDCCH位置指示信息还包括所述 ePDCCH在所述终端 i殳备搜索空间中的偏移量。
才艮据上述基站设备,其中,所述承载部分根据所述空白资源粒子的数 目,采用集中映射方式将所述附加信令集中地放置到一个或多个连续的资 源块对 PRB-pair中, 或者采用分布映射方式将所述附加信令分布地放置 到多个资源块对 PRB-pair中。
才艮据上述基站设备,其中,所述承载部分根据所述空白资源粒子的数 目, 对所述附加信令采用不同长度的比特编码。
才艮据上述基站 i殳备,其中,所述承载部分根据所述终端设备标识符信 息, 按照以下映射方式中的任一种对所述终端设备和所述资源块对 PRB-pair进行映射: 一个终端设备对应一个资源块对 PRB-pair, 一个终 端设 对应多个资源块对 PRB-pair, 多个终端设备对应一个资源块对 PRB-pair, 或多个终端设备对应多个资源块对 PRB-pair。
才艮据上述基站设备, 其中, 当同一资源块对 PRB-pair中映射有多个 终端设备时,采用所述终端设备标识符信息进行加扰以在所述同一资源块 对 PRB-pair中区分不同终端设备的 ePDCCH位置指示信息。
才艮据上述基站 i殳备, 其中, 所述通信系统的系统配置信息包括: 物理 下行控制信道 PDCCH承载的 OFDM符号个数和公共参考信号的端口数。
根据本发明的另一实施例, 提供了一种配置增强物理下行控制信道 ePDCCH 的方法, 包括: 根据通信系统的系统配置信息, 确定物理资源 块对 PRB-pair中未使用的空白资源粒子; 根据所述通信系统的系统配置 信息、终端设备标识符信息和信道质量信息,确定用于指示所述 ePDCCH 在终端设备搜索空间中的位置的 ePDCCH位置指示信息; 以及将所述 ePDCCH位置指示信息承载到所述空白资源粒子以得到包含承载有所述 ePDCCH位置指示信息的附加信令的子帧, 并且将所述子帧发送到终端 设备。
才艮据上述配置 ePDCCH的方法,其中, 所述 ePDCCH位置指示信息 包括所述终端设备搜索空间的聚合度,以及 L据所述终端 i殳备搜索空间的 聚合度和所述终端设备标识符信息确定所述 ePDCCH在所述终端 i史备搜 索空间中的起始位置。
才艮据上述配置 ePDCCH的方法, 其中, 所述聚合度为所述物理资源 块对 PRB-pair中包含的增强控制信道单元 eCCE的个数的整倍数。
才艮据上述配置 ePDCCH的方法,其中, 所述 ePDCCH位置指示信息 还包括所述 ePDCCH在所述终端设备搜索空间中的偏移量。
根据上述配置 ePDCCH的方法, 其中, 所述承载的步骤根据所述空 白资源粒子的数目,采用集中映射方式将所述附加信令集中地放置到一个 或多个连续的资源块对 PRB-pair中, 或者采用分布映射方式将所述附加 信令分布地放置到多个资源块对 PRB-pair中。
根据上述配置 ePDCCH的方法, 其中, 所述承载的步骤根据所述空 白资源粒子的数目, 对所述附加信令采用不同长度的比特编码。
根据上述配置 ePDCCH的方法, 其中, 所述承载的步骤根据所述终 端设备标识符信息,按照以下映射方式中的任一种对所述终端设备和所述 资源块对 PRB-pair进行映射:一个终端设备对应一个资源块对 PRB-pair, 一个终端设备对应多个资源块对 PRB-pair, 多个终端设备对应一个资源 块对 PRB-pair, 或多个终端 i殳备对应多个资源块对 PRB-pair。
才艮据上述配置 ePDCCH 的方法, 其中, 当同一资源块对 PRB-pair 中映射有多个终端设备时,采用所述终端设备标识符信息进行加扰以在所 述同一资源块对 PRB-pair中区分不同终端设备的 ePDCCH位置指示信 息。
才艮据上述配置 ePDCCH的方法, 其中, 所述通信系统的系统配置信 息包括: 物理下行控制信道 PDCCH承载的 OFDM符号个数和公共参考 信号的端口数。
根据本发明的又一实施例, 提供了一种检测增强物理下行控制信道 ePDCCH 的终端设备, 包括: 解调部分, 用于从基站设备接收包含承载 有 ePDCCH位置指示信息的附加信令的子帧, 并且从所述子帧中解调得 到所述 ePDCCH位置指示信息, 其中, 所述 ePDCCH位置指示信息用于 指示所述 ePDCCH 在终端设备搜索空间中的位置, 并且承载有所述 ePDCCH位置指示信息的附加信令是基于将所述 ePDCCH位置指示信息 承载到物理资源块对 PRB-pair中未使用的空白资源粒子得到的; 以及检 测部分, 根据解调得到的 ePDCCH位置指示信息, 在所述终端设备搜索 空间中检测所述 ePDCCH。
根据上述终端设备, 其中, 所述 ePDCCH位置指示信息包括所述终 端设备搜索空间的聚合度,以及根据所述终端设备搜索空间的聚合度和终 ,设备标识符信息确定所述 ePDCCH在所述终端设备搜索空间中的起始 根据上述终端设备,其中,所述聚合度为所述物理资源块对 PRB-pair 中包含的增强控制信道单元 eCCE的个数的整倍数。 根据上述终端设备, 其中, 所述 ePDCCH位置指示信息还包括所述 ePDCCH在所述终端 i殳备搜索空间中的偏移量。
根据上述终端设备, 其中, 所述解调部分 ^据终端设备标识符信息, 确定所述 ePDCCH位置指示信息被放置在的资源块对 PRB-pair。
根据上述终端设备, 其中, 当同一资源块对 PRB-pair中存在多个终 端设备的 ePDCCH位置指示信息时, 采用所述终端设备标识符信息进行 解扰并进行 CRC校臉, 以在所述同一资源块对 PRB-pair中区分不同终 端设备的 ePDCCH位置指示信息。
根据本发明的再一实施例, 提供了一种检测增强物理下行控制信道 ePDCCH的方法, 包括: 从基站设备接收包含承载有 ePDCCH位置指示 信息的附加信令的子帧, 并且从所述子帧中解调得到所述 ePDCCH位置 指示信息, 其中, 所述 ePDCCH位置指示信息用于指示所述 ePDCCH在 终端设备搜索空间中的位置, 并且承载有所述 ePDCCH位置指示信息的 附加信令是基于将所述 ePDCCH 位置指示信息承载到物理资源块对 PRB-pair 中未使用的空白资源粒子得到的; 以及根据解调得到的 ePDCCH位置指示信息,在所述终端设备搜索空间中检测所述 ePDCCHo 根据上述检测 ePDCCH的方法,其中, 所述 ePDCCH位置指示信息 包括所述终端设备搜索空间的聚合度,以及 L据所述终端 i殳备搜索空间的 聚合度和终端设备标识符信息确定所述 ePDCCH在所述终端设备搜索空 间中的起始位置。
根据上述检测 ePDCCH的方法, 其中, 所述聚合度为所述物理资源 块对 PRB-pair中包含的增强控制信道单元 eCCE的个数的整倍数。
根据上述检测 ePDCCH的方法,其中, 所述 ePDCCH位置指示信息 还包括所述 ePDCCH在所述终端设备搜索空间中的偏移量。
根据上述检测 ePDCCH的方法, 其中, 所述解调的步骤还包括: 根 据终端设备标识符信息, 确定所述 ePDCCH位置指示信息被放置在的资 源块对 PRB-pair。
根据上述检测 ePDCCH 的方法, 其中, 当同一资源块对 PRB-pair 中存在多个终端设备的 ePDCCH位置指示信息时, 采用所述终端 i殳备标 识符信息进行解扰并进行 CRC校臉, 以在所述同一资源块对 PRB-pair 中区分不同终端设备的 ePDCCH位置指示信息。
根据本发明的又一实施例, 提供了一种无线通信系统, 包括: 基站设 备,其包括:空白资源粒子确定部分,用于根据通信系统的系统配置信息, 确定物理资源块对 PRB -pair中未使用的空白资源粒子; ePDCCH位置指 示信息确定部分,用于根据所述通信系统的系统配置信息、终端 i殳备标识 符信息和信道质量信息, 确定用于指示所述 ePDCCH在终端设备搜索空 间中的位置的 ePDCCH 位置指示信息; 以及承载部分, 用于将所述 ePDCCH位置指示信息承载到所述空白资源粒子以得到包含承载有所述 ePDCCH位置指示信息的附加信令的子帧, 并且将所述子帧发送到终端 设备, 以及终端设备, 其包括: 解调部分, 用于从所述基站设备接收包含 承载有 ePDCCH位置指示信息的附加信令的子帧, 并且从所述子帧中解 调得到所述 ePDCCH位置指示信息,其中, 所述 ePDCCH位置指示信息 用于指示所述 ePDCCH在终端设备搜索空间中的位置, 并且承载有所述 ePDCCH位置指示信息的附加信令是基于将所述 ePDCCH位置指示信息 承载到物理资源块对 PRB-pair中未使用的空白资源粒子得到的; 以及检 测部分, 根据解调得到的 ePDCCH位置指示信息, 在所述终端设备搜索 空间中检测所述 ePDCCH。
