JP7151698B2 - linear motor - Google Patents

linear motor Download PDF

Info

Publication number
JP7151698B2
JP7151698B2 JP2019507014A JP2019507014A JP7151698B2 JP 7151698 B2 JP7151698 B2 JP 7151698B2 JP 2019507014 A JP2019507014 A JP 2019507014A JP 2019507014 A JP2019507014 A JP 2019507014A JP 7151698 B2 JP7151698 B2 JP 7151698B2
Authority
JP
Japan
Prior art keywords
magnetic pole
mover
back yoke
linear motor
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019507014A
Other languages
Japanese (ja)
Other versions
JPWO2018174235A1 (en
Inventor
誠 川上
正喜 武富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPWO2018174235A1 publication Critical patent/JPWO2018174235A1/en
Application granted granted Critical
Publication of JP7151698B2 publication Critical patent/JP7151698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Description

本発明は、可動子と固定子とを組み合わせて直線運動出力を取り出すリニアモータに関する。 The present invention relates to a linear motor that combines a mover and a stator to extract linear motion output.

従来、X,Y移動には、回転型モータの出力をボールねじにて直線運動に変換する方法が用いられてきたが、移動速度が遅いため、直線運動出力を直接に取り出し可能なリニアモータの利用が進められている。リニアモータは、一般的には、複数の矩形状の永久磁石を有する可動子と、複数の磁極歯を有する電機子とを組み合わせて構成される。 Conventionally, for X and Y movement, a method of converting the output of a rotary motor into linear motion using a ball screw has been used. Usage is in progress. A linear motor is generally configured by combining a mover having a plurality of rectangular permanent magnets and an armature having a plurality of magnetic pole teeth.

また、半導体製造装置の加工機におけるワイヤボンダ、チップマウンタでは高速な反復運動が必要であるため、質量が小さくて大きな加速度が得られるリニアモータの使用が好ましい。このようなリニアモータとして、小型化を図るために、例えば特許文献1または2に開示されているように、固定子としての電機子の全面に可動子の永久磁石が対向するのではなく、可動子における永久磁石の配列長さを電機子の長さよりも短くした構成をなすリニアモータが採用されている。 In addition, since wire bonders and chip mounters in processing machines of semiconductor manufacturing equipment require high-speed repetitive motion, it is preferable to use linear motors that are small in mass and capable of obtaining large acceleration. In order to reduce the size of such a linear motor, for example, as disclosed in Patent Document 1 or 2, the permanent magnet of the mover is not opposed to the entire surface of the armature as the stator, but a movable magnet is used. A linear motor is employed in which the arrangement length of the permanent magnets in the child is shorter than the length of the armature.

この種のリニアモータは、複数の永久磁石を配列した磁石配列とこの磁石配列に一体化した平板状のバックヨークとを有する可動子と、複数の磁極歯夫々に駆動コイルを捲いた電機子とを隙間をあけて対向させた構成をなしている。駆動コイルへの通電によって、可動子(磁石配列及びバックヨーク)が移動し、可動子と電機子との長さの差がリニアモータの動作可能なストロークとなる。 A linear motor of this type consists of a mover having a magnet array in which a plurality of permanent magnets are arranged and a flat back yoke integrated with the magnet array, and an armature in which a drive coil is wound around each of a plurality of magnetic pole teeth. are opposed to each other with a gap between them. When the drive coil is energized, the mover (magnet arrangement and back yoke) moves, and the length difference between the mover and the armature becomes the operable stroke of the linear motor.

可動子を強磁性体で形成したバックヨークと磁石配列とで構成した場合、対向する固定子との間に吸引力が発生する。発生する吸引力により、可動子を所定方向に移動可能に支持するベアリングに大きな垂直抗力が働く。この垂直抗力は、ベアリングの短寿命化をもたらす。また、垂直抗力が働く方向は可動子の可動方向と交差する方向である。したがって、当該垂直抗力を考慮して、ベアリングの選定が必要となる。そのため、可動子による荷重に則したベアリングよりも、大型のベアリングを選定することになる。これは、リニアモータ全体の大型化につながる。 When the mover is composed of a back yoke made of a ferromagnetic material and a magnet array, an attractive force is generated between the mover and the opposing stator. Due to the generated attraction force, a large vertical force acts on the bearing that supports the mover so that it can move in a predetermined direction. This normal force shortens the bearing life. Also, the direction in which the normal force acts is the direction intersecting with the movable direction of the mover. Therefore, it is necessary to select a bearing in consideration of the normal force. Therefore, a large bearing is selected rather than a bearing suitable for the load of the mover. This leads to an increase in size of the linear motor as a whole.

そこで、上述のリニアモータとは異なり、磁石配列のみを可動子として機能させ、バックヨークは固定子として機能させるリニアモータが提案されている(特許文献3~5など)。 Therefore, unlike the linear motors described above, linear motors have been proposed in which only the magnet arrangement functions as a mover and the back yoke functions as a stator (Patent Documents 3 to 5, etc.).

この種のリニアモータでは、磁石配列と平板状のバックヨークとを分離して、電機子とは反対側で隙間をあけてバックヨークを磁石配列に対向させ、磁石配列のみを移動可能としている。磁石配列のみが移動し、バックヨークは電機子と同様に移動しない。磁石配列の長さは電機子の長さより短く、この長さの差がリニアモータの動作可能なストロークとなる。 In this type of linear motor, the magnet array and the flat back yoke are separated, and the back yoke faces the magnet array with a gap on the side opposite to the armature, allowing only the magnet array to move. Only the magnet array moves, the back yoke does not move as well as the armature. The length of the magnet array is shorter than the length of the armature, and this length difference is the operable stroke of the linear motor.

特開2005-269822号公報JP-A-2005-269822 再公表特許WO2016/159034号公報Republished patent WO2016/159034 特開2005-117856号公報JP 2005-117856 A 特開2015-130754号公報JP 2015-130754 A 特開2005-184984号公報JP 2005-184984 A

可動子は、対向する電機子の磁極歯面に強く吸引される。この際の吸引力Fは、下記式で表される。
F=B2 S/2μ0
(但し、B:電極子の磁極歯上の磁束密度、S:可動子と電機
子との対向有効面積、μ0 :真空の透磁率)
The mover is strongly attracted to the magnetic pole tooth surfaces of the opposing armature. The attraction force F at this time is represented by the following formula.
F=B 2 S/2μ 0
(However, B: magnetic flux density on the magnetic pole tooth of the electrode, S: opposing effective area between the mover and the armature, μ 0 : magnetic permeability of vacuum)

磁石配列と平板状のバックヨークとを一体化させた可動子を有するリニアモータ(一体型リニアモータ:特許文献1または2など)では、この吸引力は、通常定格推力の数倍から十倍以上となる。よって、大きな吸引力によって可動子が撓むという問題がある。この結果、このような撓みが発生するリニアモータを利用する加工機の寸法精度が悪化する。また、可動子の剛性を大きくする必要があり、構成が大型化するという難点がある。 In a linear motor having a mover in which a magnet array and a flat back yoke are integrated (integrated linear motor: patent document 1 or 2, etc.), this attractive force is usually several times to ten times or more the rated thrust. becomes. Therefore, there is a problem that the mover bends due to a large attractive force. As a result, the dimensional accuracy of a processing machine using a linear motor that causes such deflection is deteriorated. In addition, it is necessary to increase the rigidity of the mover, and there is a problem that the configuration becomes large.

過大な吸引力は、可動子を支持するリニアガイドにも及ぼされるので、この過大な吸引力に耐え得るようにリニアガイドは定格荷重が大きいものが必要となり、この点でも構成の大型化が避けられない。よって、上記のような吸引力を低減することが望まれる。但し、吸引力を低減させる際に、小型の構成と大きな推力の発生とを何れも実現できるようにしておく必要がある。 Since excessive suction force is also exerted on the linear guide that supports the mover, the linear guide must have a large rated load to withstand this excessive suction force. can't Therefore, it is desirable to reduce the suction force as described above. However, when reducing the attraction force, it is necessary to realize both a compact configuration and a large thrust force generation.

また、一体型リニアモータでは、大きなエッジ効果によってコギングトルクが大きくなり、ディテント力が大きいという課題がある。 In addition, the integrated linear motor has a problem that the cogging torque becomes large due to the large edge effect, and the detent force becomes large.

磁石配列と平板状のバックヨークとを分離して磁石配列のみを移動させる構成のリニアモータ(分離型リニアモータ:特許文献3~5など)にあっては、磁石配列にはバックヨークと電機子との双方から吸引力が働くため、一体型リニアモータに比べて、全体の吸引力は小さくなる。しかしながら、分離型リニアモータでは、磁石配列に対向する磁極面積が、電機子側では対向する磁極歯の面積だけであるのに対して、バックヨーク側では全磁石の面積とほぼ同じ面積になる。よって、両隙間内での磁束密度が同じである場合には、この磁極面積の比率に応じて、バックヨーク側でより大きな吸引力が働くことになるため、全体的な吸引力の大幅な低減は望めない。 In a linear motor (separate type linear motor: Patent Documents 3 to 5, etc.) configured to move only the magnet array by separating the magnet array and the flat back yoke, the magnet array includes the back yoke and the armature. Since the attraction force works from both and, compared with the integrated linear motor, the overall attraction force is smaller. However, in the separated linear motor, the magnetic pole area facing the magnet arrangement is only the area of the facing magnetic pole teeth on the armature side, whereas the area on the back yoke side is almost the same as the area of all the magnets. Therefore, when the magnetic flux density in both gaps is the same, a larger attractive force acts on the back yoke side according to the ratio of the magnetic pole areas, resulting in a significant reduction in the overall attractive force. cannot hope.

そこで、磁石配列とバックヨークとの隙間を広くして隙間の磁束密度を小さくし、磁石配列と電機子との間の吸引力と同程度にまで磁石配列とバックヨークとの吸引力を低減させることが考えられる。しかしながら、磁石配列とバックヨークとの隙間を広くした場合には、電機子からの推力発生のための磁束密度も低下するため、推力が小さくなるという問題がある。したがって、これまでに提案された分離型リニアモータにあっては、可動子に働く吸引力を低減させるためには推力の低下が避けられないという課題がある。 Therefore, the magnetic flux density in the gap is reduced by widening the gap between the magnet array and the back yoke, thereby reducing the attractive force between the magnet array and the back yoke to the same extent as the attractive force between the magnet array and the armature. can be considered. However, when the gap between the magnet array and the back yoke is widened, the magnetic flux density for generating thrust from the armature also decreases, resulting in a problem of reduced thrust. Therefore, in the separated linear motors proposed so far, there is a problem that the reduction of the thrust force is inevitable in order to reduce the attraction force acting on the mover.

また、分離型リニアモータでは、前述したように、可動子(磁石配列)と固定子(電機子)との間の吸引力、及び可動子とバックヨークとの吸引力が、略同じ大きさで、逆向きとなるため、可動子に働く吸引力を低減させることが可能となる。しかし、バックヨークと磁石配列とを分離したことにより、動作時のバックヨークに発生する渦電流が増大することが明らかとなった。渦電流の増大は発熱につながる。このようなリニアモータは、環境温度を所定の範囲に保つ必要がある装置、例えば半導体製造装置におけるステージの駆動源には適していない。 In the separated linear motor, as described above, the attractive force between the mover (magnet arrangement) and the stator (armature) and the attractive force between the mover and the back yoke are substantially the same. , are reversed, it is possible to reduce the attractive force acting on the mover. However, it has been found that the separation of the back yoke and the magnet arrangement increases the eddy current generated in the back yoke during operation. Increased eddy currents lead to heat generation. Such a linear motor is not suitable for use as a drive source for a stage in an apparatus that must maintain an ambient temperature within a predetermined range, such as a semiconductor manufacturing apparatus.

本発明は斯かる事情に鑑みてなされたものであり、小型の構成及び大きな推力の発生を達成しながら、吸引力を大幅に低減することが可能であるとともにディテント力を低減できるリニアモータを提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and provides a linear motor capable of significantly reducing the suction force and reducing the detent force while achieving a compact configuration and the generation of a large thrust force. intended to

本発明の他の目的は、磁石配列に働く吸引力を低減しつつ、渦電流を抑制可能なリニアモータを提供することにある。 Another object of the present invention is to provide a linear motor capable of suppressing eddy currents while reducing the attractive force acting on the magnet arrangement.

本発明に係るリニアモータは、複数の矩形状の永久磁石を配列させた磁石配列を有する可動子と、前記可動子に隙間をあけて対向配置した固定子としてのバックヨークと、前記可動子に隙間をあけて前記バックヨークとは反対側に対向配置した固定子としての電機子とを備えており、前記複数の永久磁石夫々の磁化方向は厚さ方向であって、隣り合う永久磁石同士の磁化方向は逆向きであり、前記電機子は、夫々に駆動コイルが捲かれている複数の磁極歯を等ピッチで有しており、前記バックヨークは、前記可動子に対向する面に、前記電機子の磁極歯と前記可動子の可動方向にあって同じ位置に複数の磁極歯を有しており、前記バックヨークにおける磁極歯の磁極面積は、前記電機子における磁極歯の磁極面積の0.9倍~1.1倍であり、前記可動子と前記バックヨークとの隙間は、前記可動子と前記電機子との隙間に等しいかまたは大きいことを特徴とする。 A linear motor according to the present invention includes: a mover having a magnet arrangement in which a plurality of rectangular permanent magnets are arranged; a back yoke as a stator disposed facing the mover with a gap; and an armature as a stator arranged opposite to the back yoke with a gap therebetween. The armature has a plurality of magnetic pole teeth, each of which is wound with a drive coil, at an equal pitch. A plurality of magnetic pole teeth are provided at the same position in the moving direction of the armature as the magnetic pole teeth of the armature. 0.9 times to 1.1 times, and the gap between the mover and the back yoke is equal to or larger than the gap between the mover and the armature.

本発明のリニアモータにあっては、複数の永久磁石を並べた磁石配列を有する可動子と、可動子に隙間をあけて対向配置したバックヨークと、バックヨークとは反対側で隙間をあけて可動子に対向配置した電機子とを有している。磁石配列が可動子として機能し、バックヨーク及び電機子は固定子として機能する。磁石配列における複数の矩形状の永久磁石夫々は厚さ方向に磁化されており、隣り合う永久磁石間でその磁化方向は逆向きである。電機子は、複数の磁極歯を等ピッチで有しており、各磁極歯には駆動コイルが捲かれている。バックヨークは、可動子に対向する面が平板状ではなく、複数の磁極歯が等ピッチで形成されている。バックヨークにおける磁極歯のピッチは、電機子の磁極歯のピッチに等しく、バックヨークにおける磁極歯の位置は、可動子(リニアモータ)の可動方向において電機子の磁極歯と同じ位置である。また、バックヨークの磁極歯の磁極面積は、電機子の磁極歯の磁極面積の0.9倍~1.1倍である。また、可動子とバックヨークとの隙間は、可動子と電機子との隙間以上である。 In the linear motor of the present invention, a mover having a magnet arrangement in which a plurality of permanent magnets are arranged, a back yoke facing the mover with a gap therebetween, and a gap on the side opposite to the back yoke. and an armature arranged to face the mover. The magnet array functions as a mover, and the back yoke and armature function as a stator. Each of the plurality of rectangular permanent magnets in the magnet array is magnetized in the thickness direction, and the magnetization directions are opposite between adjacent permanent magnets. The armature has a plurality of magnetic pole teeth arranged at an equal pitch, and each magnetic pole tooth is wound with a drive coil. The back yoke has a surface facing the mover that is not flat but has a plurality of magnetic pole teeth formed at equal pitches. The pitch of the magnetic pole teeth on the back yoke is equal to the pitch of the magnetic pole teeth on the armature, and the position of the magnetic pole teeth on the back yoke is the same as the magnetic pole teeth on the armature in the moving direction of the mover (linear motor). The magnetic pole area of the magnetic pole teeth of the back yoke is 0.9 to 1.1 times the magnetic pole area of the magnetic pole teeth of the armature. Also, the gap between the mover and the back yoke is greater than the gap between the mover and the armature.

