WO2011118568A1 - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
WO2011118568A1
WO2011118568A1 PCT/JP2011/056798 JP2011056798W WO2011118568A1 WO 2011118568 A1 WO2011118568 A1 WO 2011118568A1 JP 2011056798 W JP2011056798 W JP 2011056798W WO 2011118568 A1 WO2011118568 A1 WO 2011118568A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
linear motor
pole teeth
magnetic
armature
Prior art date
Application number
PCT/JP2011/056798
Other languages
French (fr)
Japanese (ja)
Inventor
誠 川上
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to DE112011100996T priority Critical patent/DE112011100996T5/en
Priority to JP2012507003A priority patent/JP5741573B2/en
Priority to CN201180013509.4A priority patent/CN102792571B/en
Publication of WO2011118568A1 publication Critical patent/WO2011118568A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to a linear motor formed by combining a mover having a plurality of plate-like permanent magnets and an armature (stator) having a drive coil.
  • linear motors have a faster response than ball screws, but because the mass of the mover is large, sufficient thrust can be secured, but the required response speed cannot be achieved.
  • the structure of the linear motor suitable for speeding up is a movable magnet type, and in order to realize a small linear motor having a large thrust, it is necessary to reduce the magnetic pole pitch of the armature.
  • the magnetic poles of the armature are periodically provided at a specific ratio corresponding to the arrangement period of the permanent magnets of the mover, and a driving coil is wound around each magnetic pole.
  • a driving coil is wound around each magnetic pole.
  • the space of the coil to be wound becomes narrow, and when the electric resistance of the coil increases, There is a problem that the fever increases.
  • a monopolar type (single pole type) linear motor has been proposed for the purpose of preventing a short circuit of magnetic flux between different poles as described above.
  • the armature magnetic pole teeth are not arranged alternately as described above, and the polarity excited simultaneously is only one of the N pole and the S pole. ing.
  • the armature does not have magnetic pole teeth as a counter electrode, a short-circuit magnetic field is not generated, and the thrust value that is a proportional limit can be increased.
  • This method has an advantage that it can be miniaturized because of its simple structure.
  • the utilization factor of the permanent magnet is halved compared to the bipolar type (bipolar type)
  • the thrust is reduced to 1 ⁇ 2 when the same driving magnetomotive force is applied as the same permanent magnet arrangement.
  • the area of the permanent magnet that contributes to driving is half that of the bipolar type, the load of the permanent magnet increases when the same thrust is generated, and the permeance coefficient of the permanent magnet during driving greatly decreases. There exists a subject that a part will generate
  • a mover having a permanent magnet and a soft magnetic yoke has a problem that detent force (stress pulsation generated in the moving direction) due to the high relative magnetic permeability of the soft magnetic material is increased.
  • the present invention has been made in view of such circumstances, and has a structure in which a magnetic flux that short-circuits between different magnetic poles is unlikely to be generated as in a monopolar drive system, and prevents a decrease in maximum thrust by bipolar driving.
  • An object of the present invention is to provide a linear motor that has a high thrust magnetomotive force ratio.
  • Another object of the present invention is to provide a linear motor that has a small decrease in permeance coefficient of a permanent magnet when driving magnetomotive force is applied, has high demagnetization resistance, and has improved durability during continuous driving and excellent heat resistance. Is to provide.
  • Still another object of the present invention is to provide a linear motor that secures a flow of magnetic flux from the yoke of the mover to the magnetic pole teeth and has a structure in which magnetic saturation in the armature hardly occurs.
  • Still another object of the present invention is to provide a linear motor capable of reducing the weight of the armature by configuring the portion facing the magnetic pole teeth that is less effective as a magnetic flux path in the armature with a light non-magnetic material. There is to do.
  • Still another object of the present invention is to provide a linear motor that can cancel harmonic components of detent force.
  • the linear motor according to the present invention is a linear motor in which a plate-shaped movable element is passed through a hollow armature, a plate-shaped permanent magnet magnetized in the moving direction, and a direction in which the magnetization direction is opposite to that of the permanent magnet.
  • the mover of the linear motor according to the present invention has a configuration in which a flat permanent magnet magnetized in the moving direction (longitudinal direction) of the mover and a flat soft magnetic yoke are combined. Permanent magnets magnetized in one direction and permanent magnets magnetized in the other direction opposite to the moving direction are alternately arranged, and the permanent magnets magnetized in one adjacent direction and magnetized in the other direction A soft magnetic yoke is arranged between the permanent magnets.
  • magnetic pole teeth are provided to face every other yoke on one surface facing the mover and the other surface corresponding to the arrangement of the yokes of the mover.
  • the magnetic pole teeth and the magnetic pole teeth on the other surface are arranged at different positions of 180 ° in electrical angle. Further, a soft magnetic core serving as a return path of the magnetic flux is provided so as to wrap the outside of a pair of magnetic pole teeth composed of the magnetic pole teeth on one surface and the magnetic pole teeth on the other surface. Further, a drive coil for applying a drive magnetomotive force is wound around each of the pair of magnetic pole teeth.
  • the driving magnetomotive force applied from the drive coil is perpendicular to the moving direction of the mover, but the magnetization direction of the permanent magnet of the mover is parallel to the moving direction. Since it is difficult to apply, the decrease in the permeance coefficient of the permanent magnet is small. As a result, the heat resistant temperature is also increased.
  • the linear motor of the present invention is a linear motor that combines the advantages of a monopolar type in which a short-circuit magnetic flux between magnetic poles is less likely to be generated, and the advantage of a bipolar type in which both N and S poles of a permanent magnet can be used simultaneously. It is a motor.
  • the dimension in the moving direction of the distal end portion near the mover is smaller than the dimension in the moving direction of the base end portion located on the distal side of the mover. It is characterized by that.
  • the dimension in the moving direction of the tip portion proximal to the mover is smaller than the dimension in the moving direction of the base end portion distal to the mover. Therefore, since the tip of the magnetic pole teeth is narrowed, the magnetic flux surely flows from the yoke of the mover to the magnetic pole teeth. On the other hand, since the base end portion of the magnetic pole teeth is widened, magnetic saturation hardly occurs in the armature.
  • the core of the soft magnetic body facing the magnetic pole teeth of the armature that is, the armature member positioned between the magnetic pole teeth and the magnetic pole teeth is lighter than the soft magnetic body. It is characterized by being replaced with a non-magnetic material.
  • the portion facing the magnetic pole teeth is made of a nonmagnetic material that is lighter than the magnetic material of the magnetic pole teeth. Therefore, compared with the case where the whole is comprised with a magnetic material, an armature is reduced in weight and becomes a lighter linear motor.
  • the portion facing the magnetic pole teeth is a portion that originally has a low magnetic flux density and is less effective as a magnetic flux path. Therefore, even if this portion is made of a non-magnetic material, the generated thrust does not decrease much.
  • each of the magnetic pole tooth groups is divided into two groups, and an interval between the two groups is an interval obtained by adding or subtracting a half wavelength of a main detent force harmonic component to an interval between other magnetic pole teeth. It is characterized by doing.
  • the magnetic pole tooth groups having the same pole are divided into two groups, and the interval between these magnetic pole tooth groups is added to the magnetic pole pitch by the half wavelength of the main harmonic component. The interval is subtracted from the magnetic pole pitch. Therefore, the harmonic component is canceled and the detent force is reduced.
  • the linear motor according to the present invention is characterized in that the main detent force harmonic component is sixth-order, and is configured to add or subtract 1/12 of the field period.
  • the linear motor according to the present invention is characterized in that the condition of Y ⁇ M ⁇ T is satisfied when the dimensions of the permanent magnet, the yoke, and the magnetic pole teeth in the moving direction are M, Y, and T, respectively. .
  • the linear motor according to the present invention by satisfying the dimensional conditions as described above, when an excessive magnetomotive force is applied to the core of the armature, the magnetic flux applied from the magnetic pole teeth is counter electroded via the yoke. Therefore, the magnetic field opposite to the magnetization of the permanent magnet is hardly applied, and the demagnetization resistance is increased.
  • the polarities excited simultaneously at one side and the other side of the armature are always either N poles or S poles as in the case of the monopolar type, so the polarities of adjacent magnetic pole teeth are the same. Therefore, the short circuit of the magnetic flux between different poles can be prevented. Moreover, since the bipolar drive which can utilize effectively the magnetic flux of the permanent magnet of a needle
  • the dimension on the tip side of the magnetic pole teeth is made shorter than the dimension on the base end side, so that a flow of magnetic flux to the magnetic pole teeth can be ensured and a structure in which magnetic saturation hardly occurs can be provided.
  • the portion facing the magnetic pole teeth of the armature is made of a nonmagnetic material that is lighter than the magnetic material of the magnetic pole teeth, a large thrust can be generated even if the weight is light.
  • the magnetic pole tooth groups having the same polarity are divided into two groups, and the interval between these magnetic pole tooth groups is set to an interval obtained by adding a half wavelength of the main harmonic component to the magnetic pole pitch or subtracting from the magnetic pole pitch. Therefore, the main harmonic component can be canceled and the detent force can be reduced.
  • FIG. 1A and 1B show a configuration of a mover used in a linear motor according to the present invention
  • FIG. 1A is a perspective view thereof
  • FIG. 1B is a sectional view thereof.
  • the movable element 1 has a configuration in which two types of flat plate-like permanent magnets 11a and 11b and a flat plate-like soft magnetic yoke 12 are combined, and the permanent magnet 11a, the yoke 12, the permanent magnet 11b, the yoke 12,. In this order, they are alternately bonded.
  • the white arrows shown in the permanent magnets 11a and 11b indicate the magnetization directions of the permanent magnets 11a and 11b.
  • Each of the permanent magnets 11a and 11b is magnetized in the moving direction of the movable element 1 (longitudinal direction of the movable element 1), in other words, in the continuous direction thereof, but the directions of the magnetizations are opposite to each other by 180 degrees. is there.
  • a flat soft magnetic yoke 12 is inserted between the adjacent permanent magnets 11a and 11b.
  • each yoke 12 has a function of changing the direction of the magnetic flux from the permanent magnets 11 a and 11 b in the thickness direction of the mover 1. Is responsible. In this mover 1, N poles, S poles, ... are alternately formed on the yokes 12, 12, ... (see Fig. 1B). That is, yokes 12N serving as N poles and yokes 12S serving as S poles are alternately present. Further, the front and back surfaces of each yoke 12 (yoke 12N, yoke 12S) have the same polarity.
  • FIG. 2A to 2C show the structure of the armature used in the linear motor according to the present invention.
  • FIG. 2A is a partial perspective view
  • FIG. 2B is a partially broken perspective view
  • FIG. It is a perspective view.
  • the armature 2 is composed of a soft magnetic body having a hollow rectangular parallelepiped shape as a whole, and the movable element 1 having the above-described configuration is passed through the hollow portion 21.
  • the armature 2 includes a core portion 22 as a frame that forms a peripheral surface except for the hollow portion 21, and a plurality of upper magnetic pole teeth 23 a, 23 a, which are arranged from the core portion 22 toward the lower portion of the hollow portion 21. 23a and a plurality of lower magnetic pole teeth 23b, 23b, 23b arranged from the core portion 22 toward the upper portion of the hollow portion 21.
  • a plurality of upper magnetic pole teeth 23a, 23a, 23a constitute one magnetic pole tooth group (magnetic pole tooth assembly) 24a, and a plurality of lower magnetic pole teeth 23b, 23b, 23b constitute the other magnetic pole tooth group (magnetic pole teeth). Tooth assembly) 24b is formed.
  • the upper magnetic pole teeth 23a, 23a, 23a on one surface facing the mover 1 and the lower magnetic pole teeth 23b, 23b, 23b on the other surface facing the mover 1 are respectively in the longitudinal direction of the armature 2 (
  • the moving elements 1 are arranged so as to be opposed to every other yoke 12 corresponding to the arrangement of the yokes 12 of the moving element 1 in a row. That is, one magnetic pole tooth 23a and one magnetic pole tooth 23b are provided for each field period. Further, the upper magnetic pole teeth 23a and the lower magnetic pole teeth 23b are provided at different positions (positions shifted by half of the field period) in electrical angle of 180 °.
  • the upper magnetic pole teeth 23a are opposed to one permanent magnet 11a of the mover 1
  • the lower magnetic pole teeth 23b are opposed to the other permanent magnet 11b of the mover 1.
  • each magnetic pole tooth 23a, 23b is wide stepwise from the distal end facing the mover 1 toward the distal proximal end.
  • the width of the tip of each magnetic pole tooth 23a, 23b is preferably longer than the width of the yoke 12 so that the magnetic flux from the yoke 12 of the mover 1 flows reliably.
  • the core portion 22 is disposed so as to wrap outside the pair of magnetic pole teeth groups 24a and 24b, and serves as a return path of magnetic flux from the magnetic pole teeth 23a and 23b.
  • One magnetic pole tooth group 24a (magnetic pole teeth 23a, 23a, 23a) is collectively wound with a drive coil 25a as a winding line, and the other magnetic pole tooth group 24b (magnetic pole teeth 23b, 23b, 23b) is collectively bundled.
  • a drive coil 25b as a winding wire is wound (see FIG. 2C).
  • the drive coils 25a and 25b are connected so that the energization directions of the drive coil 25a and the drive coil 25b are the same. Black line arrows in FIG. 2C indicate energization directions in the drive coil 25a and the drive coil 25b.
  • the magnetic pole teeth 23a, 23a, 23a constituting one magnetic pole tooth group 24a all have the same polarity (for example, N pole), and the magnetic pole teeth 23b, 23b, 23b constituting the other magnetic pole tooth group 24b are all identical.
  • Polarity for example, S pole
  • FIG. 3 is a partially broken perspective view showing the configuration of the linear motor 3 according to the present invention.
  • the armature 2 functions as a stator. Then, by causing current to flow in the same direction through the drive coils 25a and 25b, the mover 1 penetrating through the hollow portion 21 of the armature 2 performs a reciprocating linear motion with respect to the armature 2 (stator).
  • each of the six permanent magnets 11a and 11b and the twelve yokes 12 are sequentially arranged.
  • three sets of the upper magnetic pole teeth 23a and the lower magnetic pole teeth 23b are provided.
  • the movable body 1 may be configured by housing a structural body in which the permanent magnets 11a and 11b and the yoke 12 are bonded in a frame (not shown).
  • this frame needs to be a non-magnetic material in order to suppress leakage of magnetic flux between the different polarities.
  • a linear guide rail (not shown) may be provided in such a frame, and a notch for passing the linear guide rail through the hollow portion 21 of the armature 2 may be provided.
  • each yoke 12 when the movable element 1 is present alone, the surface and the back surface of each yoke 12 (yoke 12N, yoke 12S) become magnetic poles having the same polarity, and a magnetic flux is evenly generated between the surface and the back surface.
  • the armature 1 is passed through the armature 2, that is, when each yoke 12 (yoke 12N, yoke 12S) faces the magnetic pole teeth 23a, 23b, as shown in FIG.
  • the magnetic flux generated from the yoke 12 is concentrated on the magnetic pole teeth 23a, 23b side. For example, in the positional relationship shown in FIG.
  • the magnetic flux from the yoke 12N as the N pole is concentrated on the upper magnetic pole tooth 23a side, and the magnetic flux from the yoke 12S as the S pole is concentrated on the lower magnetic pole tooth 23b side.
  • the electrical angle advances by 180 ° and the positional relationship shown in FIG. 5C is reached, the magnetic flux from the yoke 12N as the N pole is concentrated on the lower magnetic pole tooth 23b side, and from the yoke 12S as the S pole.
  • the magnetic flux concentrates on the upper magnetic pole teeth 23a side.
  • the soft magnetic yoke 12 by inserting the soft magnetic yoke 12 between the permanent magnets 11a and 11b, the magnetic flux generated from the fixed permanent magnets 11a and 11b can be switched in the vertical direction, and all the permanent magnets 11a and 11b can be switched.
  • the magnetic flux generated from can contribute to thrust generation, and bipolar drive can be realized.
  • the yoke 12 performs a switching function for switching the magnetic flux from the permanent magnets 11a and 11b in the vertical direction. For this reason, both the magnetic fluxes generated from the permanent magnets 11a and 11b can contribute to the generation of thrust.
  • adjacent magnetic pole teeth have the same polarity. Therefore, adjacent to the magnetic flux when the magnetic pole pitch is reduced compared to a general phase batch type armature. Short circuit loss between different poles can be extremely reduced.
  • FIG. 6A is a diagram showing the flow of magnetic flux when no yoke is provided as a comparative example of the present invention.
  • magnetic flux flows vertically from the permanent magnets 41a and 41b, so that unused magnetic flux (magnetic flux surrounded by a broken line in FIG. 6A) is generated and high thrust cannot be obtained.
  • FIG. 6B is a diagram showing the flow of magnetic flux when permanent magnets 51a and 51b magnetized in the thickness direction are used as a comparative example of the present invention. Also in this case, since the magnetic flux flows vertically from the permanent magnets 51a and 51b, a magnetic flux that is not used (magnetic flux surrounded by a broken line in FIG. 6B) is generated, and high thrust cannot be obtained.
  • FIG. 7A is a diagram showing the flow of magnetic flux when using, for example, permanent magnets 61a and 61b magnetized in the thickness direction disclosed in Patent Document 1 as a comparative example of the present invention.
  • the driving magnetic flux (dotted arrow in the figure) applied from the magnetic pole teeth 62 is the thickness direction of the mover 61, and the magnetization directions of the permanent magnets 61a and 61b (open arrows in the figure) are also the mover 61. That is, the driving magnetic flux from the magnetic pole teeth 62 (dotted arrows in the figure) and the magnetization directions of the permanent magnets 61a and 61b (open arrows in the figure) are completely opposite to each other. Therefore, a demagnetization region (a region surrounded by a broken line in FIG. 7A) is generated, causing a decrease in permeance coefficient.
  • the magnetization directions of the permanent magnets 11a and 11b are the moving direction of the mover 1. Since they are parallel, it is difficult to apply a magnetic flux in the direction in which the permanent magnets 11a and 11b are demagnetized.
  • the driving magnetic flux (dotted arrow in the figure) from the magnetic pole teeth 23a takes a path to enter the magnetic pole teeth 23b through the yoke 12 under heavy load, a magnetic flux in the direction opposite to the magnetization direction of the permanent magnets 11a and 11b is generated. Hard to be applied. Accordingly, the resistance to demagnetization is excellent, and a decrease in permeance coefficient can be suppressed. As a result, the operating temperature region can be widened.
  • the comparative example and the example of the present invention are models of the same physique with a magnet thickness: 5 mm, an armature gap: 6.6 mm, and a field period: 18 mm.
  • the solid line A represents the characteristics of the comparative example
  • the solid line B represents the characteristics of the present invention. From the result of FIG. 8, when a relatively large driving magnetomotive force is applied, the example of the present invention has a lower decrease in the permeance coefficient than the comparative example.
  • FIG. 9 is a graph showing an example of the relationship between the temperature and the demagnetization limit permeance coefficient (permeance coefficient at which demagnetization of the magnet starts) when a rare earth magnet (Nd—Fe—B magnet) is used for the mover.
  • the heat resistant temperature is determined as follows for the comparative example and the example of the present invention when the driving magnetomotive force is 2400 A.
  • the minimum permeance coefficient is 0.5 based on the characteristics shown in FIG. 8, and the heat resistance temperature is 55 ° C. based on the characteristics shown in FIG. 9 (see A in the figure).
  • the minimum permeance coefficient is 1 from the characteristics shown in FIG. 8, and therefore the heat-resistant temperature is 75 ° C. from the characteristics shown in FIG. As described above, the heat-resistant temperature can be improved in the present invention.
  • a long non-magnetic yoke extending in the longitudinal direction is further provided at both edges in the width direction of the mover, and the mover yoke is constituted by the soft magnetic yoke and the non-magnetic yoke. You may make it do.
  • the soft magnetic yoke and the non-magnetic yoke can be fixed with screws, an adhesive, caulking, or the like.
  • a soft magnetic yoke and a non-magnetic yoke constitute a mover yoke, and a permanent magnet is attracted and fixed to the soft magnetic yoke, thereby greatly improving the assembly workability.
  • the configuration can be such that external stress is not directly applied to the permanent magnet.
  • FIG. 10 is a diagram for explaining a cancellation method of main detent force harmonic components.
  • the phase of the detent force generated in the second group of magnetic pole teeth differs by 180 ° in the sixth-order harmonic component, so that the sixth-order harmonic component is canceled and is not output.
  • interval of another magnetic pole tooth by (tau) / 6 the same effect is produced even if it makes it narrower than the space
  • the harmonic components of the 12th and higher order can be reduced by arranging the permanent magnets in a skewed manner (arranging the long sides of the permanent magnets at an angle from the direction perpendicular to the moving direction).
  • the skew angle is 0 to 4 °.
  • FIG. 11 is a diagram illustrating exemplary dimensions of a permanent magnet, a yoke, and magnetic pole teeth.
  • the dimensions of the permanent magnet, yoke, and magnetic pole teeth in the moving direction of the mover are M, Y, and T, respectively.
  • the relationship of Y ⁇ M ⁇ T is satisfied.
  • the electrical angle at which the applied magnetomotive force is maximum is around 90 °, the magnetic flux applied from the magnetic pole teeth flows to the magnetic pole teeth of the counter electrode via the yoke. Decrease and increase demagnetization resistance.
  • the linear motor of the present invention can realize high-speed movement and high-precision positioning in the vertical movement mechanism.
  • a vertical movement mechanism it is common to install a linear motor on the movable part of an XY (horizontal direction) table.
  • the gravity of the linear motor itself is a load on the XY axis drive side. Therefore, the linear motor is required to be lightweight.
  • the following embodiment satisfies this requirement.
  • paying attention to the armature of the linear motor by replacing the portion where the magnetic flux density does not increase during driving with a light non-magnetic material from a soft magnetic material, the generated thrust is not significantly reduced, The weight is reduced.
  • FIGS. 12A and 12B show the configuration of another embodiment of the linear motor of the present invention
  • FIG. 12A is a perspective view of the entire linear motor
  • FIG. 12B is a perspective view showing the configuration of a part of the armature. It is.
  • This single-phase linear motor (single-phase unit) 3a is configured by penetrating the mover 1 through the hollow portion of the armature 2a, similar to the linear motor 3 described above (see FIG. 3). Since the configuration of the mover 1 of the linear motor 3a is exactly the same as the configuration of the mover 1 in the linear motor 3 described above, the description thereof is omitted.
  • the armature 2 of the linear motor 3 described above is entirely made of a soft magnetic material, but a part of the armature 2a of the linear motor 3a is made of a nonmagnetic material that is lighter than the soft magnetic material. Yes. Specifically, in the core portion 22 of the armature 2 in the linear motor 3, the portions facing the magnetic pole teeth 23a and 23b (hatched portions) are replaced with a light non-magnetic material such as a magnesium alloy. . Therefore, in the armature 2a, the core portion 22 is only on the side of the magnetic pole teeth 23a and 23b, and the portion facing the magnetic pole teeth 23a and 23b is a lightweight support member 22a (see FIG. 12B).
  • the upper magnetic pole teeth 23a and the lower magnetic pole teeth 23b are provided at different positions of 180 ° in electrical angle except that a light non-magnetic material is used in part.
  • the lower magnetic pole teeth 23b are in a positional relationship such that they face the other permanent magnet 11b of the mover 1.
  • the armature 2a of the linear motor 3a is such that the drive coil 25a is wound around the magnetic pole teeth 23a, and the drive coil 25b is wound around the magnetic pole teeth 23b all together so that currents in the same direction flow through the drive coils 25a and 25b.
  • Other configurations are the same as those of the armature 2 of the linear motor 3.
  • One magnetic pole tooth group (magnetic pole tooth assembly) composed of a plurality of upper magnetic pole teeth 23a
  • the other magnetic pole tooth group (magnetic pole tooth assembly) composed of a plurality of lower magnetic pole teeth 23b
  • the magnetic flux density generated at the time of driving is small in the core portion at the position facing each magnetic pole tooth 23a, 23b. Therefore, even if a magnetic material does not exist in this portion and a non-magnetic material is provided, it is difficult to prevent the flow of magnetic flux during driving. Therefore, this portion is replaced with a lightweight nonmagnetic support member 22a.
  • the armature 2a forms a magnetic flux return path by a magnetic core portion 22 disposed so as to wrap only the portions corresponding to the thickness of the magnetic pole teeth 23a and 23b of the pair of magnetic pole tooth groups (magnetic pole tooth aggregates). It is a configuration. Since the return path portion of the magnetic flux differs by 180 ° in electrical angle between the pair of magnetic pole tooth groups, the positions do not overlap between the magnetic pole tooth groups. Therefore, by providing a portion overlapping the return path portion of the magnetic flux located on the side surface of the mover 1 and securing a portion where the magnetic flux flows in the moving direction of the mover 1, a closed magnetic path is formed in the armature 2a. Yes. And in order to support the reaction force which generate
  • FIGS. 13A and 13B are diagrams showing distributions of magnetic flux density generated in the armature when current is passed through the drive coils 25a and 25b (when the maximum current flows at a drive magnetomotive force of 1200A and an electrical angle of 90 °), 14A and 14B are diagrams showing the flow of magnetic flux in the armature during driving.
  • FIGS. 13A and 14A show the distribution of magnetic flux density and the flow of magnetic flux in an armature that is all made of a magnetic material.
  • FIGS. 13B and 14B show that the portion facing the magnetic pole teeth is replaced with a non-magnetic material. The distribution of magnetic flux density in the armature and the flow of magnetic flux are shown.
  • the magnetic flux density is high in the portion directly under the magnetic pole teeth, but between the magnetic pole teeth of the same pole (enclosed by dotted lines). In the region), the magnetic flux density is small, and the portion facing the magnetic pole teeth hardly contributes as a path for the magnetic flux. Therefore, in the present embodiment, the magnetic material in the portion with low magnetic flux density (the portion facing the magnetic pole teeth) is deleted and replaced with a light non-magnetic material.
  • the magnetic flux flows as shown by the dotted arrow in FIG. 14B, even if the portion facing the magnetic pole teeth is made of a nonmagnetic material, the flow of the magnetic flux is not hindered.
  • the magnetic flux density distribution generated in the magnetic pole teeth shown in FIG. 13B is substantially the same as the magnetic flux density distribution generated in the magnetic pole teeth shown in FIG. 13A.
  • the increase in magnetic flux density is slight even in the core portion (region surrounded by the dotted line) adjacent to the nonmagnetic material. Therefore, even when a part is replaced with a light non-magnetic material, it is possible to obtain the same level of thrust as compared with the case where all are made of a magnetic material.
  • the volume ratio of the nonmagnetic material (supporting member 22a) that can be replaced with the lighter is about 30 to 50%, and the weight of the armature is 20%, depending on the material of the nonmagnetic material to be used.
  • the weight can be reduced by about 40%.
  • the operation mechanism in the linear motor 3a of this Embodiment is the same as the operation mechanism in the linear motor 3 mentioned above.
  • the linear motor 3a also has the characteristics of the linear motor 3 as described in the above (1) to (6).
  • a lighter linear motor is realized without reducing thrust, by replacing a part (part having a low magnetic flux density) with a light non-magnetic material.
  • Another embodiment capable of reducing the weight of such a linear motor will be described.
  • one or a plurality of through holes penetrating in the longitudinal direction (moving direction of the mover) are provided in a portion where the magnetic saturation of the armature hardly occurs.
  • the mass of the armature can be reduced by the amount of the through hole without the magnetic material. Even with such a configuration in which a through hole is provided, the thrust is hardly reduced.
  • 15A and 15B are a top view and a side view of the single-phase linear motor 3 according to the embodiment of the present invention.
  • the movable elements 1 arranged alternately in the order of the permanent magnet 11a, the yoke 12, the permanent magnet 11b, the yoke 12,... Have a plurality of magnetic pole teeth 23a and magnetic pole teeth 23b, respectively.
  • the linear motor 3 is configured by penetrating through the hollow portion 21 of the armature 2 in which the drive coil 25a and the drive coil 25b are collectively wound around the magnetic pole tooth group composed of the magnetic pole tooth group and the magnetic pole tooth group 23b.
  • the permanent magnets 11a and 11b to be used are Nd—Fe—B sintered magnets cut into a flat plate shape having a length of 38 mm, a width of 3 mm, and a thickness of 5 mm.
  • the soft magnetic yoke 12 a soft iron cut into a flat plate shape having a length of 38 mm, a width of 6 mm, and a thickness of 5 mm was produced.
  • core materials AK made of silicon steel plates shown in FIGS. 16A to 16F and FIGS. 17G to 17K were laminated in a predetermined order to produce an armature 2.
  • Each of the core materials A to K has a long side of 90 mm and a short side of 62 mm, but the thickness is 2 mm for the core materials C, D, E, G, H, J, and K, and 3 mm for the core materials A and B.
  • the core materials F and I are 5 mm.
  • Each core material AK has a different hollow shape.
  • Each of these core materials A to K is configured by cutting a silicon steel plate having a thickness of 0.5 mm into a predetermined shape and bonding it with an epoxy adhesive, and the core material having a thickness of 2 mm is thick.
  • Four pieces of 0.5 mm silicon steel plates are integrated and integrated, and similarly, a core material of 3 mm and 5 mm in thickness is integrated by integrating 10 sheets and 10 sheets respectively.
  • the stacking order and the number of stacked core materials A to K are as follows. H + G + F + ⁇ E + D + C + B + C + D + E + A ⁇ ⁇ 3 + E + D + C + I + J + K
  • the core materials A to K were overlapped to form a single-phase unit having an outer shape of 62 mm in height, 90 mm in width, and 78 mm in length (see FIGS. 15A and 15B).
  • the magnetic pole teeth on one surface and the magnetic pole teeth on the other surface are arranged to differ by 180 ° in electrical angle.
  • the gap between the magnetic pole teeth (gap) is 6.6 mm.
  • FIG. 19 shows the planar shape of adjacent magnetic pole teeth 23a, 23a (23b, 23b) in this unit.
  • the width is gradually increased in three stages from the distal end facing the mover 1 toward the distal proximal end.
  • the width of the most distal portion is 7 mm, which is slightly longer than the width of the yoke 12 (6 mm), and the width of the most proximal portion is the magnetic pole to prevent the occurrence of magnetic saturation. It is 15 mm close to the pitch (18 mm).
  • the drive coil 25a is wound so as to collectively include the upper magnetic pole group 24a of the unit, and the lower magnetic group 24b of the unit is collectively included.
  • the drive coil 25b was wound.
  • a winding frame (bobbin: not shown) that can be inserted into two parts is inserted into the unit and adhered to the magnetic pole group, and then each 1 mm diameter enamel-coated copper wire is wound 100 times.
  • the drive coil 25a and the drive coil 25b are used.
  • the stacking direction of the single-phase units (movable) is affected by the variation in the thickness of each silicon steel plate.
  • the length of the movement direction of the child does not become a desired length. If each unit is not the desired length, cogging is worse.
  • the longitudinal direction of the armature (movable) using a silicon steel plate having a thickness of about 0.05 to 0.1 mm consisting only of the core portion without providing magnetic pole teeth as a spacer It is desirable to correct the length of the armature by sandwiching it between one end or both ends of the moving direction of the child.
  • a plurality of through-holes penetrating in the longitudinal direction (moving direction of the mover) are provided in the upper core portion and the lower core portion of each armature, and each U-phase, V-phase, and W-phase unit (armature ) With a long shaft.
  • the diameter of the shaft is preferably 5 mm or more.
  • the drive coil was connected in series for each phase unit, and the paired drive coils were wired so that the winding direction was the same. And the winding line of each unit of these U phase, V phase, and W phase was made into the star connection, and it connected to the motor controller. Further, a force gauge is connected to the movable element 1 side so that the thrust against the driving magnetomotive force can be measured.
  • FIG. 7A a comparative example configured as shown in FIG. 7A disclosed in Patent Document 1
  • a linear motor having the same physique as the embodiment of the present invention is manufactured, and thrust is applied under the same conditions as the embodiment of the present invention.
  • the measurement result of the thrust and the calculation result of the thrust magnetomotive force ratio are also shown in FIG.
  • A represents the thrust of the present invention example
  • B represents the thrust of the comparative example
  • C represents the thrust magnetomotive force ratio of the present invention example
  • D in the figure represents the characteristics of the thrust magnetomotive force ratio of the comparative example. ing.
  • the example of the present invention can achieve a thrust about 65% higher than that of the comparative example. Further, the heat resistant temperature can be improved in the example of the present invention. Therefore, the present invention can provide a linear motor suitable for an industrial moving mechanism that requires high-speed movement and high-precision positioning.
  • 22A and 22B are a top view and a side view of a single-phase linear motor 3 according to another embodiment of the present invention
  • FIG. 23 is a cross-sectional view of the single-phase linear motor 3 according to another embodiment.
  • the permanent magnets 11a and 11b used have a length of 38 mm, a width of 4 mm, and a thickness of 5 mm, and the soft magnetic yoke 12 has a length of 38 mm, a width of 3.5 mm, and a thickness of 5 mm.
  • the magnetic pole pitch ⁇ was 7.5 mm (field period was 15 mm)
  • the widths of the magnetic pole teeth 23 a and 23 b were 6 mm
  • the skew angle of the permanent magnets 11a and 11b was set to 2 °.
  • a linear motor having a configuration in which the spacing between the magnetic pole teeth is uniform and the skew arrangement of the permanent magnet is not performed (Configuration Example 1), and a linear motor having a configuration in which the spacing between the magnetic pole teeth is adjusted but the skew placement of the permanent magnet is not performed (Configuration Example 2) )
  • the results are shown in FIGS.
  • the detent force of the sixth harmonic component is very large.
  • the detent force of the sixth harmonic component is reduced, but the detent force of the twelfth harmonic component is large.
  • the detent forces of the sixth harmonic component and the twelfth harmonic component are both reduced.
  • FIG. 25A and 25B are a top view and a side view of a single-phase linear motor 3a according to still another embodiment of the present invention
  • FIG. 26 is a cross-sectional view of the single-phase linear motor 3a according to still another embodiment. is there.
  • FIG. 27 is a perspective view showing a constituent material of an armature 2a according to still another embodiment.
  • the overall size of the armature 2a is the same as the embodiment shown in FIGS. 22A and 22B, but the portion facing the magnetic pole teeth (the length of 6 mm in the moving direction of the mover 1: the portion with hatching)
  • the support member 22a is made of a magnesium alloy instead of a magnetic body.
  • the sizes of the permanent magnets 11a and 11b and the yoke 12 used in the mover 1 are the same as those in the embodiment shown in FIG. 22A, and the pitches of the adjacent magnetic pole teeth 23a, 23a, 23b, and 23b are also shown in FIG. The same as the embodiment.
  • a flat plate-like movable element 1 (length: 410 mm, width: 38 mm, thickness: 5 mm) used for the linear motor 3a was produced. Note that the materials of the permanent magnets 11a and 11b and the yoke 12 to be used and the manufacturing process thereof are the same as those in the embodiment shown in FIGS.
  • Core member constructed by bonding 12 sheets cut out to a predetermined shape by wire cutting from a 0.5 mm thick silicon steel plate (material 50A800, specific gravity 7.8 g / cm 3 mm) constituting magnetic pole teeth 31 and a lightweight member (support member) 32 cut into a predetermined shape with a thickness of 6 mm from a magnesium alloy (material LA141, Mg-14 mass% Li-1 mass% Al, specific gravity 1.36 g / cm 3 mm).
  • a first armature material 33 was produced. Further, a plurality of sheets cut into a predetermined shape by wire cutting from a silicon steel plate having a thickness of 0.5 mm were bonded with an epoxy adhesive to produce a second armature material 34 to be a side surface portion of the magnetic pole teeth.
  • the 1st armature material 33 and the 2nd armature material 34 are arrange
  • Single-phase units were prepared.
  • a winding frame (bobbin: not shown) that can be inserted into two parts is inserted into the unit and adhered to the magnetic pole group, and then enamel-coated copper wire with a diameter of 1 mm is applied 100 times each to drive coil It was.
  • the mass of the silicon steel plate and the mass of the magnesium alloy used for the manufactured armature 2a were 111.2 g and 95.57 g per single phase, respectively, and the mass of the entire single phase armature 2a was 1206.77 g.
  • the drive coil was connected in series for each phase unit, and the paired drive coils were wired so that the winding direction was the same. And the wire of each of these units was made into star connection, and it connected to the motor controller. Further, a force gauge is connected to the movable element 1 side so that the thrust against the driving magnetomotive force can be measured.
  • the drive current applied to the drive coil was changed and the thrust of the mover 1 of the linear motor 3a was measured.
  • the thrust was measured by a method of pressing the force gauge against the mover 1.
  • the measurement result of the thrust and the calculation result of the thrust magnetomotive force ratio are shown in FIG.
  • a linear motor having the same physique as the linear motor 3a of this embodiment is manufactured as a comparative example except that the entire armature is made of a magnetic material (silicon steel plate), and thrust is measured under the same conditions as the linear motor 3a. did.
  • the measurement result of the thrust and the calculation result of the thrust magnetomotive force ratio are also shown in FIG.
  • the mass of the armature in the linear motor of this comparative example was 1659.32 g per single phase.
  • E represents the thrust of the present example
  • F in the figure represents the thrust of the comparative example
  • G in the figure represents the thrust magnetomotive force ratio of the present example
  • H in the figure represents the characteristic of the thrust magnetomotive force ratio of the comparative example. ing.
  • the linear motor 3a of the present embodiment has an optimum structure for the vertical movement mechanism.
  • the linear motor 3 in which the entire armature is made of a magnetic material is large in weight but can obtain excellent thrust characteristics.
  • the linear motor 3a in which the portion facing the magnetic pole teeth is made of a light non-magnetic material can reduce the weight, although the thrust characteristics are slightly inferior. Therefore, the linear motor 3 and the linear motor 3a according to the present invention may be properly used according to the environment and application to be used.
  • magnesium alloy was used as a lightweight nonmagnetic material which comprises the part which opposes a magnetic pole tooth
  • Conditions required for this material are that it is lightweight and can function as a support member 22a for supporting a reaction force generated by thrust.
  • aluminum alloys, lithium alloys, reinforced plastics, carbon fibers, glass epoxy resins, and the like can be used.
  • FIG. 27 As a part to be replaced with a light non-magnetic material, the one shown in FIG. 27 is an example.
  • a magnetic flux density distribution as shown in FIG. 13A is acquired for the armature composed entirely of a magnetic material, and a portion with a small generated magnetic flux density is reduced based on the acquired magnetic flux density distribution. You may make it replace with. For example, a portion where the magnetic flux density is generated only about 1/3 or less of the saturation magnetic flux density of the core material at the maximum driving time can be replaced with a light non-magnetic material.
  • the armature can be divided into upper and lower parts.
  • a predetermined plurality of silicon steel plates are laminated and bonded to produce an upper portion of the armature including the upper magnetic pole teeth, and a predetermined plurality of silicon steel plates are stacked and bonded to the lower side.
  • a lower part of the armature including the magnetic pole teeth is produced, and the upper part and the lower part are integrally coupled to constitute the armature.
  • a reduction in thrust can be avoided by making the divided portion of the core portion of the armature difficult to cause magnetic saturation.
  • a coiled frame is attached to the upper part magnetic pole group and the lower part magnetic group. Can be made. Therefore, it is easy to increase the space factor to 80% or more. Moreover, assembly workability can also be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