根据本发明的再一实施例,公开一种包括计算机可读指令的计算机存 储介质, 计算机指令用于使计算机执行: 根据通信系统的系统配置信息, 确定物理资源块对 PRB-pair中未使用的空白资源粒子; 相>据所述通信系 统的系统配置信息、终端设备标识符信息和信道质量信息,确定用于指示 所述 ePDCCH在终端设备搜索空间中的位置的 ePDCCH位置指示信息; 以及将所述 ePDCCH位置指示信息承载到所述空白资源粒子以得到包含 承载有所述 ePDCCH位置指示信息的附加信令的子帧, 并且将所述子帧 发送到终端 i殳备。
才艮据本发明的又一实施例,公开一种包括计算机可读指令的计算机存 储介质, 计算机指令用于使计算机执行: 从基站设备接收包含承载有 ePDCCH位置指示信息的附加信令的子帧, 并且从所述子帧中解调得到 所述 ePDCCH位置指示信息, 其中, 所述 ePDCCH位置指示信息用于指 示所述 ePDCCH 在终端设备搜索空间中的位置, 并且承载有所述 ePDCCH位置指示信息的附加信令是基于将所述 ePDCCH位置指示信息 承载到物理资源块对 PRB-pair中未使用的空白资源粒子得到的; 以及根 据解调得到的 ePDCCH位置指示信息, 在所述终端设备搜索空间中检测 所述 ePDCCH。
采用本发明,可以减少终端设备侧进行盲检测的次数,从而降低终端 设备侧的运算复杂度。
附图说明
参照下面结合附图对本发明实施例的说明,会更加容易地理解本发明 的以上和其它目的、特点和优点。 在附图中, 相同的或对应的技术特征或 部件将采用相同或对应的附图标记来表示。
图 1是示出终端设备的搜索空间的示意图;
图 2是示出根据本发明实施例的配置 ePDCCH的基站 i殳备的框图; 图 3是示出采用附加信令承载 ePDCCH位置指示信息的示意图; 图 4A是示出承载 ePDCCH位置指示信息的附加信令的集中映射方 式的示意图;
图 4B是示出承载 ePDCCH位置指示信息的附加信令的分布映射方 式的示意图;
图 5是示出对终端设备和资源块对 PRB-pair进行映射的映射方式的 示意图;
图 6是示出在一个 PRB-pair中的空白资源粒子中放置附加信令的示 意图;
图 7是示出承载 ePDCCH位置指示信息的附加信令的编码及映射过 程的示意图;
图 8是示出根据本发明实施例的配置 ePDCCH的方法的流程图; 图 9是示出根据本发明实施例的检测 ePDCCH的终端 i殳备的框图; 图 10是示出根据本发明实施例的检测 ePDCCH的方法的¾½图;以 及
图 11是示出根据本发明实施例的通信系统的框图。
具体实施方式
下面参照附图来说明本发明的实施例。 应当注意, 为了清楚的目的, 附图和说明中省略了与本发明无关的、本领域普通技术人员已知的部件和 处理的表示和描述。 如上所述,终端设备为了获得 PDCCH的放置位置,需要在整个搜索 空间中进行盲检测。 因此, 如果能够降低终端设备的搜索空间的复杂度, 则可以减少终端设备侧进行盲检测的次数,从而降低终端设备侧的运算复 杂度。现在将参考图 1来说明终端设备的搜索空间。 图 1是示出终端设备 的搜索空间的示意图。
一个搜索空间是给定聚合度等级上由若干个控制信道单元( Control Channel Element, CCE )构成的一系列可选的控制信道集合,终端设备应 尝试对这些集合进行解码。聚合度等级指的是 DCI信息分集发送的次数, 即一个 PDCCH中包含的 CCE的个数。 在 PDCCH中, 对应于 1、 2、 4、 8这四个不同的聚合度等级, 一个终端设备可能存在多个搜索空间。 在每 个子帧中, 终端设备尝试对每个搜索空间中由 CCE构成的所有可能的控 制信道格式进行解码, 如果 CRC校臉成功, 则认为控制信道的内容对该 终端设备是有效的, 并且该终端设备将处理相关信息(例如调度分配、调 度请求等 )。
如图 1所示, 示出了两个终端 i殳备: 终端设备 1和终端设备 2, 并且 搜索空间和公共搜索空间。 在图 1中, 每一行代表一个 PDCCH, 每一行 中的每个方块代表 PDCCH中的一个 CCE。 如图 1所示, 在终端设备 1 的第一行中, 每 8个 CCE构成一个控制信道集合, 所以终端设备 1的第 一行对应于聚合度等级 8。 类似地, 在终端设备 1 的第二行中, 每 4个 CCE构成一个控制信道集合, 所以终端设备 1的第二行对应于聚合度等 级 4; 在终端设备 1的第三行中, 每 2个 CCE构成一个控制信道集合, 所以终端设备 1的第三行对应于聚合度等级 2; 以 ½终端设备 1的第四 行中, 1个 CCE构成一个控制信道集合, 所以终端设备 1的第四行对应 于聚合度等级 1。 类似地, 终端设备 2的第一行至第四行分别对应于聚合 度等级 8、 4、 2和 1。
每个下行控制信道可支持多个格式,并且这些格式对终端设备来说是 预先未知的。 因此, 终端设备需要对下行控制信道的格式进行盲检。 虽然 对于 CCE结构的描述, 有助于降低盲检的次数, 但是仍然需要某种机制 来限制终端设备需要监听的 CCE集合的数量。显然,从调度的角度来说, 对 CCE集合的限制可能会影响到调度的灵活性, 并且需要在发射端进行 额外处理。 另夕卜, 从终端设备复杂度的角度考虑, 对于较大的小区带宽的 情况, 并不希望监听所有可能的 CCE集合。 因此, 搜索空间要对调度器 提出尽可能少的限制, 同时限制终端设备处盲检的最大次数。
当系统中存在足够的 CCE时, 各个终端设备的搜索空间将不同, 系 统中的每个终端设备在每个聚合度级别上都具有一个终端设备专用搜索 空间。 在一些情况下, 有必要寻址系统中的一群或全部终端设备, 比如系 统信息的调度、寻呼信息的传输、 功率控制命令的传输等, 因此公共搜索 空间为所有终端设备通用,控制信息小区中的所有终端设备都需要监听公 共搜索空间中的 CCE。 如图 1所示, 终端设备 1和终端 i殳备 2中的终端 设备专用搜索空间是不同的, 并且有可能是部分交叠的,但是由于终端设 备专用搜索空间是随子帧变化的,所以下一子帧中交叠的部分很大可能是 不再交叠的。 表 1描述了 DCI的监控情况。 其中, 公共搜索空间只是针 对聚合度等级为 4和 8 的 CCE以及最小 DCI格式(如 0/1A/3/3A和 1C ) 而定义的。
表 1: 终端设备在不同的搜索空间中监听的 DCI格式
Figure imgf000011_0001
下面参考图 2说明根据本发明实施例的配置 ePDCCH的基站设备。 参见图 2, 图 2是示出示出根据本发明实施例的配置 ePDCCH的基站设 备的框图。基站设备 200包括空白资源粒子确定部分 202、 ePDCCH位置 指示信息确定部分 204和承载部分 206。 空白资源粒子确定部分 202用于根据通信系统的系统配置信息,确定 物理资源块对 PRB-pair中未使用的空白资源粒子。
例如, 通信系统的系统配置信息可以是 PDCCH承载的 OFDM符号 个数。 又例如, 通信系统的系统配置信息可以是公共参考信号的端口数。 具体地, 例如,基站设备可以从物理控制格式指示信道(Physical Control Format Indication Channel, PCFICH )获得 PDCCH承载的 OFDM符号 个数。另夕卜,例如,基站设备可以从高层信令获得公共参考信号的端口数。 本领域技术人员应当理解,通信系统的系统配置信息不限于上述 PDCCH 承载的 OFDM符号个数或公共参考信号的端口数, 还可以是本领域中已 知的其它系统配置信息。
才艮据获得的通信系统的系统配置信息,基站设备可以确定在该系统配 置下的每个物理资源块对 PRB-pair中可供 ePDCCH使用的资源粒子的个 数。 具体地, 例如, 根据获得的 PDCCH承载的 OFDM符号个数和公共 参考信号的端口数,基站设备可以通过下面的表 2确定与 PDCCH承载的 OFDM 符号个数和公共参考信号的端口数对应的每个物理资源块对 PRB-pair中可供 ePDCCH使用的资源粒子的个数。
表 2: 不同系统配置下的每个物理资源块对中可供 ePDCCH使用的资源 粒子个数
