WO2011118763A1 - 電極板製造装置 - Google Patents

電極板製造装置 Download PDF

Info

Publication number
WO2011118763A1
WO2011118763A1 PCT/JP2011/057334 JP2011057334W WO2011118763A1 WO 2011118763 A1 WO2011118763 A1 WO 2011118763A1 JP 2011057334 W JP2011057334 W JP 2011057334W WO 2011118763 A1 WO2011118763 A1 WO 2011118763A1
Authority
WO
WIPO (PCT)
Prior art keywords
original plate
electrode
plate
electrode plate
punching blade
Prior art date
Application number
PCT/JP2011/057334
Other languages
English (en)
French (fr)
Inventor
博章 四元
禎紀 松永
晃 ▲辻▼
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020117022495A priority Critical patent/KR101332935B1/ko
Priority to CN2011800017030A priority patent/CN102365773B/zh
Priority to US13/636,502 priority patent/US20130014625A1/en
Publication of WO2011118763A1 publication Critical patent/WO2011118763A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/20Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting with interrelated action between the cutting member and work feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/40Cutting-out; Stamping-out using a press, e.g. of the ram type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/44Cutters therefor; Dies therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/444Tool engages work during dwell of intermittent workfeed

Definitions

  • the present invention relates to an electrode plate manufacturing apparatus.
  • This application claims priority based on Japanese Patent Application No. 2010-073170 filed in Japan on March 26, 2010, the contents of which are incorporated herein by reference.
  • a battery cell has been used as a power source for various electric devices.
  • a secondary battery which is a battery cell that can be repeatedly charged and discharged, may be used as a power buffer for a power generator or the like in addition to a power source.
  • a laminated type in which a plurality of positive plates and negative plates are laminated via a separator, and a winding in which one positive plate and one negative plate are wound via a separator.
  • an electrode active material is coated on the surface of the current collector of the electrode plate (positive electrode plate or negative electrode plate).
  • a method for producing a laminated electrode plate a method disclosed in Patent Document 1 can be cited.
  • an approximately rectangular electrode plate is manufactured by die-cutting the original plate using a punching die (Thomson type).
  • the punching die is obtained by fixing a belt-like punching blade (Thomson blade) vertically on a support substrate and attaching a pressing member made of an elastic material while covering the punching blade.
  • the punching blade has the same shape.
  • the punching die is not pressed against the original plate, the punching blade is buried in the pressing member, and the punching blade inside the pressing member cannot be seen from the outside.
  • the electrode active material may be peeled off or missing from the current collector at the peripheral edge of the electrode plate, that is, detached. Therefore, there is a problem that the manufacturing yield is not good.
  • the present invention has been made in view of the above-described circumstances, and provides an electrode plate manufacturing apparatus that prevents the electrode active material from being detached as much as possible during die cutting of the electrode plate and improves the manufacturing yield.
  • the electrode plate manufacturing apparatus of the present invention is opposed to an original plate support portion capable of supporting an original plate of an electrode plate coated with an electrode active material, a first pressing portion, a frame-shaped extraction blade, and the original plate support portion.
  • the first pressing portion and the punching blade are disposed, and a driving portion that drives the supporting substrate to move forward and backward toward the original plate supporting portion.
  • the part is disposed inside the frame shape of the punching blade and spaced from the punching blade that cuts the electrode active material, and the support portion advances toward the original plate support portion by the driving portion. In doing so, the first pressing portion presses the original plate, and the punching blade cuts the original plate along the frame shape.
  • the first pressing portion Since the first pressing portion is arranged at a predetermined interval from the punching blade for cutting the electrode active material, the original plate existing at the interval is not pressed by the first pressing portion. For this reason, the deformation
  • the electrode plate manufacturing apparatus of the present invention it is possible to prevent detachment of the electrode active material at the peripheral portion of the electrode plate and improve the manufacturing yield.
  • FIG. 4A is a plan view of a punching die
  • FIG. (A)-(c) is sectional drawing which shows the process in which a negative
  • (A) is a top view which shows the punching die of the modification 1
  • (b) is sectional drawing which shows the punching blade of the modification 2.
  • FIG. 1 is an exploded perspective view showing a configuration example of a battery cell
  • FIG. 2A is a plan view showing an example of an electrode plate
  • FIG. 2B is a cross-sectional view taken along the line AA ′ in FIG. FIG.
  • the battery cell 1 is equipped with the battery container 10 which stores electrolyte solution inside.
  • the battery cell 1 is, for example, a lithium ion secondary battery. Since the electrode manufacturing apparatus of this embodiment can be applied to any battery cell that is manufactured by punching an electrode plate, it is not limited to the shape and material of the battery container. Moreover, the electrode manufacturing apparatus of this embodiment is not limited to the kind of battery, For example, it is applicable also to a primary battery.
  • the battery container 10 of this example is a hollow container made of aluminum, and the outer shape is a substantially prismatic shape (substantially rectangular parallelepiped shape) along the XYZ axes in FIG.
  • the battery container 10 includes a container body 11 having an opening and a lid 12 that closes the opening and is joined to the container body 11. The opening of the container main body 11 and the lid 12 have a shape that can be sealed.
  • the lid 12 is provided with electrode terminals 13 and 14.
  • the electrode terminal 13 is a positive terminal and the electrode terminal 14 is a negative terminal.
  • a plurality of electrode plates 15 and 16 and a plurality of separators 17 are accommodated inside the battery container 10.
  • the electrode plate 15 is a positive electrode plate
  • the electrode plate 16 is a negative electrode plate.
  • the plurality of electrode plates 15 and 16 are repeatedly arranged so that the positive electrode plates and the negative electrode plates are alternately arranged.
  • the electrode active material of the electrode plate 16 that is the negative electrode plate is, for example, a carbon material ( Artificial graphite).
  • the separator 17 is disposed between the pair of electrode plates 15 and 16, and the electrode plates 15 and 16 are not in direct contact with each other.
  • the separator 17 is made of a porous insulating material and allows electrolytic components such as lithium ions to pass through. Actually, a plurality of positive plates, a plurality of negative plates, and a plurality of separators are laminated to form a laminate.
  • the battery cell 1 has a structure in which the stacked body is accommodated in a battery container 10. The electrolytic solution is stored inside the battery container 10 so as to be in contact with the electrode plates 15 and 16.
  • FIG. 2A shows the electrode plate 15 arranged on the XZ plane.
  • the electrode plate 15 has a mother part 150 and an electrode tab 151.
  • the planar shape of the base 150 is, for example, a substantially rectangular shape with rounded corners.
  • the electrode tab 151 is formed so as to protrude to the outside of the mother part 150 with one side of the mother part 150 as a base end.
  • the direction in which the electrode tab 151 protrudes is, for example, the Z direction that is substantially perpendicular to one side having the base end (hereinafter referred to as a tab installation side) and is along the main surface of the base 150.
  • the electrode tab 151 is formed so as to be biased to one side of the tab installation side.
  • the electrode tabs 151 of the plurality of electrode plates 15 are collectively connected to the electrode terminals 13.
  • FIG. 2B is a cross-sectional view taken along the line A-A ′ of the electrode plate 15 shown in FIG.
  • the electrode plate 15 includes a current collector 152 and an electrode active material 153.
  • the current collector 152 is made of, for example, aluminum or copper, and is a sheet-like conductive foil having a thickness of about several tens of ⁇ m (for example, about 20 ⁇ m).
  • the electrode active material 153 is made of a forming material corresponding to the type of the electrolytic solution, and is applied to both surfaces of the current collector 152.
  • the electrode active material 153 has a thickness of about several tens of ⁇ m to several hundreds of ⁇ m (for example, about 100 ⁇ m).
  • the electrode plate 15 has a mother part 150 to which the electrode active material 153 is applied and an electrode tab 151 to which the electrode active material 153 is not applied.
  • the electrode tab 151 is obtained by punching the current collector 152 as will be described later.
  • the electrode plate 16 is formed of a different material for the electrode active material, and the size of the base part is larger than that of the electrode plate 15. As shown in FIG. 1, the electrode tab 161 of the electrode plate 16 is disposed so as not to overlap the electrode tab 151 of the electrode plate 15. The electrode tabs 161 of the plurality of electrode plates 16 are collectively connected to the electrode terminals 14.