本発明のリニアモータでは、バックヨークにも電機子と同じ位置に略同じ磁極面積の磁極歯を設けている。つまり、電機子からの駆動磁束が印加されるバックヨーク部分のみを可動子に近接させて、電機子の磁極歯に対向する部分以外で可動子からの隙間をあける構成としている。可動子に対向する電機子の磁極面積と、可動子に対向するバックヨークの磁極面積とが略等しくなるので、互いに効率良く相殺されて、全体の吸引力は大幅に小さくなる。したがって、可動子とバックヨークとの隙間を大きくしなくても吸引力の大幅な低減を実現できる。この際、可動子とバックヨークとの隙間を大きくする必要がないため、推力の低下が小さい。 In the linear motor of the present invention, the back yoke is also provided with magnetic pole teeth having substantially the same magnetic pole area at the same position as the armature. That is, only the back yoke portion to which the driving magnetic flux is applied from the armature is brought close to the mover, and a gap is provided from the mover except for the portion facing the magnetic pole teeth of the armature. Since the magnetic pole area of the armature facing the mover and the magnetic pole area of the back yoke facing the mover are substantially equal, they are effectively canceled out, and the overall attractive force is greatly reduced. Therefore, it is possible to greatly reduce the suction force without increasing the gap between the mover and the back yoke. At this time, since there is no need to increase the gap between the mover and the back yoke, the drop in thrust is small.

また、バックヨークへの磁極歯の形成による凹凸形状により、駆動磁束の剪断領域がバックヨークに生じるため、電機子だけでなくバックヨークも推力の発生に寄与する。この推力発生が、可動子との間隙(エアギャップ)が2箇所に増えたことに起因する推力の低下を補うことになり、全体としての大きな推力が得られる。したがって、大きな推力を維持しながら、磁石配列(可動子)に働く吸引力を大幅に低減できる。 In addition, due to the uneven shape of the magnetic pole teeth formed on the back yoke, a sheared region of the drive magnetic flux is generated in the back yoke, so that not only the armature but also the back yoke contributes to the generation of thrust. This thrust generation compensates for the drop in thrust caused by the increased air gaps with the mover at two locations, and a large overall thrust can be obtained. Therefore, it is possible to greatly reduce the attractive force acting on the magnet array (mover) while maintaining a large thrust.

本発明のリニアモータでは、複数の磁極歯を等ピッチで有する電機子と、この電機子の磁極歯と可動方向にあって同じ位置に複数の磁極歯を有するバックヨークとの間に、可動子を配置した構成であるため、可動方向に垂直な方向での磁石配列のコギングが少なくなるため、可動子のディテント力の低減を図ることができる。 In the linear motor of the present invention, a mover is provided between an armature having a plurality of magnetic pole teeth at an equal pitch and a back yoke having a plurality of magnetic pole teeth at the same positions as the magnetic pole teeth of the armature in the moving direction. , the cogging of the magnet arrangement in the direction perpendicular to the moving direction is reduced, so that the detent force of the mover can be reduced.

バックヨークの磁極歯の磁極面積をあまり広くした場合には、周りから磁束を多く拾って吸引力が大きくなり、一方、バックヨークの磁極歯の磁極面積をあまり狭くした場合には、推力を得るための磁束が減って推力が低下する。よって、バックヨークの磁極歯の磁極面積を、電機子の磁極歯の磁極面積の0.9倍~1.1倍とする。 If the magnetic pole area of the magnetic pole teeth of the back yoke is too wide, a large amount of magnetic flux is picked up from the surroundings, resulting in a large attractive force. The magnetic flux for the thrust decreases and the thrust decreases. Therefore, the magnetic pole area of the magnetic pole teeth of the back yoke is set to 0.9 to 1.1 times the magnetic pole area of the magnetic pole teeth of the armature.

電機子の磁極歯には駆動コイルが捲かれるため、電機子の磁極歯はあまり低く構成されず、電機子の磁極歯の高さはバックヨークにおける磁極歯の高さよりも高くなる。このためバックヨークでは磁極歯の高さが低いため磁極歯以外の部分にも磁束が発生して吸引力が電機子側より大きくなる傾向にある。よって、吸引力の効率的な相殺が行えるように、可動子とバックヨークとの隙間を、可動子と電機子との隙間に等しいかまたは大きくする。 Since the magnetic pole teeth of the armature are wound with drive coils, the magnetic pole teeth of the armature are not formed very low, and the height of the magnetic pole teeth of the armature is higher than the height of the magnetic pole teeth of the back yoke. For this reason, since the height of the magnetic pole teeth is low in the back yoke, magnetic flux is generated in portions other than the magnetic pole teeth, and the attracting force tends to be larger than that on the armature side. Therefore, the gap between the mover and the back yoke is made equal to or larger than the gap between the mover and the armature so that the attractive force can be effectively canceled.

本発明に係るリニアモータは、前記バックヨークにおける前記磁極歯の高さは、該磁極歯のピッチの1/20倍以上2倍以下であることを特徴とする。 The linear motor according to the present invention is characterized in that the height of the magnetic pole teeth in the back yoke is 1/20 to 2 times the pitch of the magnetic pole teeth.

本発明のリニアモータにあっては、バックヨークの磁極歯の高さをピッチに比べて小さくし過ぎた場合には、磁極歯(凹凸形状)を設けた効果が得られず、一方、磁極歯の高さをピッチに比べて大きくし過ぎた場合には、効果が変わらずに小型化に逆行する。よって、バックヨークにおける磁極歯の高さを、磁極歯のピッチの1/20倍以上2倍以下とする。 In the linear motor of the present invention, if the height of the magnetic pole teeth of the back yoke is too small compared to the pitch, the effect of providing the magnetic pole teeth (concavo-convex shape) cannot be obtained. If the height of is made too large compared to the pitch, the effect is the same and goes against the trend of miniaturization. Therefore, the height of the magnetic pole teeth in the back yoke is set to 1/20 to 2 times the pitch of the magnetic pole teeth.

本発明に係るリニアモータは、前記可動子の長さは、前記電機子の長さよりも短く、前記バックヨークの長さよりも短いことを特徴とする。 The linear motor according to the present invention is characterized in that the length of the mover is shorter than the length of the armature and shorter than the length of the back yoke.

本発明のリニアモータにあっては、可動子の長さが電機子及びバックヨーク夫々の長さよりも短い。よって、小型の構成であり、大きな加速度を確保できる。また、エッジ効果が小さくなるため、コギングトルクは小さくなって、ディテント力の低減を図れる。 In the linear motor of the present invention, the length of the mover is shorter than the lengths of the armature and the back yoke. Therefore, it has a small configuration and can secure a large acceleration. In addition, since the edge effect is reduced, the cogging torque is reduced and the detent force can be reduced.

本発明に係るリニアモータは、前記可動子と前記バックヨークとの隙間の大きさ、及び/または、前記可動子と前記電機子との隙間の大きさは可変であることを特徴とする。 The linear motor according to the present invention is characterized in that the size of the gap between the mover and the back yoke and/or the size of the gap between the mover and the armature are variable.

本発明のリニアモータにあっては、可動子とバックヨークとの隙間の大きさ、及び/または、可動子と電機子との隙間の大きさが可変である。よって、使用時の駆動起磁力の大きさに応じて可動子とバックヨークとの隙間の大きさ及び/または可動子と電機子との隙間の大きさを調整することにより、吸引力をほぼ零にすることが可能である。 In the linear motor of the present invention, the size of the gap between the mover and the back yoke and/or the size of the gap between the mover and the armature are variable. Therefore, by adjusting the size of the gap between the mover and the back yoke and/or the size of the gap between the mover and the armature according to the size of the drive magnetomotive force during use, the attractive force can be reduced to almost zero. It is possible to

本発明に係るリニアモータは、複数の矩形状の永久磁石を配列させた磁石配列を有する可動子と、前記可動子に隙間をあけて対向配置した固定子としてのバックヨークと、前記可動子に隙間をあけて前記バックヨークとは反対側に対向配置した固定子としての電機子とを備えており、前記複数の永久磁石夫々の磁化方向は厚さ方向であって、隣り合う永久磁石同士の磁化方向は逆向きであり、前記電機子は、夫々に駆動コイルが捲かれている複数の磁極歯を等ピッチで有しており、前記バックヨークは、前記可動子に対向する面に、前記電機子の磁極歯と前記可動子の可動方向にあって同じ位置に複数の磁極歯を有しており、前記バックヨークが有する前記磁極歯は、複数の板状部材を前記可動子の可動方向と交差する方向に積層してなることを特徴とする。 A linear motor according to the present invention includes: a mover having a magnet arrangement in which a plurality of rectangular permanent magnets are arranged; a back yoke as a stator disposed facing the mover with a gap; and an armature as a stator arranged opposite to the back yoke with a gap therebetween. The armature has a plurality of magnetic pole teeth, each of which is wound with a drive coil, at an equal pitch. The magnetic pole teeth of the armature and the magnetic pole teeth of the armature are provided at the same positions in the moving direction of the mover, and the magnetic pole teeth of the back yoke form a plurality of plate members in the moving direction of the mover. It is characterized by being laminated in a direction intersecting with.

本発明のリニアモータにあっては、磁極歯を積層構造とすることにより、可動子に働く吸引力を低減しつつ、渦電流を低減することが可能となる。 In the linear motor of the present invention, by making the magnetic pole teeth into a laminated structure, it is possible to reduce the eddy current while reducing the attractive force acting on the mover.

本発明に係るリニアモータは、前記バックヨークは、前記磁極歯の根元部から前記磁極歯の突出する方向とは逆方向の一部が、複数の板状部材を前記磁極歯の積層方向に積層してなり、前記バックヨークの積層部分を構成する板状部材と、前記磁極歯を構成する板状部材とは、一体となっていることを特徴とする。 In the linear motor according to the present invention, a part of the back yoke in a direction opposite to the direction in which the magnetic pole teeth protrude from the roots of the magnetic pole teeth is formed by laminating a plurality of plate-like members in the lamination direction of the magnetic pole teeth. The plate member forming the laminated portion of the back yoke and the plate member forming the magnetic pole tooth are integrated.

本発明のリニアモータにあっては、バックヨークは、磁極歯との接続部分から厚さ方向の一部を積層構造とすることにより、更に渦電流を低減することが可能となる。また、バックヨークの積層部分を構成する板状部材と、磁極歯を構成する板状部材とは、一体となっているため、製造工数が削減される。 In the linear motor of the present invention, the eddy current can be further reduced by making the back yoke a laminated structure in a portion of the thickness direction from the connection portion with the magnetic pole teeth. In addition, since the plate-like member forming the laminated portion of the back yoke and the plate-like member forming the magnetic pole tooth are integrated, the manufacturing man-hours can be reduced.

本発明に係るリニアモータは、前記複数の板状部材は、積層面に絶縁処理を施してあることを特徴とする。 The linear motor according to the present invention is characterized in that the laminated surfaces of the plurality of plate members are subjected to insulation treatment.

本発明のリニアモータにあっては、複数の板状部材は、積層面に絶縁処理を施してあるので、更に渦電流を低減することが可能となる。 In the linear motor of the present invention, the laminated surfaces of the plurality of plate-like members are insulated, so it is possible to further reduce eddy currents.

本発明に係るリニアモータは、前記可動子は、前記磁石配列を保持する保持部材を有しており、前記保持部材は、前記複数の永久磁石それぞれが挿入される複数の孔を有していることを特徴とする。 In the linear motor according to the present invention, the mover has a holding member that holds the magnet array, and the holding member has a plurality of holes into which the plurality of permanent magnets are respectively inserted. It is characterized by

本発明のリニアモータにあっては、保持部材により磁石配列(複数の永久磁石)を保持している。よって、可動子(磁石配列)の剛性が大きくなるため、永久磁石の撓み、曲げなどの変形が生じにくくディテント力を低減できる。 In the linear motor of the present invention, the holding member holds the magnet arrangement (plurality of permanent magnets). Therefore, since the rigidity of the mover (magnet arrangement) is increased, deformation such as bending and bending of the permanent magnet is less likely to occur, and the detent force can be reduced.

本発明に係るリニアモータは、前記可動子は、前記保持部材及び前記複数の永久磁石が接着固定される板状のベース材を有することを特徴とする。 The linear motor according to the present invention is characterized in that the mover has a plate-like base member to which the holding member and the plurality of permanent magnets are adhered and fixed.

本発明のリニアモータにあっては、複数の永久磁石が保持部材の孔に挿入された状態で、磁石配列(複数の永久磁石)及び保持部材が板状のベース材に接着固定されている。よって、可動子(磁石配列)の剛性を更に高めてディテント力の更なる低減を図れるとともに、永久磁石の抜け落ちを防止できる。 In the linear motor of the present invention, the magnet arrangement (plurality of permanent magnets) and the holding member are adhesively fixed to the plate-like base material with the plurality of permanent magnets inserted into the holes of the holding member. Therefore, it is possible to further increase the rigidity of the mover (magnet arrangement) to further reduce the detent force, and prevent the permanent magnets from falling off.

本発明のリニアモータでは、小型の構成と大きな推力の発生とを実現しながら、可動子(磁石配列)に働く吸引力を大幅に低減することができるとともに、可動子のディテント力を低減することができる。よって、大きな吸引力に伴う撓みによる変形を抑制でき、リニアモータが利用される装置の寸法精度の悪化を防止できる。吸引力を小さくできるため、可動子の剛性と可動子を支持する支持系の剛性とを小さくでき、小型化を図れるだけでなく、可動質量の軽量化によって加速度を改善できる。また、バックヨークに磁極歯構造を設けることにより、バックヨークからの推力が可動子に付加されるため、磁石配列とバックヨークとの間に隙間を設けたことによる推力の低下を最小限に抑えることができる。 In the linear motor of the present invention, it is possible to greatly reduce the attractive force acting on the mover (magnet arrangement) while realizing a compact configuration and generating a large thrust force, and reduce the detent force of the mover. can be done. Therefore, it is possible to suppress deformation due to bending due to a large suction force, and prevent deterioration of the dimensional accuracy of the device using the linear motor. Since the attraction force can be reduced, the rigidity of the movable element and the rigidity of the support system that supports the movable element can be reduced, and not only can the size be reduced, but also the acceleration can be improved by reducing the weight of the movable mass. In addition, by providing the back yoke with a magnetic pole tooth structure, the thrust from the back yoke is applied to the mover, minimizing the decrease in thrust caused by providing a gap between the magnet arrangement and the back yoke. be able to.

また、本発明のリニアモータでは、可動子(磁石配列)に働く吸引力を低減しつつ、渦電流を抑制することが可能である。 Further, in the linear motor of the present invention, it is possible to suppress eddy current while reducing the attractive force acting on the mover (magnet arrangement).