Figure imgf000012_0001
在上 2中,每个 eCCE ( enhanced Control Channel Element, 增 强控制信道单元)中包括 36个资源粒子, 并且解调参考信号 DMRS的端 口数为 4。如表 2所示, 例如, 如果 PDCCH承载的 OFDM符号个数为 1 并且公共参考信号的端口数为 4, 则该配置下的每个物理资源块对 PRB-pair中可供 ePDCCH使用的资源粒子的个数为 112。 又例如, 如果 PDCCH承载的 OFDM符号个数为 3并且公共参考信号的端口数为 2,则 该配置下的每个物理资源块对 PRB-pair中可供 ePDCCH使用的资源粒子 的个数为 96。 再例如, 如果 PDCCH承载的 OFDM符号个数为 3并且公 共参考信号的端口数为 1, 则该配置下的每个物理资源块对 PRB-pair中 可供 ePDCCH使用的资源粒子的个数为 102。 本领域技术人员应当理解, 上述表 2仅是例示性的,其根据实际情况可以具有不同的值,例如在解调 参考信号 DMRS的端口数为 2的情况下, 上述表 2中的数值将有相应的 变化。 另夕卜, 本领域技术人员应当理解, 上 2可以根据系统配置的不 同而有相应的变化。
另夕卜,根据获得的通信系统的系统配置信息,基站设备还可以确定在 该系统配置下的每个物理资源对 PRB-pair中的空白资源粒子的个数。 物 理资源对 PRB-pair中的空白资源粒子指的是物理资源对 PRB-pair中尚 未被其它信令、 数据或导频占用的资源粒子。 具体地, 例如, 根据获得的 PDCCH承载的 OFDM符号个数和公共参考信号的端口数, 基站设备可 以通过下面的表 3确定与 PDCCH承载的 OFDM符号个数和公共参考信 号的端口数对应的每个物理资源对 PRB-pair中的空白资源粒子的个数。
表 3: 不同系统配置下的每个物理资源块对中的空白资源粒子个数
Figure imgf000013_0001
在上述表 3中, 每个 eCCE中包括 36个资源粒子, 并且解调参考信 号 DMRS的端口数为 4。如表 3所示,例如,如果 PDCCH承载的 OFDM 符号个数为 1并且公共参考信号的端口数为 4, 则根据上述表 2, 该配置 下的每个物理资源块对 PRB-pair中可供 ePDCCH使用的资源粒子个数为 112, 由于本示例中每个 eCCE中包括 36个资源粒子, 所以该配置下的物 理资源对 PRB-pair最多能承载 3个 eCCE, 则剩余的空白资源粒子的个 数为(112 - 36 x 3 ) = 4。 又例如, 如果 PDCCH承载的 OFDM符号个数 为 3并且公共参考信号的端口数为 2, 则根据上述表 2, 该配置下的每个 物理资源块对 PRB -pair中可供 ePDCCH使用的資源粒子个数为 96, 由 于本示例中每个 eCCE中包括 36个资源粒子, 所以该配置下的物理资源 对 PRB-pair最多能承载 2个 eCCE,则剩余的空白资源粒子的个数为 ( 96 _ 36 x 2 ) = 24。 再例如, 如果 PDCCH承载的 OFDM符号个数为 3并且 公共参考信号的端口数为 1, 则根据上述表 2, 该配置下的每个物理资源 块对 PRB-pair中可供 ePDCCH使用的资源粒子个数为 102, 由于本示例 中每个 eCCE中包括 36个资源粒子, 该配置下的物理资源对 PRB-pair 最多能承载 2个 eCCE,则剩余的的空白资源粒子的个数为( 102 - 36 X 2 ) = 30。 本领域技术人员应当理解, 上 3仅是例示性的, 其才艮据实际情 况可以具有不同的值。 例如,当 3GPP 后续标准中将物理资源块对 PRB-pair中承载的 eCCE的个数固定为某个数值,或者每个 eCCE中所包 含的资源粒子的个数固定为 36以外的其他数值或者根据某一准则采用动 态变化的数值时,则每种配置下剩余的空白资源粒子的个数将会有相应的 变化。 另外, 需要说明的是, 本领域技术人员应当能够在本发明公开的精 神下对上 3做出相应的改变。
ePDCCH位置指示信息确定部分 204用于根据所述通信系统的系统 配置信息、 终端设备标识符信息和信道质量信息, 确定用于指示所述 ePDCCH在终端设备搜索空间中的位置的 ePDCCH位置指示信息。
如上所述, 例如, 通信系统的系统配置信息可以是 PDCCH承载的 OFDM符号个数、 或公共参考信号的端口数。 在本发明的一个实施例中, 每个物理资源块对中的 eCCE的个数是可以动态设置的。例如,根据获得 的通信系统的系统配置信息,基站设备可以确定在该系统配置下的每个物 理资源块对 PRB-pair 中的 eCCE 的个数。 具体地, 例如, 根据获得的 PDCCH承载的 OFDM符号个数和公共参考信号的端口数, 基站设备可 以通过下面的表 4确定与 PDCCH承载的 OFDM符号个数和公共参考信 号的端口数对应的每个物理资源块对 PRB-pair中的 eCCE的个数。
表 4: 不同系统配置下的每个物理资源块对中的 eCCE个数 eCCE个数 /物理资 PDCCH承载的 OFDM符号个数 源块对 0 1 2 3
0 4 3 3 3
公共参考信号的 1 3 3 3 2
端口数 2 3 3 3 2
4 3 3 2 2 在上述表 4中, 每个 eCCE中包括 36个资源粒子, 并且解调参考信 号 DMRS的端口数为 4。如表 4所示,例如,如果 PDCCH承载的 OFDM 符号个数为 1并且公共参考信号的端口数为 4, 则根据上述表 2, 该配置 下的每个物理资源块对 PRB-pair中可供 ePDCCH使用的资源粒子个数为 112, 由于本示例中每个 eCCE中包括 36个资源粒子, 所以该配置下的物 理资源对 PRB-pair最多能承载的 eCCE的个数为 3, 以使得剩余的空白 资源粒子的个数尽量少。 又例如, 如果 PDCCH承载的 OFDM符号个数 为 3并且公共参考信号的端口数为 2, 则根据上述表 2, 该配置下的每个 物理资源块对 PRB -pair中可供 ePDCCH使用的資源粒子个数为 96, 由 于本示例中每个 eCCE中包括 36个资源粒子, 所以该配置下的物理资源 对 PRB-pair最多能承载的 eCCE的个数为 2, 以使得剩余的空白资源粒 子的个数尽量少。 再例如, 如果 PDCCH承载的 OFDM符号个数为 3并 且公共参考信号的端口数为 1, 则根据上述表 2, 该配置下的每个物理资 源块对 PRB-pair中可供 ePDCCH使用的资源粒子个数为 102, 由于本示 例中每个 eCCE 中包括 36 个资源粒子, 所以该配置下的物理资源对 PRB-pair最多能承载的 eCCE的个数为 2, 以使得剩余的空白资源粒子 的个数尽量少。 本领域技术人员应当理解, 上 4仅是例示性的, 其根 据实际情况可以具有不同的值。 另外, 需要说明的是, 本领域技术人员应 当能够在本发明公开的精神下对上述表 4做出相应的改变。
本申请发明人考虑到上述示例中一个物理资源块对 PRB pair 中的 eCCE的个数会发生变化, 所以聚合度的集合也应该在每个子帧中进行相 应的变化。 一般, 聚合度的集合中的每个聚合度可以为物理资源块对 PRB-pair中包含的增强控制信道单元 eCCE的个数的整倍数, 以适合终 端设备 UE进行合理的盲检测并进一步解码。在基站设备根据获得的通信 系统的系统配置信息确定了在该系统配置下的每个物理资源块对 PRB-pair中的 eCCE的个数之后, 基站设备可以根据所确定的每个物理 资源块对 PRB-pair中的 eCCE的个数得到对应的聚合度集合。 具体地, 例如, 根据所确定的每个物理资源块对 PRB-pair中的 eCCE的个数, 基 站设备可以通过下面的表 5得到对应的聚合度集合。
与不同 eCCE个数对应的聚合度集合
Figure imgf000015_0001