  • FIG. 3 is a flowchart schematically showing an example of a battery cell manufacturing method.
  • step S1 electrode active materials corresponding to the respective electrodes are applied to both surfaces of the positive electrode and negative electrode sheet-like current collectors.
  • step S2 the coated electrode active material is pressure-bonded to the current collector by roll pressing or the like, and then the electrode active material is dried. Thereby, the original plates of the positive electrode plate and the negative electrode plate are completed in step S3.
  • step S4 the electrode plates to be the positive electrode and the negative electrode are completed by die-cutting each electrode plate from each original plate.
  • the electrode plate manufacturing apparatus of this embodiment is used.
  • step S5 the positive electrode plate and the negative electrode plate are stacked via a separator to form a stacked body.
  • step S6 the laminate is accommodated in the battery container and sealed. At this time, the positive electrode plate is electrically connected to the positive electrode terminal, and the negative electrode plate is connected to the negative electrode terminal. Then, a lid is joined to the container body by welding or the like.
  • step S7 an electrolytic solution is injected into the battery container, and then the injection hole is sealed to obtain a battery cell.
  • FIG. 4 is a perspective view showing a schematic configuration of an embodiment of the electrode plate manufacturing apparatus
  • FIG. 5 is an exploded perspective view of the drive system viewed from below through the original plate support portion
  • FIG. 6 is a top view and a side view of the electrode plate manufacturing apparatus.
  • the XYZ axes described in the drawings after FIG. 4 are not related to the XYZ axes described in FIGS.
  • a resinous protective sheet 90 is disposed on the upper surface 20 a of the original plate support portion 20, and a positive or negative plate 91 is disposed on the protective sheet 90.
  • the protective sheet 90 is conveyed by the conveying rollers 21 and 22, and the original plate 91 is conveyed by the conveying rollers 23 and 24.
  • the protective sheet 90 and the original plate 91 are conveyed in synchronization with each other so as to have the same speed and step operation.
  • the driving of the transport rollers 21 to 24 is controlled by the control unit 30 so as to be synchronized with the operation of the driving unit 31. As shown in FIGS.
  • the drive system 3 includes a drive unit 31, support columns 34, 35 each having one end arranged on the same surface of the drive unit 31 and moving up and down by the drive unit 31;
  • the holding unit 32 is connected to the other end of the plate 35 and holds the support substrate 36, and the die 33 is fixed to the surface of the support substrate 36 that faces the upper surface 20 a of the original plate support unit 20.
  • the punching die 33 is provided with a punching blade 37 and a pressing means 39. The up and down movement is controlled by the control unit 30.
  • the electrode plate manufacturing apparatus 2 generally operates as follows.
  • the control unit 30 stops the transport rollers 21 to 24 after transporting the original plate 91 and the protective sheet 90 with a predetermined feed width. That is, the control unit 30 operates the transport rollers 21 to 24 intermittently.
  • the control unit 30 controls the drive unit 31, and the drive unit 31 moves the holding unit 32 in the up and down direction (that is, drives so as to advance and retreat).
  • the punching die 33 is pressed against the original plate 91 conveyed to the upper surface 20a.
  • the punching blades 37 and 38 penetrate through the original plate 91 and cut, and the portions surrounded by the punching blades 37 and 38 are respectively die-cut from the original plate 91 as electrode plates.
  • the holding portion 32 upward the punching die 33 is separated from the original plate 91 and retracted upward.
  • the control unit 30 controls the transport rollers 21 to 24 so as to perform the intermittent operation, and feeds the protective sheet 90 and the original plate 91 in the Y direction with a predetermined feed width.
  • the part of the original plate 91 that has been punched is recovered by a device (not shown) that recovers the electrode plate, and the part of the original plate 91 that has not been punched is sent in the Y direction.
  • the electrode plate die-cutting device 2 repeats the above operation to repeatedly die-cut the original plate 91.
  • maintenance part 32 is moved below, although the extraction blades 37 and 38 penetrate the original plate 91, they are designed not to penetrate the protective sheet 90. Therefore, damage such as the cutting blades 37 and 38 hitting the original plate support portion 20 and the blades are not cut does not occur.
  • the transport rollers 23 and 24 for transporting the original plate 91 are disposed below ( ⁇ Z direction) the transport rollers 21 and 22.
  • Such an arrangement of the transport rollers can generate tension on the original plate 91 and prevent the original plate 91 from wrinkling, so that the electrode plate can be appropriately punched.
  • the original plate 91 is provided with a formation region 92 where the electrode active material is applied and a non-formation region 93 where the electrode active material is not applied.
  • the non-formation region 93 is formed at both ends in the width direction (X direction) of the original plate 91.
  • the punching die 33 includes two punching blades 37 and 38, both of which have the same shape.
  • the electrode tab of one electrode plate is die-cut from the non-formation region 93 at one end of the original plate 91, and the electrode tab of the other electrode plate is die-cut from the non-formation region 93 at the other end.
  • the punching blades 37 and 38 are arranged so that the mold can be punched. Specifically, the punching blades 37 and 38 are provided symmetrically with respect to a virtual line drawn from the center in the X direction of the formation region 92 in the Y direction that is the transport direction.
  • FIG. 7A is a plan view of the punching die 33 in plan view of the opposing surface of the support substrate
  • FIG. 7B is a cross-sectional view taken along the line BB ′ in FIG. 7A.
  • the shape (hereinafter referred to as a planar shape) is a closed shape (frame shape) and substantially coincides with the contour of the electrode plate.
  • the punching blade 37 is a single blade, and a band-shaped body (plate-shaped body) provided with a cutting edge is bent so as to have the frame shape.
  • the punching blade 37 is embedded in the support substrate 36 so that the cutting edge is substantially perpendicular to the arrangement surface 36a.
  • the thickness of the strip is about 0.5 mm to 2.0 mm, for example.
  • the inner peripheral surface (one surface) 371 of the punching blade 37 is substantially perpendicular to the arrangement surface 36a (the angle formed with the normal direction of the arrangement surface 36a is substantially 0 °).
  • the tip is a cutting edge 373.
  • the outer peripheral surface (the other surface) 372 of the punching blade 37 is inclined at an angle of about 30 ° with respect to the normal line direction of the arrangement surface 36a at a portion toward the blade edge 373.
  • the pressing means 39 is a member that presses the original plate 91 toward the upper surface 20 a of the original plate support portion 20 when the original plate 91 is die-cut.
  • the pressing means 39 has a first pressing part 391 and a second pressing part 392.
  • the first pressing portion 391 is provided on the inner side of the frame shape, that is, the inner peripheral surface 371 (one surface side) with respect to the punching blade 37 when the arrangement surface 36a is viewed in plan view.
  • the pressing portion 392 is provided outside the outer peripheral surface 372 (on the other surface side).
  • the 1st press part 391 and the 2nd press part 392 consist of elastic bodies, such as rubber
  • the 1st press part 391 and the 2nd press part 392 consist of the same material.
  • a member having a pressing surface may be urged toward the original plate support portion by a spring or the like.
  • the dimension (thickness) in the (Z direction in FIG. 7B) is set.
  • the surface 391a and the surface 392a are in the same position in the Z direction.
  • the first pressing portion 391 is provided with a distance d so that the side surface 391b is separated from the inner peripheral surface 371 of the frame-shaped punching blade. As shown in FIG. 7A, the first pressing portion 391 is substantially the same as the reduced shape of the electrode plate because it is separated from the inner peripheral surface 371 of any of the frame-shaped punching blades by a distance d. It will be the same. Of course, as will be described later, the distance d is for preventing the electrode active material 153 applied to the original plate 91 from being detached. Accordingly, since the electrode tab 151 portion formed only of the current collector 152 made of metal cannot be detached in the first place, the current collector 152 is cut to form the electrode tab 151 of the frame-shaped extraction blade.
  • the second pressing portion 392 is provided so that the side surface 392b contacts the outer peripheral surface 372. If the side surface 392b is in contact with the outer peripheral surface 372, the original plate 91 can be pressed in the vicinity of the punching blade 37 in the process of die cutting, and the positional deviation between the original plate 91 and the punching blade 37 is effectively avoided. be able to.
  • FIGS. 8A to 8C are enlarged sectional views showing the original plate and the punching blade in the process of die cutting
  • FIG. 9 is an explanatory diagram showing the force acting on the cutting part in the process of die cutting.
  • the control unit 30 moves the support substrate 36 downward, and the surface 391a of the first pressing unit and the second pressing unit as shown in FIG.