Disclosed is a linear motor which has a configuration not prone to generate magnetic flux causing short circuits between the poles of different polarity, as in monopolar drive systems, and, by means of using a bipolar drive, is capable of preventing the maximum thrust force from decreasing and has a high ratio of thrust force / magnetomotive force. A linear motor (3) is configured by a movable element (1) penetrating the hollow space of a stator (2). The movable element (1) has a permanent magnet magnetized in one of the movable directions, a soft magnetic yoke, a permanent magnet magnetized in the other of the movable directions, a soft magnetic yoke..., alternately arranged in that order. The stator (2) has multiple magnetic pole teeth arranged in a row on both sides thereof which face the movable element (1), and is formed by winding together with each drive coil (25a, 25b) the respective magnetic pole tooth group comprising multiple magnetic pole teeth.

Description

リニアモータLinear motor
 本発明は、複数の板状の永久磁石を有する可動子と駆動コイルを有する電機子(固定子)とを組み合わせてなるリニアモータに関する。 The present invention relates to a linear motor formed by combining a mover having a plurality of plate-like permanent magnets and an armature (stator) having a drive coil.
 電子回路基板の検査装置におけるプローブ(検査用接触素子)の垂直移動機構、または、ピックアンドプレース(部品を掴んで所定の位置に置く)型ロボットにおける垂直移動機構などにあっては、高速な移動かつ高精度の位置決めが要求される。したがって、回転型モータの出力をボールねじにて平行運動(垂直運動)に変換するような従来の方法では、移動速度が遅いため、そのような要求を満たせない。 High-speed movement in a vertical movement mechanism of a probe (contact element for inspection) in an inspection apparatus of an electronic circuit board or a vertical movement mechanism in a pick-and-place (gripping a component and placing it in a predetermined position) type robot In addition, highly accurate positioning is required. Therefore, the conventional method in which the output of the rotary motor is converted into parallel motion (vertical motion) with a ball screw cannot satisfy such a requirement because the moving speed is low.
 そこで、このような垂直移動には、平行運動出力を直接に取り出し可能なリニアモータの利用が進められている。多数の板状の永久磁石を配設した角形状の永久磁石構造体を可動子とし、通電コイルを有する電機子を固定子として、固定子に可動子を貫通させた構成を有するリニアモータとして、種々のタイプのものが提案されている(例えば、特許文献1,2,3など)。 Therefore, for such vertical movement, use of a linear motor that can directly extract parallel motion output is being promoted. As a linear motor having a configuration in which a square permanent magnet structure having a large number of plate-like permanent magnets is used as a mover, an armature having a current-carrying coil is used as a stator, and a mover is passed through the stator. Various types have been proposed (for example, Patent Documents 1, 2, and 3).
特開2002-27729号公報Japanese Patent Laid-Open No. 2002-27729 特開2002-142437号公報JP 2002-142437 A 特開2005-295708号公報JP 2005-295708 A
  従来のリニアモータは、ボールねじに比べれば応答は速いが、可動子の質量が大きいために十分な推力は確保できるものの要求される水準の応答速度を実現できない。高速化に適したリニアモータの構造は可動磁石型であり、小型で大きな推力を有するリニアモータを実現するためには、電機子の磁極ピッチを小さくする必要がある。 Conventional linear motors have a faster response than ball screws, but because the mass of the mover is large, sufficient thrust can be secured, but the required response speed cannot be achieved. The structure of the linear motor suitable for speeding up is a movable magnet type, and in order to realize a small linear motor having a large thrust, it is necessary to reduce the magnetic pole pitch of the armature.
  電機子の磁極は、可動子の永久磁石の配列周期に対応して特定の比率で周期的に設けられており、各磁極毎に駆動用のコイルが巻回されている。リニアモータの推力密度を高めるためには磁極ピッチを小さくする必要があるが、このような個別捲き線構造では巻回されるコイルのスペースが狭くなり、コイルの電気抵抗の上昇にともなって駆動時の発熱が増加するという問題がある。 The magnetic poles of the armature are periodically provided at a specific ratio corresponding to the arrangement period of the permanent magnets of the mover, and a driving coil is wound around each magnetic pole. In order to increase the thrust density of the linear motor, it is necessary to reduce the magnetic pole pitch. However, in such an individual wire structure, the space of the coil to be wound becomes narrow, and when the electric resistance of the coil increases, There is a problem that the fever increases.
 この問題を解決するために、相一括捲きをなすクローポール型(クローティース型)の電機子を用いたリニアモータが提案されている。この相一括捲き方式では、電機子の磁極で同極になる部分に一括してコイルを巻回させており、コイルの数を減らし、捲き線領域を広く確保して、コイルの電気抵抗を下降させる効果がある。しかしながら、この相一括捲き方式では、一般に対極となる磁極歯をN極,S極交互に配置するため、特に磁極ピッチを小さくした場合に、隣り合う磁極間を短絡する磁束が多くなって、電機子から発生させた磁束を可動子の永久磁石側に有効に印加できない。そして、電機子の磁極間を短絡する磁束の割合が大きくなると、最大推力が低下して推力体格比が低下するという課題がある。 In order to solve this problem, a linear motor using a claw pole type (claw teeth type) armature that performs phase batching has been proposed. In this phase batching method, coils are wound around the same part of the armature magnetic poles at once, reducing the number of coils, securing a wide winding area, and lowering the coil electrical resistance. There is an effect to make. However, in this phase rolling method, since the magnetic pole teeth that are the counter electrodes are generally alternately arranged between the N pole and the S pole, especially when the magnetic pole pitch is reduced, the magnetic flux that short-circuits between adjacent magnetic poles increases, The magnetic flux generated from the child cannot be effectively applied to the permanent magnet side of the mover. And when the ratio of the magnetic flux which short-circuits between the magnetic poles of an armature becomes large, there exists a subject that a maximum thrust falls and a thrust physique ratio falls.
 上記のような異極間の磁束の短絡を防止することを目的としてモノポーラ型(単極型)のリニアモータが提案されている。このモノポーラ型では、電機子の磁極歯を上述のようにN極,S極交互に配置する構造とはせず、同時に励磁される極性がN極,S極の何れか一方のみとなるようにしている。この場合、対極となる磁極歯が電機子に存在しないので、短絡磁界は発生せず、比例限界となる推力の値を高めることができる。この方式は、構造が簡単なために小型化できる利点がある。しかしながら、バイポーラ型(双極型)と比較して永久磁石の利用率が半分となるため、同一の永久磁石の配列として同一の駆動起磁力を印加した場合に推力は1/2に低下する。また、駆動に寄与する永久磁石の面積がバイポーラ型の半分となるため、同程度の推力を発生させた場合に永久磁石の負荷が高くなって、駆動時の永久磁石のパーミアンス係数が大きく低下する部分が発生し、永久減磁を発生させる危険性があるという課題がある。 A monopolar type (single pole type) linear motor has been proposed for the purpose of preventing a short circuit of magnetic flux between different poles as described above. In this monopolar type, the armature magnetic pole teeth are not arranged alternately as described above, and the polarity excited simultaneously is only one of the N pole and the S pole. ing. In this case, since the armature does not have magnetic pole teeth as a counter electrode, a short-circuit magnetic field is not generated, and the thrust value that is a proportional limit can be increased. This method has an advantage that it can be miniaturized because of its simple structure. However, since the utilization factor of the permanent magnet is halved compared to the bipolar type (bipolar type), the thrust is reduced to ½ when the same driving magnetomotive force is applied as the same permanent magnet arrangement. In addition, since the area of the permanent magnet that contributes to driving is half that of the bipolar type, the load of the permanent magnet increases when the same thrust is generated, and the permeance coefficient of the permanent magnet during driving greatly decreases. There exists a subject that a part will generate | occur | produce and there exists a danger of generating permanent demagnetization.
 従来より、永久磁石と軟質磁性体のヨークとを有する可動子では、軟質磁性体の比透磁率が高いことに起因するディテント力(移動方向に発生する応力脈動)が大きくなるという問題がある。 Conventionally, a mover having a permanent magnet and a soft magnetic yoke has a problem that detent force (stress pulsation generated in the moving direction) due to the high relative magnetic permeability of the soft magnetic material is increased.
 本発明は斯かる事情に鑑みてなされたものであり、モノポーラ駆動方式のように異極の磁極間を短絡する磁束が発生しにくい構造であるとともに、バイポーラ駆動することによって最大推力の低下を防止でき、推力起磁力比が高いリニアモータを提供することを目的とする。 The present invention has been made in view of such circumstances, and has a structure in which a magnetic flux that short-circuits between different magnetic poles is unlikely to be generated as in a monopolar drive system, and prevents a decrease in maximum thrust by bipolar driving. An object of the present invention is to provide a linear motor that has a high thrust magnetomotive force ratio.
 本発明の他の目的は、駆動起磁力を印加した際に永久磁石のパーミアンス係数の低下が少なくて減磁耐力が高く、連続駆動時の耐久性が向上して耐熱性にも優れたリニアモータを提供することにある。 Another object of the present invention is to provide a linear motor that has a small decrease in permeance coefficient of a permanent magnet when driving magnetomotive force is applied, has high demagnetization resistance, and has improved durability during continuous driving and excellent heat resistance. Is to provide.
 本発明の更に他の目的は、可動子のヨークから磁極歯への磁束の流れを確保するとともに、電機子での磁気飽和が起こりにくい構造をなすリニアモータを提供することにある。 Still another object of the present invention is to provide a linear motor that secures a flow of magnetic flux from the yoke of the mover to the magnetic pole teeth and has a structure in which magnetic saturation in the armature hardly occurs.
 本発明の更に他の目的は、電機子における磁束の経路としての効果が少ない磁極歯に対向する部分を軽量な非磁性材料にて構成することにより、電機子の軽量化を図れるリニアモータを提供することにある。 Still another object of the present invention is to provide a linear motor capable of reducing the weight of the armature by configuring the portion facing the magnetic pole teeth that is less effective as a magnetic flux path in the armature with a light non-magnetic material. There is to do.
 本発明の更に他の目的は、ディテント力の高調波成分を打ち消すことができるリニアモータを提供することにある。 Still another object of the present invention is to provide a linear motor that can cancel harmonic components of detent force.
 本発明に係るリニアモータは、平板状の可動子を中空状の電機子に貫通させてなるリニアモータにおいて、移動方向に磁化した平板状の永久磁石と、該永久磁石と磁化方向が逆の方向である平板状の永久磁石とが交互に配され、隣り合う永久磁石の間に平板状の軟質磁性体のヨークが挿入されている可動子と、前記可動子に対向する一方の面及び他方の面それぞれに、軟質磁性体の磁極歯が、一方の面の磁極歯と他方の面の磁極歯とは電気角で180°異なるように前記ヨークの一つおきに対向して設けられており、一方の面における磁極歯からなる磁極歯群及び他方の面における磁極歯からなる磁極歯群の外側を包むように磁束の帰路となる軟質磁性体のコアを有しており、前記磁極歯群それぞれに一括して、駆動起磁力を印加する駆動コイルが巻回されている電機子とを備えることを特徴とする。 The linear motor according to the present invention is a linear motor in which a plate-shaped movable element is passed through a hollow armature, a plate-shaped permanent magnet magnetized in the moving direction, and a direction in which the magnetization direction is opposite to that of the permanent magnet. Flat plate-like permanent magnets alternately arranged, and a mover in which a yoke of a flat plate-like soft magnetic material is inserted between adjacent permanent magnets, one surface facing the mover and the other The magnetic pole teeth of the soft magnetic material are provided on each of the surfaces so as to oppose every other yoke so that the magnetic pole teeth on one surface and the magnetic pole teeth on the other surface differ by 180 ° in electrical angle, It has a soft magnetic core that serves as a return path of magnetic flux so as to wrap outside the magnetic pole tooth group consisting of magnetic pole teeth on one surface and the magnetic pole tooth group consisting of magnetic pole teeth on the other surface. Drive to apply drive magnetomotive force in a lump Yl is characterized in that it comprises an armature being wound.
 本発明に係るリニアモータの可動子は、可動子の移動方向(長手方向)に磁化された平板状の永久磁石と平板状の軟質磁性体のヨークとを組み合わせた構成をなしており、移動方向の一方向に磁化された永久磁石と、移動方向の一方向とは逆の他方向に磁化された永久磁石とを交互に配置し、隣り合う一方向に磁化された永久磁石及び他方向に磁化された永久磁石の間に軟質磁性体のヨークを配置した構成を有している。一方、電機子は、可動子のヨークの配列に対応させて、可動子に対向する一方の面と他方の面とにおいて磁極歯がヨークの一つおきに対向して設けられ、一方の面の磁極歯と他方の面の磁極歯とは電気角で180°の異なる位置に配置している。また、一方の面における磁極歯及び他方の面における磁極歯からなる一対の磁極歯群の外側を包むように磁束の帰路となる軟質磁性体のコアを有している。更に、一対の磁極歯群それぞれに一括して、駆動起磁力を印加する駆動コイルが巻回されている。 The mover of the linear motor according to the present invention has a configuration in which a flat permanent magnet magnetized in the moving direction (longitudinal direction) of the mover and a flat soft magnetic yoke are combined. Permanent magnets magnetized in one direction and permanent magnets magnetized in the other direction opposite to the moving direction are alternately arranged, and the permanent magnets magnetized in one adjacent direction and magnetized in the other direction A soft magnetic yoke is arranged between the permanent magnets. On the other hand, in the armature, magnetic pole teeth are provided to face every other yoke on one surface facing the mover and the other surface corresponding to the arrangement of the yokes of the mover. The magnetic pole teeth and the magnetic pole teeth on the other surface are arranged at different positions of 180 ° in electrical angle. Further, a soft magnetic core serving as a return path of the magnetic flux is provided so as to wrap the outside of a pair of magnetic pole teeth composed of the magnetic pole teeth on one surface and the magnetic pole teeth on the other surface. Further, a drive coil for applying a drive magnetomotive force is wound around each of the pair of magnetic pole teeth.
 上記のような構成をなす可動子を上記のような構成をなす電機子に貫通させ、上記一対の駆動コイルに同方向の電流を流すことにより、推力が発生して可動子は移動する。この際、電機子の一方の面側のすべての磁極歯は同じ極性(例えばN極)になり、電機子の他方の面側のすべての磁極歯は一方の面側の磁極歯とは逆である同じ極性(例えばS極)になる。よって、それぞれの面側において隣り合う磁極間を短絡する磁束はほとんど発生しない。また、駆動コイルから印加される駆動起磁力は可動子の移動方向に垂直であるが、可動子の永久磁石の磁化方向が移動方向に平行であるため、永久磁石が減磁する方向の磁化が印加されにくいので、永久磁石のパーミアンス係数の低下は小さい。この結果、耐熱温度も高くなる。 When the armature configured as described above is passed through the armature configured as described above and a current in the same direction flows through the pair of drive coils, thrust is generated and the mover moves. At this time, all the magnetic pole teeth on one surface side of the armature have the same polarity (for example, N pole), and all the magnetic pole teeth on the other surface side of the armature are opposite to the magnetic pole teeth on the one surface side. It becomes a certain same polarity (for example, S pole). Therefore, the magnetic flux which short-circuits between the adjacent magnetic poles on each surface side is hardly generated. The driving magnetomotive force applied from the drive coil is perpendicular to the moving direction of the mover, but the magnetization direction of the permanent magnet of the mover is parallel to the moving direction. Since it is difficult to apply, the decrease in the permeance coefficient of the permanent magnet is small. As a result, the heat resistant temperature is also increased.
 本発明のリニアモータは、磁極間の短絡磁束が発生しにくい構造であるというモノポーラ型の利点と、永久磁石のN極,S極両方を同時に利用できるというバイポーラ型の利点とを併せもったリニアモータである。 The linear motor of the present invention is a linear motor that combines the advantages of a monopolar type in which a short-circuit magnetic flux between magnetic poles is less likely to be generated, and the advantage of a bipolar type in which both N and S poles of a permanent magnet can be used simultaneously. It is a motor.
 本発明に係るリニアモータは、前記磁極歯は、前記可動子の近傍側である先端部の前記移動方向の寸法が前記可動子の遠位側である基端部の前記移動方向の寸法より小さいことを特徴とする。 In the linear motor according to the present invention, in the magnetic pole teeth, the dimension in the moving direction of the distal end portion near the mover is smaller than the dimension in the moving direction of the base end portion located on the distal side of the mover. It is characterized by that.
 本発明に係るリニアモータの磁極歯にあっては、可動子に近位する先端部の移動方向の寸法が可動子に遠位する基端部の移動方向の寸法より小さくなっている。よって、磁極歯の先端部を狭くしているため、可動子のヨークから磁極歯へ磁束が確実に流れる。一方、磁極歯の基端部を広くしているため、電機子において磁気飽和が起こりにくい。 In the magnetic pole teeth of the linear motor according to the present invention, the dimension in the moving direction of the tip portion proximal to the mover is smaller than the dimension in the moving direction of the base end portion distal to the mover. Therefore, since the tip of the magnetic pole teeth is narrowed, the magnetic flux surely flows from the yoke of the mover to the magnetic pole teeth. On the other hand, since the base end portion of the magnetic pole teeth is widened, magnetic saturation hardly occurs in the armature.
 本発明に係るリニアモータは、前記電機子の磁極歯に対向する部分の軟質磁性体のコア、すなわち、磁極歯と磁極歯との間に位置する電機子部材を、前記軟質磁性体より軽量である非磁性の材料にて置き換えてあることを特徴とする。 In the linear motor according to the present invention, the core of the soft magnetic body facing the magnetic pole teeth of the armature, that is, the armature member positioned between the magnetic pole teeth and the magnetic pole teeth is lighter than the soft magnetic body. It is characterized by being replaced with a non-magnetic material.
 本発明に係るリニアモータの電機子にあっては、磁極歯に対向する部分を磁極歯の磁性材より軽量である非磁性材料にて構成している。よって、全体を磁性材にて構成する場合に比べて、電機子は軽量化して、より軽いリニアモータとなる。この磁極歯に対向する部分は、元来磁束密度が小さくて、磁束の経路としての効果が少ない部分であるため、この部分を非磁性材料にて構成しても発生推力はあまり低下しない。 In the armature of the linear motor according to the present invention, the portion facing the magnetic pole teeth is made of a nonmagnetic material that is lighter than the magnetic material of the magnetic pole teeth. Therefore, compared with the case where the whole is comprised with a magnetic material, an armature is reduced in weight and becomes a lighter linear motor. The portion facing the magnetic pole teeth is a portion that originally has a low magnetic flux density and is less effective as a magnetic flux path. Therefore, even if this portion is made of a non-magnetic material, the generated thrust does not decrease much.
 本発明に係るリニアモータは、前記磁極歯群それぞれを2群に分け、2群の間隔を、他の磁極歯の間隔に主たるディテント力高調波成分の1/2波長を加算または減算した間隔とすることを特徴とする。 In the linear motor according to the present invention, each of the magnetic pole tooth groups is divided into two groups, and an interval between the two groups is an interval obtained by adding or subtracting a half wavelength of a main detent force harmonic component to an interval between other magnetic pole teeth. It is characterized by doing.
 本発明に係るリニアモータの電機子にあっては、同一極の磁極歯群を2群に分けて、これらの磁極歯群の間隔を、主たる高調波成分の半波長分を磁極ピッチに加えるまたは磁極ピッチから減じた間隔とする。よって、高調波成分が打ち消されて、ディテント力は低減する。 In the armature of the linear motor according to the present invention, the magnetic pole tooth groups having the same pole are divided into two groups, and the interval between these magnetic pole tooth groups is added to the magnetic pole pitch by the half wavelength of the main harmonic component. The interval is subtracted from the magnetic pole pitch. Therefore, the harmonic component is canceled and the detent force is reduced.
 本発明に係るリニアモータは、前記主たるディテント力高調波成分は6次であり、界磁周期の1/12を加算または減算するように構成したことを特徴とする。 The linear motor according to the present invention is characterized in that the main detent force harmonic component is sixth-order, and is configured to add or subtract 1/12 of the field period.
 本発明に係るリニアモータの電機子にあっては、界磁周期2τ(2τ=λ)の1/12(τ/6)を磁極ピッチに加えるまたは磁極ピッチから減じて、同一極の分けられた磁極歯群の間隔とする。よって、6次のディテント力高調波成分を打ち消せる。 In the armature of the linear motor according to the present invention, the same pole is divided by adding or subtracting 1/12 (τ / 6) of the field period 2τ (2τ = λ) to the magnetic pole pitch. The interval between the magnetic pole teeth. Therefore, the sixth-order detent force harmonic component can be canceled out.
 本発明に係るリニアモータは、前記永久磁石、前記ヨーク、前記磁極歯の前記移動方向の寸法をそれぞれM,Y,Tとした場合に、Y<M<Tの条件を満たすことを特徴とする。 The linear motor according to the present invention is characterized in that the condition of Y <M <T is satisfied when the dimensions of the permanent magnet, the yoke, and the magnetic pole teeth in the moving direction are M, Y, and T, respectively. .
 本発明に係るリニアモータにあっては、上記のような寸法条件を満たすことにより、過大な起磁力が電機子のコアに印加された場合に磁極歯から印加された磁束はヨークを介して対極の磁極歯へ流れるため、永久磁石の磁化と逆向きの磁界が印加され難くなるため、減磁耐力は大きくなる。 In the linear motor according to the present invention, by satisfying the dimensional conditions as described above, when an excessive magnetomotive force is applied to the core of the armature, the magnetic flux applied from the magnetic pole teeth is counter electroded via the yoke. Therefore, the magnetic field opposite to the magnetization of the permanent magnet is hardly applied, and the demagnetization resistance is increased.