在上述表 5中, 每个 eCCE中包括 36个资源粒子, 并且解调参考信 号 DMRS的端口数为 4。 接着上面的示例, 如表 5所示, 每一种 eCCE 个^/物理资源块对的对应聚合度集合中所包含的聚合度均为物理资源块 对 PRB-pair中包含的该 eCCE的个数的整倍数, 以适合终端设备 UE进 行合理的盲检测并进一步解码。 例如, 如果所确定的每个物理资源块对 PRB-pair中的 eCCE的个数为 3 (例如对应于 PDCCH承载的 OFDM符 号个数为 1并且公共参考信号的端口数为 4的系统配置), 则该配置下的 对应的聚合度集合为 {1,3,6,9}。 又例如, 如果所确定的每个物理资源块对 PRB-pair中的 eCCE的个数为 2 (例如对应于 PDCCH承载的 OFDM符 号个数为 3并且公共参考信号的端口数为 2的系统配置), 则该配置下的 对应的聚合度集合为 {1,2,4,8}。 再例如, 如果每个物理资源块对 PRB-pair 中的 eCCE的个数为 4, 则该配置下的对应的聚合度集合为 {1,4,8,12}。 本 领域技术人员应当理解,上述表 5仅是例示性的,其根据实际情况可以具 有不同的值。 另外, 需要说明的是, 本领域技术人员应当能够在本发明公 开的精神下对上 5做出相应的改变。
才艮据本发明的一个优选实施例, 例如, ePDCCH位置指示信息包括 终端设备搜索空间的聚合度,以及根据终端 i殳备搜索空间的聚合度和终端 设备标识符信息确定 ePDCCH在所述终端设备搜索空间中的起始位置。
如上所述,基站设备可以根据通信系统的系统配置信息得到对应的聚 合度集合。在得到对应的聚合度集合之后,基站设备可以才据一定的条件 从对应的聚合度集合中确定终端设备搜索空间的聚合度。 具体地, 例如, 基站设备可以根据由终端设备测量并反馈给基站设备的信道质量信息从 对应的聚合度集合中确定终端设备搜索空间的聚合度。 如果信道质量越 差, 则所确定的聚合度也相应地越高; 如果信道质量越好, 则所确定的聚 合度也相应地越低。又例如,基站设备可以根据控制信令的类别从对应的 聚合度集合中确定终端设备搜索空间的聚合度。如果控制信令的重要度越 高, 则所确定的聚合度也相应地越高; 如果控制信令的重要度越低, 则所 确定的聚合度也相应地越低。本领域技术人员应当理解,基站设备还可以 根据由终端设备测量并反馈给基站设备的信道质量信息和控制信令的类 别的组合 应的聚合度集合中确定终端设备搜索空间的聚合度。 另外, 本领域技术人员应当理解, 上述信道信息和控制信令的类别仅是例示性 的,基站设备还可以根据其它的条件从对应的聚合度集合中确定终端设备 搜索空间的聚合度。
接着上面的示例, 例如, 如果在 PDCCH承载的 OFDM符号个数为 1并且公共参考信号的端口数为 4的系统配置下确定的对应的聚合度集合 为 {1,3,6,9}, 则基站设备可根据由终端设备测量并反馈给基站设备的信道 质量信息和 /或控制信令的类别从对应的聚合度集合 {1,3,6,9}中确定终端 设备搜索空间的聚合度为 3。 又例如, 如果在 PDCCH承载的 OFDM符 号个数为 3并且公共参考信号的端口数为 2的系统配置下确定的对应的聚 合度集合为 {1,2,4,8}, 则基站设备可根据由终端设备测量并反馈给基站设 备的信道质量信息和 /或控制信令的类别从对应的聚合度集合 {1,2,4,8}中 确定终端设备搜索空间的聚合度为 4。
在本发明的另一实施例中, 每一配置下的对应的聚合度集合是固定 的, 例如为 {1,2,4,8}, 本领域的普通技术人员可以了解, 基站设备不必再 专门根据通信系统的系统配置信息得到对应的聚合度集合,而 站设备 可以直接根据预定的聚合度集合,利用上述方式从预定的聚合度集合中确 定终端设备搜索空间的聚合度。
在确定了终端设备搜索空间的聚合度之后,基站设备可以根据终端设 备搜索空间的聚合度和终端设备标识符信息确定 ePDCCH在所述终端设 备搜索空间中的起始位置。终端设备标识符信息例如可以是终端设备的网 络临时编码 RNTI。 本领域技术人员应当理解, 上述终端 i殳备的网络临时 编码 RNTI仅是例示性的,还可以采用终端设备的其它信息作为终端设备 标识符信息。另夕卜,关于搜索空间起始位置的计算方法,可以参考 PDCCH 中的协议 TS 36.213的第 9.1.1节中关于计算搜索空间起始位置的公式及 内容, 其具体细节在此不再赞述。
才艮据本发明的又一优选实施例, 例如, ePDCCH位置指示信息还包 括 ePDCCH在终端 i殳备搜索空间中的偏移量。
具体地, 基站设备可以在终端设备搜索空间中, 才据资源利用情况, 在适当的位置处放置 ePDCCH, 由此可以确定 ePDCCH在终端 i殳备搜索 空间中的偏移量。 例如, 如图 2所示, ePDCCH在终端设备搜索空间中 的偏移量为 2。
承载部分 206用于将所述 ePDCCH位置指示信息承载到所述空白资 源粒子以得到包含承载有所述 ePDCCH位置指示信息的附加信令的子 帧, 并且将所述子帧发送到终端设备。
如上所述, ePDCCH位置指示信息可以包括终端设备搜索空间的聚 合度和 ePDCCH在终端设备搜索空间中的偏移量。因此,将所述 ePDCCH 位置指示信息承载到所述空白资源粒子以得到包含承载有所述 ePDCCH 位置指示信息的附加信令的子帧具体可以包括:将终端设备搜索空间的聚 合度、和 /或 ePDCCH在终端设备搜索空间中的偏移量承载到所述空白资 源粒子以得到包含承载有聚合度和 /或偏移量的附加信令的子帧。
如图 3所示, ePDCCH-UE l的位置指示信息映射到了 PRB-pair-B 中。 例如, PRB-pair-B 中的附加信令(以黑色圆点表示) 可以指示 PRB-pair-A中的 ePDCCH-UE l的聚合度 (例如在图 3中聚合度为 3 )。 另外, PRB-pair-B中的附加信令还可以指示 ePDCCH-UE l在搜索空间 中的偏移量(例如在图 3中偏移量为 2 )。
为了将 ePDCCH位置指示信息承载到空白资源粒子以得到包含承载 有 ePDCCH位置指示信息的附加信令的子帧,可以对 ePDCCH位置指示 信息进行适当的编码。 例如, 可以采用二比特编码方式对 ePDCCH位置 指示信息进行编码。本领域技术人员应当理解,二比特编码方式仅是例示 性的, 还可以采用其它适当的编码方式对 ePDCCH位置指示信息进行编 码。 另外, 因为一个 PRB-pair中的空白资源粒子的个数相 *据系统配置的 不同而不同, 即可供附加指令使用的空白资源粒子的个数也是变化的。 因 此, 附加信令的大小(即编码方式)根据空白资源粒子的个数的不同而发 生相应的变化。
具体地, 例如可以采用下面的表 6对 ePDCCH位
的聚合度进行二比特编码。
表 6: 聚合度的二比特编码表
Figure imgf000018_0001
在上述表 6中, 每个 eCCE中包括 36个资源粒子, 并且解调参考信 号 DMRS的端口数为 4。 如表 6所示, 例如, 如果聚合度为聚合度集合 {1,3,6,9}中的 3,则其对应的聚合度编码为 01。本领域技术人员应当理解, 上述表 6仅是例示性的, 其根据实际情况可以具有不同的值。 另外, 本领 域技术人员应当理解, 上述表 6可以根据已有知识预先确定。
另外, 例如可以采用下面的表 7对 ePDCCH位置指示信息中包含的 ePDCCH在终端设备搜索空间中的偏移量进行二比特编码。 表 7: ePDCCH在终端设备搜索空间中的偏移量的二比特编码表
Figure imgf000019_0001
在上述表 7中, 每个 eCCE中包括 36个资源粒子, 并且解调参考信 号 DMRS的端口数为 4。 如表 7所示, 例如, 如果 ePDCCH在终端设备 搜索空间中的偏移量为 2, 则其对应的偏移量编码为 10。本领域技术人员 应当理解, 上述表 7仅是例示性的, 其才据实际情况可以具有不同的值。 另外, 本领域技术人员应当理解, 上述表 7可以根据已有知识预先确定。
根据本发明的优选实施例,可以根据空白资源粒子的数目,对附加信 令采用不同长度的比特编码。
具体地, 为了使附加信令中承载的 ePDCCH位置指示信息具有更强 的健壮性,可以根据空白资源粒子的数目对附加信令采用不同长度的比特 编码, 从而将对 ePDCCH位置指示信息进行编码得到的比特扩展为更多 位比特。 例如, 假设对 ePDCCH位置指示信息中包含的聚合度进行编码 后得到的比特为 2比特, 并且对 ePDCCH位置指示信息中包含的偏移量 进行编码后得到的比特为 2比特, 即对 ePDCCH位置指示信息进行编码 后得到的比特为 4比特, 则可以根据下面的表 8或表 9对附加信令采用 16比特、 24比特、 32比特或其它比特数目的比特编码,从而将对 ePDCCH 位置指示信息进行编码后得到的 4比特扩展为更多位比特。以这种方式可 以提高数据在信道中传输的鲁棒性。 一般, 扩展的比特位数越多, 鲁棒性 越强,但是资源占用率也越大。考虑到本发明中每个物理资源块对中剩余 的空白资源粒子的个数会发生变化,所以本发明中采用编码比特位数可变 的扩展方式。 具体地, 表 8是采用集中映射方式将 ePDCCH位置指示信 息扩展和映射到 PRB-pair中的空白资源粒子的说明表, 而表 9是采用分 布映射方式将 ePDCCH位置指示信息扩展和映射到 PRB-pair中的空白资 源粒子的说明表。 稍后将详细描述集中映射方式和分布映射方式。 表 8