  • the surface 392a is brought into contact with the electrode active material 153 which is a surface different from the surface in contact with the protective sheet 90 among the surfaces of the original plate 91.
  • the blade edge 373 is not in contact with the electrode active material 153 located on one surface layer of the original plate 91.
  • the control unit 30 moves the support substrate 36 further downward, the cutting edge 373 penetrates the original plate 91 and the original plate 91 is cut as shown in FIG.
  • the original plate 91 in the inner part surrounded by the punching blade 37 is die-cut as an electrode plate. Thereafter, when the control unit 30 moves the support substrate 36 upward, the pressing force against the die-cut electrode plate by the first pressing portion 391 and the die plate electrode other than the die-cut electrode plate by the second pressing portion 392 Since the punching blade 37 is separated from the original plate 91 and the like while the pressing force on the other original plate 91 is applied, it is avoided that the punched electrode plate is moved along with the punching blade 37.
  • the cutting part 91a inside the punching blade 37 and the cutting part 91b outside the punching blade 37 are pushed apart in the direction away from each other by the thickness of the part of the punching blade 37 that has entered the original plate 91.
  • the portion of the original plate 91 that is in contact with the second pressing portion 392 is pressed by the pressing force F ⁇ b> 2 of the second pressing portion 392 and the position thereof is regulated.
  • the cutting part 91 b receives a compressive force F ⁇ b> 4 toward the outside of the punching blade 37 from the outer peripheral surface 372 and is compressed in a direction along the surface of the original plate 91.
  • the cutting portion 91b is in a direction along the surface of the original plate 91 because the position of the portion in contact with the second pressing portion 392 is regulated at a position immediately below the outer peripheral surface 372, that is, a position close to the blade edge 373.
  • the range in which deformation is possible is limited. Since the distortion of the cutting part 91b is difficult to be relaxed, the compressive force F4 acts on the cutting part 91b in a concentrated manner. Then, the current collector 152 and the electrode active material 153 are made of different materials and have different mechanical characteristics.
  • the current collector 152 and the electrode active material 153 cannot be deformed following each other, and the current collector 152 and the electrode A shearing force acts in a direction along an interface with the active material 153 (hereinafter simply referred to as an interface). Since the shearing force at the interface is a force that causes a shift between the current collector 911 and the electrode active materials 912 and 913, the electrode active material 153 is easily detached from the current collector 152. However, since the cutting portion 91b is a portion outside the punching blade 37 and does not become an electrode plate, no inconvenience occurs even if the electrode active material is detached from the cutting portion 91b.
  • the cutting part 91a which is a part that becomes an electrode plate, is unlikely to cause the electrode active material 153 to be detached, as will be described below, unlike the cutting part 91b.
  • the portion of the original plate 91 that is in contact with the first pressing portion 391 is pressed by the pressing force F1 of the first pressing portion 391 in the same manner as the cutting portion 91b, and the position thereof is regulated. Further, the cutting portion 91 a receives a compression force F ⁇ b> 3 toward the inside of the punching blade 37 from the inner peripheral surface 371 and is compressed in the normal direction of the inner peripheral surface 371.
  • the cutting portion 91 a has a portion that is not pressed between the portion that is pressed by the first pressing portion 391 and the portion that contacts the inner peripheral surface 371 due to the spacing d. If the displacement of the cut surface due to the intrusion of the blade edge 373 is equal in the cutting portions 91a and 91b, the cutting portion 91a has a wider range of displacement, and is easily bent and deformed.
  • the interface tangent L at the portion where the cutting portion 91 a contacts the inner peripheral surface 371 is inclined with respect to the normal direction of the inner peripheral surface 371 as the bending deformation (deflection angle) of the cutting portion 91 a increases.
  • the compressive force F3 can be decomposed into a component force F5 parallel to the tangent L and a component force F6 perpendicular to the tangent L.
  • the component force F5 is a shear force that shifts the current collector 152 and the electrode active material 153.
  • the component force F6 is a force that causes the current collector 152 and the electrode active material 153 to approach each other in a portion that contacts the inner peripheral surface 371. That is, the component force F6 acts so that the current collector 152 and the electrode active material 153 are in close contact with each other.
  • the ratio of the component force F6 to the component force F5 increases. That is, the greater the inclination of the tangent L, the greater the component force F6.
  • the interval d is set from such a viewpoint, and it is avoided that the adhesion between the current collector 152 and the electrode active material 153 is deteriorated in the process of die cutting.
  • the distance d is about 5 mm, and good results are obtained with the material of the electrode plate.
  • the interval d is set to determine the slope of the tangent L can be obtained by various numerical simulations, systematic experiments, and the like.
  • the cutting strength which is the upper limit shearing force at which the original plate is not cut, is determined by the mechanical properties of the original plate and the type of punching blade.
  • the deflection angle of the cantilever beam when the cutting strength force is applied to the free end of the cantilever beam made of the same material as the original plate is determined by the length of the cantilever beam.
  • the inventor of the present application produces a comparative punching die (similar to the punching die described in Patent Document 1) in which pressing means are brought into contact with both the inner peripheral surface and the outer peripheral surface of the punching blade, and the electrode plate according to the present invention. Comparison was made between the case of using the die-cutting device 2 and the difficulty of desorption of the electrode active material. As a result, it was confirmed that the electrode plate obtained by the electrode plate punching device 2 was less likely to peel the electrode active material than the comparative example. Further, the distance d is preferably set to 1 mm or more, and if it is set to 2 mm or more, the effect of preventing the electrode active material from being detached is obtained.
  • the distance d is 10 mm or less, and that the effect of preventing the positional deviation is enhanced when the distance d is 5 mm or less.
  • the distance d is preferably 1 mm or more and 10 mm or less, and more preferably 2 mm or more and 5 mm or less.
  • the electrode plate die-cutting device of the present invention can be used for both die-cutting of a positive electrode plate and die-cutting of a negative electrode plate.
  • the punching die can be modified as shown in Modification 1 and Modification 2 below.
  • the punching die 33B of Modification 1 shown in FIG. 10A is different from the above embodiment in that the second pressing portion 392B of the pressing means 39B is provided apart from the outer peripheral surface 372 of the punching blade 37. ing. Even if such a die 33B is used, the effect of preventing the detachment of the electrode active material from the electrode plate can be obtained.
  • the second pressing portion 392B is provided apart from the punching blade 37, the punching blade 37 and the first pressing portion 391 are arranged from the viewpoint of reducing the positional deviation between the original plate and the punching blade 37 in the process of die cutting. It is preferable that the interval between the punching blade 37 and the second pressing portion 392B be narrower than the interval.
  • the punching blade 37C of Modification 2 shown in FIG. 10 (b) is different from the above embodiment in that it is composed of both blades.
  • the inner peripheral surface 371 ⁇ / b> C and the outer peripheral surface 372 ⁇ / b> C of the punching blade 37 ⁇ / b> C are both inclined with respect to the normal direction of the main surface of the support substrate 36 at the portion toward the blade tip 373 ⁇ / b> C. Even if such a punching blade 37C is used, the effect of preventing the electrode active material from being detached can be obtained by appropriately setting the distance d.
  • the electrode plate manufacturing apparatus of the present invention it is possible to prevent detachment of the electrode active material at the peripheral portion of the electrode plate and improve the manufacturing yield.
  • Electrode plate manufacturing device electrode plate punching device
  • 3 ... Drive system 10: Battery container, 11 ... Container body, 12 ... lid, 13, 14 ... electrode terminals, 15, 16 ... electrode plates, 17 ... separator, 20 ... Original plate support, 20a ... upper surface, 21-24 ... Conveying rollers, 30 ... control unit, 31 ... Drive unit, 32 ... holding part, 33, 33B ... Punching die, 34, 35 ... struts, 36 ... support substrate (substrate), 36a ... arrangement surface, 37, 37C, 38 ... punching blade, 39, 39B ... pressing means, 90 ... Protective sheet, 91 ... Original plate, 91a, 91b ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明の電極板製造装置は、電極板の原板を支持可能な原板支持部と、第1の押圧部と、枠形状の抜き刃と、支持基板と、駆動部とを有し、前記第1の押圧部は前記抜き刃の前記枠形状の内側であって且つ抜き刃から所定の間隔を空けて配置され、前記支持基板が前記原板支持部に向かって進出した際に、前記第1の押圧部が前記原板を押圧するとともに、前記抜き刃が前記原板を前記枠形状に沿って切断する。