 本発明では、電機子の一方の面及び他方の面それぞれにおいて、モノポーラ型のように同時に励磁される極性が常にN極,S極の何れかになるので、隣り合う磁極歯の極性が同じになるため、異極間における磁束の短絡を防止することができる。また、可動子の永久磁石の磁束を有効に利用できるバイポーラ駆動が可能であるため、高い推力起磁力比を実現することができる。また、駆動起磁力の印加時に永久磁石の減磁の影響度は少なく、パーミアンス係数の低下は小さいため、高い耐熱性を発揮することができる。 In the present invention, the polarities excited simultaneously at one side and the other side of the armature are always either N poles or S poles as in the case of the monopolar type, so the polarities of adjacent magnetic pole teeth are the same. Therefore, the short circuit of the magnetic flux between different poles can be prevented. Moreover, since the bipolar drive which can utilize effectively the magnetic flux of the permanent magnet of a needle | mover is possible, a high thrust magnetomotive force ratio is realizable. Further, since the degree of influence of demagnetization of the permanent magnet is small when the driving magnetomotive force is applied and the decrease in the permeance coefficient is small, high heat resistance can be exhibited.
 本発明では、磁極歯の先端側の寸法を基端側の寸法より短くするようにしたので、磁極歯への磁束の流れを確保するとともに、磁気飽和が起こりにくい構造を提供することができる。 In the present invention, the dimension on the tip side of the magnetic pole teeth is made shorter than the dimension on the base end side, so that a flow of magnetic flux to the magnetic pole teeth can be ensured and a structure in which magnetic saturation hardly occurs can be provided.
 本発明では、電機子の磁極歯に対向する部分を磁極歯の磁性材より軽量である非磁性材料にて構成するようにしたので、軽量であっても大きな推力を発生することができる。 In the present invention, since the portion facing the magnetic pole teeth of the armature is made of a nonmagnetic material that is lighter than the magnetic material of the magnetic pole teeth, a large thrust can be generated even if the weight is light.
 本発明では、同一極性の磁極歯群を2群に分けて、これらの磁極歯群の間隔を、主たる高調波成分の半波長分を磁極ピッチに加えるまたは磁極ピッチから減じた間隔とするようにしたので、主たる高調波成分を打ち消せて、ディテント力を低減することができる。 In the present invention, the magnetic pole tooth groups having the same polarity are divided into two groups, and the interval between these magnetic pole tooth groups is set to an interval obtained by adding a half wavelength of the main harmonic component to the magnetic pole pitch or subtracting from the magnetic pole pitch. Therefore, the main harmonic component can be canceled and the detent force can be reduced.
本発明に係るリニアモータに使用する可動子の構成を示す斜視図である。It is a perspective view which shows the structure of the needle | mover used for the linear motor which concerns on this invention. 本発明に係るリニアモータに使用する可動子の構成を示す断面図である。It is sectional drawing which shows the structure of the needle | mover used for the linear motor which concerns on this invention. 本発明に係るリニアモータに使用する電機子の構成を示す斜視図である。It is a perspective view which shows the structure of the armature used for the linear motor which concerns on this invention. 本発明に係るリニアモータに使用する電機子の構成を示す斜視図である。It is a perspective view which shows the structure of the armature used for the linear motor which concerns on this invention. 本発明に係るリニアモータに使用する電機子の構成を示す斜視図である。It is a perspective view which shows the structure of the armature used for the linear motor which concerns on this invention. 本発明に係るリニアモータの構成を示す部分破断斜視図である。It is a partial fracture perspective view showing composition of a linear motor concerning the present invention. 本発明に係るリニアモータの推力発生の原理を説明するための図である。It is a figure for demonstrating the principle of the thrust generation | occurrence | production of the linear motor which concerns on this invention. 可動子のヨークの機能を説明するための図である。It is a figure for demonstrating the function of the yoke of a needle | mover. 可動子のヨークの機能を説明するための図である。It is a figure for demonstrating the function of the yoke of a needle | mover. 可動子のヨークの機能を説明するための図である。It is a figure for demonstrating the function of the yoke of a needle | mover. 比較例における磁束の流れを説明するための図である。It is a figure for demonstrating the flow of the magnetic flux in a comparative example. 比較例における磁束の流れを説明するための図である。It is a figure for demonstrating the flow of the magnetic flux in a comparative example. 比較例における磁束の流れを説明するための図である。It is a figure for demonstrating the flow of the magnetic flux in a comparative example. 本発明例における磁束の流れを説明するための図である。It is a figure for demonstrating the flow of the magnetic flux in the example of this invention. 駆動起磁力と最小パーミアンス係数との関係を示すグラフである。It is a graph which shows the relationship between a drive magnetomotive force and a minimum permeance coefficient. 温度と減磁限界パーミアンス係数との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between temperature and a demagnetization limit permeance coefficient. 主たるディテント力高調波成分の打ち消し手法を説明するための図である。It is a figure for demonstrating the cancellation method of the main detent force harmonic component. 永久磁石、ヨーク、磁極歯の寸法例を示す図である。It is a figure which shows the example of a dimension of a permanent magnet, a yoke, and a magnetic pole tooth. 本発明のリニアモータの他の実施の形態の構成を示す斜視図である。It is a perspective view which shows the structure of other embodiment of the linear motor of this invention. 本発明のリニアモータの他の実施の形態の構成を示す斜視図である。It is a perspective view which shows the structure of other embodiment of the linear motor of this invention. 電機子に発生する磁束密度の分布を示す図である。It is a figure which shows distribution of the magnetic flux density which generate | occur | produces in an armature. 電機子に発生する磁束密度の分布を示す図である。It is a figure which shows distribution of the magnetic flux density which generate | occur | produces in an armature. 駆動時の電機子における磁束の流れを示す図である。It is a figure which shows the flow of the magnetic flux in the armature at the time of a drive. 駆動時の電機子における磁束の流れを示す図である。It is a figure which shows the flow of the magnetic flux in the armature at the time of a drive. 本発明の単相分のリニアモータの実施例の上面図である。It is a top view of the Example of the linear motor for the single phase of this invention. 本発明の単相分のリニアモータの実施例の側面図である。It is a side view of the Example of the linear motor for the single phase of this invention. 電機子を構成するコア素材を示す平面図である。It is a top view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す平面図である。It is a top view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す平面図である。It is a top view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す平面図である。It is a top view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す平面図である。It is a top view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す平面図である。It is a top view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す平面図である。It is a top view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す平面図である。It is a top view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す平面図である。It is a top view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す平面図である。It is a top view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す平面図である。It is a top view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す斜視図である。It is a perspective view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す斜視図である。It is a perspective view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す斜視図である。It is a perspective view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す斜視図である。It is a perspective view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す斜視図である。It is a perspective view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す斜視図である。It is a perspective view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す斜視図である。It is a perspective view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す斜視図である。It is a perspective view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す斜視図である。It is a perspective view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す斜視図である。It is a perspective view which shows the core raw material which comprises an armature. 電機子を構成するコア素材を示す斜視図である。It is a perspective view which shows the core raw material which comprises an armature. 電機子の磁極歯の平面形状を示す図である。It is a figure which shows the planar shape of the magnetic pole tooth of an armature. 本発明のリニアモータの実施例の外観形状を示す図である。It is a figure which shows the external appearance shape of the Example of the linear motor of this invention. 本発明のリニアモータの実施例における推力特性の測定結果を示すグラフである。It is a graph which shows the measurement result of the thrust characteristic in the Example of the linear motor of this invention. 本発明の単相分のリニアモータの他の実施例の上面図である。It is a top view of the other Example of the linear motor for the single phase of this invention. 本発明の単相分のリニアモータの他の実施例の側面図である。It is a side view of the other Example of the linear motor for the single phase of this invention. 本発明の単相分のリニアモータの他の実施例の断面図である。It is sectional drawing of the other Example of the linear motor for the single phase of this invention. 単相分及び3相合成による各高調波次数でのディテント力の振幅を示すグラフである。It is a graph which shows the amplitude of the detent force in each harmonic order by a single phase part and 3 phase synthesis | combination. 単相分及び3相合成による各高調波次数でのディテント力の振幅を示すグラフである。It is a graph which shows the amplitude of the detent force in each harmonic order by a single phase part and 3 phase synthesis | combination. 単相分及び3相合成による各高調波次数でのディテント力の振幅を示すグラフである。It is a graph which shows the amplitude of the detent force in each harmonic order by a single phase part and 3 phase synthesis | combination. 本発明の単相分のリニアモータの更に他の実施例の上面図である。It is a top view of further another embodiment of the linear motor for a single phase of the present invention. 本発明の単相分のリニアモータの更に他の実施例の側面図である。It is a side view of the further another Example of the linear motor for the single phase of this invention. 本発明の単相分のリニアモータの更に他の実施例の断面図である。It is sectional drawing of the further another Example of the linear motor for the single phase of this invention. 本発明の更に他の実施例による電機子の構成素材を示す斜視図である。It is a perspective view which shows the structural material of the armature by further another Example of this invention. 本発明のリニアモータの更に他の実施例における推力特性の測定結果を示すグラフである。It is a graph which shows the measurement result of the thrust characteristic in the further another Example of the linear motor of this invention.
 以下、本発明をその実施の形態を示す図面に基づいて詳述する。 Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
 図1A,Bは、本発明に係るリニアモータに使用する可動子の構成を示しており、図1Aはその斜視図、図1Bはその断面図である。 1A and 1B show a configuration of a mover used in a linear motor according to the present invention, FIG. 1A is a perspective view thereof, and FIG. 1B is a sectional view thereof.
 可動子1は、2種類の平板状の永久磁石11a,11bと、平板状の軟質磁性体のヨーク12とを組み合わせた構成であり、永久磁石11a、ヨーク12、永久磁石11b、ヨーク12、…の順に交互に接着させた構成をなしている。 The movable element 1 has a configuration in which two types of flat plate-like permanent magnets 11a and 11b and a flat plate-like soft magnetic yoke 12 are combined, and the permanent magnet 11a, the yoke 12, the permanent magnet 11b, the yoke 12,. In this order, they are alternately bonded.
 図1A及びBにおいて、各永久磁石11a,11bに示された白抜矢符は各永久磁石11a,11bの磁化方向を示している。永久磁石11a,11bは何れも、可動子1の移動方向(可動子1の長手方向)、言い換えればそれらの連なり方向に磁化されているが、それらの磁化の向きは互いに180度異なる逆向きである。そして、これらの隣り合う永久磁石11aと永久磁石11bとの間には、平板状の軟質磁性体のヨーク12が挿入されている。 1A and 1B, the white arrows shown in the permanent magnets 11a and 11b indicate the magnetization directions of the permanent magnets 11a and 11b. Each of the permanent magnets 11a and 11b is magnetized in the moving direction of the movable element 1 (longitudinal direction of the movable element 1), in other words, in the continuous direction thereof, but the directions of the magnetizations are opposite to each other by 180 degrees. is there. A flat soft magnetic yoke 12 is inserted between the adjacent permanent magnets 11a and 11b.
 図1Bにおいて、ヨーク12に示された白抜矢符は磁束の流れを示しており、各ヨーク12は、永久磁石11a,11bからの磁束の向きを可動子1の厚さ方向に変更する役目を担っている。そして、この可動子1では、ヨーク12,12,…には、N極,S極,…が交互に形成される(図1B参照)。即ち、N極となるヨーク12NとS極となるヨーク12Sとが交互に存在する。また、各ヨーク12(ヨーク12N、ヨーク12S)の表面及び裏面は同一極になる。 In FIG. 1B, white arrows shown on the yokes 12 indicate the flow of magnetic flux, and each yoke 12 has a function of changing the direction of the magnetic flux from the permanent magnets 11 a and 11 b in the thickness direction of the mover 1. Is responsible. In this mover 1, N poles, S poles, ... are alternately formed on the yokes 12, 12, ... (see Fig. 1B). That is, yokes 12N serving as N poles and yokes 12S serving as S poles are alternately present. Further, the front and back surfaces of each yoke 12 (yoke 12N, yoke 12S) have the same polarity.
 図2A-Cは、本発明に係るリニアモータに使用する電機子の構成を示しており、図2Aはその一部の斜視図、図2Bはその部分破断斜視図、図2Cはその全体の破断斜視図である。 2A to 2C show the structure of the armature used in the linear motor according to the present invention. FIG. 2A is a partial perspective view, FIG. 2B is a partially broken perspective view, and FIG. It is a perspective view.
 電機子2は、全体として中空直方体状をなす軟質磁性体から構成されており、その中空部21に上記のような構成をなす可動子1が貫通される。電機子2は、中空部21を除いて周面を構成する枠体としてのコア部22と、コア部22から中空部21の下方に向けて配置された上側の複数の磁極歯23a,23a,23aと、コア部22から中空部21の上方に向けて配置された下側の複数の磁極歯23b,23b,23bとを有している。上側の複数の磁極歯23a,23a,23aにて一方の磁極歯群(磁極歯集合体)24aが構成され、下側の複数の磁極歯23b,23b,23bにて他方の磁極歯群(磁極歯集合体)24bが構成される。 The armature 2 is composed of a soft magnetic body having a hollow rectangular parallelepiped shape as a whole, and the movable element 1 having the above-described configuration is passed through the hollow portion 21. The armature 2 includes a core portion 22 as a frame that forms a peripheral surface except for the hollow portion 21, and a plurality of upper magnetic pole teeth 23 a, 23 a, which are arranged from the core portion 22 toward the lower portion of the hollow portion 21. 23a and a plurality of lower magnetic pole teeth 23b, 23b, 23b arranged from the core portion 22 toward the upper portion of the hollow portion 21. A plurality of upper magnetic pole teeth 23a, 23a, 23a constitute one magnetic pole tooth group (magnetic pole tooth assembly) 24a, and a plurality of lower magnetic pole teeth 23b, 23b, 23b constitute the other magnetic pole tooth group (magnetic pole teeth). Tooth assembly) 24b is formed.
 可動子1に対向する一方の面における上側の磁極歯23a,23a,23a及び可動子1に対向する他方の面における下側の磁極歯23b,23b,23bはそれぞれ、電機子2の長手方向(可動子1の移動方向)に列状に、可動子1のヨーク12の配列に対応させてヨーク12の一つおきに対向して設けられている。つまり、界磁周期に一つずつの磁極歯23a、磁極歯23bが設けられている。また、上側の磁極歯23aと下側の磁極歯23bとは、電気角で180°の異なる位置(界磁周期の半分だけずれた位置)に設けられている。よって、例えば、上側の磁極歯23aが可動子1の一方の永久磁石11aに対向している場合、下側の磁極歯23bは可動子1の他方の永久磁石11bに対向するような位置関係となる。 The upper magnetic pole teeth 23a, 23a, 23a on one surface facing the mover 1 and the lower magnetic pole teeth 23b, 23b, 23b on the other surface facing the mover 1 are respectively in the longitudinal direction of the armature 2 ( The moving elements 1 are arranged so as to be opposed to every other yoke 12 corresponding to the arrangement of the yokes 12 of the moving element 1 in a row. That is, one magnetic pole tooth 23a and one magnetic pole tooth 23b are provided for each field period. Further, the upper magnetic pole teeth 23a and the lower magnetic pole teeth 23b are provided at different positions (positions shifted by half of the field period) in electrical angle of 180 °. Thus, for example, when the upper magnetic pole teeth 23a are opposed to one permanent magnet 11a of the mover 1, the lower magnetic pole teeth 23b are opposed to the other permanent magnet 11b of the mover 1. Become.
 なお、各磁極歯23a,23bは、可動子1に対向する先端部から遠位の基端部に向けて階段状に幅が広くなっている。各磁極歯23a,23bの先端部の幅は、可動子1のヨーク12からの磁束が確実に流れるように、ヨーク12の幅より長くすることが好ましい。 In addition, each magnetic pole tooth 23a, 23b is wide stepwise from the distal end facing the mover 1 toward the distal proximal end. The width of the tip of each magnetic pole tooth 23a, 23b is preferably longer than the width of the yoke 12 so that the magnetic flux from the yoke 12 of the mover 1 flows reliably.
 コア部22は、一対の磁極歯群24a,24bの外側を包むように配置されており、各磁極歯23a,23bからの磁束の帰路となる。一方の磁極歯群24a(磁極歯23a,23a,23a)に一括して捲き線としての駆動コイル25aを巻回するとともに、他方の磁極歯群24b(磁極歯23b,23b,23b)に一括して捲き線としての駆動コイル25bを巻回する(図2C参照)。そして、駆動コイル25aと駆動コイル25bとの通電方向が同一になるように、両駆動コイル25a,25bを接続する。図2Cにおける黒線矢符は、駆動コイル25a、駆動コイル25bでの通電方向を示している。 The core portion 22 is disposed so as to wrap outside the pair of magnetic pole teeth groups 24a and 24b, and serves as a return path of magnetic flux from the magnetic pole teeth 23a and 23b. One magnetic pole tooth group 24a ( magnetic pole teeth 23a, 23a, 23a) is collectively wound with a drive coil 25a as a winding line, and the other magnetic pole tooth group 24b ( magnetic pole teeth 23b, 23b, 23b) is collectively bundled. A drive coil 25b as a winding wire is wound (see FIG. 2C). The drive coils 25a and 25b are connected so that the energization directions of the drive coil 25a and the drive coil 25b are the same. Black line arrows in FIG. 2C indicate energization directions in the drive coil 25a and the drive coil 25b.
  一方の磁極歯群24aを構成する各磁極歯23a,23a,23aは全て同一の極性(例えばN極)となり、他方の磁極歯群24bを構成する各磁極歯23b,23b,23bは全て同一の極性(例えばS極)となる。 The magnetic pole teeth 23a, 23a, 23a constituting one magnetic pole tooth group 24a all have the same polarity (for example, N pole), and the magnetic pole teeth 23b, 23b, 23b constituting the other magnetic pole tooth group 24b are all identical. Polarity (for example, S pole).
 そして、上述した図1A,Bに示す可動子1を、図2A-Cに示す電機子2の中空部21に貫通させることにより、本発明に係る単相駆動のリニアモータ(単相分のユニット)3が構成される。図3は、本発明に係るリニアモータ3の構成を示す部分破断斜視図である。 1A and B is passed through the hollow portion 21 of the armature 2 shown in FIGS. 2A to 2C, so that the single-phase linear motor (unit for one phase) according to the present invention is obtained. ) 3 is configured. FIG. 3 is a partially broken perspective view showing the configuration of the linear motor 3 according to the present invention.
 このリニアモータ3の場合には、電機子2が固定子として機能する。そして、駆動コイル25a,25bに同一方向に電流を流すことにより、電機子2の中空部21に貫通された可動子1が電機子2(固定子)に対して往復直線運動を行う。 In the case of this linear motor 3, the armature 2 functions as a stator. Then, by causing current to flow in the same direction through the drive coils 25a and 25b, the mover 1 penetrating through the hollow portion 21 of the armature 2 performs a reciprocating linear motion with respect to the armature 2 (stator).
 なお、図1Aに示す例では、各6個ずつの永久磁石11a,11bと12個のヨーク12とを順次配置する構成としているが、これは一例であって、それらの個数は任意の数であって良い。また、図2A-Cに示す例では、3組の上側の磁極歯23aと下側の磁極歯23bとを設ける構成としているが、これは一例であって、その組数は任意の数であって良い。 In the example shown in FIG. 1A, each of the six permanent magnets 11a and 11b and the twelve yokes 12 are sequentially arranged. However, this is merely an example, and the number thereof may be an arbitrary number. It's okay. In the example shown in FIGS. 2A to 2C, three sets of the upper magnetic pole teeth 23a and the lower magnetic pole teeth 23b are provided. However, this is an example, and the number of sets is arbitrary. Good.
 また、永久磁石11a,11b及びヨーク12を接着させた構成体を枠(図示せず)に収納して可動体1を構成するようにしても良い。但し、隣り合うヨークが異極同士であるので、異極間の磁束の漏れを抑制するために、この枠は非磁性体であることが必要である。また、このような枠にリニアガイドレール(図示せず)を設け、電機子2の中空部21にこのリニアガイドレールを通すための切欠きを設けるようにしても良い。 Alternatively, the movable body 1 may be configured by housing a structural body in which the permanent magnets 11a and 11b and the yoke 12 are bonded in a frame (not shown). However, since the adjacent yokes have different polarities, this frame needs to be a non-magnetic material in order to suppress leakage of magnetic flux between the different polarities. Further, a linear guide rail (not shown) may be provided in such a frame, and a notch for passing the linear guide rail through the hollow portion 21 of the armature 2 may be provided.