実施の形態1のリニアモータの構成を示す斜視図である。1 is a perspective view showing the configuration of a linear motor according to Embodiment 1; FIG. 実施の形態1のリニアモータの構成を示す側面図である。2 is a side view showing the configuration of the linear motor of Embodiment 1; FIG. 実施の形態1のリニアモータにおける可動子の構成を示す平面図である。4 is a plan view showing the configuration of the mover in the linear motor of Embodiment 1; FIG. 実施の形態1のリニアモータにおける可動子の構成を示す分解斜視図である。2 is an exploded perspective view showing the configuration of a mover in the linear motor of Embodiment 1; FIG. 実施の形態1のリニアモータにおける磁束の流れを示す側面図である。4 is a side view showing the flow of magnetic flux in the linear motor of Embodiment 1; FIG. 実施の形態1のリニアモータにおけるバックヨークの側面形状を示す図である。4 is a diagram showing a side shape of a back yoke in the linear motor of Embodiment 1; FIG. 実施の形態1のリニアモータにおける電機子の作製に用いる電機子素材を示す平面図である。4 is a plan view showing an armature material used for manufacturing an armature in the linear motor of Embodiment 1; FIG. 実施の形態1のリニアモータにおける電機子の巻き線を示す図である。4 is a diagram showing armature windings in the linear motor of Embodiment 1. FIG. 実施の形態1のリニアモータの構成を示す上面図である。2 is a top view showing the configuration of the linear motor of Embodiment 1; FIG. 実施の形態1のリニアモータの構成を示す側面図である。2 is a side view showing the configuration of the linear motor of Embodiment 1; FIG. 実施の形態1の一例のリニアモータの電気角に対する推力変動を示すグラフである。4 is a graph showing a thrust force variation with respect to an electrical angle of the linear motor of the example of Embodiment 1. FIG. 実施の形態1の一例のリニアモータの推力特性を示すグラフである。4 is a graph showing thrust characteristics of a linear motor as an example of Embodiment 1; 実施の形態1の一例のリニアモータの吸引力特性を示すグラフである。5 is a graph showing attractive force characteristics of a linear motor as an example of Embodiment 1. FIG. 第1従来例(磁石配列とバックヨークとを一体化して可動子とした構成)のリニアモータの構成を示す側面図である。FIG. 2 is a side view showing the configuration of a linear motor of a first conventional example (a configuration in which a magnet arrangement and a back yoke are integrated to form a mover); 第1従来例のリニアモータの構成を示す上面図である。It is a top view which shows the structure of the linear motor of a 1st prior art example. 第1従来例のリニアモータの構成を示す側面図である。It is a side view which shows the structure of the linear motor of a 1st prior art example. 第2従来例(磁石配列のみを可動子とし平板状のバックヨークを固定子とした構成)のリニアモータの構成を示す側面図である。FIG. 11 is a side view showing a configuration of a linear motor of a second conventional example (a configuration in which only a magnet arrangement is used as a mover and a flat back yoke is used as a stator). 第2従来例のリニアモータの構成を示す上面図である。FIG. 11 is a top view showing the configuration of a linear motor of a second conventional example; 第2従来例のリニアモータの構成を示す側面図である。FIG. 11 is a side view showing the configuration of a linear motor of a second conventional example; 第1従来例、第2従来例、及び実施の形態1の一例のリニアモータにおける平均推力を示すグラフである。7 is a graph showing the average thrust in the linear motors of the first conventional example, the second conventional example, and an example of the first embodiment; 第1従来例、第2従来例、及び実施の形態1の一例のリニアモータにおける平均吸引力を示すグラフである7 is a graph showing the average attraction force in the linear motors of the first conventional example, the second conventional example, and an example of the first embodiment; 実施の形態1の他の例のリニアモータの推力特性を示すグラフである。7 is a graph showing thrust characteristics of a linear motor of another example of Embodiment 1. FIG. 実施の形態1の他の例のリニアモータの吸引力特性を示すグラフである。7 is a graph showing attractive force characteristics of another linear motor according to the first embodiment; 実施の形態1の更に他の例のリニアモータの推力特性を示すグラフである。7 is a graph showing thrust characteristics of a linear motor of still another example of Embodiment 1; 実施の形態1の更に他の例のリニアモータの吸引力特性を示すグラフである。9 is a graph showing attraction force characteristics of a linear motor of still another example of Embodiment 1; 実施の形態2のリニアモータの構成例を示す斜視図である。FIG. 11 is a perspective view showing a configuration example of a linear motor according to Embodiment 2; 実施の形態2のリニアモータの構成例を示す側面図である。FIG. 8 is a side view showing a configuration example of a linear motor according to Embodiment 2; バックヨークに含まれる磁極歯の構成例を示す斜視図である。4 is a perspective view showing a configuration example of magnetic pole teeth included in the back yoke; FIG. バックヨークに含まれるベース板の構成例を示す部分斜視図である。FIG. 4 is a partial perspective view showing a configuration example of a base plate included in the back yoke; バックヨークの部分斜視図である。FIG. 4 is a partial perspective view of a back yoke; リニアモータの部分側面図である。It is a partial side view of a linear motor. 関連する技術によるリニアモータのジュール損失を示すグラフである。It is a graph which shows the joule loss of the linear motor by related technology. 実施の形態2の基本例におけるリニアモータのジュール損失を示すグラフである。9 is a graph showing Joule loss of a linear motor in a basic example of Embodiment 2; バックヨークの他の構成例を示す側面図である。FIG. 11 is a side view showing another configuration example of the back yoke; 磁極歯ブロックの構成例を示す斜視図である。It is a perspective view which shows the structural example of a magnetic pole tooth block. ベース部の構成例を示す斜視図である。It is a perspective view which shows the structural example of a base part. リニアモータの部分側面図である。It is a partial side view of a linear motor. 実施の形態2の基本例におけるリニアモータのジュール損失を示すグラフである。9 is a graph showing Joule loss of a linear motor in a basic example of Embodiment 2; 実施の形態2の第1変形例におけるリニアモータのジュール損失を示すグラフである。9 is a graph showing Joule loss of a linear motor in the first modified example of the second embodiment; バックヨークの他の構成例を示す側面図である。FIG. 11 is a side view showing another configuration example of the back yoke; 磁極歯ユニットの構成例を示す斜視図である。FIG. 4 is a perspective view showing a configuration example of a magnetic pole tooth unit; 磁極歯ユニットの構成例を示す斜視図である。FIG. 4 is a perspective view showing a configuration example of a magnetic pole tooth unit; ベース部の構成例を示す斜視図である。It is a perspective view which shows the structural example of a base part. バックヨークの他の構成例を示す側面図である。FIG. 11 is a side view showing another configuration example of the back yoke; ベース部の構成例を示す斜視図である。It is a perspective view which shows the structural example of a base part.

以下、本発明をその実施の形態を示す図面に基づいて詳述する。 Hereinafter, the present invention will be described in detail based on the drawings showing its embodiments.

(実施の形態1)
図1及び図2は、実施の形態1のリニアモータ1の構成を示す斜視図及び側面図である。図3及び図4は、実施の形態1のリニアモータ1における可動子2の構成例を示す平面図及び分解斜視図である。なお、図1及び図2では、可動子2のみは磁石の配置がわかるように可動方向に平行な方向からの断面を表している。
(Embodiment 1)
1 and 2 are a perspective view and a side view showing the configuration of a linear motor 1 according to Embodiment 1. FIG. 3 and 4 are a plan view and an exploded perspective view showing a configuration example of the mover 2 in the linear motor 1 of Embodiment 1. FIG. In FIGS. 1 and 2, only the movable element 2 is shown in cross section from a direction parallel to the movable direction so that the arrangement of the magnets can be understood.

リニアモータ1は、可動子2とバックヨーク3と電機子4とを含む。可動子2に隙間をあけてバックヨーク3が対向配置され、可動子2に隙間をあけてバックヨーク3とは反対側に電機子4が対向配置されている。バックヨーク3及び電機子4は固定子として機能する。 A linear motor 1 includes a mover 2 , a back yoke 3 and an armature 4 . A back yoke 3 is opposed to the mover 2 with a gap therebetween, and an armature 4 is opposed to the back yoke 3 with a gap in the mover 2. - 特許庁The back yoke 3 and armature 4 function as a stator.

長尺状をなす可動子2は、図4に示すように、複数の永久磁石21と保持枠22と固定板23とを含む。複数の永久磁石21の並置方向が、可動子2の長手方向となっている。各永久磁石21は矩形状をなす。各永久磁石21は例えば、Nd-Fe-B系の希土類磁石である。各永久磁石21は厚さ方向(図2の上下方向)に磁化されており、隣り合う永久磁石21,21同士でその磁化方向は逆向きである。即ち、磁石配列では、バックヨーク3側から電機子4側に向かう方向に磁化された永久磁石21と、電機子4側からバックヨーク3側に向かう方向に磁化された永久磁石21とが交互に配置されている。 The elongated mover 2 includes a plurality of permanent magnets 21, a holding frame 22, and a fixed plate 23, as shown in FIG. The direction in which the plurality of permanent magnets 21 are juxtaposed is the longitudinal direction of the mover 2 . Each permanent magnet 21 has a rectangular shape. Each permanent magnet 21 is, for example, an Nd--Fe--B system rare earth magnet. Each permanent magnet 21 is magnetized in the thickness direction (vertical direction in FIG. 2), and the magnetization directions of adjacent permanent magnets 21, 21 are opposite to each other. That is, in the magnet arrangement, the permanent magnets 21 magnetized in the direction from the back yoke 3 side to the armature 4 side and the permanent magnets 21 magnetized in the direction from the armature 4 side to the back yoke 3 side are alternately arranged. are placed.

図4に示すように、保持枠22は矩形板状をなしている。保持枠22の厚さは、永久磁石21の厚さより小さい。保持枠22には矩形状の孔221が複数設けてある。保持枠22は、例えばSUS、アルミニウムなどの非磁性材料により構成される。孔221は永久磁石21と対応する形状としてある。各永久磁石21は孔221に嵌め込まれ、接着剤で保持枠22に固定される。保持枠22に固定された各永久磁石21が等ピッチで並置されるように、孔221は設けてある。また、永久磁石21を保持枠22に固定する際には、隣り合う永久磁石21、21同士の磁化方向が逆向きとなるように、孔221に嵌め込む。図3に示すように、各永久磁石21は角度θでスキュー配置としてある。 As shown in FIG. 4, the holding frame 22 has a rectangular plate shape. The thickness of the holding frame 22 is smaller than the thickness of the permanent magnet 21 . A plurality of rectangular holes 221 are provided in the holding frame 22 . The holding frame 22 is made of a non-magnetic material such as SUS or aluminum. The hole 221 has a shape corresponding to that of the permanent magnet 21 . Each permanent magnet 21 is fitted in a hole 221 and fixed to the holding frame 22 with an adhesive. The holes 221 are provided so that the permanent magnets 21 fixed to the holding frame 22 are arranged side by side at equal pitches. When fixing the permanent magnets 21 to the holding frame 22, they are fitted into the holes 221 so that the magnetization directions of the adjacent permanent magnets 21, 21 are opposite to each other. As shown in FIG. 3, each permanent magnet 21 is skewed at an angle θ.

複数の永久磁石21が保持枠22の孔221に挿入されて保持された状態で、保持枠22が固定板23に接着剤で固定されている。また、各永久磁石21の底面も固定板23に接着されている。固定板23は非磁性のSUS等で構成される。このように、磁石配列が保持枠22に保持されて固定板23に接着固定されているため、可動子2の剛性は高く、永久磁石21の抜け落ちも起こらない。固定板23がバックヨーク3に対向するように、バックヨーク3と電機子4との間隙に可動子2が配置される。なお、固定板23は必須ではなく、永久磁石21が保持枠22にて十分保持される場合には不要である。 The holding frame 22 is fixed to the fixed plate 23 with an adhesive in a state in which the plurality of permanent magnets 21 are inserted into the holes 221 of the holding frame 22 and held. The bottom surface of each permanent magnet 21 is also adhered to the fixed plate 23 . The fixing plate 23 is made of non-magnetic SUS or the like. Since the magnet arrangement is held by the holding frame 22 and adhered to the fixing plate 23, the rigidity of the mover 2 is high and the permanent magnets 21 do not come off. The mover 2 is arranged in the gap between the back yoke 3 and the armature 4 so that the fixed plate 23 faces the back yoke 3 . Note that the fixing plate 23 is not essential, and is unnecessary when the permanent magnet 21 is sufficiently held by the holding frame 22 .

バックヨーク3及び電機子4の可動方向(図2の左右方向)における長さは略等しく、可動子2の可動方向(図2の左右方向)における長さは、これらのバックヨーク3及び電機子4における長さよりも短く、この長さの差がリニアモータ1の動作可能なストロークとなる。このような構成により、エッジ効果の低減を図っている。 The lengths of the back yoke 3 and the armature 4 in the movable direction (horizontal direction in FIG. 2) are substantially equal, and the lengths of the movable element 2 in the movable direction (horizontal direction in FIG. 2) are equal to those of the back yoke 3 and the armature 4, and the length difference is the operable stroke of the linear motor 1. With such a configuration, an attempt is made to reduce the edge effect.

軟鋼製、好ましくは軟質磁性体(例えば、珪素鋼板)であるバックヨーク3の可動子2と対向しない側の面は平板状であるが、バックヨーク3の可動子2と対向する側の面は平板状ではなく、可動方向に等ピッチにて複数の矩形状の磁極歯31が形成されている。各磁極歯31の高さは、磁極歯31の形成ピッチの1/20倍以上2倍以下、好ましくは、1/10倍以上1倍以下である。例えば、各磁極歯31の高さは、磁極歯31の形成ピッチの半分程度である。 The surface of the back yoke 3, which is made of soft steel, preferably a soft magnetic material (for example, a silicon steel plate), on the side not facing the mover 2 is flat, but the surface of the back yoke 3 on the side facing the mover 2 is flat. A plurality of rectangular magnetic pole teeth 31 are formed at equal pitches in the moving direction instead of being flat. The height of each magnetic pole tooth 31 is 1/20 to 2 times the formation pitch of the magnetic pole teeth 31, preferably 1/10 to 1 time. For example, the height of each magnetic pole tooth 31 is about half the formation pitch of the magnetic pole teeth 31 .

電機子4では、軟質磁性体製であるコア41に可動方向に等ピッチにて軟質磁性体製の複数の矩形状の磁極歯42が一体的に設けられており、各磁極歯42に駆動コイル43が捲かれている。 In the armature 4, a plurality of rectangular magnetic pole teeth 42 made of a soft magnetic material are integrally provided on a core 41 made of a soft magnetic material at equal pitches in the moving direction. 43 is wound.

バックヨーク3における磁極歯31のピッチは、電機子4の磁極歯42のピッチに等しく、バックヨーク3における各磁極歯31の位置は、可動子2の可動方向において電機子4の各磁極歯42の位置と同じである。また、バックヨーク3の磁極歯31の可動子2に対向する磁極面の形状は、電機子4の磁極歯42の可動子2に対向する磁極面とほぼ同じ形の矩形状をなしており、前者の磁極面積は後者の磁極面積の0.9倍~1.1倍である。例えば、磁極歯31の磁極面と磁極歯42の磁極面とは、同一の矩形状であって、同一の面積を有する。また、可動子2とバックヨーク3との隙間は、可動子2と電機子4との隙間と同じかまたは大きい。例えば、後者の隙間は0.5mmであり、前者の隙間は0.5mm以上である。この場合の可動子2とバックヨーク3との隙間とは固定板23を構成として含む場合であっても、固定板23の厚さを含まず、可動子2そのものとバックヨーク3の間隔(最短距離)を示している。言い換えるとこの隙間は磁気的な隙間(磁気ギャップ)であり、非磁性体である固定板23の厚さを考慮する必要は無い。 The pitch of the magnetic pole teeth 31 in the back yoke 3 is equal to the pitch of the magnetic pole teeth 42 of the armature 4, and the position of each magnetic pole tooth 31 in the back yoke 3 is equal to that of each magnetic pole tooth 42 of the armature 4 in the moving direction of the mover 2. is the same as the position of The shape of the magnetic pole surface of the magnetic pole tooth 31 of the back yoke 3 facing the mover 2 is substantially the same as that of the magnetic pole surface of the magnetic pole tooth 42 of the armature 4 facing the mover 2, and is rectangular. The magnetic pole area of the former is 0.9 to 1.1 times the magnetic pole area of the latter. For example, the magnetic pole face of the magnetic pole tooth 31 and the magnetic pole face of the magnetic pole tooth 42 have the same rectangular shape and the same area. Also, the gap between the mover 2 and the back yoke 3 is the same as or larger than the gap between the mover 2 and the armature 4 . For example, the latter gap is 0.5 mm and the former gap is 0.5 mm or more. In this case, the gap between the mover 2 and the back yoke 3 does not include the thickness of the fixed plate 23 even if the fixed plate 23 is included in the configuration, and the gap between the mover 2 itself and the back yoke 3 (shortest distance) distance). In other words, this gap is a magnetic gap (magnetic gap), and there is no need to consider the thickness of the fixed plate 23, which is a non-magnetic material.

実施の形態1のリニアモータ1は、7個の永久磁石21と6個の磁極歯31及び磁極歯42が対向する7極6スロットを基本構成としている。図1及び図2に示す形態では、基本構成を2倍した14極12スロット構成を有している。 The linear motor 1 of Embodiment 1 has a basic configuration of seven poles and six slots in which seven permanent magnets 21 and six magnetic pole teeth 31 and 42 face each other. The configuration shown in FIGS. 1 and 2 has a 14-pole, 12-slot configuration that is twice the basic configuration.

実施の形態1のリニアモータ1では、バックヨーク3の可動子2に対向する側の面に、電機子4の磁極歯42と可動方向での同じ位置にほぼ同一形状の磁極面を有して磁極面積がほぼ同じである磁極歯31を形成している。よって、可動子2及びバックヨーク3間に生じる吸引力の大きさと、可動子2及び電機子4間に生じる吸引力の大きさとがほぼ等しくなり、図2の上下方向にあって両方の吸引力が効果的に相殺されるため、リニアモータ1全体として可動子2に働く吸引力は非常に小さくなる。このように、実施の形態1のリニアモータ1では、可動子2とバックヨーク3との隙間を大きくしなくても吸引力の大幅な低減を実現できる。よって、可動子2とバックヨーク3との隙間を大きくする必要がないため、推力の低下を起こすことがない。 In the linear motor 1 of Embodiment 1, the surface of the back yoke 3 facing the mover 2 has magnetic pole surfaces of substantially the same shape at the same positions as the magnetic pole teeth 42 of the armature 4 in the moving direction. Magnetic pole teeth 31 having substantially the same magnetic pole area are formed. Therefore, the magnitude of the attraction force generated between the mover 2 and the back yoke 3 is substantially equal to the magnitude of the attraction force generated between the mover 2 and the armature 4. are effectively canceled out, the attractive force acting on the mover 2 as a whole of the linear motor 1 becomes very small. As described above, in the linear motor 1 of Embodiment 1, the attractive force can be significantly reduced without increasing the gap between the mover 2 and the back yoke 3 . Therefore, since it is not necessary to increase the gap between the mover 2 and the back yoke 3, the thrust does not decrease.