Description

電極板製造装置
 本発明は、電極板製造装置に関する。
 本願は、2010年3月26日に日本出願された特願2010-073170に基づいて優先権を主張し、その内容をここに援用する。
 従来から、各種電気装置の電力源として電池セルが用いられている。繰返し充放電することが可能な電池セルである二次電池は、電力源の他に発電装置等の電力バッファとして用いられることもある。電池セルの構成例としては、正極板と負極板とがセパレータを介してそれぞれ複数積層された状態の積層型、1つの正極板と1つの負極板がセパレータを介して巻かれた状態の巻回型の2つが挙げられる。いずれの型も、電極板(正極板または負極板)には、集電体の表面に電極活物質が塗工されている。
 このうち、積層型の電極板の製造方法の一例としては、特許文献1に開示されている方法が挙げられる。
 特許文献1では、集電体の表面に電極活物質を塗布して原板を形成した後に、抜き型(トムソン型)を用いて原板を型抜きすることにより略矩形の電極板を製造している。抜き型は、支持基板に帯状の抜き刃(トムソン刃)を垂直に固定し、抜き刃を覆いつつ弾性材料からなる押さえ部材を取付けたものである。略矩形の電極板を型抜きする場合には、抜き刃も同様の形状となっている。抜き型を原板に押し付けていない状態では、抜き刃が押さえ部材に埋まっており、外部から押さえ部材の内部の抜き刃は見えない。
 支持台に支持されている原板に抜き型を押し付けると、押さえ部材が圧縮変形して、抜き刃が押さえ部材よりも支持基板から突出する。原板が、押さえ部材の押圧力により支持台に向かって押圧されるとともに、抜き刃により切断され、この結果、電極板が形成される。
 特許文献1では、抜き刃の形状が片刃であると、電極板の切断面の負荷をかけないので、バリや電極活物質のクラックが生じるおそれはほとんどない。
特開2003-100288号公報
 しかしながら、特許文献1の技術を用いても、電極板の周縁部で電極活物質が集電材から剥離・欠落、すなわち脱離することがある。従って、製造歩留まりが芳しくないという問題があった。
 本発明は、上述の事情に鑑み成されたものであって、電極板の型抜きの際に電極活物質の脱離を極力防止し、製造歩留まりを向上させる電極板製造装置を提供することを目的の1つとする。
 本発明では、前記目的を達成するために以下の手段を採用している。
 本発明の電極板製造装置は、電極活物質が塗工された電極板の原板を支持可能な原板支持部と、第1の押圧部と、枠形状の抜き刃と、前記原板支持部に対向配置され、前記第1の押圧部と前記抜き刃とが固定された支持基板と、前記支持基板を前記原板支持部に向かって進退可能に駆動する駆動部とを有し、前記第1の押圧部は前記抜き刃の前記枠形状の内側であって且つ前記電極活物質を切断する抜き刃から所定の間隔を空けて配置され、前記駆動部により前記支持基板が前記原板支持部に向かって進出した際に、前記第1の押圧部が前記原板を押圧するとともに、前記抜き刃が前記原板を前記枠形状に沿って切断する。
 第1の押圧部が、電極活物質を切断する抜き刃から所定の間隔を空けて配置されているので、当該間隔に存在する原板は第1の押圧部により押圧されていない。このため、当該間隔における原板の変形が許容される。一方、第1の押圧部が電極板となる原板部分を押圧して固定するので、抜き刃による原板の切断時に上記所定の間隔があるにもかかわらず位置ずれがなく切断、すなわち精度よく型抜きが可能となる。よって、集電体から電極活物質が脱離することが防止されるとともに、精度よく電極板を製造することが可能となる。
 本発明の電極板製造装置によれば、電極板の周縁部における電極活物質の脱離を防止し、製造歩留まりを向上させることができる。
電池セルの構成例を模式的に示す斜視図である。 (a)は電極板を示す平面図、(b)は(a)のA-A’線断面図である。 電池セルの製造方法を概略して示すフローチャートである。 電極板製造装置の概略構成を示す斜視図である。 駆動系を下方から、原板支持部を透かして見た斜視図である。 (a)は電極板製造装置の上面図、(b)は電極板製造装置の側面図である。 (a)は抜き型の平面図、(b)は(a)のB-B’線断面図である。 (a)~(c)は、原板が型抜される過程を示す断面図である。 型抜工程で切断部に働く力を示す説明図である。 (a)は変形例1の抜き型を示す平面図、(b)は変形例2の抜き刃を示す断面図である。
 以下、図面を参照しつつ本発明の実施形態を説明する。説明に用いる図面において、特徴的な部分を分かりやすく示すために、図面中の構造の寸法や縮尺を実際の構造に対して異ならせている場合がある。実施形態で説明する要素の全てが本発明に必須であるとは限らない。実施形態において同様の構成要素については、同じ符号を付して図示し、その詳細な説明を省略する場合がある。本発明に係る電極板製造装置の説明に先立ち、まず、電池セルの構成例および電池セルの製造方法の一例について説明する。
 図1は、電池セルの構成例を示す分解斜視図、図2(a)は電極板の一例を示す平面図、図2(b)は図2(a)のA-A’線矢視断面図である。
 図1に示すように電池セル1は、内部に電解液を貯留する電池容器10を備える。電池セル1は、例えばリチウムイオン二次電池である。本実施形態の電極製造装置は、電極板を型抜きして製造する電池セルであればいずれにも適用できるので、電池容器の形状や材質に限定されない。また、本実施形態の電極製造装置は、電池の種類にも限定されず、例えば一次電池にも適用可能である。
 本例の電池容器10は、アルミニウム製の中空容器であり、外形が図1中のXYZ軸に沿う略角柱状(略直方体状)である。電池容器10は、開口部を有する容器本体11と、この開口部を塞いで容器本体11に接合された蓋12とを有している。容器本体11の開口部と蓋12は、互いに密閉することができる形状になっている。
 蓋12には、電極端子13、14が設けられている。電極端子13が正極端子であり、電極端子14が負極端子である。電池容器10の内部に、複数の電極板15、16および複数のセパレータ17が収容されている。電極板15が正極板であり、電極板16が負極板である。複数の電極板15、16は、正極板と負極板とが交互に並ぶように繰り返し配置されている。なお、正極板である電極板15の電極活物質は、例えば三元系材料LiNixCoyMnzO2 (x+y+z=1)であり、負極板である電極板16の電極活物質は、例えばカーボン材料(人造黒鉛など)である。
 セパレータ17は、一対の電極板15、16に挟まれて配置されており、電極板15、16が互いに直接接触しない。セパレータ17は、多孔質の絶縁材料からなり、リチウムイオン等の電解成分を通す。実際には、複数の正極板、複数の負極板および複数のセパレータが積層されて積層体が構成されている。電池セル1は、電池容器10に前記積層体が収容された構造になっている。電解液は、電池容器10の内部で電極板15、16と接触するように貯留される。
 図2(a)にXZ平面に配置した電極板15を示す。電極板15は、母部150および電極タブ151を有している。母部150の平面形状は、例えば矩形の角部を丸めた略矩形状である。電極タブ151は、母部150の一辺を基端として母部150の外側に突出するように形成されている。電極タブ151が突出する方向は、例えば、前記基端を有する一辺(以下、タブ設置辺という)に略直交し、かつ母部150の主面に沿う方向であるZ方向である。電極タブ151は、タブ設置辺の片方に偏らせて形成されている。複数の電極板15の電極タブ151が一括して、電極端子13と電気的に接続されている。
 図2(b)に図2(a)で示した電極板15のA-A’線矢視断面図を示す。電極板15は、集電体152および電極活物質153を有している。集電体152は、例えばアルミニウムや銅などからなり、厚みが数十μm程度(例えば、20μm程度)のシート状の導体箔などである。電極活物質153は、電解液の種類に応じた形成材料からなり、集電体152の両面に塗工されている。電極活物質153の厚みは、数十μm~数百μm程度(例えば、100μm程度)である。
 電極板15は、電極活物質153が塗工されている母部150と、電極活物質153が塗工されていない電極タブ151とを有している。電極タブ151は、後述のように、集電体152が型抜きされたものである。
 電極板16は、上述のように電極活物質の形成材料が異なり、また、母部の寸法が電極板15よりも大きく形成されるが、構造や形状については電極板15と同様である。図1に示したように電極板16の電極タブ161は、電極板15の電極タブ151と重ならないように配置されている。複数の電極板16の電極タブ161を一括して、電極端子14と電気的に接続している。
 図3は、電池セルの製造方法の一例を概略して示すフローチャートである。
 電池セル1を製造するには、ステップS1で正極用と負極用のシート状の集電体の各々の両面にそれぞれの電極に対応した電極活物質を塗工する。次いでステップS2で、塗工済みの電極活物質をロールプレス等して集電体に圧着し、その後、電極活物質を乾燥させる。これにより、ステップS3で正極用と負極用の電極板の原板がそれぞれ完成となる。