 なお、単相のリニアモータ(単相分のユニット)について説明したが、例えば3相駆動のリニアモータを構成する場合には、上記の電機子3個を、磁極ピッチ×(n+1/3)または磁極ピッチ×(n+2/3)(但し、nは整数)だけ間隔をあけて直線状に配置して、それらに可動子を貫通させるようにすれば良い。なお、この場合、駆動コイルが収まるスペースを考慮して整数nを設定すれば良い。 Although a single-phase linear motor (unit for one phase) has been described, for example, in the case of configuring a three-phase drive linear motor, the above-described three armatures are represented by magnetic pole pitch × (n + 1/3) or The magnetic pole pitch × (n + 2/3) (where n is an integer) may be arranged in a straight line at intervals, and the mover may be passed through them. In this case, an integer n may be set in consideration of a space in which the drive coil can be accommodated.
 以下、以上のような構成をなす本発明のリニアモータ3の作動機構について、図4を参照して説明する。 Hereinafter, the operation mechanism of the linear motor 3 of the present invention configured as described above will be described with reference to FIG.
 電機子2の駆動コイル25aと駆動コイル25bとに図4に示すような方向に通電した場合(●は紙面の裏から表への通流、×は紙面の表から裏への通流)、上側の磁極歯23a,23a,23aにはN極が発生し、下側の磁極歯23b,23b,23bにはS極が発生する。一方、可動子1では、ヨーク12Nは表裏ともにN極となり、ヨーク12Sは表裏ともにS極となる。 When the drive coil 25a and the drive coil 25b of the armature 2 are energized in the direction as shown in FIG. 4 (● is a flow from the back of the paper to the front, × is a flow from the front to the back of the paper) N poles are generated in the upper magnetic pole teeth 23a, 23a, 23a, and S poles are generated in the lower magnetic pole teeth 23b, 23b, 23b. On the other hand, in the mover 1, the yoke 12N has N poles on both sides, and the yoke 12S has S poles on both sides.
 したがって、図4に示すような位置に可動子1が存在する場合、白抜矢符方向に吸引力が発生し、可動子1の長手方向(移動方向)の応力成分が合成されて推力となり、可動子1が移動する。この際、ヨーク12のN極及びS極が何れも推力の発生に寄与するため、バイポーラ駆動となる。 Therefore, when the mover 1 exists at a position as shown in FIG. 4, a suction force is generated in the direction of the white arrow, and the stress component in the longitudinal direction (moving direction) of the mover 1 is synthesized to become a thrust, The mover 1 moves. At this time, since the N pole and S pole of the yoke 12 both contribute to the generation of thrust, the bipolar drive is performed.
 以下、可動子1の永久磁石11a,11b間に挿入された軟質磁性体のヨーク12における効果(バイポーラ駆動機能)について、図5A-Cを参照して説明する。 Hereinafter, the effect (bipolar drive function) of the soft magnetic material inserted between the permanent magnets 11a and 11b of the mover 1 in the yoke 12 will be described with reference to FIGS. 5A to 5C.
 図5Aに示すように可動子1が単体で存在する場合には、各ヨーク12(ヨーク12N,ヨーク12S)の表面及び裏面が同じ極性の磁極となり、表面と裏面とで均等に磁束が発生する。これに対して、可動子1を電機子2に貫通させた場合、即ち各ヨーク12(ヨーク12N,ヨーク12S)が磁極歯23a,23bに対向する場合には、図5Bに示すように、各ヨーク12(ヨーク12N,ヨーク12S)から発生した磁束は磁極歯23a,23b側へ集中する。例えば、図5Bに示す位置関係では、N極であるヨーク12Nからの磁束は上側の磁極歯23a側へ集中し、S極であるヨーク12Sからの磁束は下側の磁極歯23b側へ集中する。また、電気角が180°進んで図5Cに示す位置関係になった場合には、N極であるヨーク12Nからの磁束は下側の磁極歯23b側へ集中し、S極であるヨーク12Sからの磁束は上側の磁極歯23a側へ集中する。 As shown in FIG. 5A, when the movable element 1 is present alone, the surface and the back surface of each yoke 12 (yoke 12N, yoke 12S) become magnetic poles having the same polarity, and a magnetic flux is evenly generated between the surface and the back surface. . On the other hand, when the armature 1 is passed through the armature 2, that is, when each yoke 12 (yoke 12N, yoke 12S) faces the magnetic pole teeth 23a, 23b, as shown in FIG. The magnetic flux generated from the yoke 12 (yoke 12N, yoke 12S) is concentrated on the magnetic pole teeth 23a, 23b side. For example, in the positional relationship shown in FIG. 5B, the magnetic flux from the yoke 12N as the N pole is concentrated on the upper magnetic pole tooth 23a side, and the magnetic flux from the yoke 12S as the S pole is concentrated on the lower magnetic pole tooth 23b side. . When the electrical angle advances by 180 ° and the positional relationship shown in FIG. 5C is reached, the magnetic flux from the yoke 12N as the N pole is concentrated on the lower magnetic pole tooth 23b side, and from the yoke 12S as the S pole. The magnetic flux concentrates on the upper magnetic pole teeth 23a side.
 したがって、永久磁石11a,11b間に軟質磁性体のヨーク12を挿入することにより、固定された永久磁石11a,11bから発生した磁束を上下方向に切り替えることができて、すべての永久磁石11a,11bから発生した磁束を推力発生に寄与させることができ、バイポーラ駆動を実現できる。ヨーク12は、永久磁石11a,11bからの磁束を上下方向に切り替えるスイッチング機能を果たす。このため、永久磁石11a,11bから発生した磁束をともに推力発生に寄与させることができる。また、このような磁極歯の構成にすることにより、隣り合う磁極歯が同一の極性であるため、一般的な相一括捲き型の電機子に比べて、磁極ピッチを小さくした場合の磁束の隣接異極間の短絡損失を極めて少なくすることができる。 Therefore, by inserting the soft magnetic yoke 12 between the permanent magnets 11a and 11b, the magnetic flux generated from the fixed permanent magnets 11a and 11b can be switched in the vertical direction, and all the permanent magnets 11a and 11b can be switched. The magnetic flux generated from can contribute to thrust generation, and bipolar drive can be realized. The yoke 12 performs a switching function for switching the magnetic flux from the permanent magnets 11a and 11b in the vertical direction. For this reason, both the magnetic fluxes generated from the permanent magnets 11a and 11b can contribute to the generation of thrust. In addition, by adopting such a configuration of magnetic pole teeth, adjacent magnetic pole teeth have the same polarity. Therefore, adjacent to the magnetic flux when the magnetic pole pitch is reduced compared to a general phase batch type armature. Short circuit loss between different poles can be extremely reduced.
 以下、本発明のリニアモータの特徴について更に説明する。
 (1)可動子の永久磁石の磁束の利用率の向上:
 図6Aは本発明の比較例として、ヨークを設けない場合の磁束の流れを示す図である。ヨークを設けない場合には、永久磁石41a,41bから上下に均等に磁束が流れるので、使われない磁束(図6Aの破線で囲んだ磁束)が生じて、高い推力が得られない。また、図6Bは本発明の比較例として、厚さ方向に磁化した永久磁石51a,51bを使用した場合の磁束の流れを示す図である。この場合にも、永久磁石51a,51bから上下に均等に磁束が流れるので、使われない磁束(図6Bの破線で囲んだ磁束)が生じて、高い推力が得られない。
Hereinafter, the features of the linear motor of the present invention will be further described.
(1) Improvement of utilization factor of magnetic flux of permanent magnet of mover:
FIG. 6A is a diagram showing the flow of magnetic flux when no yoke is provided as a comparative example of the present invention. When the yoke is not provided, magnetic flux flows vertically from the permanent magnets 41a and 41b, so that unused magnetic flux (magnetic flux surrounded by a broken line in FIG. 6A) is generated and high thrust cannot be obtained. FIG. 6B is a diagram showing the flow of magnetic flux when permanent magnets 51a and 51b magnetized in the thickness direction are used as a comparative example of the present invention. Also in this case, since the magnetic flux flows vertically from the permanent magnets 51a and 51b, a magnetic flux that is not used (magnetic flux surrounded by a broken line in FIG. 6B) is generated, and high thrust cannot be obtained.
 以上のように、ヨークを設けない可動子、または、厚さ方向に磁化した永久磁石を使用する可動子を、本発明の電機子2の磁極歯23a,23bの構成に適用した場合には、永久磁石から発生した磁束を磁極歯23a,23bの方向に切り替えることができないため、推力に寄与しない磁束が生じて推力密度は低くなる。本発明では、可動子1にヨーク12を挿入することにより、永久磁石11a,11bからの磁束の利用率を高めることができる。 As described above, when a mover without a yoke or a mover using a permanent magnet magnetized in the thickness direction is applied to the configuration of the magnetic pole teeth 23a and 23b of the armature 2 of the present invention, Since the magnetic flux generated from the permanent magnet cannot be switched in the direction of the magnetic pole teeth 23a and 23b, a magnetic flux that does not contribute to the thrust is generated and the thrust density is lowered. In this invention, the utilization factor of the magnetic flux from permanent magnet 11a, 11b can be raised by inserting the yoke 12 in the needle | mover 1. FIG.
 (2)隣り合う磁極歯間での短絡磁束の発生を防止:
 本発明の電機子2の構成では、磁極歯の配置において、同一極性の磁極歯23a,…及び磁極歯23b,…をそれぞれ片側に集合させ、異極性の磁極歯23aと磁極歯23bとを可動子1を挟んで対向配置させている。よって、隣り合う磁極歯が同一極性であるため異極間での短絡磁束の発生を防ぐとともに、可動子1のバイポーラ駆動を可能としている。よって、電機子2の駆動コイル25a,25bに印加した起磁力によって発生させた磁束を有効に可動子1に印加することができ、最大推力を高めることができる。
(2) Prevention of short-circuit magnetic flux between adjacent magnetic pole teeth:
In the configuration of the armature 2 of the present invention, in the arrangement of the magnetic pole teeth, the magnetic pole teeth 23a,... And the magnetic pole teeth 23b,. Oppositely arranged across the child 1. Therefore, since adjacent magnetic pole teeth have the same polarity, the occurrence of short-circuit magnetic flux between different poles is prevented and the bipolar drive of the mover 1 is made possible. Therefore, the magnetic flux generated by the magnetomotive force applied to the drive coils 25a and 25b of the armature 2 can be effectively applied to the mover 1, and the maximum thrust can be increased.
 (3)駆動時における永久磁石のパーミアンス係数の低下を抑制:
 図7Aは本発明の比較例として、例えば特許文献1に開示された厚さ方向に磁化した永久磁石61a,61bを使用する場合の磁束の流れを示す図である。磁極歯62から印加される駆動磁束(図中の点線矢符)が可動子61の厚さ方向であって、永久磁石61a,61bの磁化方向(図中の白抜矢符)も可動子61の厚さ方向であるため、つまり、磁極歯62からの駆動磁束(図中点線の矢符)と永久磁石61a,61bの磁化方向(図中の白抜矢符)とが全く逆方向になるため、減磁領域(図7Aの破線で囲んだ領域)が発生して、パーミアンス係数の低下を引き起こす。
(3) Suppressing the decrease in permeance coefficient of the permanent magnet during driving:
FIG. 7A is a diagram showing the flow of magnetic flux when using, for example, permanent magnets 61a and 61b magnetized in the thickness direction disclosed in Patent Document 1 as a comparative example of the present invention. The driving magnetic flux (dotted arrow in the figure) applied from the magnetic pole teeth 62 is the thickness direction of the mover 61, and the magnetization directions of the permanent magnets 61a and 61b (open arrows in the figure) are also the mover 61. That is, the driving magnetic flux from the magnetic pole teeth 62 (dotted arrows in the figure) and the magnetization directions of the permanent magnets 61a and 61b (open arrows in the figure) are completely opposite to each other. Therefore, a demagnetization region (a region surrounded by a broken line in FIG. 7A) is generated, causing a decrease in permeance coefficient.
 本発明では、図7Bに示すように、駆動時に最も大きな起磁力が印加される電気角90°の位置において磁極歯23aから可動子1の永久磁石11a,11bに印加される駆動磁束(図中の点線矢符)が可動子1の移動方向(長手方向)に直角であるのに対して、永久磁石11a,11bの磁化方向(図中の白抜矢符)は可動子1の移動方向に平行であるため、永久磁石11a,11bが減磁する方向の磁束が印加されにくい。また、重負荷時には磁極歯23aからの駆動磁束(図中の点線矢符)はヨーク12を通って磁極歯23bに入る経路をとるので、永久磁石11a,11bの磁化方向と逆向きの磁束が印加されにくい。よって、減磁耐性に優れていてパーミアンス係数の低下を抑制でき、その結果、動作温度領域を広くすることができる。 In the present invention, as shown in FIG. 7B, the drive magnetic flux (in the drawing) applied to the permanent magnets 11a and 11b of the mover 1 from the magnetic pole teeth 23a at the position of the electrical angle 90 ° where the largest magnetomotive force is applied during driving. ) Is perpendicular to the moving direction (longitudinal direction) of the mover 1, whereas the magnetization directions of the permanent magnets 11a and 11b (open arrows in the figure) are the moving direction of the mover 1. Since they are parallel, it is difficult to apply a magnetic flux in the direction in which the permanent magnets 11a and 11b are demagnetized. Moreover, since the driving magnetic flux (dotted arrow in the figure) from the magnetic pole teeth 23a takes a path to enter the magnetic pole teeth 23b through the yoke 12 under heavy load, a magnetic flux in the direction opposite to the magnetization direction of the permanent magnets 11a and 11b is generated. Hard to be applied. Accordingly, the resistance to demagnetization is excellent, and a decrease in permeance coefficient can be suppressed. As a result, the operating temperature region can be widened.
 図8は、図7Aに示した比較例と図7Bに示した本発明例とにおける駆動起磁力(=駆動電流×駆動コイルの捲き数)と最小パーミアンス係数との関係を示すグラフである。比較例と本発明例とは、磁石厚さ:5mm、電機子ギャップ:6.6mm、界磁周期:18mmの同一体格のモデルである。図8において、実線Aは比較例の特性、実線Bは本発明例の特性を表している。図8の結果から、比較的大きな駆動起磁力を印加した場合に、本発明例の方が比較例と比べてパーミアンス係数の低下が少なくなっている。 FIG. 8 is a graph showing the relationship between the drive magnetomotive force (= drive current × number of turns of the drive coil) and the minimum permeance coefficient in the comparative example shown in FIG. 7A and the example of the present invention shown in FIG. 7B. The comparative example and the example of the present invention are models of the same physique with a magnet thickness: 5 mm, an armature gap: 6.6 mm, and a field period: 18 mm. In FIG. 8, the solid line A represents the characteristics of the comparative example, and the solid line B represents the characteristics of the present invention. From the result of FIG. 8, when a relatively large driving magnetomotive force is applied, the example of the present invention has a lower decrease in the permeance coefficient than the comparative example.
 図9は、希土類磁石(Nd-Fe-B磁石)を可動子に用いた場合の温度と減磁限界パーミアンス係数(磁石の減磁が始まるパーミアンス係数)との関係の一例を示すグラフである。この図9の特性に則して、駆動起磁力を2400Aとした場合の比較例と本発明例とで耐熱温度を求めると以下のようになる。比較例では、駆動起磁力が2400Aである場合に図8の特性から最小パーミアンス係数が0.5であるため、その耐熱温度は図9の特性から55℃となる(図中A参照)。一方、本発明例では、駆動起磁力が2400Aである場合に図8の特性から最小パーミアンス係数が1であるため、その耐熱温度は図9の特性から75℃となる(図中B参照)。このように、本発明では耐熱温度の向上を図ることができる。 FIG. 9 is a graph showing an example of the relationship between the temperature and the demagnetization limit permeance coefficient (permeance coefficient at which demagnetization of the magnet starts) when a rare earth magnet (Nd—Fe—B magnet) is used for the mover. In accordance with the characteristics shown in FIG. 9, the heat resistant temperature is determined as follows for the comparative example and the example of the present invention when the driving magnetomotive force is 2400 A. In the comparative example, when the driving magnetomotive force is 2400 A, the minimum permeance coefficient is 0.5 based on the characteristics shown in FIG. 8, and the heat resistance temperature is 55 ° C. based on the characteristics shown in FIG. 9 (see A in the figure). On the other hand, in the example of the present invention, when the driving magnetomotive force is 2400 A, the minimum permeance coefficient is 1 from the characteristics shown in FIG. 8, and therefore the heat-resistant temperature is 75 ° C. from the characteristics shown in FIG. As described above, the heat-resistant temperature can be improved in the present invention.
 (4)可動子の組立性の向上:
 従来、厚さ方向に磁化した永久磁石を可動子の長手方向(移動方向)に配列する構造(図7A)では、隣リ合う永久磁石の露出面が互いに異極となって吸引力が働くため、可動子の組立て時に永久磁石が枠から飛び出し、隣り合う永久磁石に吸着しようとする。そのため、永久磁石の装入後で接着が完了するまで、永久磁石を固定しておく必要があった。しかし、本発明では、永久磁石がヨークに吸引される構造となるため、組み立てた形状のままで安定しており、押さえを必要としない。したがって、可動子の組立性が良好となる。
(4) Improvement of assembly of mover:
Conventionally, in a structure (FIG. 7A) in which permanent magnets magnetized in the thickness direction are arranged in the longitudinal direction (moving direction) of the mover, the exposed surfaces of adjacent permanent magnets are different from each other and attracting force is applied. When the mover is assembled, the permanent magnet pops out of the frame and tries to be attracted to the adjacent permanent magnet. For this reason, it is necessary to fix the permanent magnet until the bonding is completed after the permanent magnet is inserted. However, in the present invention, since the permanent magnet is attracted to the yoke, the assembled shape is stable and does not require pressing. Therefore, the assembly property of the mover is improved.
 なお、可動子の幅方向の両縁部に長手方向に延在する長尺の非磁性体のヨークを更に設けて、軟質磁性体のヨークとこの非磁性体のヨークとで可動子ヨークを構成するようにしても良い。軟質磁性体のヨークと非磁性体のヨークとは、ねじ、接着剤、かしめなどにて固定できる。このような可動子では、軟質磁性体のヨークと非磁性体のヨークとで可動子ヨ-クを構成するとともに、永久磁石を軟質磁性体のヨークに吸着固定することにより、組立作業性が大幅に向上するだけでなく、外部応力が永久磁石へ直接的にかからない構成とすることができる。よって、組立作業性と構造信頼性との両立を図ることができる。永久磁石とコアとを接着層により固定する手法では、接着層を安定的に確保することが困難であり、接着力のばらつきが生じ易いが、本発明の可動子ではそのような不都合は生じない。 A long non-magnetic yoke extending in the longitudinal direction is further provided at both edges in the width direction of the mover, and the mover yoke is constituted by the soft magnetic yoke and the non-magnetic yoke. You may make it do. The soft magnetic yoke and the non-magnetic yoke can be fixed with screws, an adhesive, caulking, or the like. In such a mover, a soft magnetic yoke and a non-magnetic yoke constitute a mover yoke, and a permanent magnet is attracted and fixed to the soft magnetic yoke, thereby greatly improving the assembly workability. In addition, the configuration can be such that external stress is not directly applied to the permanent magnet. Therefore, it is possible to achieve both assembly workability and structural reliability. In the method of fixing the permanent magnet and the core with the adhesive layer, it is difficult to stably secure the adhesive layer, and the adhesive force is likely to vary. However, such a disadvantage does not occur in the mover of the present invention. .
 (5)ディテント力の低減:
 可動子に永久磁石と軟質磁性体のヨークとが共存する場合、移動方向(界磁周期方向)で比透磁率が周期的に変化するため、高次のディテント力高調波成分が顕著になる。一般に相独立型の駆動では、3相合成時に基本波(ディテント力の周期が界磁周期に同じ)及び2次、4次の高調波は打ち消されるが、3次、6次、9次などの3の倍数の高調波は強め合うこととなる。
(5) Reduction of detent power:
When the permanent magnet and the soft magnetic yoke coexist in the mover, the relative permeability periodically changes in the moving direction (field periodic direction), so that higher-order detent force harmonic components become conspicuous. In general, in the case of phase-independent driving, the fundamental wave (the detent force period is the same as the field period) and the second-order and fourth-order harmonics are canceled during the three-phase synthesis, but the third-order, sixth-order, ninth-order, etc. Harmonics that are multiples of 3 will strengthen each other.
 図10は、主たるディテント力高調波成分の打ち消し手法を説明するための図である。上記のような構成の可動子にあっては、3次よりも6次の高調波成分が多くなる傾向にあるため、同一の極性をなす磁極歯群を2群に分け、これらの配列をτ/6(τ:磁極ピッチ、τ=λ/2)だけ他の磁極歯の間隔より広くする(T1=τ、T2=τ+τ/6)。これにより、2群の磁極歯群に発生するディテント力の位相が6次の高調波成分において180°異なるので、6次の高調波成分は打ち消されて出力されなくなる。なお、τ/6だけ他の磁極歯の間隔より広くするようにしたが、τ/6だけ他の磁極歯の間隔より狭くするようにしても同様の効果を奏する。 FIG. 10 is a diagram for explaining a cancellation method of main detent force harmonic components. In the mover configured as described above, since the sixth harmonic component tends to be larger than the third order, the magnetic pole tooth group having the same polarity is divided into two groups, and these arrangements are divided into τ. / 6 (τ: magnetic pole pitch, τ = λ / 2) larger than the interval between the other magnetic pole teeth (T1 = τ, T2 = τ + τ / 6). As a result, the phase of the detent force generated in the second group of magnetic pole teeth differs by 180 ° in the sixth-order harmonic component, so that the sixth-order harmonic component is canceled and is not output. In addition, although it was made larger than the space | interval of another magnetic pole tooth by (tau) / 6, the same effect is produced even if it makes it narrower than the space | interval of another magnetic pole tooth by (tau) / 6.
 次に、12次以上の高調波成分については、永久磁石をスキュー配置(移動方向に垂直な方向から角度をつけて永久磁石の長辺を配置)することにより低減可能である。この場合のスキュー角度は0~4°である。 Next, the harmonic components of the 12th and higher order can be reduced by arranging the permanent magnets in a skewed manner (arranging the long sides of the permanent magnets at an angle from the direction perpendicular to the moving direction). In this case, the skew angle is 0 to 4 °.
 上述したような磁極歯群の変位量と永久磁石のスキュー角度とはそれぞれ独立で変更できるため、主たる高調波成分に対してディテント力を有効に低減することが可能である。 Since the displacement amount of the magnetic pole group and the skew angle of the permanent magnet can be independently changed as described above, it is possible to effectively reduce the detent force with respect to the main harmonic component.
 (6)減磁耐力の向上:
 図11は、永久磁石、ヨーク、磁極歯の寸法例を示す図である。図11に示すように、可動子の移動方向における永久磁石、ヨーク、磁極歯の寸法をそれぞれM,Y,Tとした場合に、Y<M<Tの関係を満たすように構成する。このような構成では、特に印加される起磁力が最大となる電気角が90°付近において、磁極歯から印加された磁束はヨークを介して対極の磁極歯へ流れるため、永久磁石への影響が少なくなり減磁耐力が向上する。
(6) Improvement of demagnetization resistance:
FIG. 11 is a diagram illustrating exemplary dimensions of a permanent magnet, a yoke, and magnetic pole teeth. As shown in FIG. 11, when the dimensions of the permanent magnet, yoke, and magnetic pole teeth in the moving direction of the mover are M, Y, and T, respectively, the relationship of Y <M <T is satisfied. In such a configuration, particularly when the electrical angle at which the applied magnetomotive force is maximum is around 90 °, the magnetic flux applied from the magnetic pole teeth flows to the magnetic pole teeth of the counter electrode via the yoke. Decrease and increase demagnetization resistance.
 以下、本発明のリニアモータの他の実施の形態について説明する。本発明のリニアモータは、前述したように、垂直移動機構における高速な移動かつ高精度な位置決めを実現することができる。垂直移動機構では、X-Y(水平方向)テーブルの可動部にリニアモータを設置することが一般的であり、このような場合には、リニアモータ自身の重力がX-Y軸駆動側の負荷となるため、リニアモータは軽量化が要求されている。 Hereinafter, other embodiments of the linear motor of the present invention will be described. As described above, the linear motor of the present invention can realize high-speed movement and high-precision positioning in the vertical movement mechanism. In a vertical movement mechanism, it is common to install a linear motor on the movable part of an XY (horizontal direction) table. In such a case, the gravity of the linear motor itself is a load on the XY axis drive side. Therefore, the linear motor is required to be lightweight.
 以下の実施の形態は、この要求を満たすものである。この実施の形態では、リニアモータの電機子に着目して、駆動時に磁束密度が高くならない部分を、軟質磁性体から軽量な非磁性材料に置き換えることにより、発生する推力をあまり低下させずに、軽量化を図っている。 The following embodiment satisfies this requirement. In this embodiment, paying attention to the armature of the linear motor, by replacing the portion where the magnetic flux density does not increase during driving with a light non-magnetic material from a soft magnetic material, the generated thrust is not significantly reduced, The weight is reduced.
 図12A,Bは、この本発明のリニアモータの他の実施の形態の構成を示しており、図12Aはリニアモータの全体の斜視図、図12Bは電機子の一部の構成を示す斜視図である。 FIGS. 12A and 12B show the configuration of another embodiment of the linear motor of the present invention, FIG. 12A is a perspective view of the entire linear motor, and FIG. 12B is a perspective view showing the configuration of a part of the armature. It is.
 この単相駆動のリニアモータ(単相分のユニット)3aは、前述したリニアモータ3と同様に(図3参照)、可動子1を電機子2aの中空部に貫通させて構成される。リニアモータ3aの可動子1の構成は、前述したリニアモータ3における可動子1の構成と全く同じであるため、説明を省略する。 This single-phase linear motor (single-phase unit) 3a is configured by penetrating the mover 1 through the hollow portion of the armature 2a, similar to the linear motor 3 described above (see FIG. 3). Since the configuration of the mover 1 of the linear motor 3a is exactly the same as the configuration of the mover 1 in the linear motor 3 described above, the description thereof is omitted.
 前述したリニアモータ3とこのリニアモータ3aとでは、電機子の構成に差異がある。前述したリニアモータ3の電機子2は全体が軟質磁性体から構成されているが、リニアモータ3aの電機子2aではその一部が、軟質磁性体より軽量である非磁性材料にて構成されている。具体的には、リニアモータ3における電機子2のコア部22において、磁極歯23a,23bに対向する部分(ハッチングを付した部分)を、例えばマグネシウム合金などの軽量な非磁性材料に置き換えている。よって、電機子2aでは、コア部22は磁極歯23a,23b側のみとなり、磁極歯23a,23bに対向する部分は軽量な支持部材22aとなる(図12B参照)。 There is a difference in the armature configuration between the linear motor 3 described above and the linear motor 3a. The armature 2 of the linear motor 3 described above is entirely made of a soft magnetic material, but a part of the armature 2a of the linear motor 3a is made of a nonmagnetic material that is lighter than the soft magnetic material. Yes. Specifically, in the core portion 22 of the armature 2 in the linear motor 3, the portions facing the magnetic pole teeth 23a and 23b (hatched portions) are replaced with a light non-magnetic material such as a magnesium alloy. . Therefore, in the armature 2a, the core portion 22 is only on the side of the magnetic pole teeth 23a and 23b, and the portion facing the magnetic pole teeth 23a and 23b is a lightweight support member 22a (see FIG. 12B).
 なお、一部に軽量な非磁性材料を使用している点を除けば、上側の磁極歯23aと下側の磁極歯23bとは電気角で180°の異なる位置に設けられて、上側の磁極歯23aが可動子1の一方の永久磁石11aに対向している場合、下側の磁極歯23bは可動子1の他方の永久磁石11bに対向するような位置関係となっていること、複数の磁極歯23aに駆動コイル25a、複数の磁極歯23bに駆動コイル25bをそれぞれ一括して巻回し、駆動コイル25aと駆動コイル25bとに同一方向の電流を流すことなど、リニアモータ3aの電機子2aの他の構成はリニアモータ3の電機子2と同様である。 The upper magnetic pole teeth 23a and the lower magnetic pole teeth 23b are provided at different positions of 180 ° in electrical angle except that a light non-magnetic material is used in part. When the teeth 23a are opposed to one permanent magnet 11a of the mover 1, the lower magnetic pole teeth 23b are in a positional relationship such that they face the other permanent magnet 11b of the mover 1. The armature 2a of the linear motor 3a is such that the drive coil 25a is wound around the magnetic pole teeth 23a, and the drive coil 25b is wound around the magnetic pole teeth 23b all together so that currents in the same direction flow through the drive coils 25a and 25b. Other configurations are the same as those of the armature 2 of the linear motor 3.
 上側の複数の磁極歯23aにて構成される一方の磁極歯群(磁極歯集合体)と、下側の複数の磁極歯23bにて構成される他方の磁極歯群(磁極歯集合体)とでは、可動子1の移動方向に対して1/2界磁周期分だけ位置が変位しているため、各磁極歯23a,23bに対向する位置のコア部分では駆動時に発生する磁束密度が小さい。よって、この部分に磁性材が存在しなくて非磁性材を設けていても、駆動時に磁束の流れの妨げにはなりにくい。そこで、この部分を軽量な非磁性の支持部材22aに置き換えている。 One magnetic pole tooth group (magnetic pole tooth assembly) composed of a plurality of upper magnetic pole teeth 23a, and the other magnetic pole tooth group (magnetic pole tooth assembly) composed of a plurality of lower magnetic pole teeth 23b Then, since the position is displaced by a half field period with respect to the moving direction of the mover 1, the magnetic flux density generated at the time of driving is small in the core portion at the position facing each magnetic pole tooth 23a, 23b. Therefore, even if a magnetic material does not exist in this portion and a non-magnetic material is provided, it is difficult to prevent the flow of magnetic flux during driving. Therefore, this portion is replaced with a lightweight nonmagnetic support member 22a.
 電機子2aは、一対の磁極歯群(磁極歯集合体)の磁極歯23a,23bの厚さに相当する部分のみ外側を包むように配置された磁性体のコア部22によって磁束の帰路を形成する構成である。この磁束の帰路部分は一対の磁極歯群間で電気角で180°だけ異なっているため、それぞれの磁極歯群間では位置が重ならない。そこで、可動子1の側面に位置するこの磁束の帰路部分に重なり合う部分を設けて、磁束が可動子1の移動方向に流れる部分を確保することにより、電機子2a内で閉磁路を形成している。そして、磁性体が存在しない部分に、推力によって発生する反力を支えるために、支持部材22aを充填させている。 The armature 2a forms a magnetic flux return path by a magnetic core portion 22 disposed so as to wrap only the portions corresponding to the thickness of the magnetic pole teeth 23a and 23b of the pair of magnetic pole tooth groups (magnetic pole tooth aggregates). It is a configuration. Since the return path portion of the magnetic flux differs by 180 ° in electrical angle between the pair of magnetic pole tooth groups, the positions do not overlap between the magnetic pole tooth groups. Therefore, by providing a portion overlapping the return path portion of the magnetic flux located on the side surface of the mover 1 and securing a portion where the magnetic flux flows in the moving direction of the mover 1, a closed magnetic path is formed in the armature 2a. Yes. And in order to support the reaction force which generate | occur | produces with a thrust in the part which a magnetic body does not exist, the support member 22a is filled.
 図13A,Bは、駆動コイル25a,25bに電流を流した場合(駆動起磁力1200A、電気角90°で最大電流が流れている場合)の電機子に発生する磁束密度の分布を示す図、また、図14A,Bは、駆動時の電機子における磁束の流れを示す図である。図13A及び図14Aは、すべてが磁性体で構成された電機子での磁束密度の分布及び磁束の流れを示し、図13B及び図14Bは、磁極歯に対向する部分を非磁性体に置き換えた電機子での磁束密度の分布及び磁束の流れを示している。 FIGS. 13A and 13B are diagrams showing distributions of magnetic flux density generated in the armature when current is passed through the drive coils 25a and 25b (when the maximum current flows at a drive magnetomotive force of 1200A and an electrical angle of 90 °), 14A and 14B are diagrams showing the flow of magnetic flux in the armature during driving. FIGS. 13A and 14A show the distribution of magnetic flux density and the flow of magnetic flux in an armature that is all made of a magnetic material. FIGS. 13B and 14B show that the portion facing the magnetic pole teeth is replaced with a non-magnetic material. The distribution of magnetic flux density in the armature and the flow of magnetic flux are shown.
 すべてが磁性体で構成された電機子では、図14Aの点線矢印で示すように磁束が流れるので、磁極歯直下の部分では磁束密度が高いが、同一極の磁極歯間(点線で囲まれた領域)では磁束密度が小さくなっており、その磁極歯に対向する部分は磁束の通り道としてほとんど寄与していない。そこで、本実施の形態では、この磁束密度が低い部分(磁極歯に対向する部分)の磁性体を削除して軽量な非磁性体に置き換えている。 In an armature composed entirely of a magnetic material, magnetic flux flows as indicated by the dotted arrow in FIG. 14A. Therefore, the magnetic flux density is high in the portion directly under the magnetic pole teeth, but between the magnetic pole teeth of the same pole (enclosed by dotted lines). In the region), the magnetic flux density is small, and the portion facing the magnetic pole teeth hardly contributes as a path for the magnetic flux. Therefore, in the present embodiment, the magnetic material in the portion with low magnetic flux density (the portion facing the magnetic pole teeth) is deleted and replaced with a light non-magnetic material.
 本実施の形態では、図14Bの点線矢印で示すように磁束が流れるので、磁極歯に対向する部分を非磁性体としても、磁束の流れが妨げられることはない。そして、図13Bに示される磁極歯に発生した磁束密度分布は、図13Aに示される磁極歯に発生した磁束密度分布とほぼ同様の分布を呈する。また、非磁性体に隣接するコア部分(点線で囲まれた領域)でも、磁束密度の増加は僅かである。よって、一部を軽量の非磁性体に置き換えた場合でも、全てが磁性体からなる場合と比べて、同程度の推力を得ることができる。 In this embodiment, since the magnetic flux flows as shown by the dotted arrow in FIG. 14B, even if the portion facing the magnetic pole teeth is made of a nonmagnetic material, the flow of the magnetic flux is not hindered. The magnetic flux density distribution generated in the magnetic pole teeth shown in FIG. 13B is substantially the same as the magnetic flux density distribution generated in the magnetic pole teeth shown in FIG. 13A. In addition, the increase in magnetic flux density is slight even in the core portion (region surrounded by the dotted line) adjacent to the nonmagnetic material. Therefore, even when a part is replaced with a light non-magnetic material, it is possible to obtain the same level of thrust as compared with the case where all are made of a magnetic material.
 本実施の形態において軽量な非磁性体(支持部材22a) への置き換え可能な体積比率は30~50%程度であり、使用する非磁性体の材料にも依存するが、電機子の重量は20~40%程度の軽量化が可能である。 In this embodiment, the volume ratio of the nonmagnetic material (supporting member 22a) that can be replaced with the lighter is about 30 to 50%, and the weight of the armature is 20%, depending on the material of the nonmagnetic material to be used. The weight can be reduced by about 40%.
 なお、本実施の形態のリニアモータ3aにおける作動機構は、前述したリニアモータ3における作動機構と同様である。また、前述した(1)~(6)で述べたようなリニアモータ3の特徴をリニアモータ3aも有していることは勿論である。 In addition, the operation mechanism in the linear motor 3a of this Embodiment is the same as the operation mechanism in the linear motor 3 mentioned above. Of course, the linear motor 3a also has the characteristics of the linear motor 3 as described in the above (1) to (6).
 上述した実施の形態では、一部(磁束密度が低い部分)を軽量な非磁性体に置き換える構成にして、推力の低減を生じることなく、より軽いリニアモータを実現している。このようなリニアモータの軽量化を図れる他の実施の形態について説明する。この実施の形態では、電機子の磁気飽和が起こりにくい部分に長手方向(可動子の移動方向)に貫通する1または複数の貫通孔を設けている。電機子全体を磁性体にて構成する場合に比べて、磁性体がない貫通孔の分だけ、電機子の質量を軽くすることができる。このような貫通孔を設けた構成であっても、推力の低下はほとんど見られない。 In the embodiment described above, a lighter linear motor is realized without reducing thrust, by replacing a part (part having a low magnetic flux density) with a light non-magnetic material. Another embodiment capable of reducing the weight of such a linear motor will be described. In this embodiment, one or a plurality of through holes penetrating in the longitudinal direction (moving direction of the mover) are provided in a portion where the magnetic saturation of the armature hardly occurs. Compared to the case where the entire armature is made of a magnetic material, the mass of the armature can be reduced by the amount of the through hole without the magnetic material. Even with such a configuration in which a through hole is provided, the thrust is hardly reduced.
(実施例)
 以下、本発明者が作製したリニアモータの具体的な構成と、作製したリニアモータの特性とについて説明する。
(Example)
Hereinafter, a specific configuration of the linear motor manufactured by the present inventor and characteristics of the manufactured linear motor will be described.
 図15A,Bは本発明の実施例による単相分のリニアモータ3の上面図,側面図である。永久磁石11a、ヨーク12、永久磁石11b、ヨーク12、…の順に交互に配列させた可動子1を、複数の磁極歯23a、磁極歯23bをそれぞれ列状に有し、複数の磁極歯23aからなる磁極歯群、複数の磁極歯23bからなる磁極歯群にそれぞれ駆動コイル25a、駆動コイル25bを一括して巻回してなる電機子2の中空部21に貫通させて、リニアモータ3は構成される。 15A and 15B are a top view and a side view of the single-phase linear motor 3 according to the embodiment of the present invention. The movable elements 1 arranged alternately in the order of the permanent magnet 11a, the yoke 12, the permanent magnet 11b, the yoke 12,... Have a plurality of magnetic pole teeth 23a and magnetic pole teeth 23b, respectively. The linear motor 3 is configured by penetrating through the hollow portion 21 of the armature 2 in which the drive coil 25a and the drive coil 25b are collectively wound around the magnetic pole tooth group composed of the magnetic pole tooth group and the magnetic pole tooth group 23b. The
 まず、リニアモータ3に用いる平板状の可動子1として、図1A,Bに示すような形状の永久磁石11a,11bを含んだ可動子1を作製した。使用する永久磁石11a,11bは、Nd-Fe-B系焼結磁石であって、長さ38mm,幅3mm,厚さ5mmの平板形状に切り出した。また、軟質磁性体のヨーク12として、軟鉄で長さ38mm,幅6mm,厚さ5mmの平板形状にワイアーカットで切り出したものを作製した。 First, as a flat plate-shaped movable element 1 used for the linear motor 3, a movable element 1 including permanent magnets 11a and 11b having a shape as shown in FIGS. The permanent magnets 11a and 11b to be used are Nd—Fe—B sintered magnets cut into a flat plate shape having a length of 38 mm, a width of 3 mm, and a thickness of 5 mm. Further, as the soft magnetic yoke 12, a soft iron cut into a flat plate shape having a length of 38 mm, a width of 6 mm, and a thickness of 5 mm was produced.
 そして、これらの永久磁石54個とヨーク55個とを準備し、永久磁石11a、ヨーク12、永久磁石11b、ヨーク12、…の順に交互にエポキシ系接着剤にて接着して、長さ492mm,幅38mm,厚さ5mmの板状体を作製し、この作製した板状体をアルミニウム製の枠に挿入して可動子1とした。永久磁石11a、永久磁石11bの磁化方向は可動子1の移動方向(長手方向)に向いているが、その方向は互いに逆方向である(図1A,Bの白抜矢符参照)。 Then, 54 permanent magnets and 55 yokes are prepared, and bonded with an epoxy adhesive alternately in the order of the permanent magnet 11a, the yoke 12, the permanent magnet 11b, the yoke 12,. A plate-like body having a width of 38 mm and a thickness of 5 mm was produced, and the produced plate-like body was inserted into an aluminum frame to obtain a movable element 1. Although the magnetization directions of the permanent magnet 11a and the permanent magnet 11b are in the moving direction (longitudinal direction) of the mover 1, the directions are opposite to each other (see white arrows in FIGS. 1A and 1B).
 次に、図16A~F及び図17G~K(図18A~K)に示す珪素鋼板からなるコア素材A~Kを所定の順序で積層させて、電機子2を作製した。各コア素材A~Kは、何れも長辺90mm、短辺62mmであるが、厚さはコア素材C,D,E,G,H,J,Kが2mm、コア素材A,Bが3mm、コア素材F,Iが5mmである。また、各コア素材A~Kは中空形状が異なっている。 Next, core materials AK made of silicon steel plates shown in FIGS. 16A to 16F and FIGS. 17G to 17K (FIGS. 18A to K) were laminated in a predetermined order to produce an armature 2. Each of the core materials A to K has a long side of 90 mm and a short side of 62 mm, but the thickness is 2 mm for the core materials C, D, E, G, H, J, and K, and 3 mm for the core materials A and B. The core materials F and I are 5 mm. Each core material AK has a different hollow shape.
 これらのコア素材A~Kは何れも、厚さ0.5mmの珪素鋼板から所定形状に切り出したものをエポキシ系接着剤にて接着して構成されており、厚さ2mmのコア素材は厚さ0.5mmの珪素鋼板を4枚重ねて一体化され、同様に厚さ3mm、5mmのコア素材はそれぞれ6枚、10枚重ねて一体化されて構成される。 Each of these core materials A to K is configured by cutting a silicon steel plate having a thickness of 0.5 mm into a predetermined shape and bonding it with an epoxy adhesive, and the core material having a thickness of 2 mm is thick. Four pieces of 0.5 mm silicon steel plates are integrated and integrated, and similarly, a core material of 3 mm and 5 mm in thickness is integrated by integrating 10 sheets and 10 sheets respectively.
 各コア素材A~Kの積層順序及び積層枚数は、下記の通りである。
 H+G+F+{E+D+C+B+C+D+E+A}×3+E+D+C+I+J+K
この積層順序にて、コア素材A~Kを重ね合わせて、外形が高さ62mm、幅90mm、長さ78mmの単相分のユニットを構成した (図15A,B参照)。この構成により、一方面の磁極歯と他方面の磁極歯とが電気角で180°異なる配置となる。磁極歯間(ギャップ)は6.6mmとなる。
The stacking order and the number of stacked core materials A to K are as follows.
H + G + F + {E + D + C + B + C + D + E + A} × 3 + E + D + C + I + J + K
In this stacking order, the core materials A to K were overlapped to form a single-phase unit having an outer shape of 62 mm in height, 90 mm in width, and 78 mm in length (see FIGS. 15A and 15B). With this configuration, the magnetic pole teeth on one surface and the magnetic pole teeth on the other surface are arranged to differ by 180 ° in electrical angle. The gap between the magnetic pole teeth (gap) is 6.6 mm.
 このユニットにおける隣り合う磁極歯23a,23a(23b,23b)の平面形状を図19に示す。各磁極歯23a(23b)では、可動子1に対向する先端部から遠位の基端部に向けて3段階に順次幅が広くなっている。可動子1のヨーク12からの磁束を考慮して最先端部の幅はヨーク12の幅(6mm)よりも少し長い7mmであり、磁気飽和の発生を防止すべく最基端部の幅は磁極ピッチ(18mm)に近い15mmである。なお、階段状に幅を変化させる構成としたが、これとは異なり、可動子1に対向する先端側から基端側に向けて連続的に幅が広くなるようにテーパ状に構成しても良い。 FIG. 19 shows the planar shape of adjacent magnetic pole teeth 23a, 23a (23b, 23b) in this unit. In each magnetic pole tooth 23a (23b), the width is gradually increased in three stages from the distal end facing the mover 1 toward the distal proximal end. In consideration of the magnetic flux from the yoke 12 of the mover 1, the width of the most distal portion is 7 mm, which is slightly longer than the width of the yoke 12 (6 mm), and the width of the most proximal portion is the magnetic pole to prevent the occurrence of magnetic saturation. It is 15 mm close to the pitch (18 mm). In addition, although it was set as the structure which changes a width | variety in step shape, it may be comprised in a taper shape so that a width | variety may become wide continuously from the front end side which opposes the needle | mover 1 toward a base end side. good.
 この単相分のユニットに対して、ユニットの上側の磁極歯群24aを一括して包括するように駆動コイル25aを巻回するとともに、ユニットの下側の磁極歯群24bを一括して包括するように駆動コイル25bを巻回した。この際、2分割して挿入できるようにした捲き枠(ボビン:図示せず)をユニット内に挿入して磁極歯群に接着させた後、直径1mmのエナメル被覆銅線をそれぞれ100回ずつ捲いて駆動コイル25a、駆動コイル25bとした。 For this single-phase unit, the drive coil 25a is wound so as to collectively include the upper magnetic pole group 24a of the unit, and the lower magnetic group 24b of the unit is collectively included. Thus, the drive coil 25b was wound. At this time, a winding frame (bobbin: not shown) that can be inserted into two parts is inserted into the unit and adhered to the magnetic pole group, and then each 1 mm diameter enamel-coated copper wire is wound 100 times. Thus, the drive coil 25a and the drive coil 25b are used.
 以上のように、複数枚の珪素鋼板を積層して単相分の電機子のユニットを作製する場合に、各珪素鋼板の厚さのばらつきの影響により、単相分のユニットの積層方向(可動子の移動方向)の長さが所望の長さにならない可能性がある。各ユニットが所望の長さでない場合には、コギングが悪化する。このような事態を避けるために、必要に応じて、磁極歯が設けられずにコア部のみからなる厚さ0.05~0.1mm程度の珪素鋼板をスペーサとして、電機子の長手方向(可動子の移動方向)の一端または両端に挟んで、電機子の長さを補正することが望ましい。 As described above, when a single-phase armature unit is manufactured by laminating a plurality of silicon steel plates, the stacking direction of the single-phase units (movable) is affected by the variation in the thickness of each silicon steel plate. There is a possibility that the length of the movement direction of the child does not become a desired length. If each unit is not the desired length, cogging is worse. In order to avoid such a situation, if necessary, the longitudinal direction of the armature (movable) using a silicon steel plate having a thickness of about 0.05 to 0.1 mm consisting only of the core portion without providing magnetic pole teeth as a spacer. It is desirable to correct the length of the armature by sandwiching it between one end or both ends of the moving direction of the child.