また、実施の形態1のリニアモータ1では、上述したように、複数の磁極歯42を等ピッチで有する電機子4と、この電機子4の磁極歯42と可動方向にあって同じ位置に複数の磁極歯31を有するバックヨーク3との間に、可動子2を配置した構成であるので、可動方向に垂直な方向での磁石配列のコギングトルクが少なくなるため、可動子2のディテント力の低減を図ることができる。更に、磁石配列を保持枠22で保持して固定板23に接着固定するようにしたので、可動子2の剛性を大きくできるため、永久磁石21の撓み、曲げなどの変形が生じにくく、この点でも可動子2のディテント力の低減に寄与する。 Further, in the linear motor 1 of Embodiment 1, as described above, the armature 4 having the plurality of magnetic pole teeth 42 at equal pitches, and the plurality of magnetic pole teeth 42 of the armature 4 at the same positions in the moving direction as the magnetic pole teeth 42 of the armature 4 . Since the mover 2 is arranged between the back yoke 3 having the magnetic pole teeth 31, the cogging torque of the magnet arrangement in the direction perpendicular to the moving direction is reduced. reduction can be achieved. Furthermore, since the magnet arrangement is held by the holding frame 22 and fixed to the fixed plate 23 by adhesion, the rigidity of the mover 2 can be increased, so that the permanent magnets 21 are less likely to deform such as flexing and bending. However, it contributes to the reduction of the detent force of the mover 2 .

実施の形態1のリニアモータ1では、バックヨーク3に複数の磁極歯31を形成しており、この可動子2に対向する凹凸形状により駆動磁束の剪断領域が発生するため、電機子4だけでなくバックヨーク3も推力の発生に寄与する。図5は、実施の形態1のリニアモータ1における磁束の流れを示す側面図である。図5において、矢印は磁束の流れを示している。リニアモータ1では、電機子4側における磁束の剪断によって推力が発生すると共に、バックヨーク3側における磁束の剪断によっても推力が発生することになり、リニアモータ1に生じる推力は、これらの両推力を合計したものとなる。なお、実施の形態1のような磁極歯31を形成せずにバックヨークが平板状であるようなリニアモータでは、バックヨーク側では推力が発生せず、電機子側における磁束の剪断による推力のみとなる。 In the linear motor 1 of Embodiment 1, a plurality of magnetic pole teeth 31 are formed on the back yoke 3, and the uneven shape facing the mover 2 generates a shearing region of the driving magnetic flux. In addition, the back yoke 3 also contributes to the generation of thrust. FIG. 5 is a side view showing the flow of magnetic flux in the linear motor 1 of Embodiment 1. FIG. In FIG. 5, arrows indicate the flow of magnetic flux. In the linear motor 1, thrust is generated by shearing magnetic flux on the armature 4 side, and thrust is also generated by shearing magnetic flux on the back yoke 3 side. is the sum of In a linear motor having a flat back yoke without forming the magnetic pole teeth 31 as in Embodiment 1, no thrust is generated on the back yoke side, and only thrust due to shearing of magnetic flux on the armature side is generated. becomes.

実施の形態1のリニアモータ1では、可動子2とバックヨーク3との間にも隙間を設けるので、この隙間によって推力が低下することが懸念される。しかしながら、上述したようにバックヨーク3側でも推力を発生できるため、隙間に起因する推力の低下を補えて大きな推力を実現できる。 In the linear motor 1 of Embodiment 1, since a gap is also provided between the mover 2 and the back yoke 3, there is concern that this gap may reduce the thrust force. However, as described above, since thrust can be generated on the back yoke 3 side as well, it is possible to compensate for the drop in thrust due to the gap and achieve a large thrust.

以上のことから、実施の形態1のリニアモータ1にあっては、大きな推力を維持しながら、可動子2に働く吸引力を大幅に低減することができる。したがって、可動子2には吸引力に伴う撓みがほとんど発生せず、リニアモータ1を用いた半導体製造装置での加工機などにおける寸法精度は非常に高くなる。 As described above, in the linear motor 1 of Embodiment 1, the attractive force acting on the mover 2 can be greatly reduced while maintaining a large thrust force. Therefore, the mover 2 hardly bends due to the attractive force, and the dimensional accuracy of a processing machine of a semiconductor manufacturing apparatus using the linear motor 1 becomes very high.

また、実施の形態1のリニアモータ1では、吸引力を小さくできるため、剛性が小さい永久磁石21及び保持枠22を使用しても支障は生じない。よって、可動子2の小型化を図れると共に、可動子2の軽量化に伴って大きな加速度を実現することが可能である。また、可動子2の摩耗も少ないため、リニアモータ1の長寿命化を図れる。 In addition, in the linear motor 1 of Embodiment 1, since the attractive force can be reduced, even if the permanent magnet 21 and the holding frame 22 with low rigidity are used, no problem occurs. Therefore, it is possible to reduce the size of the mover 2 and realize a large acceleration due to the weight reduction of the mover 2 . Further, since the wear of the mover 2 is small, the life of the linear motor 1 can be extended.

リニアモータでは、可動子の移動を平滑に行うために、後述するように可動子の側面にリニアガイドを設けることが一般的であるが、実施の形態1のリニアモータ1では吸引力が小さくなるので、リニアガイドも剛性が小さいものを使用でき、この点でもリニアモータの小型化と長寿命化に寄与できる。 In a linear motor, in order to move the mover smoothly, it is common to provide a linear guide on the side surface of the mover as will be described later. Therefore, a linear guide with low rigidity can be used, which also contributes to miniaturization and extension of the life of the linear motor.

実施の形態1のリニアモータ1では、可動子2の長さをバックヨーク3及び電機子4の長さよりも短くして、更なる小型化及び軽量化と高速化とを図っている。 In the linear motor 1 of Embodiment 1, the length of the mover 2 is made shorter than the lengths of the back yoke 3 and the armature 4 to further reduce the size, weight, and speed of the motor.

以下、本発明者が作製した実施の形態1におけるリニアモータ1の具体的な構成と、作製したリニアモータ1の特性とについて説明する。 A specific configuration of the linear motor 1 according to Embodiment 1 manufactured by the present inventor and characteristics of the manufactured linear motor 1 will be described below.

まず、可動子2を作製した。Nd-Fe-B系の希土類磁石(Br =1.395T、HcJ=1273kA/m)ブロックから、厚さ5mm、幅12mm、長さ82mmの矩形状の14個の永久磁石21を切り出した。切り出した永久磁石21を、厚さ方向に着磁した。次に、厚さ3mmのSUS板から図4に示すような保持枠22をワイアーカットにて切り出した。切り出した保持枠22を、厚さ0.2mmのSUS板からなる固定板23に接着固定した。そして、保持枠22の孔221に、隣り合う永久磁石21の磁化方向が互いに逆向きになるように、接着剤が塗布された14個の永久磁石21をスキュー角θ=3.2°を付与して嵌めこみ、永久磁石21を保持枠22及び固定板23に接着固定した。ここでは、可動子2の軽量化と磁石配列の大きな剛性との両立を実現できるように、永久磁石21の厚さ5mmに対して、保持枠22の厚さを3mmとした。First, the mover 2 was produced. Fourteen rectangular permanent magnets 21 having a thickness of 5 mm, a width of 12 mm, and a length of 82 mm were cut out from a block of Nd--Fe--B rare earth magnet (B r =1.395 T, H cJ =1273 kA/m). . The cut permanent magnet 21 was magnetized in the thickness direction. Next, a holding frame 22 as shown in FIG. 4 was cut out from a 3 mm thick SUS plate by wire cutting. The cut holding frame 22 was adhered and fixed to a fixing plate 23 made of a SUS plate having a thickness of 0.2 mm. Then, 14 permanent magnets 21 coated with adhesive are given a skew angle θ of 3.2° in the hole 221 of the holding frame 22 so that the magnetization directions of the adjacent permanent magnets 21 are opposite to each other. Then, the permanent magnet 21 was adhered and fixed to the holding frame 22 and the fixing plate 23 . Here, the thickness of the holding frame 22 is set to 3 mm with respect to the thickness of the permanent magnet 21 of 5 mm so that both the weight reduction of the mover 2 and the high rigidity of the magnet arrangement can be achieved.

なお、上記の例とは異なり、厚さ0.5mmのSUS板にプレス加工で孔を空けたものを6枚重ねてカシメ処理で固定する手法にて、保持枠22を作製するようにしても良い。この場合には、作製コストの低減を図れる。 In addition, unlike the above example, the holding frame 22 may be manufactured by stacking six sheets of 0.5 mm thick SUS plates with holes formed by press working and fixing them by caulking. good. In this case, the manufacturing cost can be reduced.

次いで、バックヨーク3を作製した。図6は、実施の形態1のリニアモータ1におけるバックヨーク3の側面形状を示す図である。 Next, a back yoke 3 was produced. FIG. 6 is a diagram showing a side shape of the back yoke 3 in the linear motor 1 of Embodiment 1. FIG.

軟鋼(JIS規格 G3101 種類記号 SS400材)から図6に示すような寸法を有するブロックを削り出して、18個の同一形状の磁極歯31(幅:6mm、高さ:3mm、長さ:82mm、磁極面積492mm2 )を等ピッチ(15.12mm)に有するバックヨーク3を作製した。A block having dimensions as shown in FIG. 6 was machined from mild steel (JIS G3101 type symbol SS400 material), and 18 magnetic pole teeth 31 of the same shape (width: 6 mm, height: 3 mm, length: 82 mm, A back yoke 3 having a magnetic pole area of 492 mm 2 ) at an equal pitch (15.12 mm) was produced.

次いで、電機子4を作製した。図7は、実施の形態1のリニアモータ1における電機子4の作製に用いる電機子素材を示す平面図である。図7に示すような形状をなす電機子素材44を0.5mm厚さの珪素鋼板(JIS規格 C2552 種類記号 50A800材)から164枚切り出し、切り出した164枚を重ねて側面をCO2 レーザにて溶融一体化させて、幅82mm、高さ31mm、長さ263.04mmのブロック体(コア41に18個の同一形状の磁極歯42(幅:6mm、高さ:25mm、長さ:82mm、磁極面積492mm2 )を等ピッチ(15.12mm)に有する構成)を得た。Next, an armature 4 was produced. FIG. 7 is a plan view showing an armature material used for manufacturing the armature 4 in the linear motor 1 of Embodiment 1. FIG. 164 pieces of the armature material 44 having a shape as shown in FIG . A block body (width: 82 mm, height: 31 mm, length: 263.04 mm) (core 41 with 18 magnetic pole teeth 42 of the same shape (width: 6 mm, height: 25 mm, length: 82 mm, magnetic pole A structure having an area of 492 mm 2 ) at an equal pitch (15.12 mm) was obtained.

次に、このブロック体に巻き線を挿入した。図8は、実施の形態1のリニアモータ1における電機子4の巻き線を示す図である。電機子4の各磁極歯42のアーム部に、直径2mmのエナメル被覆導線を17回捲き付けたものをワニス含浸させて固定することにより、駆動コイル43とした。 Next, winding wires were inserted into this block. FIG. 8 is a diagram showing windings of the armature 4 in the linear motor 1 of Embodiment 1. FIG. A drive coil 43 is formed by winding 17 turns of an enamel-coated conductor wire with a diameter of 2 mm around the arm portion of each magnetic pole tooth 42 of the armature 4 and fixing it by impregnating it with varnish.

図8におけるU、V、Wは夫々3相交流電源のU相、V相、W相を示し、各相のコイルはすべて直列接続とした。Uコイル、Vコイル、Wコイルは上から見て電流が時計回りに流れるように結線し、-Uコイル、-Vコイル、-Wコイルは上から見て電流が反時計回りに流れるように結線して、電機子4を作製した。そして、6個ずつのUコイル、-Uコイル、Vコイル、-Vコイル、Wコイル、-Wコイルをスター結線して3相交流電源に接続した。 U, V, and W in FIG. 8 indicate the U-phase, V-phase, and W-phase of a three-phase AC power source, respectively, and the coils of each phase are all connected in series. The U, V, and W coils are wired so that the current flows clockwise when viewed from above, and the -U, -V, and -W coils are wired so that the current flows counterclockwise when viewed from above. Then, an armature 4 was produced. Six U coils, -U coils, V coils, -V coils, W coils, and -W coils were star-connected and connected to a three-phase AC power source.

次いで、作製したバックヨーク3及び電機子4を、両者の間隔が一定の6mmに保たれるように、治具を用いて固定した。なお、バックヨーク3と電機子4との隙間が6mmになるように固定したが、この隙間はリニアモータ1組み立て後に調整できる構造とした。次いで、可動子2の側面にリニアガイド(図示せず)を取り付けた後、バックヨーク3及び電機子4の隙間に、バックヨーク3及び電機子4夫々と所定の距離を隔てて、厚さ5mmの可動子2を挿入して、リニアモータ1を作製した。この際、可動子2とバックヨーク3の磁極歯31との隙間の距離、及び、可動子2と電機子4の磁極歯42との隙間の距離を、何れも0.5mmとした。また、リニアガイドと電機子4間には、吸引力を測定できるようにロードセルを設けた。 Next, the back yoke 3 and the armature 4 thus produced were fixed using a jig so that the distance therebetween was maintained at a constant 6 mm. The gap between the back yoke 3 and the armature 4 was fixed to be 6 mm, but the structure was such that this gap could be adjusted after the linear motor 1 was assembled. Next, after attaching a linear guide (not shown) to the side surface of the mover 2, a 5 mm thick guide was inserted between the back yoke 3 and the armature 4 at a predetermined distance from each of the back yoke 3 and the armature 4. A linear motor 1 was produced by inserting the mover 2 of . At this time, the gap distance between the mover 2 and the magnetic pole teeth 31 of the back yoke 3 and the gap distance between the mover 2 and the magnetic pole teeth 42 of the armature 4 were both 0.5 mm. A load cell was provided between the linear guide and the armature 4 so as to measure the attractive force.

バックヨーク3と電機子4との隙間を調整できる構造としているため、可動子2と電機子4(磁極歯42)との隙間の距離を一定とした状態で、可動子2とバックヨーク3(磁極歯31)との隙間の距離を任意に設定して可変とすることができる。なお、バックヨーク3及び電機子4の隙間への可動子2の挿入位置を調整することにより、可動子2とバックヨーク3(磁極歯31)との隙間の距離、及び、可動子2と電機子4(磁極歯42)との隙間の距離の比を所望の値に設定することも可能である。 Since the gap between the back yoke 3 and the armature 4 can be adjusted, the gap between the mover 2 and the armature 4 (magnetic pole teeth 42) can be adjusted while the gap between the mover 2 and the armature 4 (magnetic pole teeth 42) is kept constant. The distance of the gap from the magnetic pole tooth 31) can be arbitrarily set and made variable. By adjusting the insertion position of the mover 2 into the gap between the back yoke 3 and the armature 4, the distance between the mover 2 and the back yoke 3 (magnetic pole teeth 31) and the gap between the mover 2 and the armature 4 can be changed. It is also possible to set the ratio of the gap distance to the child 4 (magnetic pole tooth 42) to a desired value.

その他、電機子4と可動子2を支持するリニアガイドの間及び電機子4とバックヨーク3の間における隙間を調節する機構として、隙間調整ネジを挿入して高さを調整する機構や断面形状がテーパ状になっているシム板をネジにより挿入して高さを調節する機構が採用可能である。 In addition, as a mechanism for adjusting the gap between the linear guide that supports the armature 4 and the mover 2 and between the armature 4 and the back yoke 3, a mechanism for adjusting the height by inserting a gap adjusting screw and a cross-sectional shape A mechanism for adjusting the height by inserting a tapered shim plate with a screw can be adopted.

図9A及び9Bは、このようにして作製した実施の形態1の一例のリニアモータ1の構成を示す図であり、図9Aはその上面図、図9Bはその側面図である。図9Bにあって、白抜き矢符は永久磁石21の磁化方向を表し、実線矢符は、可動子2の可動方向を表している。また、このリニアモータ1の作製仕様の詳細は以下の通りである。 9A and 9B are diagrams showing the configuration of an example of the linear motor 1 according to Embodiment 1 manufactured in this manner, FIG. 9A being a top view thereof and FIG. 9B being a side view thereof. In FIG. 9B , the hollow arrow indicates the magnetization direction of the permanent magnet 21 and the solid arrow indicates the movable direction of the mover 2 . Further, details of manufacturing specifications of the linear motor 1 are as follows.