 そして、ステップS4で各々の原板からそれぞれの電極板を型抜すること等により、正極および負極となる電極板を完成させる。このステップで、本実施形態の電極板製造装置を用いる。
 次いで、ステップS5で、正極板と負極板とをセパレータを介して積層することにより、積層体を形成する。
 さらに、ステップS6で、電池容器の内部に積層体を収容して封止する。この際、正極板を正極端子と電気的に接続し、また負極板を負極端子と接続する。そして、容器本体に蓋を溶接等により接合する。
 次いで、ステップS7で、電池容器の内部に電解液を注入した後に注入孔を封止して、電池セルが得られる。
 これより、図4、図5及び図6を用いて、電極板の型抜きを行う電極板製造装置の実施形態につき説明する。図4は、電極板製造装置の一実施形態について概略構成を示す斜視図、図5は、駆動系を下方から、原板支持部を透かして見た分解斜視図である。図6は、電極板製造装置の上面図および側面図である。図4以降の図に記載のXYZ軸は、図1、図2に記載のXYZ軸とは関係がない。
 図4に示すように、原板支持部20の上面20aの上に樹脂性の保護シート90が配置され、この保護シート90の上に正極用または負極用の原板91が配置される。保護シート90は搬送ローラー21及び22により、また原板91は搬送ローラー23及び24により搬送される。保護シート90と原板91は同一速度且つステップ動作となるよう互いに同期して搬送される。これら搬送ローラー21乃至24の駆動は駆動部31の動作と同期するよう制御部30により制御される。
 図4、図5に示すように、駆動系3は、駆動部31、駆動部31の同一面にそれぞれの一端が配置され且つ駆動部31により上下運動を行う支柱34、35と、支柱34、35の他端に接続され且つ支持基板36を保持する保持部32と、支持基板36の面のうち原板支持部20の上面20aと向き合う面に固定された抜き型33とから構成される。
 抜き型33には、抜き刃37及び押圧手段39が配されている。
 上記上下運動は、制御部30により制御される。
 電極板製造装置2は、概略すると以下のように動作する。
 制御部30は、所定の送り幅で原板91及び保護シート90を搬送した後に搬送ローラー21乃至24を停止させる。すなわち、制御部30は搬送ローラー21乃至24を間欠動作させる。
 搬送ローラー21乃至24を停止させた後に、制御部30が駆動部31を制御し、駆動部31が保持部32を上下方向に移動させる(すなわち、進退可能に駆動する)。まず、保持部32を原板支持部20の上面20aに向かって下方に移動させることで、抜き型33が上面20aに搬送された原板91に押し当てられる。すると、抜き刃37、38が原板91を貫通して切断し、抜き刃37、38に囲まれる部分が、それぞれ電極板として原板91から型抜される。次に、保持部32を上方に移動させることで抜き型33が原板91から離れ、上方に退避する。そして、制御部30が上記間欠動作を行うように搬送ローラー21~24を制御して、保護シート90および原板91を所定の送り幅でY方向へ送る。これにより、型抜された部分の原板91は電極板を回収する装置(図示せず)により回収され、型抜されていない部分の原板91はY方向へ送られる。電極板型抜装置2は、上記の動作を繰り返して、原板91を繰返し型抜する。
 なお、保持部32を下方に移動させた際、抜き刃37、38は原板91を貫通するものの、保護シート90を貫通することはないように設計されている。そのため、抜き刃37、38が原板支持部20に当たって刃が欠けるなどの損傷は生じない。
 図6(b)に示すように、原板91の搬送用である搬送ローラー23、24は、搬送ローラー21、22よりも下方(-Z方向)に配置されている。各搬送ローラーのこのような配置により原板91に張力を発生させ、原板91にしわが寄ることを防止できるので、適切に電極板の型抜きを行うことができる。
 図6(a)に示すように、原板91には電極活物質が塗工されている形成領域92と、電極活物質が塗工されていない非形成領域93とが設けられている。非形成領域93は、原板91の幅方向(X方向)の両端部に形成されている。
 抜き型33は2つの抜き刃37、38を備え、いずれも同形状のものである。原板91の一端の非形成領域93から1つの電極板の電極タブを型抜きし、他端の非形成領域93からもう1つの電極板の電極タブを型抜きし、合計2つの電極板を同時に型抜きできるように抜き刃37、38が配置されている。具体的には、抜き刃37、38は、形成領域92のX方向の中心から搬送方向であるY方向に引いた仮想の線に対して線対称に設けられている。
 以下、抜き刃37および押圧手段39について詳しく説明する。抜き刃38と押圧手段39との関係については、抜き刃37と押圧手段39との関係と同様である。
 図7(a)は支持基板の対向面を平面視した抜き型33の平面図、図7(b)は図7(a)のB-B’線矢視断面図である。図7(a)、図7(b)に示すように、支持基板36の面であって抜き刃37と押圧手段39が配置且つ固定される配置面36aを平面視したときの抜き刃37の形状(以下、平面形状という)は、閉じた形状(枠形状)になっており、電極板の輪郭と概ね一致している。抜き刃37は片刃であり、刃先が設けられた帯状体(板状体)が、上記枠形状になるように折り曲げられたものである。刃先が配置面36aに略垂直になるように、抜き刃37が支持基板36に埋め込まれている。帯状体の板厚は、例えば0.5mm~2.0mm程度である。
 詳しくは、抜き刃37の内周面(一方の面)371は、配置面36aと略垂直(配置面36aの法線方向となす角度が略0°)になっており、内周面371の先端が刃先373になっている。抜き刃37の外周面(他方の面)372は、刃先373に向かう部分が配置面36aの法線方向から30°程度の角度をなして傾斜している。
 図7(a)、(b)に示すように、押圧手段39は、原板91を型抜するときに原板91を原板支持部20の上面20aに向けて押圧する部材である。押圧手段39は、第1の押圧部391および第2の押圧部392を有している。配置面36aを平面視したときの抜き刃37に対して、第1の押圧部391は上記枠形状の内側、すなわち内周面371の内側(一方の面側)に設けられており、第2の押圧部392は外周面372の外側(他方の面側)に設けられている。
 第1の押圧部391および第2の押圧部392は、例えばゴムやスポンジ等の弾性体からなる。ここでは、第1の押圧部391および第2の押圧部392が、同じ材質からなる。押圧手段39としては、押圧面を有する部材がバネ等により原板支持部に向けて付勢されているものであってもよい。
 第1の押圧部391の表面391aおよび第2の押圧部392の表面392aが刃先373よりも突出するように、第1の押圧部391および第2の押圧部392の配置面36aの法線方向(図7(b)の-Z方向)の寸法(厚み)が設定されている。ここでは、表面391aと表面392aとがZ方向で同一の位置にある。
 第1の押圧部391は、その側面391bが上記枠形状の抜き刃の内周面371から離れるように、間隔dが設けられている。図7(a)に示すように、上記枠形状の抜き刃のいずれの内周面371からも間隔dだけ離れているので、第1の押圧部391は電極板の形状を縮小した形状と略同一となる。
 もちろん、後述のようにこの間隔dは原板91に塗工された電極活物質153の脱離を防止するためのものである。従って、金属である集電体152のみで形成される電極タブ151部分はそもそも当該脱離が生じえないので、上記枠形状の抜き刃のうち電極タブ151を形成すべく集電体152を切断する抜き刃の内周面と第1の押圧部391との間には間隔を設けず、電極活物質153を切断する抜き刃の内周面371と第1の押圧部391との間にだけ間隔dを設ける構成としてもよい。
 間隔dは、原板91の形成材料や板厚に応じて設定されるが、ここでは約5mmとしている。
 第2の押圧部392は、その側面392bが外周面372に当接するように、設けられている。側面392bが外周面372に当接していれば、型抜の過程において、抜き刃37の近傍で原板91を押圧することができ、原板91と抜き刃37との位置ずれを効果的に回避することができる。
 次に、図8及び図9を用いて原板91が抜き型33により型抜される過程について説明する。図8(a)~(c)は、型抜の過程における原板および抜き刃を拡大して示す断面図、図9は型抜の過程で切断部に働く力を示す説明図である。
 原板91を型抜するには、上述のように、制御部30が支持基板36を下方に移動させ、図8(a)に示すように第1の押圧部の表面391aおよび第2の押圧部の表面392aを、原板91の表面のうち保護シート90に接している表面とは異なる表面である電極活物質153に接触させる。この段階で刃先373は、原板91の一方の表層に位置する電極活物質153に接触していない。