 このようにして作製した電機子2を3個準備し、隣り合う電機子2間の相対的な電気角が120°分進むように(具体的には27mm)その3個の電機子2を直線状に配置した。隣り合う電機子2の間隔を27mmとしたので、この3相分の全長は288mm(=78mm×3+27mm×2)となった。そして、3個の電機子2の中央の中空部に可動子1を挿入し(図20参照)、可動子1が電機子2に接触することなく長手方向に移動できるように、テストベンチに固定した。 Three armatures 2 thus prepared were prepared, and the three armatures 2 were straightened so that the relative electrical angle between the adjacent armatures 2 was advanced by 120 ° (specifically, 27 mm). Arranged. Since the interval between the adjacent armatures 2 was set to 27 mm, the total length of these three phases was 288 mm (= 78 mm × 3 + 27 mm × 2). Then, the mover 1 is inserted into the central hollow portion of the three armatures 2 (see FIG. 20) and fixed to the test bench so that the mover 1 can move in the longitudinal direction without contacting the armature 2. did.
 各電機子の上側のコア部及び下側のコア部に長手方向(可動子の移動方向)に貫通する複数の貫通孔を設けておき、U相、V相、W相の各ユニット(電機子)を長尺のシャフトにて一括固定する。この際、所望の剛性力と真直度とを確保するためには、このシャフトの直径を5mm以上とすることが好ましい。 A plurality of through-holes penetrating in the longitudinal direction (moving direction of the mover) are provided in the upper core portion and the lower core portion of each armature, and each U-phase, V-phase, and W-phase unit (armature ) With a long shaft. At this time, in order to ensure a desired rigidity and straightness, the diameter of the shaft is preferably 5 mm or more.
 各相のユニット毎に駆動コイルを直列に接続し、その一対の駆動コイルの捲き線方向が同じになるように結線した。そして、これらのU相、V相、W相の各ユニットの捲き線をスター結線にして、モータコントローラに接続した。また、可動子1側にはフォースゲージを接続し、駆動起磁力に対する推力を測定できるようにした。 The drive coil was connected in series for each phase unit, and the paired drive coils were wired so that the winding direction was the same. And the winding line of each unit of these U phase, V phase, and W phase was made into the star connection, and it connected to the motor controller. Further, a force gauge is connected to the movable element 1 side so that the thrust against the driving magnetomotive force can be measured.
 このように接続した後、駆動コイルに印加する駆動電流を変えて可動子1の推力を測定した。この際、フォースゲージを可動子1に押し付ける方法で推力を測定した。その推力の測定結果と推力起磁力比の算出結果とを図21に示す。また、例えば特許文献1に開示された図7Aに示すような構成をなす比較例として、本発明の実施例と同一体格のリニアモータを作製し、本発明の実施例と同一の条件にて推力を測定した。その推力の測定結果及び推力起磁力比の算出結果も図21に示す。 After connecting in this way, the driving current applied to the driving coil was changed and the thrust of the mover 1 was measured. At this time, the thrust was measured by a method of pressing the force gauge against the mover 1. The measurement result of the thrust and the calculation result of the thrust magnetomotive force ratio are shown in FIG. Further, for example, as a comparative example configured as shown in FIG. 7A disclosed in Patent Document 1, a linear motor having the same physique as the embodiment of the present invention is manufactured, and thrust is applied under the same conditions as the embodiment of the present invention. Was measured. The measurement result of the thrust and the calculation result of the thrust magnetomotive force ratio are also shown in FIG.
 図21の横軸は、電機子単相当たりの駆動起磁力(=駆動電流×駆動コイルの捲き数)[A]であり、縦軸は、推力[N]及び推力起磁力比[N/A]である。また、図中Aは本発明例の推力、図中Bは比較例の推力、図中Cは本発明例の推力起磁力比、図中Dは比較例の推力起磁力比の特性をそれぞれ表している。 The horizontal axis in FIG. 21 is the driving magnetomotive force per armature single phase (= driving current × the number of driving coils) [A], and the vertical axis is the thrust [N] and the thrust magnetomotive force ratio [N / A. ]. In the figure, A represents the thrust of the present invention example, B represents the thrust of the comparative example, C represents the thrust magnetomotive force ratio of the present invention example, and D in the figure represents the characteristics of the thrust magnetomotive force ratio of the comparative example. ing.
 図21に示すように、同一の駆動起磁力に対して、推力の比例領域において本発明例では比較例と比べて65%程度も高い推力を実現できている。また、本発明例では耐熱温度も向上できている。したがって、本発明では、高速な移動かつ高精度の位置決めが要求される産業上の移動機構に適したリニアモータを提供することができる。 As shown in FIG. 21, in the proportional area of thrust with respect to the same driving magnetomotive force, the example of the present invention can achieve a thrust about 65% higher than that of the comparative example. Further, the heat resistant temperature can be improved in the example of the present invention. Therefore, the present invention can provide a linear motor suitable for an industrial moving mechanism that requires high-speed movement and high-precision positioning.
 次に、ディテント力の低減を図った他の実施例について説明する。図22A,Bは本発明の他の実施例による単相分のリニアモータ3の上面図,側面図であり、図23は他の実施例による単相分のリニアモータ3の断面図である。 Next, another embodiment for reducing the detent force will be described. 22A and 22B are a top view and a side view of a single-phase linear motor 3 according to another embodiment of the present invention, and FIG. 23 is a cross-sectional view of the single-phase linear motor 3 according to another embodiment.
 使用する永久磁石11a,11bは、長さ38mm,幅4mm,厚さ5mmであり、軟質磁性体のヨーク12は、長さ38mm,幅3.5mm,厚さ5mmとした。また、磁極ピッチτは7.5mm(界磁周期が15mm)、磁極歯23a,23bの幅は6mm、不等ピッチシフト量はτ/6=1.25mmとした。また、永久磁石11a,11bのスキュー角度を2°とした。 The permanent magnets 11a and 11b used have a length of 38 mm, a width of 4 mm, and a thickness of 5 mm, and the soft magnetic yoke 12 has a length of 38 mm, a width of 3.5 mm, and a thickness of 5 mm. The magnetic pole pitch τ was 7.5 mm (field period was 15 mm), the widths of the magnetic pole teeth 23 a and 23 b were 6 mm, and the unequal pitch shift amount was τ / 6 = 1.25 mm. In addition, the skew angle of the permanent magnets 11a and 11b was set to 2 °.
 磁極歯の間隔を均一とし永久磁石のスキュー配置を行わない構成のリニアモータ(構成例1)と、磁極歯の間隔は調整するが永久磁石のスキュー配置を行わない構成のリニアモータ(構成例2)と磁極歯の間隔を調整するとともに永久磁石のスキュー配置を行った構成のリニアモータ(構成例3)とについて、単相分及び3相合成による各高調波次数におけるディテント力の振幅を求めた。その結果を図24A,B,Cに示す。 A linear motor having a configuration in which the spacing between the magnetic pole teeth is uniform and the skew arrangement of the permanent magnet is not performed (Configuration Example 1), and a linear motor having a configuration in which the spacing between the magnetic pole teeth is adjusted but the skew placement of the permanent magnet is not performed (Configuration Example 2) ) And the linear motor (configuration example 3) having a configuration in which the gap between the magnetic pole teeth is adjusted and the permanent magnet is skewed, the amplitude of the detent force at each harmonic order by single-phase and three-phase synthesis was obtained. . The results are shown in FIGS.
 図24Aに示された構成例1では、第6次高調波成分のディテント力が非常に大きくなっている。図24Bに示された構成例2では、第6次高調波成分のディテント力は低減されているが、第12次高調波成分のディテント力は大きい。これらに対して、図24Cに示された構成例3では、第6次高調波成分及び第12次高調波成分のディテント力が何れも低減されている。 In the configuration example 1 shown in FIG. 24A, the detent force of the sixth harmonic component is very large. In the configuration example 2 illustrated in FIG. 24B, the detent force of the sixth harmonic component is reduced, but the detent force of the twelfth harmonic component is large. On the other hand, in the configuration example 3 shown in FIG. 24C, the detent forces of the sixth harmonic component and the twelfth harmonic component are both reduced.
 次に、電機子のコア部の一部(磁極歯に対向する部分)を軽量な非磁性体 (支持部材)に置き換えて軽量化を図った更に他の実施例について説明する。図25A,Bは本発明の更に他の実施例による単相分のリニアモータ3aの上面図,側面図であり、図26は更に他の実施例による単相分のリニアモータ3aの断面図である。また、図27は更に他の実施例による電機子2aの構成素材を示す斜視図である。 Next, still another embodiment will be described in which a part of the core part of the armature (the part facing the magnetic pole teeth) is replaced with a light non-magnetic body (support member) to reduce the weight. 25A and 25B are a top view and a side view of a single-phase linear motor 3a according to still another embodiment of the present invention, and FIG. 26 is a cross-sectional view of the single-phase linear motor 3a according to still another embodiment. is there. FIG. 27 is a perspective view showing a constituent material of an armature 2a according to still another embodiment.
 電機子2aの全体サイズは、図22A,Bに示す実施例と同じであるが、磁極歯に対向する部分(可動子1の移動方向に6mm分の長さ:ハッチングを付した部分)は、磁性体ではなくマグネシウム合金からなる支持部材22aにて構成されている。なお、可動子1に使用する永久磁石11a,11b及びヨーク12のサイズは、図22Aに示す実施例と同じであり、隣り合う磁極歯23a,23a、23b,23bのピッチも、図23に示す実施例と同じである。 The overall size of the armature 2a is the same as the embodiment shown in FIGS. 22A and 22B, but the portion facing the magnetic pole teeth (the length of 6 mm in the moving direction of the mover 1: the portion with hatching) The support member 22a is made of a magnesium alloy instead of a magnetic body. The sizes of the permanent magnets 11a and 11b and the yoke 12 used in the mover 1 are the same as those in the embodiment shown in FIG. 22A, and the pitches of the adjacent magnetic pole teeth 23a, 23a, 23b, and 23b are also shown in FIG. The same as the embodiment.
 リニアモータ3aに用いる平板状の可動子1(長さ:410mm、幅:38mm、厚さ:5mm)を作製した。なお、使用する永久磁石11a,11b及びヨーク12の材料、及びその作製工程は、前述した図15A,Bに示す実施例の場合と同様であるので、それらの説明は省略する。 A flat plate-like movable element 1 (length: 410 mm, width: 38 mm, thickness: 5 mm) used for the linear motor 3a was produced. Note that the materials of the permanent magnets 11a and 11b and the yoke 12 to be used and the manufacturing process thereof are the same as those in the embodiment shown in FIGS.
 磁極歯を構成する厚さ0.5mmの珪素鋼板(材質50A800、比重7.8g/cm3 )からワイアーカットにて所定形状に切り出した12枚をエポキシ系接着剤にて接着して構成したコア部材31と、マグネシウム合金(材質LA141、Mg-14質量%Li-1質量%Al、比重1.36g/cm3 )から厚さ6mmで所定形状に切り出した軽量部材(支持部材)32とを接合させて第1電機子素材33を作製した。また、厚さ0.5mmの珪素鋼板からワイアーカットにて所定形状に切り出した複数枚をエポキシ系接着剤にて接着して、磁極歯の側面部分となる第2電機子素材34を作製した。 Core member constructed by bonding 12 sheets cut out to a predetermined shape by wire cutting from a 0.5 mm thick silicon steel plate (material 50A800, specific gravity 7.8 g / cm 3 mm) constituting magnetic pole teeth 31 and a lightweight member (support member) 32 cut into a predetermined shape with a thickness of 6 mm from a magnesium alloy (material LA141, Mg-14 mass% Li-1 mass% Al, specific gravity 1.36 g / cm 3 mm). A first armature material 33 was produced. Further, a plurality of sheets cut into a predetermined shape by wire cutting from a silicon steel plate having a thickness of 0.5 mm were bonded with an epoxy adhesive to produce a second armature material 34 to be a side surface portion of the magnetic pole teeth.
 そして、図27に示すように、第1電機子素材33、第2電機子素材34を交互に配置して、それらを接合させて,外形が高さ62mm、幅90mm、長さ59.75mmの単相分のユニットを作製した。2分割して挿入できるようにした捲き枠(ボビン:図示せず)をユニット内に挿入して磁極歯群に接着させた後、直径1mmのエナメル被覆銅線をそれぞれ100回ずつ捲いて駆動コイルとした。 And as shown in FIG. 27, the 1st armature material 33 and the 2nd armature material 34 are arrange | positioned alternately, and they are joined, and an external shape is 62 mm in height, 90 mm in width, and 59.75 mm in length. Single-phase units were prepared. A winding frame (bobbin: not shown) that can be inserted into two parts is inserted into the unit and adhered to the magnetic pole group, and then enamel-coated copper wire with a diameter of 1 mm is applied 100 times each to drive coil It was.
 作製した電機子2aに使用した珪素鋼板の質量、マグネシウム合金の質量は、それぞれ単相あたり1111.2g、95.57gであり、単相の電機子2a全体の質量は1206.77gであった。 The mass of the silicon steel plate and the mass of the magnesium alloy used for the manufactured armature 2a were 111.2 g and 95.57 g per single phase, respectively, and the mass of the entire single phase armature 2a was 1206.77 g.
 このようにして作製した電機子2aを3個準備し、隣り合う電機子2a間の相対的な電気角が120°分進むように(具体的には27.75mm)その3個の電機子2aを直線状に配置した。この3相分の全長は234.75mm(=59.75mm×3+27.75mm×2)となった。そして、3個の電機子2aの中央の中空部に可動子1を挿入し(図26参照)、可動子1が電機子2aに接触することなく長手方向に移動できるように、テストベンチに固定した。 Three armatures 2a produced in this way are prepared, and the three armatures 2a so that the relative electrical angle between the adjacent armatures 2a advances by 120 ° (specifically 27.75 mm). Were arranged in a straight line. The total length of the three phases was 234.75 mm (= 59.75 mm × 3 + 27.75 mm × 2). Then, the mover 1 is inserted into the central hollow portion of the three armatures 2a (see FIG. 26), and is fixed to the test bench so that the mover 1 can move in the longitudinal direction without contacting the armature 2a. did.
 各相のユニット毎に駆動コイルを直列に接続し、その一対の駆動コイルの捲き線方向が同じになるように結線した。そして、これらの各ユニットの捲き線をスター結線にして、モータコントローラに接続した。また、可動子1側にはフォースゲージを接続し、駆動起磁力に対する推力を測定できるようにした。 The drive coil was connected in series for each phase unit, and the paired drive coils were wired so that the winding direction was the same. And the wire of each of these units was made into star connection, and it connected to the motor controller. Further, a force gauge is connected to the movable element 1 side so that the thrust against the driving magnetomotive force can be measured.
 このように接続した後、駆動コイルに印加する駆動電流を変えてリニアモータ3aの可動子1の推力を測定した。この際、フォースゲージを可動子1に押し付ける方法で推力を測定した。その推力の測定結果と推力起磁力比の算出結果とを図28に示す。また、電機子全体を磁性体(珪素鋼板)にて構成した以外は、この実施例のリニアモータ3aと同一体格のリニアモータを比較例として作製し、リニアモータ3aと同一条件にて推力を測定した。その推力の測定結果及び推力起磁力比の算出結果も図28に示す。なお、この比較例のリニアモータにおける電機子の質量は単相当たり1659.32gであった。 After connecting in this way, the drive current applied to the drive coil was changed and the thrust of the mover 1 of the linear motor 3a was measured. At this time, the thrust was measured by a method of pressing the force gauge against the mover 1. The measurement result of the thrust and the calculation result of the thrust magnetomotive force ratio are shown in FIG. In addition, a linear motor having the same physique as the linear motor 3a of this embodiment is manufactured as a comparative example except that the entire armature is made of a magnetic material (silicon steel plate), and thrust is measured under the same conditions as the linear motor 3a. did. The measurement result of the thrust and the calculation result of the thrust magnetomotive force ratio are also shown in FIG. In addition, the mass of the armature in the linear motor of this comparative example was 1659.32 g per single phase.
 図28の横軸は、電機子単相当たりの駆動起磁力(=駆動電流×駆動コイルの捲き数)[A]であり、縦軸は、推力[N]及び推力起磁力比[N/A]である。また、図中Eは本実施例の推力、図中Fは比較例の推力、図中Gは本実施例の推力起磁力比、図中Hは比較例の推力起磁力比の特性をそれぞれ表している。 The horizontal axis of FIG. 28 is the driving magnetomotive force (= driving current × number of driving coils) [A] per armature single phase, and the vertical axis is the thrust [N] and the thrust magnetomotive force ratio [N / A]. ]. In the figure, E represents the thrust of the present example, F in the figure represents the thrust of the comparative example, G in the figure represents the thrust magnetomotive force ratio of the present example, and H in the figure represents the characteristic of the thrust magnetomotive force ratio of the comparative example. ing.
 図28に示すように、本実施例では、駆動起磁力が1600Aになるまでは、比較例と同等の推力特性が得られている。また、本実施例では、比較例と比べて最大推力が15%程度小さいが、比較例と比較して27%の軽量化を図れているので、推力質量比は本実施例が比較例を上回っている。よって、本実施例のリニアモータ3aは垂直移動機構に最適な構造である。 As shown in FIG. 28, in this example, thrust characteristics equivalent to those of the comparative example are obtained until the driving magnetomotive force reaches 1600A. In this example, the maximum thrust is about 15% smaller than that of the comparative example, but 27% of the weight is reduced compared to the comparative example, so that the thrust mass ratio exceeds that of the comparative example. ing. Therefore, the linear motor 3a of the present embodiment has an optimum structure for the vertical movement mechanism.
 電機子全体を磁性体で構成したリニアモータ3は、重量は大きいが優れた推力特性を得ることができる。一方、磁極歯に対向する部分を軽量な非磁性体で構成したリニアモータ3aは、推力特性が少し劣るものの重量を小さくすることができる。したがって、使用する環境、用途等に応じて、これらの本発明のリニアモータ3、リニアモータ3aを使い分けるようにすれば良い。 The linear motor 3 in which the entire armature is made of a magnetic material is large in weight but can obtain excellent thrust characteristics. On the other hand, the linear motor 3a in which the portion facing the magnetic pole teeth is made of a light non-magnetic material can reduce the weight, although the thrust characteristics are slightly inferior. Therefore, the linear motor 3 and the linear motor 3a according to the present invention may be properly used according to the environment and application to be used.
 なお、磁極歯に対向する部分を構成する軽量な非磁性材料としてマグネシウム合金を使用する場合について説明したが、他の材料を用いても良い。この材料に要求される条件は、軽量であること、推力によって発生する反力を支えるための支持部材22aとして機能できることである。これらの条件を満足する材料として、アルミニウム合金、リチウム合金、強化プラスチック、炭素繊維、ガラスエポキシ樹脂などの利用が可能である。 In addition, although the case where a magnesium alloy was used as a lightweight nonmagnetic material which comprises the part which opposes a magnetic pole tooth was demonstrated, you may use another material. Conditions required for this material are that it is lightweight and can function as a support member 22a for supporting a reaction force generated by thrust. As materials satisfying these conditions, aluminum alloys, lithium alloys, reinforced plastics, carbon fibers, glass epoxy resins, and the like can be used.
 軽量な非磁性体に置き換える部分としては、図27などに示したものは一例である。全体を磁性体で構成した電機子について、図13Aに示されるような磁束密度の分布を取得し、その取得した磁束密度の分布に基づいて、発生した磁束密度が小さい部分を軽量な非磁性体に置き換えるようにしても良い。例えば、最大駆動時にコア材の飽和磁束密度の1/3程度以下しか磁束密度が発生しないような部分を軽量な非磁性体に置き換えるようにすることできる。 As a part to be replaced with a light non-magnetic material, the one shown in FIG. 27 is an example. A magnetic flux density distribution as shown in FIG. 13A is acquired for the armature composed entirely of a magnetic material, and a portion with a small generated magnetic flux density is reduced based on the acquired magnetic flux density distribution. You may make it replace with. For example, a portion where the magnetic flux density is generated only about 1/3 or less of the saturation magnetic flux density of the core material at the maximum driving time can be replaced with a light non-magnetic material.
 なお、上述した作製例とは異なり、電機子を上下に分割させて作製することも可能である。この場合には、所定の複数枚の珪素鋼板を積層接着させて上側の磁極歯を含めた電機子の上側部分を作製し、また、所定の複数枚の珪素鋼板を積層接着させて下側の磁極歯を含めた電機子の下側部分を作製し、これらの上側部分及び下側部分を一体結合させて、電機子を構成する。この場合に、電機子のコア部の分割部を磁気飽和が起こりにくい箇所とすることにより、推力の低下を回避できる。また、この作製手法では、上側部分及び下側部分を一体結合させる前に、捲き枠(ボビン)にコイルを捲いたものを上側部分の磁極歯群と下側部分の磁極歯群とにそれぞれ接着させることとができる。よって、80%以上に占積率を高めることが容易である。また、組み立て作業性も向上することができる。 Note that, unlike the above-described manufacturing example, the armature can be divided into upper and lower parts. In this case, a predetermined plurality of silicon steel plates are laminated and bonded to produce an upper portion of the armature including the upper magnetic pole teeth, and a predetermined plurality of silicon steel plates are stacked and bonded to the lower side. A lower part of the armature including the magnetic pole teeth is produced, and the upper part and the lower part are integrally coupled to constitute the armature. In this case, a reduction in thrust can be avoided by making the divided portion of the core portion of the armature difficult to cause magnetic saturation. Also, in this manufacturing method, before the upper part and the lower part are joined together, a coiled frame is attached to the upper part magnetic pole group and the lower part magnetic group. Can be made. Therefore, it is easy to increase the space factor to 80% or more. Moreover, assembly workability can also be improved.
 1 可動子
 2,2a 電機子
 3,3a リニアモータ
 11a,11b 永久磁石
 12(12N,12S) ヨーク
 21 中空部
 22 コア部
 22a 支持部材(非磁性体)
 23a,23b 磁極歯
 24a,24b 磁極歯群
 25a,25b 駆動コイル
DESCRIPTION OF SYMBOLS 1 Movable element 2, 2a Armature 3, 3a Linear motor 11a, 11b Permanent magnet 12 (12N, 12S) Yoke 21 Hollow part 22 Core part 22a Support member (nonmagnetic material)
23a, 23b Magnetic pole teeth 24a, 24b Magnetic pole teeth group 25a, 25b Drive coil