Figure imgf000020_0001
在上述表 8中, 每个 eCCE中包括 36个资源粒子, 并且解调参考信 号 DMRS的端口数为 4。 本领域技术人员应当理解, 上 8仅是例示 性的, 其根据实际情况可以具有不同的值。 另外, 本领域技术人员应当理 解, 上述表 8可以相*据已有知识预先确定。 表 9
Figure imgf000021_0001
在上述表 9中, 每个 eCCE中包括 36个资源粒子, 并且解调参考信 号 DMRS的端口数为 4。 本领域技术人员应当理解, 上 仅是例示 性的, 其根据实际情况可以具有不同的值。 另外, 本领域技术人员应当理 解, 上述表 9可以相*据已有知识预先确定。 根据本发明的优选实施例,可以根据所述空白资源粒子的数目,采用 集中映射方式将附加信令集中地放置到一个或多个连续的资源块对
PRB-pair 中, 或者采用分布映射方式将附加信令分布地放置到多个资源 块对 PRB-pair中。
下面将参考图 4A和表 8来说明承载 ePDCCH位置指示信息的附加 信令的集中映射方式的示意图。 图 4A是示出承载 ePDCCH位置指示信 息的附加信令的集中映射方式的示意图。 表 8 是采用集中映射方式将 ePDCCH位置指示信息扩展和映射到 PRB-pair中的空白资源粒子的说明 表。
在 PRB-pair中的空白资源粒子的个数大于附加信令所需的资源粒子 的个数的情况下, 可以采用集中映射方式将附加信令集中地放置在一个 PRB-pair中。 如表 8所示, 例如, PRB-pair中的空白资源粒子的个数为 18, 而附加信令所需的资源粒子的个数为 16, 因此如图 4A所示, 可以采 用集中映射方式将承载 ePDCCH-UE_8位置指示信息的附加信令放置到 一个 PRB-pair-A中。 需要注意的是, 这里所说的集中映射方式并不是一 个绝对的概念,只要是尽可能的将附加信令集中地放置到一个或多个连续 的物理资源块对中的映射方式均可称为集中映射方式。例如,根据实际需 求, 可以尽量将 ePDCCH位置指示信息扩展为较多的比特位数以提高鲁 棒性。在表 8中也可以将空白资源粒子数为 4的配置中的扩展位数设定为 16比特。 这样的话一个物理资源块对的空白 RE只能承载 8比特, 则至 少需要两个物理资源块对才能承载扩展后的 ePDCCH位置指示信息。 在 这种情况下,可以将该附加信令放置到连续的两个资源块对 PRB-pair中, 这样的映射方式即为相对于为了获得分集增益的分布映射方式的集中映 射方式。
分布映射方式指的是如下映射方式: 即使在 PRB-pair中的空白资源 粒子的个数大于附加信令所需的资料粒子的个数的情况下,也将该附加信 令进行拆分, 并且分布地放置在不同的 PRB-pair中, 以获得频率分集增 益。 如表 9所示, 例如, PRB-pair中的空白 源粒子的个数为 18, 而附 加信令所需的资源粒子的个数为 16, 因此如图 4B所示, 可以将终端设备 1 的附加信令拆分为 4 个部分, 并将拆分后的 4 个部分分别放置到 PRB-pair-A, PRB-pair-B, PRB-pair-C和 PRB-pair-D这 4个 PRB-pair 中。 类似地, 也可以将终端设备 2至终端设备 4的附加信令分别拆分为 4 个部分, 并将拆分后的 4个部分也分别放置到 PRB-pair-A、 PRB-pair-B, PRB-pair-C和 PRB-pair-D这 4个 PRB-pair中。 因此, 在一个 PRB-pair 中将承载终端设备 1至终端设备 4的附加信令中的一部分。在表 9中, 限 定了一个信令空间中最多允许承载 4个终端设备的 ePDCCH位置指示信 息附加信令, 因此终端设备最多只需要检测 4次。分布式映射虽然 增 加了复杂度, 但是获得了频率分集增益。
才艮据本发明的优选实施例,根据终端设备标识符信息,按照以下映射 方式中的任一种对终端设备和资源块对 PRB-pair进行映射: 一个终端设 备对应一个资源块对 PRB -pair , 一个终端设备对应多个资源块对 PRB-pair, 多个终端设备对应一个资源块对 PRB-pair, 或多个终端设备 对应多个资源块对 PRB -paire
下面结合图 5说明对终端设备和资源块对 PRB-pair进行映射的映射 方式。 图 5是示出对终端设备和资源块对 PRB-pair进行映射的映射方式 的示意图。
在本发明中, 终端设备与其 ePDCCH位置指示信息附加信令的放置 PRB-pair直接的映射关系仅仅与终端设备标识符信息有关。 但允许出现 以下四种情况: 1 )如图 5 ( a )所示, 一个终端设备对应一个 PRB-pair; 2 )如图 5 ( b )所示, 一个终端设备对应多个 PRB-pair; 3 )如图 5 ( c ) 所示, 多个终端设备对应一个 PRB-pair; 以及 4 )如图 5 ( d )所示, 多 个 UE对应多个 PRB-pair。
如表 8、表 9和图 4B所示,如果一个映射得到的 PRB-pair空间中包 括了多个终端设备, 则当前终端设备需要在 ePDCCH位置指示信令空间 中进行若干次盲检测来获得最终结果。
关于终端设备到 PRB-pair的具体映射规则, 可根据实际需求来灵活 设定。例如,假设终端设备标识符信息为: UE1, UE2, UE3……; ePDCCH 信令空间中 PRB-pair的编号为 PRB1, PRB2, PRB3 , 则终端设备 标识符信息与 PRB-pair的编号值之间的映射关系可如表 10或者表 11或 者表 12所示。
表 10: 终端设备标识符信息与 PRB -pair的块射关系 1 终端设备标识符
UE1 UE2 UE3
信息
PRB编号 PRB1 PRB2 PRB3 表 11: 终端设备标识符信息与 PRB -pair的块射关系 2
Figure imgf000024_0001
表 12: 终端设备标识符信息与 PRB -pair的块射关系 3
Figure imgf000024_0002
本领域技术人员应当理解,上 10至表 12仅是例示性的,其根据 实际情况可以具有不同的值。 另外, 本领域技术人员应当理解, 上述表 10至表 12可以相>据已有知识预先确定。
在一个 PRB•pair中, 附加信令占用的空白資源粒子的位置和 eCCE 的位置, 以简单易操作为^^原则, 且基站设备和终端设备应达成一致。 例如, 如图 6所示, 可将一个 PRB-pair中的空白资源粒子集中放置在该 PRB-pair的最前面。 另外, 如图 6所示, 在 PRB-pair中, 可以按照先频 域(如图 6中的水平轴所示的)后时域(如图 6中的垂直轴所示的)的顺 序来放置附加信令。
根据本发明的优选实施例, 当同一资源块对 PRB-pair中映射有多个 终端设备时, 采用终端设备标识符信息进行加扰以在同一资源块对 PRB-pair中区分不同终端设备的 ePDCCH位置指示信息。
如果在同一个信令空间中, 存在多个终端 i殳备的 ePDCCH位置指示 信息附加信令,则不同终端设备的附加信令之间通过使用终端设备标识符 信息进行加扰来区分。在这种情况下,终端设备需要进行若干次检测来获 得自己的 ePDCCH位置指示信息附加信令。 如以上的表 9所示, 限定了 一个信令空间中最多允许承载 4个 UE的 ePDCCH位置指示信息附加信 令, 因此终端设备最多需要检测 4次来获得自己的 ePDCCH位置指示信 息附加信令。
下面参考图 7来说明承载 ePDCCH位置指示信息的附加信令的编码 及映射过程。 图 7是示出承载 ePDCCH位置指示信息的附加信令的编码 及映射过程的示意图。