 制御部30が支持基板36をさらに下方に移動させると、図8(b)に示すように、第1の押圧部391および第2の押圧部392が原板支持部20に向かって押圧されて圧縮変形し、刃先373が原板91に接触する。第1の押圧部391および第2の押圧部392の押圧力により、原板91が原板支持部20に向かって押圧される。これにより、原板91と抜き刃37との相対位置が規制され、刃先373を原板91の所定の位置Pに接触させることができる。
 制御部30が支持基板36をさらに下方に移動させると、図8(c)に示すように、刃先373が原板91を貫通して原板91が切断される。抜き刃37で囲まれる内側の部分の原板91が電極板として型抜される。その後、制御部30が支持基板36を上方に移動させると、第1の押圧部391による上記型抜きされた電極板に対する押圧力および第2の押圧部392による上記型抜きされた電極板以外の他の原板91の部分に対する押圧力を作用させたまま抜き刃37が原板91等から離れるので、型抜された電極板が抜き刃37に同伴して移動することが回避される。
 ところで、抜き刃37の内側の切断部91aと、抜き刃37の外側の切断部91bは、原板91に侵入した部分の抜き刃37の板厚の分だけ、互いに離れる方向に押し広げられる。
 図9に示すように、第2の押圧部392に当接している部分の原板91は、第2の押圧部392の押圧力F2で押圧されて位置が規制される。切断部91bは、抜き刃37の外側に向かう圧縮力F4を外周面372から受けて、原板91の表面に沿う方向に圧縮される。
 しかしながら、切断部91bは、第2の押圧部392に当接している部分の位置が外周面372の直下、すなわち刃先373に近接した位置で規制されていることにより、原板91の表面に沿う方向で変形可能な範囲が限定される。切断部91bの歪が緩和されにくいので、切断部91bに圧縮力F4が集中的に作用する。すると、集電体152と電極活物質153とで材質が異なり機械特性が異なるので、集電体152と電極活物質153とが互いに追従して変形することができなくなり、集電体152と電極活物質153との界面(以下、単に界面という)に沿う方向にせん断力が作用する。界面のせん断力は、集電体911と電極活物質912、913とにずれを生じさせる力であるので、電極活物質153が集電体152から脱離しやすくなる。ただし、切断部91bは、抜き刃37の外側の部分であり、電極板にならない部分であるので、切断部91bに電極活物質の脱離を生じたとしても不都合を生じることはない。
 一方、電極板になる部分である切断部91aは、切断部91bと異なり、次に説明するように電極活物質153の脱離を生じにくくなっている。第1の押圧部391に当接している部分の原板91は、切断部91bと同様に第1の押圧部391の押圧力F1で押圧されて位置が規制される。また、切断部91aは、抜き刃37の内側に向かう圧縮力F3を内周面371から受けて、内周面371の法線方向に圧縮される。
 切断部91aは、上記間隔dがあることにより、第1の押圧部391に押圧される部分と内周面371に接触する部分との間に、押圧されていない部分を有している。刃先373の侵入による切断面の変位が、切断部91a、91bで等しいとすると、切断部91aの方が変位可能な範囲が広いので、曲げ変形しやすい。切断部91aが内周面371と接触する部分における界面の接線Lは、切断部91aの曲げ変形(たわみ角)が大きくなるほど、内周面371の法線方向に対して傾斜する。
 圧縮力F3は、接線Lに平行な分力F5と、接線Lに垂直な分力F6とに分解することができる。分力F5は、集電体152と電極活物質153とをずれさせるせん断力である。分力F6は、内周面371と接触する部分において、集電体152と電極活物質153とを互いに接近させる力である。すなわち、分力F6は、集電体152と電極活物質153とを、互いに密着させるように作用する。
 原板91の主面に沿う方向に対する接線Lの傾きが大きくなるほど、分力F5に対する分力F6の比率が大きくなる。すなわち、接線Lの傾きを大きくするほど、分力F6が大きくなる。換言すると、接線Lの傾きを所定の値以上にすることにより、分力F5に起因して密着力を減少させる効果に対し、分力F6に起因して密着力を増加させる効果を卓越させることができる。本実施形態では、このような観点で間隔dが設定されており、型抜の過程で集電体152と電極活物質153との密着性が低下することが回避されている。
 ここでは、間隔dは約5mmとしており、上記電極板の材料において良好な結果が得られている。
 なお、間隔dをいかなる値に設定すれば、接線Lの傾きが所望の値になるかについては、各種数値シミュレーションや、系統的な実験等により求めることができる。例えば、簡易なモデルで間隔dを評価する方法として、以下の方法がある。原板が切断されない上限のせん断力である切断強度は、原板の機械特性や抜き刃の種類により定まる。原板と同じ材質の片持ち梁に対して、自由端に前記切断強度の力を作用させたときの片持ち梁のたわみ角は、片持ち梁の長さにより定まる。原板の変形を片持ち梁の変形と同様であると仮定すると、上述の接線Lの傾きがたわみ角に対応し、間隔dが片持ち梁の長さに対応するので、間隔dと接線Lとの関係を求めることができる。
 本願発明者は、抜き刃の内周面および外周面の双方に押圧手段を当接させた比較用の抜き型(特許文献1記載の抜き型と同様)を作製し、本発明に係る電極板型抜装置2を用いる場合と電極活物質の脱離のしにくさについて比較した。その結果、電極板型抜装置2による電極板は、比較例よりも電極活物質が剥離しにくいことが確認された。また、間隔dについては、1mm以上に設定するとよく、2mm以上にすると電極活物質の脱離を防止する効果が高められるという結果が得られた。また、型抜の過程における原板と抜き刃との位置ずれを防止する観点では、間隔dを10mm以下にするとよく、5mm以下にすると位置ずれを防止する効果が高められるという結果が得られた。このように、間隔dとしては、1mm以上10mm以下にするとよく、2mm以上5mm以下にするとさらによい。
 なお、本発明の技術範囲は上述の実施形態に限定されるものではない。本発明の主旨を逸脱しない範囲内で多様な変形が可能である。例えば、本発明の電極板型抜装置は、正極板の型抜、負極板の型抜のいずれにも用いることが可能である。抜き型については、下記の変形例1、変形例2のような変形も可能である。
 図10(a)に示す変形例1の抜き型33Bは、押圧手段39Bの第2の押圧部392Bが抜き刃37の外周面372から離間して設けられている点で、上記実施形態と異なっている。このような抜き型33Bを用いても、電極板における電極活物質の脱離を防止する効果が得られる。第2の押圧部392Bを抜き刃37から離間させて設ける場合には、型抜の過程で原板と抜き刃37との位置ずれを減らす観点で、抜き刃37と第1の押圧部391との間隔よりも、抜き刃37と第2の押圧部392Bとの間隔を狭くすることが好ましい。
 図10(b)に示す変形例2の抜き刃37Cは、両刃により構成されている点で、上記実施形態と異なっている。抜き刃37Cの内周面371Cおよび外周面372Cは、いずれも、刃先373Cに向かう部分が支持基板36の主面の法線方向に対して傾斜している。このような抜き刃37Cを用いても上記間隔dを適宜設定することで電極活物質の脱離を防止する効果が得られる。
 本発明の電極板製造装置によれば、電極板の周縁部における電極活物質の脱離を防止し、製造歩留まりを向上させることができる。
1・・・電池セル、
2・・・電極板製造装置(電極板型抜装置)、
3・・・駆動系、
10・・・電池容器、
11・・・容器本体、
12・・・蓋、
13、14・・・電極端子、
15、16・・・電極板、
17・・・セパレータ、
20・・・原板支持部、
20a・・・上面、
21~24・・・搬送ローラー、
30・・・制御部、
31・・・駆動部、
32・・・保持部、
33、33B・・・抜き型、
34、35・・・支柱、
36・・・支持基板(基板)、
36a・・・配置面、
37、37C、38・・・抜き刃、
39、39B・・・押圧手段、
90・・・保護シート、
91・・・原板、
91a、91b・・・切断部、
92・・・形成領域、
93・・・非形成領域、
150・・・母部、
151・・・電極タブ、
152・・・集電体、
153・・・電極活物質、
161・・・電極タブ、
371、371C・・・内周面(一方の面)、
372、372C・・・外周面(他方の面)、
373、373C・・・刃先、
391・・・第1の押圧部(押圧手段)、
391a・・・第1の押圧部の表面、
391b・・・第1の押圧部の側面、
392、392B・・・第2の押圧部(押圧手段)、
392a・・・第2の押圧部の表面、
392b・・・第2の押圧部の側面、
911・・・集電体、
912、913・・・電極活物質、
d・・・間隔、
F1、F2・・・押圧力、
F3、F4・・・圧縮力、
F5、F6・・・分力、
L・・・接線、
P・・・所定の位置、
S1~S7・・・ステップ