Claims (6)

  1.  平板状の可動子を中空状の電機子に貫通させてなるリニアモータにおいて、
     移動方向に磁化した平板状の永久磁石と、該永久磁石と磁化方向が逆の方向である平板状の永久磁石とが交互に配され、隣り合う永久磁石の間に平板状の軟質磁性体のヨークが挿入されている可動子と、
     前記可動子に対向する一方の面及び他方の面それぞれに、軟質磁性体の磁極歯が、一方の面の磁極歯と他方の面の磁極歯とは電気角で180°異なるように前記ヨークの一つおきに対向して設けられており、一方の面における磁極歯からなる磁極歯群及び他方の面における磁極歯からなる磁極歯群の外側を包むように磁束の帰路となる軟質磁性体のコアを有しており、前記磁極歯群それぞれに一括して、駆動起磁力を印加する駆動コイルが巻回されている電機子と
     を備えることを特徴とするリニアモータ。
    In a linear motor in which a flat armature is passed through a hollow armature,
    A plate-like permanent magnet magnetized in the moving direction and a plate-like permanent magnet whose magnetization direction is opposite to that of the permanent magnet are alternately arranged, and a plate-like soft magnetic body is formed between adjacent permanent magnets. A mover having a yoke inserted therein;
    The magnetic pole teeth of the soft magnetic material are respectively disposed on one surface and the other surface facing the mover so that the magnetic pole teeth on one surface and the magnetic pole teeth on the other surface are 180 ° different in electrical angle. A soft magnetic core that is provided opposite to each other and serves as a return path of magnetic flux so as to wrap outside the magnetic pole tooth group consisting of magnetic pole teeth on one surface and the magnetic pole tooth group consisting of magnetic pole teeth on the other surface And an armature around which a driving coil for applying a driving magnetomotive force is wound around each of the magnetic pole teeth.
  2.  前記磁極歯は、前記可動子の近傍側である先端部の前記移動方向の寸法が前記可動子の遠位側である基端部の前記移動方向の寸法より小さいことを特徴とする請求項1記載のリニアモータ。 2. The magnetic pole tooth according to claim 1, wherein a dimension in the moving direction of a distal end near the movable element is smaller than a dimension in the moving direction of a proximal end located on the distal side of the movable element. The linear motor described.
  3.  前記電機子の磁極歯に対向する部分の軟質磁性体のコアを、前記軟質磁性体より軽量である非磁性の材料にて置き換えてあることを特徴とする請求項1記載のリニアモータ。 2. The linear motor according to claim 1, wherein a core of the soft magnetic body facing the magnetic pole teeth of the armature is replaced with a non-magnetic material that is lighter than the soft magnetic body.
  4.  前記磁極歯群それぞれを2群に分け、2群の間隔を、他の磁極歯の間隔に主たるディテント力高調波成分の1/2波長を加算または減算した間隔とすることを特徴とする請求項1から3の何れかに記載のリニアモータ。 Each of the magnetic pole tooth groups is divided into two groups, and the interval between the two groups is an interval obtained by adding or subtracting a half wavelength of the main detent force harmonic component to the interval between the other magnetic pole teeth. The linear motor according to any one of 1 to 3.
  5.  前記主たるディテント力高調波成分は6次であり、界磁周期の1/12を加算または減算するように構成したことを特徴とする請求項4記載のリニアモータ。 5. The linear motor according to claim 4, wherein the main detent force harmonic component is sixth-order, and is configured to add or subtract 1/12 of the field period.
  6.  前記永久磁石、前記ヨーク、前記磁極歯の前記移動方向の寸法をそれぞれM,Y,Tとした場合に、Y<M<Tの条件を満たすことを特徴とする請求項1から5の何れかに記載のリニアモータ。 The condition of Y <M <T is satisfied, where the dimensions of the permanent magnet, the yoke, and the magnetic pole teeth in the moving direction are M, Y, and T, respectively. The linear motor described in 1.
PCT/JP2011/056798 2010-03-23 2011-03-22 Linear motor WO2011118568A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112011100996T DE112011100996T5 (en) 2010-03-23 2011-03-22 linear motor
JP2012507003A JP5741573B2 (en) 2010-03-23 2011-03-22 Linear motor
CN201180013509.4A CN102792571B (en) 2010-03-23 2011-03-22 Linear electric machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010066802 2010-03-23
JP2010-066802 2010-03-23
JP2010286817 2010-12-23
JP2010-286817 2010-12-23