如上所述,基站设备可以根据表 8或者表 9确定当前系统配置下的终 端设备的 ePDCCH位置指示信息的承载及映射方式。 然后,如图 7所示, 基站设备可以根据终端设备标识符信息计算当前系统配置下承载该终端 设备的 ePDCCH位置指示信息的 PRB-pair位置, 并将比特经过 QPSK 调制后, 依次放置在对应的 PRB-pair中。
才艮据本实施例, 通过对 ePDCCH中的空白资源粒子的充分利用, 在 空白资源粒子中增加新的信令, 可以减少终端设备侧进行盲检测的次数, 从而降低终端设备侧的运算复杂度。
下面参考图 8说明根据本发明实施例的配置 ePDCCH的方法。 图 8 是示出根据本发明实施例的配置 ePDCCH的方法的流程图。
该方法从步骤 800开始。在步骤 802中,根据通信系统的系统配置信 息, 确定物理资源块对 PRB-pair中未使用的空白资源粒子。 接着, 在步 骤 804中,根据所述通信系统的系统配置信息、终端设备标识符信息和信 量信息, 确定用于指示所述 ePDCCH在终端设备搜索空间中的位置 的 ePDCCH位置指示信息。接着, 在步骤 806中, 将所述 ePDCCH位置 指示信息承载到所述空白资源粒子以得到包括承载有所述 ePDCCH位置 指示信息的附加信令的子帧, 并且将所述子帧发送到终端设备。 最后, 该 方法在步骤 808处结束。
根据本发明实施例的配置 ePDCCH的方法是与根据本发明实施例的 配置 ePDCCH的基站设备 200相对应的方法, 因此其具体细节在此不再 赘述。
下面结合图 9说明根据本发明实施例的检测 ePDCCH的终端设备。 图 9是示出根据本发明实施例的检测 ePDCCH的终端设备的框图。 如图 9所示,检测 ePDCCH的终端设备 900包括解调部分 902和检测部分 904。 解调部分 902用于从基站设备接收包含承载有 ePDCCH位置指示信 息的附加信令的子帧, 并且从所述子帧中解调得到所述 ePDCCH位置指 示信息,其中, 所述 ePDCCH位置指示信息用于指示所述 ePDCCH在终 端设备搜索空间中的位置, 并且承载有所述 ePDCCH位置指示信息的附 加信令是基于将所述 ePDCCH 位置指示信息承载到物理资源块对 PRB-pair中未使用的空白资源粒子得到的。
终端设备从基站设备接收数据。终端设备通过解调 PCFICH (物理控 制格式指示信道)来确定 PDCCH占用的 OFDM符号个数。 另外, 终端 设备从高层信令获得系统公共参考信号的端口数以及解调参考信号 DMRS的端口数, 或者在已知 DMRS端口数的情况下终端设备 得系 统公共参考信号的端口数。
终端设备根据上述表 3确定当前系统配置下, 一个 PRB-pair中的空 白资源粒子的个数。 另夕卜,终端设备根据上述表 5得到终端设备本身对应 的聚合度集合。另外,终端设备根据上述表 8或表 9确定当前系统配置下, ePDCCH位置指示信息的映射方式。
根据本发明的优选实施例, 可以根据终端设备标识符信息, 确定 ePDCCH位置指示信息被放置在的资源块对 PRB -paire 具体地, 例如, 终端设备可以通过上述表 10、表 11或表 12,根据终端设备标识符信息以 及当前 ePDCCH位置指示信息映射方式, 得到当前系统配置下承载终端 设备的 ePDCCH位置指示信息的 PRB-pair位置。
终端设备在相应的 PRB-pair中, 按照一定的顺序, 例如按照图 6所 示的先频域后时域的顺序,在附加信令的位置上,对终端设备的 ePDCCH 位置指示信息进行解调。
根据本发明的优选实施例, ePDCCH位置指示信息可以包括终端设 备搜索空间的聚合度。 根据本发明的优选实施例, ePDCCH位置指示信 息还可以包括 ePDCCH在终端设备搜索空间中的偏移量。 在对终端设备 的 ePDCCH位置指示信息进行解调后, 可以通过上述表 6和表 7得到终 端设备的聚合度以及 ePDCCH在终端设备搜索空间中的偏移量。
根据本发明的优选实施例,可以根据终端设备搜索空间的聚合度和终 端设备标识符信息确定 ePDCCH在终端设备搜索空间中的起始位置。 关 于搜索空间起始位置的计算方法, 可以参考 PDCCH中的协议 TS 36.213 的第 9.1.1节中关于计算搜索空间起始位置的公式及内容, 其具体细节在 此不再赘述。 在确定出 ePDCCH 搜索空间起始位置之后, 可以结合 ePDCCH在终端设备搜索空间中的偏移量, 得到 ePDCCH在终端设备搜 索空间中的位置。 在得到 ePDCCH在终端设备搜索空间中的位置之后, 可以根据 ePDCCH在终端 i殳备搜索空间中的位置对承载 ePDCCH位置指 示信息的附加信令进行解调, 从而得到 ePDCCH位置指示信息。 本领域 技术人员应当理解, 上述偏移量不是必须的, 即也可以通过仅根据 ePDCCH搜索空间起始位置依次对起始位置后的可能位置进行盲检, 来 对承载 ePDCCH位置指示信息的附加信令进行解调。
根据本发明的优选实施例, 当同一资源块对 PRB-pair中存在多个终 端设备的 ePDCCH位置指示信息时, 采用终端设备标识符信息进行解扰 并进行 CRC校臉, 以在同一资源块对 PRB-pair中区分不同终端设备的 ePDCCH位置指示信息。
检测部分 904用于相*据解调得到的 ePDCCH位置指示信息, 在所述 终端 i殳备搜索空间中检测所述 ePDCCH。
根据本实施例, 由于终端设备可以从 ePDCCH中的空白资源粒子中 所增加的新的信令中解调得到 ePDCCH位置指示信息, 并且根据解调得 到的 ePDCCH位置指示信息在终端设备搜索空间中检测 ePDCCH, 所以 可以减少终端设备侧进行盲检测的次数,从而降低终端设备侧的运算复杂 度。
下面参考图 10来说明根据本发明实施例的检测 ePDCCH的方法。图 10是示出根据本发明实施例的检测 ePDCCH的方法的流程图。
该方法从步骤 1000开始。 在步骤 1002, 从基站设备接收包含承载有 ePDCCH 位置指示信息的附加信令的子帧, 并且从子帧中解调得到 ePDCCH位置指示信息,其中, ePDCCH位置指示信息用于指示 ePDCCH 在终端设备搜索空间中的位置, 并且承载有所述 ePDCCH位置指示信息 的附加信令是基于将所述 ePDCCH位置指示信息承载到物理资源块对 PRB-pair中未使用的空白资源粒子得到的。 接着, 在步骤 1004, 根据解 调得到的 ePDCCH位置指示信息,在终端设备搜索空间中检测 ePDCCHo 该方法在步骤 1006处结束。
根据本发明实施例的检测 ePDCCH的方法是与根据本发明实施例的 检测 ePDCCH的终端设备相对应的方法,因此其具体细节在此不再赘述。 下面参考图 11说明根据本发明实施例的通信系统。图 11是示出根据 本发明实施例的通信系统的框图。
如图 11所示, 通信系统 1100包括彼此进行无线通信的基站设备 200 和终端设备 900。 基站设备 200包括: 空白资源粒子确定部分 202, 用于 根据通信系统的系统配置信息, 确定物理资源块对 PRB-pair中未使用的 空白资源粒子; ePDCCH位置指示信息确定部分 204,用于根据所述通信 系统的系统配置信息、终端设备标识符信息和信道质量信息,确定用于指 示所述 ePDCCH在终端设备搜索空间中的位置的 ePDCCH位置指示信 息; 以及承载部分 206, 用于将所述 ePDCCH位置指示信息承载到所述 空白资源粒子以得到包含承载有所述 ePDCCH位置指示信息的附加信令 的子帧, 并且将所述子帧发送到终端设备。 终端设备 900包括: 解调部分 902,用于从基站设备接收包含承载有 ePDCCH位置指示信息的附加信令 的子帧, 并且从所述子帧中解调得到所述 ePDCCH位置指示信息, 其中, 所述 ePDCCH位置指示信息用于指示所述 ePDCCH在终端设备搜索空间 中的位置, 并且承载有所述 ePDCCH位置指示信息的附加信令是基于将 所述 ePDCCH位置指示信息承载到物理资源块对 PRB-pair中未使用的空 白资源粒子得到的; 以及检测部分 904, 用于根据解调得到的 ePDCCH 位置指示信息, 在所述终端设备搜索空间中检测所述 ePDCCH。
对于所属技术领域的普通技术人员来说,在不偏离本发明范围和精神 的情况下, 显然可以作出许多修改和变型。 对实施例的选择和说明, 是为 了最好地解释本发明的原理和实际应用,使所属技术领域的普通技术人员 能够明了,本发明可以有适合所要的特定用途的具有各种改变的各种实施 方式。