Claims (4)

  1.  電極活物質が塗工された電極板の原板を支持可能な原板支持部と、
     第1の押圧部と、
     枠形状の抜き刃と、
     前記原板支持部に対向配置され、前記第1の押圧部と前記抜き刃とが固定された支持基板と、
     前記支持基板を前記原板支持部に向かって進退可能に駆動する駆動部とを有し、
     前記第1の押圧部は前記抜き刃の前記枠形状の内側であって且つ前記電極活物質を切断する抜き刃から所定の間隔を空けて配置され、
     前記駆動部により前記支持基板が前記原板支持部に向かって進出した際に、前記第1の押圧部が前記原板を押圧するとともに、前記抜き刃が前記原板を前記枠形状に沿って切断する電極板製造装置。
  2.  前記支持基板に固定されるとともに、前記枠形状の外側に配置される第2の押圧部をさらに有し、
     前記駆動部により前記支持基板が前記原板支持部に向かって進出した際に、前記第1の押圧部とともに前記第2の押圧部が前記原板を押圧する請求項1に記載の電極板製造装置。
  3.  制御部と、
     前記原板支持部を介して前記原板を搬送する搬送ローラーとをさらに有し、
     前記制御部は前記搬送ローラーを間欠動作させ、前記搬送ローラーを停止させた際に前記切断が行われる請求項2に記載の電極板製造装置。
  4.  前記抜き刃は片刃のトムソン刃である請求項1から請求項3のいずれか一項に記載の電極板製造装置。
PCT/JP2011/057334 2010-03-26 2011-03-25 電極板製造装置 WO2011118763A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117022495A KR101332935B1 (ko) 2010-03-26 2011-03-25 전극판 제조 장치
CN2011800017030A CN102365773B (zh) 2010-03-26 2011-03-25 电极板制造装置
US13/636,502 US20130014625A1 (en) 2010-03-26 2011-03-25 Electrode plate manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-073170 2010-03-26
JP2010073170A JP5461267B2 (ja) 2010-03-26 2010-03-26 電極板製造装置、及び電極板製造方法

Publications (1)

Publication Number Publication Date
WO2011118763A1 true WO2011118763A1 (ja) 2011-09-29

Family

ID=44673303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057334 WO2011118763A1 (ja) 2010-03-26 2011-03-25 電極板製造装置

Country Status (6)