Publications (1)

Publication Number Publication Date
WO2011118568A1 true WO2011118568A1 (en) 2011-09-29

Family

ID=44673119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056798 WO2011118568A1 (en) 2010-03-23 2011-03-22 Linear motor

Country Status (5)

Country Link
JP (1) JP5741573B2 (en)
CN (1) CN102792571B (en)
DE (1) DE112011100996T5 (en)
TW (1) TWI519043B (en)
WO (1) WO2011118568A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064785A1 (en) * 2012-10-24 2014-05-01 株式会社日立製作所 Linear motor and linear motor drive system
WO2015132352A1 (en) * 2014-03-05 2015-09-11 Jean Baptiste Drevet Electric generator having permanent magnets and fitted with a magnetic flux collector
CN110165852A (en) * 2019-06-19 2019-08-23 山东大学 A kind of bimorph transducer phase group concentration coiling magneticfocusing permanent-magnetism linear motor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6128206B2 (en) 2013-03-22 2017-05-24 日立金属株式会社 Linear motor
JP6115729B2 (en) * 2014-01-08 2017-04-19 株式会社安川電機 Linear motor and method for manufacturing linear motor
JP2016171739A (en) * 2015-03-09 2016-09-23 住友重機械工業株式会社 Linear motor and stage device
SE539016C2 (en) * 2015-07-17 2017-03-21 Hagnestål Anders A generator for generating electric energy from movements of sea water
DE102015116881B4 (en) * 2015-10-05 2024-01-25 Langenstein & Schemann Gmbh Forming machine, especially forging hammer
JP6697564B2 (en) 2016-02-12 2020-05-20 エーエスエムエル ネザーランズ ビー.ブイ. Electromagnetic motor and stage device
NL2018129A (en) 2016-02-12 2017-08-21 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP6581050B2 (en) * 2016-08-24 2019-09-25 川崎重工業株式会社 Robot remote monitoring system
JP6345355B1 (en) 2017-03-17 2018-06-20 三菱電機株式会社 Linear motor
TWI664795B (en) * 2017-03-24 2019-07-01 日商日立金屬股份有限公司 Linear motor
CN107918107B (en) * 2017-12-14 2023-09-08 安徽大学 Demagnetizing detection device and method for permanent magnet synchronous linear motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327571A (en) * 1997-05-23 1998-12-08 Nikon Corp Linear pulse motor
JP2001145328A (en) * 1999-11-17 2001-05-25 Nikon Corp Linear motor, and stage apparatus and aligner therewith
JP2005185061A (en) * 2003-12-22 2005-07-07 Okuma Corp Linear motor
JP2005287185A (en) * 2004-03-30 2005-10-13 Hitachi Ltd Linear motor
WO2006077958A1 (en) * 2005-01-21 2006-07-27 Nikon Corporation Linear motor, stage apparatus, and exposure apparatus
JP2009181995A (en) * 2008-01-29 2009-08-13 Tokyo Institute Of Technology Electromagnet type actuator, and flat motor
JP2010057338A (en) * 2008-08-29 2010-03-11 Hitachi Metals Ltd Mover, armature, and actuator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002027729A (en) 2000-07-06 2002-01-25 Hitachi Kiden Kogyo Ltd Linear motor
JP3945150B2 (en) 2000-11-06 2007-07-18 株式会社日立製作所 Linear motor
JP4497986B2 (en) 2004-03-31 2010-07-07 山洋電気株式会社 Claw pole type three-phase linear motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327571A (en) * 1997-05-23 1998-12-08 Nikon Corp Linear pulse motor
JP2001145328A (en) * 1999-11-17 2001-05-25 Nikon Corp Linear motor, and stage apparatus and aligner therewith
JP2005185061A (en) * 2003-12-22 2005-07-07 Okuma Corp Linear motor
JP2005287185A (en) * 2004-03-30 2005-10-13 Hitachi Ltd Linear motor
WO2006077958A1 (en) * 2005-01-21 2006-07-27 Nikon Corporation Linear motor, stage apparatus, and exposure apparatus
JP2009181995A (en) * 2008-01-29 2009-08-13 Tokyo Institute Of Technology Electromagnet type actuator, and flat motor
JP2010057338A (en) * 2008-08-29 2010-03-11 Hitachi Metals Ltd Mover, armature, and actuator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064785A1 (en) * 2012-10-24 2014-05-01 株式会社日立製作所 Linear motor and linear motor drive system
US9712032B2 (en) 2012-10-24 2017-07-18 Hitachi, Ltd. Linear motor and linear motor drive system
WO2015132352A1 (en) * 2014-03-05 2015-09-11 Jean Baptiste Drevet Electric generator having permanent magnets and fitted with a magnetic flux collector
FR3018405A1 (en) * 2014-03-05 2015-09-11 Jean Baptiste Drevet PERMANENT MAGNET ELECTRIC GENERATOR HAVING A MAGNETIC FLUX COLLECTOR
CN110165852A (en) * 2019-06-19 2019-08-23 山东大学 A kind of bimorph transducer phase group concentration coiling magneticfocusing permanent-magnetism linear motor

Also Published As

Publication number Publication date
JPWO2011118568A1 (en) 2013-07-04
TWI519043B (en) 2016-01-21
CN102792571A (en) 2012-11-21
TW201212490A (en) 2012-03-16
JP5741573B2 (en) 2015-07-01
DE112011100996T5 (en) 2013-01-24
CN102792571B (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5741573B2 (en) Linear motor
JP5991326B2 (en) Linear motor
KR101652842B1 (en) Moving member and linear motor
JP5370313B2 (en) Linear motor
JP4458238B2 (en) Permanent magnet synchronous linear motor
US20110221283A1 (en) Mover, armature, and linear motor
WO2013124875A1 (en) Linear motor
JP5511713B2 (en) Linear motor
JP7151698B2 (en) linear motor
WO2012066868A1 (en) Linear motor
WO2014148434A1 (en) Linear motor
JP5678025B2 (en) Thrust generating mechanism
JP6036221B2 (en) Linear motor
JP5447308B2 (en) Linear motor
JP3944766B2 (en) Permanent magnet synchronous linear motor
JP2001145327A (en) Armature for linear motor
JP2002101636A (en) Linear motor
JP3824060B2 (en) Linear motor
JP2005210794A (en) Linear electromagnetic actuator
WO2015146874A1 (en) Actuator, moving element, and armature
JP6197346B2 (en) Linear motor
JP5201161B2 (en) Linear motor and table feeder using the same
Jung-Seob et al. The design of flux concentrated type transverse flux cylindrical PMLSM for high thrust
JP2018137873A (en) Linear motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013509.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759373

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507003

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112011100996

Country of ref document: DE

Ref document number: 1120111009968

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759373

Country of ref document: EP

Kind code of ref document: A1