磁極構成:7極6スロット
永久磁石21の材質:Nd-Fe-B系希土類磁石(日立金属製NMX
-S49CH材)
永久磁石21の形状:厚さ5.0mm,幅12mm,長さ82mm
永久磁石21のピッチ:12.96mm
永久磁石21のスキュー角:3.2°
バックヨーク3の形状:厚さ6.0mm,幅90mm,長さ263.04mm
バックヨーク3の材質:軟鋼(JIS規格 G3101 種類記号 SS400材)
磁極歯31の形状:幅6.0mm,高さ:3.0mm,長さ:82mm
磁極歯31のピッチ:15.12mm
コア41の体格:高さ31mm,幅82mm,長さ263.04mm
コア41の材質:珪素鋼板(JIS規格 C2552 種類記号 50A800材)
磁極歯42の形状:幅6.0mm,高さ:25mm,長さ:82mm
磁極歯42のピッチ:15.12mm
駆動コイル43の形状:幅15.12mm,高さ23mm,長さ91.12mm
駆動コイル43の巻き厚:4.06mm
駆動コイル43の巻き線の径,巻き数:直径2mm,17ターン
巻き線抵抗(1個):0.0189Ω
可動子2の質量:516.6g
Magnetic pole configuration: 7 poles 6 slots Material of permanent magnet 21: Nd-Fe-B rare earth magnet (Hitachi Metals NMX
-S49CH material)
Shape of permanent magnet 21: thickness 5.0 mm, width 12 mm, length 82 mm
Pitch of permanent magnet 21: 12.96 mm
Skew angle of permanent magnet 21: 3.2°
Shape of back yoke 3: thickness 6.0 mm, width 90 mm, length 263.04 mm
Material of back yoke 3: Mild steel (JIS standard G3101 type symbol SS400 material)
Shape of magnetic pole tooth 31: width 6.0 mm, height: 3.0 mm, length: 82 mm
Pitch of magnetic pole teeth 31: 15.12 mm
Body size of core 41: height 31 mm, width 82 mm, length 263.04 mm
Material of core 41: Silicon steel plate (JIS standard C2552 type symbol 50A800 material)
Shape of magnetic pole tooth 42: width 6.0 mm, height: 25 mm, length: 82 mm
Pitch of magnetic pole teeth 42: 15.12 mm
Shape of drive coil 43: width 15.12 mm, height 23 mm, length 91.12 mm
Winding thickness of drive coil 43: 4.06 mm
Diameter and number of windings of drive coil 43: 2 mm in diameter, 17 turns Winding resistance (one piece): 0.0189 Ω
Mass of mover 2: 516.6 g

上述したリニアモータ1では、可動子2の長さ(190mm)は、バックヨーク3及び電機子4の長さ(何れも263.04mm)よりも短い。バックヨーク3における磁極歯31のピッチ、電機子4における磁極歯42のピッチは、何れも15.12mmであって等しく、磁極歯31及び磁極歯42は、可動方向において同じ位置にある。 In the linear motor 1 described above, the length of the mover 2 (190 mm) is shorter than the lengths of the back yoke 3 and the armature 4 (both of which are 263.04 mm). The pitch of the magnetic pole teeth 31 in the back yoke 3 and the pitch of the magnetic pole teeth 42 in the armature 4 are both equal at 15.12 mm, and the magnetic pole teeth 31 and 42 are at the same position in the moving direction.

磁石配列に対向する磁極歯31の磁極面の形状と、磁石配列に対向する磁極歯42の磁極面の形状とは、同一寸法の矩形状である。つまり、磁極歯31の幅(可動方向の寸法)及び磁極歯42の幅(可動方向の寸法)は、何れも6mmであって等しく、磁石配列に対向する磁極歯31の磁極面積及び磁石配列に対向する磁極歯42の磁極面積は、何れも492mm2 であって等しい。The shape of the magnetic pole face of the magnetic pole tooth 31 facing the magnet arrangement and the shape of the magnetic pole face of the magnetic pole tooth 42 facing the magnet arrangement are rectangular with the same dimensions. That is, the width (dimension in the movable direction) of the magnetic pole tooth 31 and the width (dimension in the movable direction) of the magnetic pole tooth 42 are both 6 mm, which are equal, and the magnetic pole area of the magnetic pole tooth 31 facing the magnet arrangement and the magnet arrangement The magnetic pole areas of the opposing magnetic pole teeth 42 are all equal to 492 mm 2 .

このようにして組み立てたリニアモータ1を推力測定用テストベンチに設置し、可動子2(磁石配列)の位置に同期した3相定電流電源により駆動して可動子2を移動させ、推力と吸引力とを測定した。 The linear motor 1 assembled in this way is installed on a test bench for thrust measurement, and is driven by a three-phase constant current power supply synchronized with the position of the mover 2 (magnet arrangement) to move the mover 2, thereby generating thrust and attraction. force was measured.

図10は、実施の形態1の一例のリニアモータ1の電気角に対する推力変動を示すグラフである。この推力変動は、駆動起磁力(=駆動電流の大きさ×駆動コイル43の巻き数)を1200Aとした場合における可動子2位置に対する推力(U相、V相、W相の3相合成推力)の変化を表している。図10において、横軸は電気角[°]であり、縦軸は推力[N]である。また、図中aは電機子4による推力、図中bはバックヨーク3による推力、図中cは全体の推力(電機子4による推力とバックヨーク3による推力との加算推力)を夫々表している。図10に示すように、全域にわたってほぼ一定の大きな推力を得られていることが分かる。 FIG. 10 is a graph showing the thrust force variation with respect to the electrical angle of the linear motor 1 as an example of the first embodiment. This thrust fluctuation is the thrust (3-phase composite thrust of U phase, V phase, and W phase) with respect to the position of the mover 2 when the drive magnetomotive force (=magnitude of the drive current×the number of turns of the drive coil 43) is 1200 A. represents a change in In FIG. 10, the horizontal axis is the electrical angle [°] and the vertical axis is the thrust [N]. Also, in the figure, a represents the thrust force from the armature 4, b represents the thrust force from the back yoke 3, and c represents the total thrust force (the sum of the thrust force from the armature 4 and the thrust force from the back yoke 3). there is As shown in FIG. 10, it can be seen that a substantially constant and large thrust force is obtained over the entire range.

図11は、実施の形態1の一例のリニアモータ1の推力特性を示すグラフである。この推力特性は、駆動コイル43への印加電流を変化させた場合の特性を表している。図11において、横軸は駆動起磁力[A]であり、左縦軸は推力[N]、右縦軸は推力起磁力比[N/A]である。また、図中aは推力、図中bは推力起磁力比を夫々表している。このリニアモータ1では、推力比例限(推力起磁力比が10%低下)が駆動起磁力1200A時の1000Nである。 FIG. 11 is a graph showing thrust characteristics of the linear motor 1 as an example of the first embodiment. This thrust characteristic represents the characteristic when the current applied to the drive coil 43 is changed. In FIG. 11, the horizontal axis is the driving magnetomotive force [A], the left vertical axis is the thrust force [N], and the right vertical axis is the thrust magnetomotive force ratio [N/A]. Also, in the figure, a represents the thrust force, and b represents the thrust magnetomotive force ratio. In this linear motor 1, the thrust proportional limit (the thrust magnetomotive force ratio is reduced by 10%) is 1000N when the drive magnetomotive force is 1200A.

図12は、実施の形態1の一例のリニアモータ1の吸引力特性を示すグラフである。この吸引力特性は、駆動コイル43への印加電流を変化させた場合の特性を表している。図12において、横軸は駆動起磁力[A]であり、縦軸は吸引力[N]である。なお、吸引力は、+側で可動子2が電機子4側へ吸引され、-側で可動子2がバックヨーク3側へ吸引されることを示している。駆動起磁力の増加に応じて吸引力も大きくなっていき、例えば駆動起磁力が1200Aである場合に、290Nほどの吸引力で可動子2がバックヨーク3側へ吸引されている。 FIG. 12 is a graph showing attractive force characteristics of the linear motor 1 as an example of the first embodiment. This attraction force characteristic represents the characteristic when the current applied to the drive coil 43 is changed. In FIG. 12, the horizontal axis is the driving magnetomotive force [A], and the vertical axis is the attraction force [N]. The attractive force indicates that the mover 2 is attracted to the armature 4 side on the + side, and the mover 2 is attracted to the back yoke 3 side on the - side. As the drive magnetomotive force increases, the attraction force also increases. For example, when the drive magnetomotive force is 1200A, the mover 2 is attracted toward the back yoke 3 with an attraction force of about 290N.

ところで、実施の形態1のリニアモータ1を従来のリニアモータと比較して評価するために、従来例として2種のリニアモータ(第1従来例及び第2従来例)を作製して、それらの特性(推力と吸引力)を測定した。 By the way, in order to evaluate the linear motor 1 of Embodiment 1 in comparison with a conventional linear motor, two types of linear motors (a first conventional example and a second conventional example) were produced as conventional examples, and their Characteristics (thrust and suction) were measured.

まず、第1従来例の構成について説明する。図13は、第1従来例のリニアモータの構成を示す側面図である。第1従来例は、特許文献1または2に準じた構成を有するリニアモータ(一体型リニアモータ)である。 First, the configuration of the first conventional example will be described. FIG. 13 is a side view showing the configuration of the linear motor of the first conventional example. A first conventional example is a linear motor (integrated linear motor) having a configuration conforming to Patent Document 1 or 2.

第1従来例のリニアモータ50は、磁石配列52とバックヨーク53とを一体化させてなる可動子51と、可動子51に隙間をあけて対向配置した電機子54とを有している。第1従来例では、磁石配列52及びバックヨーク53を一体化させた構造物が可動子として機能し、電機子54は固定子として機能する。 A linear motor 50 of the first conventional example has a mover 51 formed by integrating a magnet array 52 and a back yoke 53, and an armature 54 facing the mover 51 with a gap. In the first conventional example, the structure in which the magnet array 52 and the back yoke 53 are integrated functions as a mover, and the armature 54 functions as a stator.

磁石配列52の構成は、前述した可動子2の磁石配列の構成と同様である。即ち、磁石配列52は、複数の矩形状の永久磁石55を、等ピッチで非磁性材の保持枠に保持固定して可動方向(図13の左右方向)に設置させて構成され、各永久磁石55は厚さ方向(図13の上下方向)に磁化されており、隣り合う永久磁石55,55同士でその磁化方向は逆向きである。第1従来例のリニアモータ50では、この磁石配列52が軟鋼製の平板状のバックヨーク53に接着している。また、電機子54の構成は、前述した電機子4の構成と同様であって、コア56に可動方向に等ピッチにて複数の磁極歯57が一体的に設けられており、各磁極歯57に駆動コイル58が捲かれている。 The configuration of the magnet array 52 is the same as the configuration of the magnet array of the mover 2 described above. That is, the magnet array 52 is configured by holding and fixing a plurality of rectangular permanent magnets 55 on a holding frame made of a non-magnetic material at equal pitches and installing them in the movable direction (horizontal direction in FIG. 13). 55 is magnetized in the thickness direction (vertical direction in FIG. 13), and the magnetization directions of adjacent permanent magnets 55, 55 are opposite to each other. In the linear motor 50 of the first conventional example, the magnet arrangement 52 is adhered to a flat back yoke 53 made of mild steel. The configuration of the armature 54 is the same as the configuration of the armature 4 described above, and a plurality of magnetic pole teeth 57 are integrally provided on the core 56 at equal pitches in the moving direction. A drive coil 58 is wound on the .

図14A及び14Bは、このような第1従来例のリニアモータ50の構成を示す図であり、図14Aはその上面図、図14Bはその側面図である。図14Bにあって、白抜き矢符は永久磁石55の磁化方向を表し、実線矢符は可動子51の可動方向を表している。なお、可動子51と電機子54との隙間の大きさは、0.5mmまたは1mmとした。このリニアモータ50の作製仕様の詳細は以下の通りである。 14A and 14B are diagrams showing the configuration of such a first conventional linear motor 50, FIG. 14A being a top view and FIG. 14B being a side view. In FIG. 14B , the hollow arrow indicates the magnetization direction of the permanent magnet 55 and the solid arrow indicates the movable direction of the mover 51 . The size of the gap between the mover 51 and the armature 54 was 0.5 mm or 1 mm. Details of manufacturing specifications of the linear motor 50 are as follows.

磁極構成:7極6スロット
永久磁石55の材質:Nd-Fe-B系希土類磁石(日立金属製NMX
-S49CH材)
永久磁石55の形状:厚さ5.0mm,幅12mm,長さ82mm
永久磁石55のピッチ:12.96mm
永久磁石55のスキュー角:3.2°
バックヨーク53の形状:厚さ6.0mm,幅90mm,長さ190mm
バックヨーク53の材質:軟鋼(JIS規格 G3101 種類記号 SS400材)
コア56の体格:高さ31mm,幅82mm,長さ263.04mm
コア56の材質:珪素鋼板(JIS規格 C2552 種類記号 50A800材)
磁極歯57の形状:幅6.0mm,高さ:25mm,長さ:82mm
磁極歯57のピッチ:15.12mm
駆動コイル58の形状:幅15.12mm,高さ23mm,長さ91.12mm
駆動コイル58の巻き厚:4.06mm
駆動コイル58の巻き線の径,巻き数:直径2mm,17ターン
巻き線抵抗(1個):0.0189Ω
可動子51(磁石配列52+バックヨーク53)の質量:1321.01g
Magnetic pole configuration: 7 poles 6 slots Material of permanent magnet 55: Nd-Fe-B rare earth magnet (Hitachi Metals NMX
-S49CH material)
Shape of permanent magnet 55: thickness 5.0 mm, width 12 mm, length 82 mm
Pitch of permanent magnets 55: 12.96 mm
Skew angle of permanent magnet 55: 3.2°
Shape of back yoke 53: thickness 6.0 mm, width 90 mm, length 190 mm
Material of back yoke 53: Mild steel (JIS standard G3101 type symbol SS400 material)
Body size of core 56: height 31 mm, width 82 mm, length 263.04 mm
Material of core 56: Silicon steel plate (JIS standard C2552 type symbol 50A800 material)
Shape of magnetic pole tooth 57: width 6.0 mm, height: 25 mm, length: 82 mm
Pitch of magnetic pole teeth 57: 15.12 mm
Drive coil 58 shape: width 15.12 mm, height 23 mm, length 91.12 mm
Winding thickness of drive coil 58: 4.06 mm
Diameter and number of windings of the drive coil 58: diameter 2 mm, 17 turns Winding resistance (one piece): 0.0189 Ω
Mass of mover 51 (magnet array 52 + back yoke 53): 1321.01 g

可動子51(磁石配列52及びバックヨーク53の一体化構成)の可動方向(図13の左右方向)における長さは、電機子54の長さよりも短く、この長さの差がリニアモータ50の動作可能なストロークとなる。 The length in the movable direction (horizontal direction in FIG. 13) of the mover 51 (integrated configuration of the magnet array 52 and the back yoke 53) is shorter than the length of the armature 54. It becomes an operable stroke.

次に、第2従来例の構成について説明する。図15は、第2従来例のリニアモータの構成を示す側面図である。第2従来例は、特許文献3~6に準じた構成を有するリニアモータ(分離型リニアモータ)である。なお、図15では、磁石配列62のみは磁石の配置がわかるように可動方向に平行な方向からの断面を表している。 Next, the configuration of the second conventional example will be described. FIG. 15 is a side view showing the configuration of the linear motor of the second conventional example. The second conventional example is a linear motor (separate type linear motor) having a configuration conforming to Patent Documents 3-6. In FIG. 15, only the magnet array 62 is shown in cross section from a direction parallel to the moving direction so that the arrangement of the magnets can be seen.

第2従来例のリニアモータ60は、磁石配列62と、磁石配列62に隙間をあけて対向配置したバックヨーク63と、磁石配列62に隙間をあけてバックヨーク63とは反対側に対向配置した電機子64とを有している。磁石配列62のみが可動子として機能し、バックヨーク63及び電機子64は固定子として機能する。 The linear motor 60 of the second conventional example has a magnet arrangement 62, a back yoke 63 arranged to face the magnet arrangement 62 with a gap, and a gap arranged to face the magnet arrangement 62 on the opposite side of the back yoke 63. and an armature 64 . Only the magnet array 62 functions as a mover, and the back yoke 63 and armature 64 function as stators.