Country Link
US (1) US20130014625A1 (ja)
JP (1) JP5461267B2 (ja)
KR (1) KR101332935B1 (ja)
CN (1) CN102365773B (ja)
TW (1) TWI443895B (ja)
WO (1) WO2011118763A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500688A (zh) * 2011-12-12 2012-06-20 云南驰宏锌锗股份有限公司 一种大面积锌电解阳极板冲孔落料机
CN104953085A (zh) * 2015-05-14 2015-09-30 宁德时代新能源科技有限公司 一种制备锂离子电池极片元件的装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124188A1 (ja) * 2011-03-14 2012-09-20 日立マクセルエナジー株式会社 非水二次電池用電極、その製造方法、および非水二次電池
KR101366022B1 (ko) * 2011-12-21 2014-02-24 주식회사 아모그린텍 전극 조립체
KR101307875B1 (ko) * 2012-01-30 2013-09-13 주식회사 엠플러스 이차 전지용 극판 스탬핑 장치
KR101708358B1 (ko) * 2012-01-31 2017-02-20 삼성에스디아이 주식회사 전극판 제조 시스템 및 전극판 제조 방법
KR101386084B1 (ko) * 2013-07-26 2014-04-16 주식회사 아모그린텍 전극 조립체의 제조방법 및 이를 이용한 이차 전지와 그의 제조방법
JP6402555B2 (ja) * 2014-09-22 2018-10-10 株式会社豊田自動織機 電極の製造方法及び電極の製造装置
JP6565327B2 (ja) * 2015-05-22 2019-08-28 株式会社豊田自動織機 電極の製造方法、及び電極の製造装置
DE102015218533A1 (de) * 2015-09-28 2017-03-30 Robert Bosch Gmbh Verfahren zur Herstellung eines Elektrodenverbundes
DE102016201433A1 (de) * 2016-02-01 2017-08-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Bearbeiten und/oder Herstellen eines Bauteils
KR102246631B1 (ko) 2017-07-10 2021-04-30 주식회사 엘지화학 리튬 금속 전극용 3d 패턴 타발기
KR102261504B1 (ko) 2017-08-10 2021-06-07 주식회사 엘지에너지솔루션 이차전지용 음극의 전리튬화 방법
KR102341464B1 (ko) * 2018-05-04 2021-12-22 주식회사 엘지에너지솔루션 전극시트 커팅장치 및 커팅방법
KR20200125025A (ko) * 2019-04-25 2020-11-04 주식회사 엘지화학 이차전지용 전극 노칭장치와, 이를 통해 제조된 이차전지용 전극 및 이차전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319644A (ja) * 2000-05-10 2001-11-16 Matsushita Electric Ind Co Ltd 電池用電極板の製造方法
JP2002126828A (ja) * 2000-10-20 2002-05-08 Matsushita Electric Ind Co Ltd 電極板裁断加工用金型
JP2005199381A (ja) * 2004-01-15 2005-07-28 Tdk Corp 打ち抜き加工方法及び打ち抜き装置
JP2007128841A (ja) * 2005-04-12 2007-05-24 Matsushita Electric Ind Co Ltd 電池用電極板の製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889563A (en) * 1973-12-26 1975-06-17 William S Westermann Apparatus for trimming and removing the flashing from phonograph records
US3850064A (en) * 1974-01-10 1974-11-26 Independent Die And Supply Co Die for cutting stacked sheet material
US4510682A (en) * 1982-05-24 1985-04-16 Gnb Batteries Inc. Apparatus and method for assembling battery cell elements
US5382404A (en) * 1989-05-04 1995-01-17 Murata Manufacturing Co., Ltd. Method of cutting out a portion of a weak sheet
DE3931320C1 (ja) * 1989-09-20 1991-08-08 Feintool International Holding, Lyss, Ch
WO1992019428A1 (en) * 1990-03-13 1992-11-12 Ontario Die Company Of America Method of cutting compressible materials
JP3584153B2 (ja) * 1996-12-05 2004-11-04 キヤノン株式会社 軟質部品の切断方法及び実装方法、軟質部品の切断装置及び実装装置
US6408729B1 (en) * 1999-08-18 2002-06-25 Michael J. Johnson Steel rule for scrap material ejection die
JP4023990B2 (ja) * 2000-08-30 2007-12-19 松下電器産業株式会社 電池用電極板の製造方法および製造装置
JP2002283292A (ja) * 2001-03-26 2002-10-03 Sumitomo Bakelite Co Ltd ポリエーテルスルフォン樹脂フィルムの切断方法
JP2003100288A (ja) * 2001-09-26 2003-04-04 Mitsubishi Cable Ind Ltd シート状電池の製造方法
NL1019933C2 (nl) * 2002-02-08 2003-08-11 Fountain Tech Bv Transportstans.
JP2003317709A (ja) * 2002-04-26 2003-11-07 Mitsubishi Cable Ind Ltd 電極切断装置及びシート状電池の製造方法
JP4712338B2 (ja) * 2003-09-30 2011-06-29 大日本印刷株式会社 非水電解液二次電池用電極板、その製造方法、及び非水電解液二次電池
US20080261095A1 (en) * 2005-06-20 2008-10-23 Masaki Yamauchi Membrane-Electrode Assembly, Method for Manufacturing the Same, and Fuel Cell
JP4989962B2 (ja) * 2006-12-28 2012-08-01 パナソニック株式会社 電池缶の製造方法及び密閉型電池の製造方法
CN101269495A (zh) * 2008-04-30 2008-09-24 徐剑锋 用于扣式电池生产中的隔膜冲切机
JP2010115722A (ja) * 2008-11-11 2010-05-27 Konica Minolta Business Technologies Inc シール加工装置
JP2010167541A (ja) * 2009-01-26 2010-08-05 Nippon Die Steel Kk ダイカッタの抜き型
JP2011204612A (ja) * 2010-03-26 2011-10-13 Mitsubishi Heavy Ind Ltd 電極板製造装置
JP5821105B2 (ja) * 2011-02-06 2015-11-24 株式会社▲高▼橋型精 打ち抜き型および打ち抜きプレス装置
JP2012228755A (ja) * 2011-04-27 2012-11-22 Make A Box:Kk シート打ち抜き型用の面版及びシートの打ち抜き方法
KR101192619B1 (ko) * 2012-03-23 2012-10-18 주식회사 엘지화학 전지케이스

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319644A (ja) * 2000-05-10 2001-11-16 Matsushita Electric Ind Co Ltd 電池用電極板の製造方法
JP2002126828A (ja) * 2000-10-20 2002-05-08 Matsushita Electric Ind Co Ltd 電極板裁断加工用金型
JP2005199381A (ja) * 2004-01-15 2005-07-28 Tdk Corp 打ち抜き加工方法及び打ち抜き装置
JP2007128841A (ja) * 2005-04-12 2007-05-24 Matsushita Electric Ind Co Ltd 電池用電極板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500688A (zh) * 2011-12-12 2012-06-20 云南驰宏锌锗股份有限公司 一种大面积锌电解阳极板冲孔落料机
CN104953085A (zh) * 2015-05-14 2015-09-30 宁德时代新能源科技有限公司 一种制备锂离子电池极片元件的装置

Also Published As

Publication number Publication date
US20130014625A1 (en) 2013-01-17
JP5461267B2 (ja) 2014-04-02
CN102365773A (zh) 2012-02-29
CN102365773B (zh) 2013-03-27
TW201212357A (en) 2012-03-16
JP2011204614A (ja) 2011-10-13
KR20110122861A (ko) 2011-11-11
TWI443895B (zh) 2014-07-01
KR101332935B1 (ko) 2013-12-02

Similar Documents

Publication Publication Date Title
JP5461267B2 (ja) 電極板製造装置、及び電極板製造方法
JP5383571B2 (ja) 電極板製造装置
JP5433478B2 (ja) 電池セル
US20130000458A1 (en) Electrode plate manufacturing apparatus
EP2802023A1 (en) Battery case for secondary battery
KR20120007508A (ko) 갈바니 전지용 전극 스택
WO2013031889A1 (ja) 電池用電極の製造方法
EP3836271A1 (en) Separator sealing device and sealing method for preventing folding of secondary battery separator
US20230347443A1 (en) Manufacturing method of secondary battery and secondary battery
US20200290162A1 (en) Auto-pressing jig apparatus for pressing electrode lead to busbar
KR101781828B1 (ko) 측면 밀봉 잉여부가 절곡된 전지셀의 제조방법
US20130252081A1 (en) Battery case for secondary battery
JP2014127260A (ja) 固体電解質電池の製造方法
JP2003297430A (ja) 二次電池の製造方法、二次電池電極の製造装置
JP2020102320A (ja) 二次電池の製造方法
KR20220035741A (ko) 초음파 절삭기를 포함하는 전극조립체 제조장치 및 이를 이용한 전극조립체 제조방법
JP5308425B2 (ja) 電池
US8574756B1 (en) Prismatic secondary battery
JP2001283836A (ja) 電池の製造方法及びシート切断方法
EP4239742A1 (en) Battery cell pressurization device
KR101037873B1 (ko) 금속 클래드의 결합방법
JP2024072135A (ja) 積層体製造装置および積層体の製造方法
JP2018113190A (ja) 積層型二次電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001703.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20117022495

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13636502

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759567

Country of ref document: EP

Kind code of ref document: A1