Claims

权利 要求 书
1. 一种配置增强物理下行控制信道 ePDCCH的基站设备, 包括: 空白资源粒子确定部分,用于根据通信系统的系统配置信息,确定物 理资源块对 PRB-pair中未使用的空白资源粒子;
ePDCCH位置指示信息确定部分, 用于根据所述通信系统的系统配 置信息、 终端设备标识符信息和信道质量信息, 确定用于指示所述 ePDCCH在终端设备搜索空间中的位置的 ePDCCH位置指示信息; 以及 承载部分, 用于将所述 ePDCCH位置指示信息承载到所述空白资源 粒子以得到包含承载有所述 ePDCCH位置指示信息的附加信令的子帧, 并且将所述子帧发送到终端设备。
2.根据权利要求 1所述的基站设备, 其中, 所述 ePDCCH位置指示 信息包括所述终端 i殳备搜索空间的聚合度,以及根据所述终端设备搜索空 间的聚合度和所述终端设备标识符信息确定所述 ePDCCH在所述终端设 备搜索空间中的起始位置。
3.根据权利要求 2所述的基站设备, 其中, 所述聚合度为所述物理 资源块对 PRB -pair中包含的增强控制信道单元 eCCE的个数的整倍数。
4.根据权利要求 2所示的基站设备, 其中, 所述 ePDCCH位置指示 信息还包括所述 ePDCCH在所述终端设备搜索空间中的偏移量。
5.根据权利要求 1-4中任一项所述的基站设备,其中,所 载部分 根据所述空白资源粒子的数目,采用集中映射方式将所述附加信令集中地 放置到一个或多个连续的资源块对 PRB-pair中, 或者采用分布映射方式 将所述附加信令分布地放置到多个资源块对 PRB-pair中。
6.根据权利要求 1-4中任一项所述的基站设备,其中,所 载部分 根据所述空白资源粒子的数目, 对所述附加信令采用不同长度的比特编 码。
7.根据权利要求 1-4中任一项所述的基站设备,其中,所 载部分 根据所述终端设备标识符信息,按照以下映射方式中的任一种对所述终端 设备和所述资源块对 PRB-pair进行映射: 一个终端设备对应一个资源块 对 PRB-pair, 一个终端设备对应多个资源块对 PRB-pair, 多个终端设备 对应一个资源块对 PRB -pair , 或多个终端设备对应多个资源块对 PRB-pair。
8.根据权利要求 7所述的基站设备,其中,当同一资源块对 PRB-pair 中映射有多个终端设备时,采用所述终端设备标识符信息进行加扰以在所 述同一资源块对 PRB-pair中区分不同终端设备的 ePDCCH位置指示信 息。
9.根据权利要求 1-4中任一项所述的基站设备,其中,所述通信系统 的系统配置信息包括: 物理下行控制信道 PDCCH承载的 OFDM符号个 数和公共参考信号的端口数。
10. 一种配置增强物理下行控制信道 ePDCCH的方法, 包括: 才艮据通信系统的系统配置信息, 确定物理资源块对 PRB-pair中未使 用的空白资源粒子;
根据所述通信系统的系统配置信息、终端设备标识符信息和信道质量 信息, 确定用于指示所述 ePDCCH 在终端设备搜索空间中的位置的 ePDCCH位置指示信息; 以及
将所述 ePDCCH位置指示信息承载到所述空白资源粒子以得到包含 承载有所述 ePDCCH位置指示信息的附加信令的子帧, 并且将所述子帧 发送到终端 i殳备。
11. 一种检测增强物理下行控制信道 ePDCCH的终端设备, 包括: 解调部分, 用于从基站设备接收包含承载有 ePDCCH位置指示信息 的附加信令的子帧, 并且从所述子帧中解调得到所述 ePDCCH位置指示 信息, 其中, 所述 ePDCCH位置指示信息用于指示所述 ePDCCH在终端 设备搜索空间中的位置, 并且承载有所述 ePDCCH位置指示信息的附加 信令是基于将所述 ePDCCH位置指示信息承载到物理资源块对 PRB-pair 中未使用的空白资源粒子得到的; 以及
检测部分, 根据解调得到的 ePDCCH位置指示信息, 在所述终端设 备搜索空间中检测所述 ePDCCH。
12.根据权利要求 10所述的终端设备, 其中, 所述 ePDCCH位置指 示信息包括所述终端设备搜索空间的聚合度,以及根据所述终端设备搜索 空间的聚合度和终端设备标识符信息确定所述 ePDCCH在所述终端设备 搜索空间中的起始位置。
13.根据权利要求 12所述的终端 i殳备, 其中, 所述聚合度为所述物 理资源块对 PRB-pair 中包含的增强控制信道单元 eCCE 的个数的整倍 数。
14.根据权利要求 12所示的终端设备, 其中, 所述 ePDCCH位置指 示信息还包括所述 ePDCCH在所述终端设备搜索空间中的偏移量。
15.根据权利要求 11-14中任一项所述的终端设备, 其中, 所述解调 部分根据终端设备标识符信息, 确定所述 ePDCCH位置指示信息被放置 在的资源块对 PRB-pair。
16. 根据权利要求 15 所述的终端设备, 其中, 当同一资源块对 PRB-pair中存在多个终端设备的 ePDCCH位置指示信息时,采用所述终 端设备标识符信息进行解扰并进行 CRC 校臉, 以在所述同一资源块对 PRB-pair中区分不同终端设备的 ePDCCH位置指示信息。
17. 一种检测增强物理下行控制信道 ePDCCH的方法, 包括:
站设备接收包含承载有 ePDCCH位置指示信息的附加信令的子 帧, 并且从所述子帧中解调得到所述 ePDCCH位置指示信息, 其中, 所 述 ePDCCH位置指示信息用于指示所述 ePDCCH在终端 i殳备搜索空间中 的位置, 并且承载有所述 ePDCCH位置指示信息的附加信令是基于将所 述 ePDCCH位置指示信息承载到物理资源块对 PRB-pair中未使用的空白 资源粒子得到的; 以及
根据解调得到的 ePDCCH位置指示信息, 在所述终端设备搜索空间 中检测所述 ePDCCH。
18. 一种通信系统, 包括:
基站设备, 其包括:
空白资源粒子确定部分,用于根据通信系统的系统配置信息,确 定物理资源块对 PRB-pair中未使用的空白资源粒子;
ePDCCH位置指示信息确定部分, 用于根据所述通信系统的系 统配置信息、 终端设备标识符信息和信道质量信息, 确定用于指示所述 ePDCCH在终端设备搜索空间中的位置的 ePDCCH位置指示信息; 以及
承载部分, 用于将所述 ePDCCH位置指示信息承载到所述空白 资源粒子以得到包含承载有所述 ePDCCH位置指示信息的附加信令的子 帧, 并且将所述子帧发送到终端设备, 以及 终端设备, 其包括:
解调部分, 用于从所述基站设备接收包含承载有 ePDCCH位置 指示信息的附加信令的子帧, 并且从所述子帧中解调得到所述 ePDCCH 位置指示信息,其中,所述 ePDCCH位置指示信息用于指示所述 ePDCCH 在终端设备搜索空间中的位置, 并且承载有所述 ePDCCH位置指示信息 的附加信令是基于将所述 ePDCCH位置指示信息承载到物理资源块对 PRB-pair中未使用的空白资源粒子得到的; 以及
检测部分, 根据解调得到的 ePDCCH位置指示信息, 在所述终端设 备搜索空间中检测所述 ePDCCH。
PCT/CN2013/081542 2012-09-29 2013-08-15 基站设备、终端设备及通信系统 WO2014048184A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/430,064 US10820308B2 (en) 2012-09-29 2013-08-15 Base station device, terminal device and communications system
JP2015533422A JP6090453B2 (ja) 2012-09-29 2013-08-15 基地局デバイス、端末デバイス及び通信システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210376253.XA CN103716917B (zh) 2012-09-29 2012-09-29 基站设备、终端设备及通信系统
CN201210376253.X 2012-09-29

Publications (1)

Publication Number Publication Date
WO2014048184A1 true WO2014048184A1 (zh) 2014-04-03

Family

ID=50386953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081542 WO2014048184A1 (zh) 2012-09-29 2013-08-15 基站设备、终端设备及通信系统

Country Status (4)