磁石配列62の構成は、前述した可動子2の磁石配列の構成と同様である。即ち、磁石配列62は、複数の矩形状の永久磁石65を、等ピッチで非磁性材の保持枠に保持固定して可動方向(図15の左右方向)に設置させて構成され、各永久磁石65は厚さ方向(図15の上下方向)に磁化されており、隣り合う永久磁石65,65同士でその磁化方向は逆向きである。軟鋼製であるバックヨーク63は、磁石配列62に対向しない側の面だけでなく、磁石配列62に対向する側の面も平板状であり、実施の形態1のリニアモータ1のような磁極歯は存在しない。また、電機子64の構成は、前述した電機子4の構成と同様であって、コア66に可動方向に等ピッチにて複数の磁極歯67が一体的に設けられており、各磁極歯67に駆動コイル68が捲かれている。 The configuration of the magnet array 62 is the same as the configuration of the magnet array of the mover 2 described above. That is, the magnet array 62 is configured by holding and fixing a plurality of rectangular permanent magnets 65 in a holding frame made of a non-magnetic material at equal pitches and installing them in the movable direction (horizontal direction in FIG. 15). 65 is magnetized in the thickness direction (vertical direction in FIG. 15), and the magnetization directions of adjacent permanent magnets 65, 65 are opposite to each other. The back yoke 63 made of mild steel has a flat plate-like surface not only on the side not facing the magnet array 62 but also on the side facing the magnet array 62 . does not exist. The configuration of the armature 64 is the same as the configuration of the armature 4 described above, and a plurality of magnetic pole teeth 67 are integrally provided on the core 66 at equal pitches in the moving direction. A drive coil 68 is wound on the .

図16A及び16Bは、このような第2従来例のリニアモータ60の構成を示す図であり、図16Aはその上面図、図16Bはその側面図である。図16Bにあって、白抜き矢符は永久磁石65の磁化方向を表し、実線矢符は磁石配列62(可動子)の可動方向を表している。なお、磁石配列62とバックヨーク63との隙間の大きさ、及び、磁石配列62と電機子64との隙間の大きさを、何れも0.5mmとした。また、このリニアモータ60の作製仕様の詳細は以下の通りである。 16A and 16B are diagrams showing the configuration of such a linear motor 60 of the second conventional example, FIG. 16A being its top view and FIG. 16B being its side view. In FIG. 16B, hollow arrows represent the magnetization direction of the permanent magnet 65, and solid line arrows represent the movable direction of the magnet array 62 (mover). The size of the gap between the magnet array 62 and the back yoke 63 and the size of the gap between the magnet array 62 and the armature 64 were both 0.5 mm. Further, details of manufacturing specifications of the linear motor 60 are as follows.

磁極構成:7極6スロット
永久磁石65の材質:Nd-Fe-B系希土類磁石(日立金属製NMX
-S49CH材)
永久磁石65の形状:厚さ5.0mm,幅12mm,長さ82mm
永久磁石65のピッチ:12.96mm
永久磁石65のスキュー角:3.2°
バックヨーク63の形状:厚さ6.0mm,幅90mm,長さ215mm
バックヨーク63の材質:軟鋼(JIS規格 G3101 種類記号 SS400材)
コア66の体格:高さ31mm,幅82mm,長さ263.04mm
コア66の材質:珪素鋼板(JIS規格 C2552 種類記号 50A800材)
磁極歯67の形状:幅6.0mm,高さ:25mm,長さ:82mm
磁極歯67のピッチ:15.12mm
駆動コイル68の形状:幅15.12mm,高さ23mm,長さ91.12mm
駆動コイル68の巻き厚:4.06mm
駆動コイル68の巻き線の径,巻き数:直径2mm,17ターン
巻き線抵抗(1個):0.0189Ω
可動子(磁石配列62)の質量:516.6g
Magnetic pole configuration: 7 poles 6 slots Material of permanent magnet 65: Nd-Fe-B rare earth magnet (NMX manufactured by Hitachi Metals
-S49CH material)
Shape of permanent magnet 65: thickness 5.0 mm, width 12 mm, length 82 mm
Pitch of permanent magnet 65: 12.96 mm
Skew angle of permanent magnet 65: 3.2°
Shape of back yoke 63: thickness 6.0 mm, width 90 mm, length 215 mm
Material of back yoke 63: Mild steel (JIS standard G3101 type symbol SS400 material)
Body size of core 66: height 31 mm, width 82 mm, length 263.04 mm
Material of core 66: Silicon steel plate (JIS standard C2552 type symbol 50A800 material)
Shape of magnetic pole tooth 67: width 6.0 mm, height: 25 mm, length: 82 mm
Pitch of magnetic pole teeth 67: 15.12 mm
Drive coil 68 shape: width 15.12 mm, height 23 mm, length 91.12 mm
Winding thickness of drive coil 68: 4.06 mm
Winding diameter and number of turns of drive coil 68: diameter 2 mm, 17 turns Winding resistance (one piece): 0.0189 Ω
Mass of mover (magnet array 62): 516.6 g

磁石配列62の可動方向(図15の左右方向)における長さは、電機子64の長さよりも短く、この長さの差がリニアモータ60の動作可能なストロークとなる。 The length of the magnet array 62 in the movable direction (horizontal direction in FIG. 15 ) is shorter than the length of the armature 64 , and the length difference is the operable stroke of the linear motor 60 .

上述した第1従来例、第2従来例、及び実施の形態1の一例における特性(推力と吸引力)の比較について説明する。 A comparison of the characteristics (thrust force and suction force) in the first conventional example, the second conventional example, and the example of the first embodiment will be described.

図17は、第1従来例、第2従来例、及び実施の形態1の一例のリニアモータにおける平均推力を示すグラフである。図17は、駆動起磁力を1200Aとした場合の平均推力[N]を表している。また、図18は、第1従来例、第2従来例、及び実施例のリニアモータにおける平均吸引力を示すグラフである。図18は、駆動起磁力を1200Aとした場合の平均吸引力[N]を表している。ここで、平均推力と平均吸引力は、U相電気角0°から360°の範囲において15°間隔で25点の推力と吸引力を測定(計算)し、その平均を算出したものである。 FIG. 17 is a graph showing the average thrust in the linear motors of the first conventional example, the second conventional example, and an example of the first embodiment. FIG. 17 shows the average thrust [N] when the drive magnetomotive force is 1200A. Also, FIG. 18 is a graph showing the average attraction forces in the linear motors of the first conventional example, the second conventional example, and the working example. FIG. 18 shows the average attractive force [N] when the driving magnetomotive force is 1200A. Here, the average thrust force and the average attraction force are obtained by measuring (calculating) the thrust force and the attraction force at 25 points at intervals of 15° in the U-phase electrical angle range of 0° to 360°, and calculating the average thereof.

図17及び図18にあって、Aは磁石配列52・バックヨーク53一体型の第1従来例にあって可動子51と電機子54との隙間を0.5mmとしたリニアモータ50(以下、リニアモータ50Aともいう)であり、Bは磁石配列52・バックヨーク53一体型の第1従来例にあって可動子51と電機子54との隙間を1mmとしたリニアモータ50(以下、リニアモータ50Bともいう)であり、Cは磁石配列62とバックヨーク63とを離隔させた第2従来例にあって磁石配列62とバックヨーク63との隙間、及び、磁石配列62と電機子64との隙間を何れも0.5mmとしたリニアモータ60であり、Dは可動子2(磁石配列)から離隔したバックヨーク3に磁極歯31を形成した実施の形態1の一例にあって可動子2とバックヨーク3との隙間、及び、可動子2と電機子4との隙間を何れも0.5mmとしたリニアモータ1である。 In FIGS. 17 and 18, A denotes a linear motor 50 (hereinafter referred to as linear motor 50) in the first conventional example of integrated magnet arrangement 52 and back yoke 53 with a gap of 0.5 mm between the mover 51 and the armature 54. and B is a linear motor 50 (hereinafter referred to as a linear motor 50B), and C is the gap between the magnet array 62 and the back yoke 63 and the gap between the magnet array 62 and the armature 64 in the second conventional example in which the magnet array 62 and the back yoke 63 are separated from each other. The linear motor 60 has a gap of 0.5 mm for both. The linear motor 1 has a gap between the back yoke 3 and a gap between the mover 2 and the armature 4, both of which are set to 0.5 mm.

第1従来例のリニアモータ50A(図中A)では、推力が最も大きくて1030Nあるが、吸引力は4200Nで推力の4倍程度の大きな数値となっている。この吸引力を低減する対策としてのリニアモータ50B(図中B)では、得られる推力の低下が著しく909Nになるのに対して吸引力はあまり低減せずに3360Nである。よって、十分な対策になっていないことが理解される。 In the linear motor 50A (A in the figure) of the first conventional example, the maximum thrust is 1030N, but the attractive force is 4200N, which is about four times as large as the thrust. In the linear motor 50B (B in the figure) as a countermeasure for reducing the attraction force, the obtained thrust is remarkably lowered to 909N, whereas the attraction force is 3360N without much reduction. Therefore, it is understood that sufficient countermeasures are not taken.

第2従来例のリニアモータ60(図中C)では、980Nの比較的大きい推力を得ることができるが、吸引力については1712Nもの大きな力によってバックヨーク63側に吸引されており、吸引力の十分な低減がなされていない。 With the linear motor 60 (C in the figure) of the second conventional example, a relatively large thrust force of 980 N can be obtained, but the attraction force is attracted to the back yoke 63 side by a large force of 1712 N, and the attraction force is reduced. not sufficiently reduced.

これに対して、実施の形態1の一例のリニアモータ1(図中D)では、リニアモータ50Aと遜色がない1000Nの大きな推力を得ることができている。また、吸引力についてはバックヨーク3側に290N(リニアモータ50Aの1/14程度)まで大幅に低減できている。したがって、実施の形態1の一例のリニアモータ1では、大きな推力を維持しながら、吸引力を大幅に低減できることが立証されている。 On the other hand, in the linear motor 1 (D in the figure) of the example of Embodiment 1, a large thrust force of 1000 N, which is comparable to that of the linear motor 50A, can be obtained. Further, the attractive force can be greatly reduced to 290 N (about 1/14 of the linear motor 50A) on the back yoke 3 side. Therefore, it has been proved that the linear motor 1 as an example of the first embodiment can significantly reduce the attraction force while maintaining a large thrust force.

ところで、実施の形態1の一例のリニアモータ1にあっては、図12にも示すように、吸引力の大きさは駆動起磁力の大きさによって変化する。よって、よく使用される推力領域(駆動起磁力)に合わせて、可動子2とバックヨーク3との隙間の大きさを調整するようにすれば、より吸引力を小さくできる。 By the way, in the linear motor 1 of the example of Embodiment 1, as shown in FIG. 12, the magnitude of the attractive force changes depending on the magnitude of the drive magnetomotive force. Therefore, by adjusting the size of the gap between the mover 2 and the back yoke 3 according to the thrust force region (driving magnetomotive force) that is often used, the attractive force can be further reduced.

前述した実施の形態1の一例では、可動子2とバックヨーク3との隙間、及び、可動子2と電機子4との隙間を何れも0.5mmと等しくしたが、実施の形態1の他の例では、可動子2と電機子4との隙間は0.5mmのままで、可動子2とバックヨーク3との隙間を0.74mmとした。なお、他の構成は前述した一例と同じである。 In the example of the first embodiment described above, the gap between the mover 2 and the back yoke 3 and the gap between the mover 2 and the armature 4 are both equal to 0.5 mm. 2, the gap between the mover 2 and the armature 4 remains at 0.5 mm, and the gap between the mover 2 and the back yoke 3 is set at 0.74 mm. Other configurations are the same as the example described above.

図19は、実施の形態1の他の例のリニアモータ1の推力特性を示すグラフであり、図20は、実施の形態1の他の例のリニアモータ1の吸引力特性を示すグラフである。図19において、横軸は駆動起磁力[A]であり、左縦軸は推力[N]、右縦軸は推力起磁力比[N/A]であり、aは推力、bは推力起磁力比を夫々表している。また、図20において、横軸は駆動起磁力[A]であり、縦軸は吸引力[N]である。 19 is a graph showing the thrust force characteristic of the linear motor 1 of another example of the first embodiment, and FIG. 20 is a graph showing the attraction force characteristic of the linear motor 1 of another example of the first embodiment. . In FIG. 19, the horizontal axis is driving magnetomotive force [A], the left vertical axis is thrust [N], and the right vertical axis is thrust magnetomotive force ratio [N/A], where a is thrust and b is thrust magnetomotive force. each represents a ratio. In FIG. 20, the horizontal axis is the driving magnetomotive force [A], and the vertical axis is the attraction force [N].

他の例では、駆動起磁力が1200Aである場合に推力は978Nとなって、前述した一例に比べて少し落ちるが、吸引力については駆動起磁力が1200Aである場合に18Nしかなくてほぼ零を実現できている。これは、リニアガイドや可動子や周辺の構造物に吸引力による変形や寿命低下が無視できるレベルの吸引力である。よって、1200A近傍の駆動起磁力にて使用する場合には、他の例のリニアモータ1の方が、前述した一例と比べて、吸引力の低減という目的には適していることが分かる。 In another example, when the driving magnetomotive force is 1200A, the thrust is 978N, which is slightly lower than the previous example. has been realized. This is a level of attractive force at which the linear guide, mover, and surrounding structures can be disregarded for deformation and life reduction due to the attractive force. Therefore, when used with a drive magnetomotive force of around 1200 A, it can be seen that the linear motor 1 of another example is more suitable for the purpose of reducing the attractive force than the example described above.

また、実施の形態1の更に他の例として、可動子2と電機子4との隙間は0.5mmのままで、可動子2とバックヨーク3との隙間を0.66mmとしたリニアモータ1を作製した。なお、他の構成は前述した一例と同じである。 Further, as still another example of the first embodiment, the linear motor 1 is configured such that the gap between the mover 2 and the armature 4 is kept at 0.5 mm and the gap between the mover 2 and the back yoke 3 is set at 0.66 mm. was made. Other configurations are the same as the example described above.

図21は、実施の形態1の更に他の例のリニアモータ1の推力特性を示すグラフであり、図22は、実施の形態1の更に他の例のリニアモータ1の吸引力特性を示すグラフである。図21において、横軸は駆動起磁力[A]であり、左縦軸は推力[N]、右縦軸は推力起磁力比[N/A]であり、aは推力、bは推力起磁力比を夫々表している。また、図22において、横軸は駆動起磁力[A]であり、縦軸は吸引力[N]である。 21 is a graph showing the thrust force characteristic of the linear motor 1 of still another example of the first embodiment, and FIG. 22 is a graph showing the attraction force characteristic of the linear motor 1 of still another example of the first embodiment. is. In FIG. 21, the horizontal axis is driving magnetomotive force [A], the left vertical axis is thrust [N], and the right vertical axis is thrust magnetomotive force ratio [N/A], where a is thrust and b is thrust magnetomotive force. each represents a ratio. In FIG. 22, the horizontal axis is the driving magnetomotive force [A], and the vertical axis is the attraction force [N].

更に他の例では、駆動起磁力が1200Aである場合に推力は984Nとなって、前述した一例に比べて少し落ちるが、吸引力については駆動起磁力が600Aである場合に5Nしかなくてほぼ零を実現できている。よって、600A近傍の駆動起磁力にて使用する場合には、更に他の例のリニアモータ1が、吸引力を低減するためには最適であることが分かる。 In yet another example, when the driving magnetomotive force is 1200A, the thrust is 984N, which is slightly lower than the previous example. We have achieved zero. Therefore, when used with a driving magnetomotive force of around 600 A, it can be seen that the linear motor 1 of still another example is optimal for reducing the attractive force.

以上のことから、頻度が高い使用領域に応じて、可動子2とバックヨーク3との隙間の大きさを最適に設定することにより、吸引力を大幅に低減できてほぼ零が達成可能である。この結果、可動子2(磁石配列)の撓みに起因した寸法精度の悪化、リニアガイドへの過重負荷による寿命の低下などを防止することができる。 From the above, by optimally setting the size of the gap between the mover 2 and the back yoke 3 according to the frequently used area, the suction force can be greatly reduced and almost zero can be achieved. . As a result, it is possible to prevent deterioration of dimensional accuracy due to bending of the mover 2 (magnet arrangement), reduction of life due to excessive load on the linear guide, and the like.

なお、上述した形態では、可動子2と電機子4との隙間の大きさを固定して可動子2とバックヨーク3との隙間の大きさを変動させる例について説明したが、これとは逆に、可動子2とバックヨーク3との隙間の大きさを固定して可動子2と電機子4との隙間の大きさを変動させる例、バックヨーク3と電機子4との隙間の大きさを固定して可動子2の位置を変動させる例などにより、零に近い吸引力を実現することも可能である。 In the embodiment described above, an example in which the size of the gap between the mover 2 and the armature 4 is fixed and the size of the gap between the mover 2 and the back yoke 3 is varied has been described. Second, the size of the gap between the mover 2 and the back yoke 3 is fixed, and the size of the gap between the mover 2 and the armature 4 is changed. is fixed and the position of the mover 2 is changed, it is possible to realize an attractive force close to zero.

また、上述した形態では、可動子2が電機子4よりも短い構成のリニアモータ1について説明したが、これとは逆に、可動子が電機子よりも長い構成のリニアモータについても、本発明の特徴(バックヨークに磁極歯を形成)は適用可能である。 Further, in the above embodiment, the linear motor 1 having the configuration in which the mover 2 is shorter than the armature 4 has been described. (forming magnetic pole teeth on the back yoke) can be applied.

(実施の形態2の基本例)
図23及び図24は実施の形態2のリニアモータ1の構成例を示す斜視図及び側面図である。なお、図23及び図24では、可動子2のみは磁石の配置がわかるように可動方向に平行な方向からの断面を表している。
(Basic example of Embodiment 2)
23 and 24 are a perspective view and a side view showing a configuration example of the linear motor 1 of Embodiment 2. FIG. 23 and 24, only the mover 2 is shown in cross section from a direction parallel to the moving direction so that the arrangement of the magnets can be understood.

実施の形態2のリニアモータ1は、実施の形態1と同様に、可動子2とバックヨーク3と電機子4とを含み、バックヨーク3及び電機子4が固定子として機能する。 A linear motor 1 of Embodiment 2 includes a mover 2, a back yoke 3, and an armature 4, as in Embodiment 1, and the back yoke 3 and armature 4 function as a stator.

なお、実施の形態2のリニアモータ1における可動子2及び電機子4の構成は、前述した実施の形態1のリニアモータ1における可動子2及び電機子4の構成と同じであるのでその説明は省略する。 The configuration of the mover 2 and the armature 4 in the linear motor 1 of Embodiment 2 is the same as the configuration of the mover 2 and the armature 4 in the linear motor 1 of Embodiment 1 described above. are omitted.

実施の形態2のリニアモータ1では、バックヨーク3の構成が、実施の形態1のリニアモータ1と異なっている。バックヨーク3は磁極歯31及びベース板32を含む。ベース板32は矩形板状をなしている。磁極歯31はベース板32に固定されている。磁極歯31は、その一部分がベース板32から突出するように固定されている。突出している部分の形状は直方体状である。複数の磁極歯31はベース板32の長手方向に沿って、等ピッチで配置されている。磁極歯31は例えば、後述するように積層珪素鋼板により形成する。ベース板32は例えば、SS400などの炭素鋼により形成する。 The linear motor 1 of the second embodiment differs from the linear motor 1 of the first embodiment in the configuration of the back yoke 3 . The back yoke 3 includes magnetic pole teeth 31 and a base plate 32 . The base plate 32 has a rectangular plate shape. The magnetic pole tooth 31 is fixed to the base plate 32 . The magnetic pole tooth 31 is fixed so that a part thereof protrudes from the base plate 32 . The protruding portion has a rectangular parallelepiped shape. A plurality of magnetic pole teeth 31 are arranged at equal pitches along the longitudinal direction of the base plate 32 . The magnetic pole teeth 31 are made of, for example, a laminated silicon steel plate as described later. The base plate 32 is made of carbon steel such as SS400, for example.

バックヨーク3と電機子4とは、間隙を隔てて対向配置される。そして、当該間隙に可動子2が配置される。可動子2の第一の面は隙間をあけてバックヨーク3と対向している。可動子2の第一の面と対向する第二の面は隙間をあけて電機子4と対向する。 The back yoke 3 and the armature 4 are arranged to face each other with a gap therebetween. Then, the mover 2 is arranged in the gap. A first surface of the mover 2 faces the back yoke 3 with a gap therebetween. A second surface facing the first surface of the mover 2 faces the armature 4 with a gap therebetween.

図24に示すように、バックヨーク3及び電機子4の可動方向(図24の左右方向)における長さは略等しい。また、バックヨーク3における磁極歯31のピッチは、電機子4の磁極歯42のピッチに等しい。バックヨーク3における各磁極歯31の位置は、可動子2の可動方向において電機子4の各磁極歯42の位置と同じである。また、磁極歯31の磁極面と磁極歯42の磁極面とは、同一の矩形状であって、同一の面積を有する。また、可動子2とバックヨーク3との隙間は、可動子2と電機子4との隙間とほぼ同じである。 As shown in FIG. 24, the back yoke 3 and the armature 4 have approximately the same length in the movable direction (horizontal direction in FIG. 24). Also, the pitch of the magnetic pole teeth 31 in the back yoke 3 is equal to the pitch of the magnetic pole teeth 42 in the armature 4 . The position of each magnetic pole tooth 31 in the back yoke 3 is the same as the position of each magnetic pole tooth 42 of the armature 4 in the movable direction of the mover 2 . The magnetic pole face of the magnetic pole tooth 31 and the magnetic pole face of the magnetic pole tooth 42 have the same rectangular shape and the same area. Also, the gap between the mover 2 and the back yoke 3 is substantially the same as the gap between the mover 2 and the armature 4 .

可動子2において、隣り合う永久磁石21、21の磁化方向が逆向きとなっている。可動子2をバックヨーク3と電機子4との間隙に配置すると、バックヨーク3側から電機子4側に向かう方向に磁化された永久磁石21と、電機子4側からバックヨーク3側に向かう方向に磁化された永久磁石21とが交互に配置される構成となる。 In the mover 2, the magnetization directions of the adjacent permanent magnets 21, 21 are opposite to each other. When the mover 2 is arranged in the gap between the back yoke 3 and the armature 4, the permanent magnet 21 magnetized in the direction from the back yoke 3 side to the armature 4 side and the magnetized direction from the armature 4 side to the back yoke 3 side. The permanent magnets 21 magnetized in different directions are arranged alternately.

リニアモータ1の動作時には、バックヨーク3の磁極歯31と可動子2の永久磁石21との間に吸引力が発生する。また、電機子4の磁極歯42と可動子2の永久磁石21との間にも吸引力が発生する。可動子2に働く2つの吸引力は互いに反対方向である。磁極歯31の磁極面と磁極歯42の磁極面とを、同一の矩形状また同一の面積とする等磁気回路を調整することで、吸引力の大きさは略等しくすることができる。それによって、磁極歯31と永久磁石21との間に発生する吸引力、及び磁極歯42と永久磁石21との間に発生する吸引力をバランスさせることができる。すなわち、2つの吸引力を互いに打ち消すことができる。なお、加工誤差、組立誤差などの要因で、2つの吸引力をバランスさせることが困難な場合、磁極歯31と永久磁石21との間隔、または磁極歯42と永久磁石21との間隔を調整して、2つの吸引力をバランスさせる。 During operation of the linear motor 1 , an attractive force is generated between the magnetic pole teeth 31 of the back yoke 3 and the permanent magnets 21 of the mover 2 . An attractive force is also generated between the magnetic pole teeth 42 of the armature 4 and the permanent magnets 21 of the mover 2 . The two attractive forces acting on the mover 2 are in opposite directions. By adjusting the magnetic circuit such that the magnetic pole faces of the magnetic pole teeth 31 and the magnetic pole faces of the magnetic pole teeth 42 have the same rectangular shape and the same area, the magnitudes of the attractive forces can be made substantially equal. Thereby, the attractive force generated between the magnetic pole tooth 31 and the permanent magnet 21 and the attractive force generated between the magnetic pole tooth 42 and the permanent magnet 21 can be balanced. That is, the two attractive forces can cancel each other. If it is difficult to balance the two attractive forces due to factors such as machining errors and assembly errors, the spacing between the magnetic pole teeth 31 and the permanent magnets 21 or the spacing between the magnetic pole teeth 42 and the permanent magnets 21 should be adjusted. to balance the two forces of attraction.

以上のように、実施の形態2のリニアモータ1は、前述した実施の形態1のリニアモータ1と同様な構成を有しているため、実施の形態2のリニアモータ1にあっても、実施の形態1のリニアモータ1と同じく、大きな推力を維持しながら、可動子2に働く吸引力を大幅に低減することができる。また、実施の形態2のリニアモータ1にあっても、実施の形態1のリニアモータ1と同じく、可動子2のディテント力の低減を図ることができる。 As described above, the linear motor 1 of Embodiment 2 has the same configuration as the linear motor 1 of Embodiment 1 described above. As with the linear motor 1 of form 1, the attractive force acting on the mover 2 can be greatly reduced while maintaining a large thrust force. Also, in the linear motor 1 of the second embodiment, the detent force of the mover 2 can be reduced as in the linear motor 1 of the first embodiment.

以下、実施の形態2の特徴であるバックヨーク3の構成について、詳細を説明する。図25はバックヨーク3に含まれる磁極歯31の構成例を示す斜視図である。磁極歯31は断面T字状をなしておりその底部(図25における下側)から短手方向に突出した2つの突出部31a、31aを有している。(このため図25においてはH字状を横にした形状としてある)突出部31a、31aは後述のアリ溝321の凹部32a、32aと係合する部位である。リニアモータ1の動作時において、磁極歯31の短手方向は可動子2の可動方向に平行な方向となる。 The configuration of the back yoke 3, which is a feature of the second embodiment, will be described in detail below. 25 is a perspective view showing a configuration example of the magnetic pole teeth 31 included in the back yoke 3. FIG. The magnetic pole tooth 31 has a T-shaped cross section and has two projecting portions 31a, 31a projecting in the short direction from the bottom portion (lower side in FIG. 25). Protrusions 31a, 31a (for this reason, in FIG. 25, the H shape is turned sideways) are portions that engage with recesses 32a, 32a of a dovetail groove 321, which will be described later. During operation of the linear motor 1 , the lateral direction of the magnetic pole teeth 31 is parallel to the moving direction of the mover 2 .

磁極歯31は磁極片311を積層してなる。磁極片311は矩形板状の一部を切り欠いて形成した係合用の突出部311aを含む。磁極片311は軟磁性を有する珪素鋼等の薄板により形成する。積層された磁極片311同士の固定は、熱溶着やカシメなどにて行う。熱溶着の場合は、例えば、まず、磁極片311の表面に熱硬化性の接着剤を塗布するか熱溶着性の塗膜を付したものを、積層した後に板面に圧力を掛けながら加熱する。加熱により磁極片311同士が固定される。 The magnetic pole tooth 31 is formed by stacking magnetic pole pieces 311 . The magnetic pole piece 311 includes an engaging projection 311a formed by cutting out a portion of a rectangular plate. The magnetic pole piece 311 is formed of a thin plate of soft magnetic silicon steel or the like. The laminated magnetic pole pieces 311 are fixed to each other by heat welding, caulking, or the like. In the case of heat welding, for example, first, the surfaces of the magnetic pole pieces 311 are coated with a thermosetting adhesive or coated with a heat-welding coating. . The heating fixes the pole pieces 311 together.

なお、磁極歯31を構成する磁極片311の板厚を薄くするほど、すなわち磁極片311の枚数を増やすほど渦電流損は低減する。強度や組み立ての手間を考慮すると、磁極片311の板厚は0.2~0.5mm程度とすることが望ましい。磁極歯31を構成する磁極片311の枚数や板厚は、求められる仕様に応じて適宜設計すれば良い。 Eddy current loss is reduced as the thickness of the magnetic pole piece 311 forming the magnetic pole tooth 31 is reduced, that is, as the number of magnetic pole pieces 311 is increased. Considering the strength and labor required for assembly, the thickness of the pole piece 311 is desirably about 0.2 to 0.5 mm. The number and plate thickness of the magnetic pole piece 311 constituting the magnetic pole tooth 31 may be appropriately designed according to required specifications.

図26はバックヨーク3に含まれるベース板32の構成例を示す部分斜視図である。図26は説明の都合上、図24及び図25と上下方向を逆にして描いている。ベース板32は短手方向に沿ってアリ溝321が設けてある。アリ溝321は磁極片311の突出部311a(磁極歯31の突出部31a)に対応した形状としてある。アリ溝321は突出部311a(突出部31a)に対応する凹部32aを有している。図24及び図25に示すように、ベース板32には複数のアリ溝321が形成してある。複数のアリ溝321は、可動子2の可動方向に沿って、等ピッチで設けてある。複数のアリ溝321の配列方向は、リニアモータ1動作時において、可動子2の可動方向に平行な方向である。 FIG. 26 is a partial perspective view showing a configuration example of the base plate 32 included in the back yoke 3. FIG. For convenience of explanation, FIG. 26 is drawn upside down from FIGS. 24 and 25 . A dovetail groove 321 is provided in the base plate 32 along the lateral direction. The dovetail groove 321 has a shape corresponding to the projecting portion 311a of the magnetic pole piece 311 (the projecting portion 31a of the magnetic pole tooth 31). The dovetail groove 321 has a concave portion 32a corresponding to the projecting portion 311a (projecting portion 31a). As shown in FIGS. 24 and 25, the base plate 32 has a plurality of dovetail grooves 321 formed therein. A plurality of dovetail grooves 321 are provided at equal pitches along the moving direction of the mover 2 . The array direction of the plurality of dovetail grooves 321 is parallel to the moving direction of the mover 2 when the linear motor 1 operates.

図27はバックヨーク3の部分斜視図である。図26と同様に、説明の都合上、図24及び図25と上下方向を逆にして描いている。バックヨーク3において、磁極歯31の突出部31aはアリ溝321に係合している。 FIG. 27 is a partial perspective view of the back yoke 3. FIG. As in FIG. 26, the vertical direction is reversed from that of FIGS. 24 and 25 for convenience of explanation. In the back yoke 3 , the projecting portion 31 a of the magnetic pole tooth 31 is engaged with the dovetail groove 321 .

磁極歯31のベース板32への固定は、例えば次のように行う。アリ溝321と磁極歯31片方あるいは両方に接着剤を塗布する。治具等を用い、アリ溝321に磁極歯31をはめ込み位置決めをする。接着剤が硬化したら治具を取り外す。なお、固定方法はこれに限らない。磁極歯31のピッチや、磁極歯31のベース板32から突出量が所定の誤差範囲内に収まるように固定できるのであれば、他の方法でもよい。 The fixing of the magnetic pole teeth 31 to the base plate 32 is performed, for example, as follows. Adhesive is applied to one or both of the dovetail groove 321 and the magnetic pole tooth 31 . Using a jig or the like, the magnetic pole tooth 31 is fitted into the dovetail groove 321 and positioned. Remove the jig after the adhesive has hardened. Note that the fixing method is not limited to this. Other methods may be used as long as the pitch of the magnetic pole teeth 31 and the amount of protrusion of the magnetic pole teeth 31 from the base plate 32 can be fixed within a predetermined error range.

リニアモータ1は、電機子4の駆動コイル43に3相交流を印加することにより、電機子4の磁極歯42、可動子2の永久磁石21及びバックヨーク3の磁極歯31を流れる磁束が発生する。発生した磁束による可動子2と電機子4との間に発生する吸引力、及び可動子2とバックヨーク3との間に発生する吸引力が可動子2の推力となり、可動子2が移動する。 By applying a three-phase alternating current to the drive coil 43 of the armature 4, the linear motor 1 generates a magnetic flux flowing through the magnetic pole teeth 42 of the armature 4, the permanent magnets 21 of the mover 2, and the magnetic pole teeth 31 of the back yoke 3. do. The attractive force generated between the mover 2 and the armature 4 due to the generated magnetic flux and the attractive force generated between the mover 2 and the back yoke 3 become the thrust of the mover 2, and the mover 2 moves. .