Country Link
US (1) US10820308B2 (zh)
JP (1) JP6090453B2 (zh)
CN (2) CN103716917B (zh)
WO (1) WO2014048184A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017020199A1 (zh) * 2015-07-31 2017-02-09 华为技术有限公司 一种物理下行控制信道的传输方法及装置
WO2018141139A1 (zh) * 2017-02-04 2018-08-09 华为技术有限公司 发送信息的方法、接收信息的方法和装置
US11382108B2 (en) 2015-05-13 2022-07-05 Huawei Technologies Co., Ltd. Data transmission method, and apparatus

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728775B1 (en) * 2011-06-29 2021-03-03 LG Electronics Inc. Method and apparatus for receiving control information in wireless communication system
CN103716917B (zh) * 2012-09-29 2018-07-03 索尼公司 基站设备、终端设备及通信系统
KR101927278B1 (ko) * 2014-01-29 2018-12-10 후아웨이 테크놀러지 컴퍼니 리미티드 향상된 물리 채널 전송 방법, 통신 장치, 사용자 장치 및 기지국
US11582749B2 (en) * 2014-07-03 2023-02-14 Qualcomm Incorporated Cell discovery in a wireless network using an unlicensed radio frequency spectrum band
EP3291622B1 (en) 2015-05-29 2019-10-09 Huawei Technologies Co., Ltd. Method and device for resource mapping
US11212141B2 (en) * 2016-01-07 2021-12-28 Qualcomm Incorporated Methods and apparatus for a data transmission scheme for Narrow-Band Internet of Things (NB-IoT)
CA3041929C (en) 2016-11-03 2023-05-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method, terminal device, and network device
CN106549733A (zh) * 2016-12-06 2017-03-29 北京锐安科技有限公司 一种增强物理下行控制信道的盲检方法及装置
CN108282323B (zh) * 2017-01-06 2021-06-15 华为技术有限公司 接收节点、发送节点和通信方法
JP6925441B2 (ja) * 2017-05-03 2021-08-25 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co.,Ltd. ダウンリンク制御チャネルの受信方法、送信方法、受信装置、送信装置および受信装置および送信装置を備えるシステム
CN109392151B (zh) * 2017-08-11 2023-04-18 维沃移动通信有限公司 一种确定pdcch搜索空间的方法、装置及系统
CN109644082B (zh) * 2018-02-13 2020-07-28 Oppo广东移动通信有限公司 用于物理下行控制信道的盲检测的方法和终端设备
US20220386279A1 (en) * 2021-05-27 2022-12-01 Qualcomm Incorporated Interleaved control channel for spatial division multiplexing in higher bands
CN113541875B (zh) * 2021-06-15 2022-11-04 北京邮电大学 无线数据传输的方法、系统、装置、电子设备及介质
US20220416993A1 (en) * 2021-06-23 2022-12-29 Qualcomm Incorporated Demodulator configuration based on user equipment signaling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714962A (zh) * 2008-10-07 2010-05-26 富士通株式会社 分层调制方法、分层解调方法、发射机及接收机
WO2012109542A1 (en) * 2011-02-11 2012-08-16 Interdigital Patent Holdings, Inc Systems and methods for an enhanced control channel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9344259B2 (en) * 2007-06-20 2016-05-17 Google Technology Holdings LLC Control channel provisioning and signaling
CN101572945B (zh) * 2008-04-29 2011-08-24 中国移动通信集团公司 一种信道质量指示的发送资源确定方法与装置
JP5206256B2 (ja) * 2008-09-09 2013-06-12 沖電気工業株式会社 帯域割当方法及び帯域割当装置
CN102651889B (zh) * 2008-11-04 2015-07-08 华为技术有限公司 确定资源索引的方法、设备和系统
US7940740B2 (en) * 2009-02-03 2011-05-10 Motorola Mobility, Inc. Apparatus and method for communicating and processing a positioning reference signal based on identifier associated with a base station
JP5073779B2 (ja) * 2010-04-30 2012-11-14 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及びユーザ端末
US9084238B2 (en) * 2011-09-12 2015-07-14 Blackberry Limited Searching space and operation for enhanced PDCCH in LTE systems
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
US9338773B2 (en) * 2012-03-26 2016-05-10 Qualcomm Incorporated Common search space for EPDCCH in LTE
US8982693B2 (en) * 2012-05-14 2015-03-17 Google Technology Holdings LLC Radio link monitoring in a wireless communication device
CN103582135B (zh) * 2012-07-27 2018-05-25 上海诺基亚贝尔股份有限公司 一种配置用于ePDCCH的eCCE的方法
CN103716917B (zh) * 2012-09-29 2018-07-03 索尼公司 基站设备、终端设备及通信系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714962A (zh) * 2008-10-07 2010-05-26 富士通株式会社 分层调制方法、分层解调方法、发射机及接收机
WO2012109542A1 (en) * 2011-02-11 2012-08-16 Interdigital Patent Holdings, Inc Systems and methods for an enhanced control channel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Consideration on DCI mapping for EPDCCH", 3GPP TSG RAN WG1 MEETING #70 RL-123526, 17 August 2012 (2012-08-17), pages 3 - 5 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11382108B2 (en) 2015-05-13 2022-07-05 Huawei Technologies Co., Ltd. Data transmission method, and apparatus
WO2017020199A1 (zh) * 2015-07-31 2017-02-09 华为技术有限公司 一种物理下行控制信道的传输方法及装置
US10645683B2 (en) 2015-07-31 2020-05-05 Huawei Technologies Co., Ltd. Physical downlink control channel transmission method and apparatus
US10912076B2 (en) 2015-07-31 2021-02-02 Huawei Technologies Co., Ltd. Physical downlink control channel transmission method and apparatus
WO2018141139A1 (zh) * 2017-02-04 2018-08-09 华为技术有限公司 发送信息的方法、接收信息的方法和装置
WO2018141091A1 (zh) * 2017-02-04 2018-08-09 华为技术有限公司 发送信息的方法、接收信息的方法和装置
CN109889317A (zh) * 2017-02-04 2019-06-14 华为技术有限公司 发送信息的方法、接收信息的方法和装置
US11166266B2 (en) 2017-02-04 2021-11-02 Huawei Technologies Co., Ltd. Information sending method and apparatus and information receiving method and apparatus

Also Published As

Publication number Publication date
US20150282128A1 (en) 2015-10-01
JP2015536079A (ja) 2015-12-17
CN103716917B (zh) 2018-07-03
JP6090453B2 (ja) 2017-03-08
CN108833066A (zh) 2018-11-16
CN103716917A (zh) 2014-04-09
US10820308B2 (en) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2014048184A1 (zh) 基站设备、终端设备及通信系统
CN110637430B (zh) 用于传输上行链路控制信息的方法及设备
JP6612422B2 (ja) 無認可キャリアのクリアチャネルアセスメントが失敗するときの、アップリンク制御チャネル情報の送信
TWI827357B (zh) 為增強型實體混合自動重複請求指示符通道分配資源的方法和設備
JP6163554B2 (ja) 端末装置、基地局装置、および通信方法
JP6162244B2 (ja) 端末装置、基地局装置、および通信方法
CN107637106B (zh) 用于ProSe直接设备到设备通信中的单播支持的方法和装置
WO2015115465A1 (ja) 端末装置、基地局装置、および、通信方法
WO2013091414A1 (zh) 一种传输信息的方法、系统及设备
WO2013113286A1 (zh) 解调导频信号处理方法、基站及用户设备
WO2014110822A1 (zh) Pdsch的传输方法及装置
WO2014169694A1 (zh) 授权信令发送、获取方法及装置
WO2013067845A1 (zh) 下行控制信息的传输方法和设备
WO2015019852A1 (ja) 端末、基地局、および、通信方法
JP2019502338A (ja) エアインタフェース能力交換のシステムおよび方法
WO2014183461A1 (zh) 一种控制信息的传输方法及发送、接收装置
WO2014000618A1 (zh) 下行用户专用dm-rs传输方法和ue及网络侧装置
WO2014043902A1 (zh) 下行控制信息传输的方法、网络侧设备及用户设备
JP7140129B2 (ja) 無線通信装置、無線通信方法およびコンピュータプログラム
CN112292831A (zh) 用于具有全双工无线电的wlan的干扰发现和消除
WO2014187358A1 (zh) 一种机器类通信业务信息的传输方法、基站、终端和系统
WO2016033962A1 (zh) 一种信道复用的方法和装置
WO2014201620A1 (zh) 下行控制信息的检测与发送方法及设备
WO2013107215A1 (zh) 传输控制信令的方法、用户设备和基站
WO2014019529A1 (zh) 一种增强物理下行控制信道的接收、发送方法及相应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842545

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14430064

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015533422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842545

Country of ref document: EP

Kind code of ref document: A1