次に渦電流の低減について説明する。図28はリニアモータ1の部分側面図である。図28において、磁束の流れの一例を実線の矢印で、渦電流の一例を点線の矢印で示す。図28に示すように、磁極歯31において、磁束は紙面上下方向に流れる。すなわち、磁極歯31を構成する磁極片311の板面に平行な方向に流れる。渦電流は磁束の流れる方向と垂直な平面上で磁束の変化を妨げる方向に流れようとする。すなわち、図28に示す場合では、磁束の流れる方向に対して直交し反時計回りに流れようとする。この渦電流の方向は、磁極歯31を構成する磁極片311の板面を貫こうとする方向である。しかし、磁極歯31は複数の磁極片311を積層しており、磁極片311間の電気抵抗が大きいため、渦電流を低減することが可能となる。更に、磁極片311の板面(表面)に絶縁被膜を施した場合には、磁極片311間で流れる渦電流を更に低減することが可能となる。 Next, reduction of eddy current will be described. FIG. 28 is a partial side view of the linear motor 1. FIG. In FIG. 28, an example of a magnetic flux flow is indicated by a solid arrow, and an example of an eddy current is indicated by a dotted arrow. As shown in FIG. 28, in the magnetic pole tooth 31, the magnetic flux flows in the vertical direction of the drawing. That is, it flows in a direction parallel to the plate surface of the magnetic pole piece 311 that constitutes the magnetic pole tooth 31 . The eddy current tends to flow in a direction that hinders the change of magnetic flux on a plane perpendicular to the direction in which the magnetic flux flows. That is, in the case shown in FIG. 28, the magnetic flux tends to flow in the counterclockwise direction perpendicular to the direction in which the magnetic flux flows. The direction of this eddy current is the direction of penetrating the plate surface of the magnetic pole piece 311 forming the magnetic pole tooth 31 . However, since the magnetic pole tooth 31 has a plurality of laminated magnetic pole pieces 311 and the electric resistance between the magnetic pole pieces 311 is large, it is possible to reduce the eddy current. Furthermore, when the plate surface (surface) of the magnetic pole pieces 311 is coated with an insulating film, it is possible to further reduce the eddy current flowing between the magnetic pole pieces 311 .

図29A及び29Bは渦電流によるジュール損失の一例を示すグラフであって、図29Aは関連する技術によるリニアモータのジュール損失を示すグラフであり、図29Bは実施の形態2の基本例におけるリニアモータ1のジュール損失を示すグラフである。関連する技術によるリニアモータと実施の形態2におけるリニアモータとの構成の違いは次のとおりである。前者は磁極歯を積層構造としていない。例えば、前者における磁極歯は軟磁性体のブロックである。またはベース板32と磁極歯31が一体として軟磁性体で構成されていても良い。それに対して、後者は磁極歯31が積層構造となっている。それ以外の条件、リニアモータの構造、寸法、及びコイルの巻き数、並びに駆動条件は同一とした。例えばコイルの駆動電流70.6Aであり可動子の移動速度は1000mm/sとした。 29A and 29B are graphs showing an example of joule loss due to eddy currents, FIG. 29A is a graph showing joule loss of a linear motor according to related technology, and FIG. 1 is a graph showing the joule loss of 1; The difference in configuration between the linear motor according to the related art and the linear motor according to the second embodiment is as follows. The former does not have a laminated magnetic pole tooth structure. For example, the magnetic pole teeth in the former are blocks of soft magnetic material. Alternatively, the base plate 32 and the magnetic pole teeth 31 may be integrally made of a soft magnetic material. On the other hand, in the latter, the magnetic pole tooth 31 has a laminated structure. Other conditions such as the structure and dimensions of the linear motor, the number of turns of the coil, and the drive conditions were the same. For example, the drive current of the coil was 70.6 A and the moving speed of the mover was 1000 mm/s.

図29A及び29Bの横軸は可動子2の位置を示す電気角である。横軸の単位は度(°)である。図29A及び29Bの縦軸は渦電流によるジュール損失である。単位はワット(W)である。バックヨークと付したグラフはバックヨークでのジュール損失を示す。図29Aに示すように、磁極歯を積層構造としない関連する技術によるリニアモータでは、バックヨークでのジュール損失が80W前後であるのに対して、磁極歯31を積層構造とした実施の形態2のリニアモータ1では、バックヨーク3でのジュール損失が50W前後まで低減している。 The horizontal axis in FIGS. 29A and 29B is the electrical angle indicating the position of the mover 2. In FIG. The unit of the horizontal axis is degrees (°). The vertical axis in FIGS. 29A and 29B is Joule loss due to eddy currents. The unit is watt (W). The graph labeled with back yoke shows the joule loss in the back yoke. As shown in FIG. 29A, in the linear motor according to the related technology in which the magnetic pole teeth are not laminated, the joule loss in the back yoke is about 80 W. In the linear motor 1, the Joule loss in the back yoke 3 is reduced to around 50W.

図29A及び29Bにおいて、U、V、Wと付したグラフはそれぞれコイルU相、V相、W相で発生する通電によるジュール損失を絶対値で示したものである。なお、図29A及び29Bにおいてコイルへの通電によるコイルでのジュール損失は同じであるが、バックヨークでのジュール損失に大きな違いが出ている。本結果は、同一寸法形状下において磁極歯を積層構造としない場合に対して積層構造とした場合で渦電流によるジュール損失を低減できることを示す例であって、リニアモータの大きさやリニアモータの速度によって渦電流によるジュール損失の絶対値は変わってくるが同一速度における両者の効果の比率は維持される。 In FIGS. 29A and 29B, the graphs labeled U, V, and W show absolute values of Joule loss due to energization occurring in the U-phase, V-phase, and W-phase coils, respectively. Note that in FIGS. 29A and 29B, the joule loss in the coil due to the energization of the coil is the same, but there is a large difference in the joule loss in the back yoke. This result is an example showing that Joule loss due to eddy current can be reduced when the magnetic pole tooth is of a laminated structure compared to when the magnetic pole tooth is not of a laminated structure under the same size and shape. Although the absolute value of the Joule loss due to the eddy current changes depending on the velocity, the ratio of both effects is maintained at the same speed.

実施の形態2におけるリニアモータ1は、次のような効果を奏する。磁極歯31は珪素鋼板により形成した磁極片311を積層して構成してある。そのため、渦電流の方向は板面を貫こうとする方向となる。この際、磁極片311表面の隙間や磁極片同士の接触抵抗、磁極片311表面に形成される酸化皮膜などにより、磁極歯31における渦電流方向の電気抵抗は、磁極歯31を軟磁性体ブロックで形成した場合と比べて、大きくなっている。したがって、磁極歯31に流れる渦電流を低減することが可能となる。なお、磁極片311の表面(積層面)を、絶縁物質の被膜を形成するなどをした絶縁処理を施してもよい。絶縁処理を施した場合には、各珪素鋼板間で渦電流をより低減することが可能になる。 The linear motor 1 according to Embodiment 2 has the following effects. The magnetic pole teeth 31 are constructed by stacking magnetic pole pieces 311 formed of silicon steel plates. Therefore, the direction of the eddy current is the direction of penetrating the plate surface. At this time, the electrical resistance of the magnetic pole tooth 31 in the eddy current direction is reduced by the gap on the surface of the magnetic pole piece 311, the contact resistance between the magnetic pole pieces, the oxide film formed on the surface of the magnetic pole piece 311, and the like. It is larger than the case of forming with Therefore, it is possible to reduce the eddy current flowing through the magnetic pole tooth 31 . The surface (laminated surface) of the pole piece 311 may be subjected to an insulating treatment such as forming a film of an insulating material. When the insulation treatment is applied, it becomes possible to further reduce the eddy current between the silicon steel plates.

また、実施の形態2においては、バックヨーク3が有する磁極歯31を積層構造とした。例えばバックヨーク全体を積層鋼板で形成した場合には、剛性が下がることが懸念される。その場合は可動子2との間で発生する吸引力により、バックヨーク3に撓みが生じるおそれがある。しかし、基本例では、磁極歯31のみを積層構造とし、磁極歯31が固定されるベース板32は積層構造としない。そのため、バックヨーク3の撓みは関連する技術(磁極歯31とベース板32を軟磁性体でそれぞれ形成した場合や、磁極歯31とベース板32を軟質磁性体により一体で形成した場合)による構成と比較しても、軽微である。 Further, in Embodiment 2, the magnetic pole teeth 31 of the back yoke 3 have a laminated structure. For example, if the entire back yoke is made of laminated steel plates, there is a concern that the rigidity will decrease. In that case, there is a risk that the back yoke 3 will bend due to the attraction force generated between it and the mover 2 . However, in the basic example, only the magnetic pole tooth 31 has a laminated structure, and the base plate 32 to which the magnetic pole tooth 31 is fixed does not have a laminated structure. Therefore, the bending of the back yoke 3 is caused by the related technology (when the magnetic pole teeth 31 and the base plate 32 are respectively formed of a soft magnetic material, or when the magnetic pole teeth 31 and the base plate 32 are integrally formed of a soft magnetic material). It is minor in comparison.

(実施の形態2の第1変形例)
第1変形例は、バックヨーク3を構成するベース板の一部を積層構造とする形態に関する。図30はバックヨーク3の他の構成例を示す側面図である。バックヨーク3はベース部33及び磁極歯ブロック34を含む。磁極歯ブロック34は被嵌合部34a及び複数の磁極歯31を含む。
(First Modification of Embodiment 2)
A first modified example relates to a mode in which a part of the base plate forming the back yoke 3 has a laminated structure. 30 is a side view showing another configuration example of the back yoke 3. FIG. The back yoke 3 includes a base portion 33 and magnetic pole tooth blocks 34 . The magnetic pole tooth block 34 includes a fitted portion 34 a and a plurality of magnetic pole teeth 31 .

図31は磁極歯ブロック34の構成例を示す斜視図である。磁極歯ブロック34は複数の磁極歯片(板状部材)341を積層してなる。磁極歯片341の積層方向は、磁極歯31の配列方向に交差する方向である。磁極歯片341は被嵌合部341a、接続部341b及び複数の突出部341cを含む。被嵌合部341aは断面逆台形状をなす。被嵌合部341aは磁極歯ブロック34の被嵌合部34aとなる部分である。突出部341cは断面矩形状をなす。複数の突出部341cは、磁極歯片341の長手方向に等ピッチで形成してある。突出部341cは磁極歯ブロック34の磁極歯31となる部分である。接続部341bは磁極歯片341の高さ方向で被嵌合部341aと突出部341cとの間に位置する部分である。接続部341bは複数の突出部341cを接続している。磁極歯片341は例えば、珪素鋼板で形成する。接続部341bは、バックヨーク3のベース部分の一部となる積層部分を構成する板状部材である。突出部341cは磁極歯31を構成する板状部材である。磁極歯片341は、2つの板状部材を一体としたものである。 FIG. 31 is a perspective view showing a configuration example of the magnetic pole tooth block 34. As shown in FIG. The magnetic pole tooth block 34 is formed by laminating a plurality of magnetic pole tooth pieces (plate-like members) 341 . The stacking direction of the magnetic pole tooth pieces 341 is a direction that intersects the arrangement direction of the magnetic pole teeth 31 . The magnetic pole tooth piece 341 includes a mating portion 341a, a connecting portion 341b and a plurality of protrusions 341c. The fitted portion 341a has an inverted trapezoidal cross section. The fitted portion 341 a is a portion that becomes the fitted portion 34 a of the magnetic pole tooth block 34 . The projecting portion 341c has a rectangular cross section. A plurality of protruding portions 341c are formed at equal pitches in the longitudinal direction of the magnetic pole tooth piece 341. As shown in FIG. The projecting portion 341 c is a portion of the magnetic pole tooth block 34 that will become the magnetic pole tooth 31 . The connecting portion 341b is a portion located between the fitted portion 341a and the projecting portion 341c in the height direction of the magnetic pole tooth piece 341 . The connecting portion 341b connects a plurality of projecting portions 341c. The magnetic pole tooth piece 341 is made of, for example, a silicon steel plate. The connecting portion 341b is a plate-like member that constitutes a laminated portion that is part of the base portion of the back yoke 3 . The projecting portion 341c is a plate-like member forming the magnetic pole tooth 31 . The magnetic pole tooth piece 341 is formed by integrating two plate members.

図32はベース部33の構成例を示す斜視図である。図32に示すベース部33は図30に示すベース部33とは、上下を反転している。ベース部33は矩形板状をなす。ベース部33は断面が台形状の嵌合溝33aが形成してある。 FIG. 32 is a perspective view showing a configuration example of the base portion 33. As shown in FIG. The base portion 33 shown in FIG. 32 is vertically inverted from the base portion 33 shown in FIG. The base portion 33 has a rectangular plate shape. The base portion 33 is formed with a fitting groove 33a having a trapezoidal cross section.

ベース部33の嵌合溝33aには磁極歯ブロック34の被嵌合部34aが嵌合する。なおベース部33において、可動子2の可動方向の長さは、磁極歯ブロック34の可動方向の長さに合わせて設定すれば良い。磁極歯ブロック34のベース部33への固定は次のように行う。嵌合溝33aまたは被嵌合部34aの片方または両方に接着剤を塗布した後に、嵌合し行う。それにより、ベース部33と磁極歯ブロック34とは、固定される。以上の結果、バックヨーク3が形成される。 A fitted portion 34 a of the magnetic pole tooth block 34 is fitted into the fitting groove 33 a of the base portion 33 . In the base portion 33, the length of the mover 2 in the movable direction may be set to match the length of the magnetic pole tooth block 34 in the movable direction. The magnetic pole tooth block 34 is fixed to the base portion 33 as follows. After applying an adhesive to one or both of the fitting groove 33a and the fitted portion 34a, fitting is performed. Thereby, the base portion 33 and the magnetic pole tooth block 34 are fixed. As a result, the back yoke 3 is formed.

次に渦電流の低減について説明する。図33はリニアモータ1の部分側面図である。図33において、磁束の流れの一例を実線の矢印で、渦電流の一例を点線の矢印で示す。磁極歯31における渦電流の低減については、前述した基本例と同様であるから、説明を省略する。ここでは、磁極歯ブロック34の接続部341bでの渦電流の低減について説明する。図33に示すように、接続部341bにおいて、磁束は紙面左右方向に流れる。すなわち、磁極歯ブロック34を構成する磁極歯片341の板面に平行な方向に流れる。渦電流は磁束の流れる方向と垂直な平面上で磁束の変化を妨げる方向に流れようとする。すなわち、図33に示すように、磁束の流れる方向を軸として反時計回りに流れようとする。この渦電流の方向は、磁極歯ブロック34を構成する磁極歯片341の板面を貫こうとする方向である。しかし、磁極歯ブロック34は複数の磁極歯片341を積層し、磁極歯片341間の電気抵抗は大きくなっているため、渦電流を低減することが可能となる。更に、板面に絶縁被膜が施した場合には、磁極歯片341間で流れる渦電流を更に低減することが可能となる。 Next, reduction of eddy current will be described. 33 is a partial side view of the linear motor 1. FIG. In FIG. 33, an example of magnetic flux flow is indicated by a solid arrow, and an example of eddy current is indicated by a dotted arrow. The reduction of the eddy current in the magnetic pole tooth 31 is the same as in the basic example described above, so the explanation is omitted. Here, reduction of eddy currents at the connecting portion 341b of the magnetic pole tooth block 34 will be described. As shown in FIG. 33, the magnetic flux flows in the left-right direction of the drawing at the connecting portion 341b. That is, it flows in a direction parallel to the plate surface of the magnetic pole tooth piece 341 that constitutes the magnetic pole tooth block 34 . The eddy current tends to flow in a direction that hinders the change of magnetic flux on a plane perpendicular to the direction in which the magnetic flux flows. In other words, as shown in FIG. 33, the magnetic flux tends to flow counterclockwise around the direction in which the magnetic flux flows. The direction of this eddy current is the direction of penetrating the plate surface of the magnetic pole tooth piece 341 constituting the magnetic pole tooth block 34 . However, since the magnetic pole tooth block 34 has a plurality of laminated magnetic pole teeth 341 and the electric resistance between the magnetic pole teeth 341 is large, it is possible to reduce the eddy current. Furthermore, when the plate surface is coated with an insulating film, the eddy current flowing between the magnetic pole teeth 341 can be further reduced.

更に、接続部341bの高さについて、説明する。図33に示すように、接続部341bの高さをdとする。隣接する磁極歯31間を流れる磁束は、紙面左右方向に流れる。磁束が流れる経路は最短となるような経路を辿る。そのため、磁極歯31から一定以上の距離が離れた部分には磁束は流れない。したがって、接続部341bの高さdは、紙面左右方向の磁束を十分に流せる値とすればよい。また、磁束が流れないベース部33については非磁性材で形成することが可能である。例えば、高剛性でヤング率が大きいアルミナなどにより、ベース部33を形成する。あるいは非磁性ステンレスやアルミニウム合金等が使用可能である。 Furthermore, the height of the connecting portion 341b will be described. As shown in FIG. 33, the height of the connecting portion 341b is d. The magnetic flux flowing between adjacent magnetic pole teeth 31 flows in the horizontal direction of the drawing. The path along which the magnetic flux flows follows the shortest path. Therefore, the magnetic flux does not flow in the portion separated from the magnetic pole tooth 31 by a certain distance or more. Therefore, the height d of the connecting portion 341b should be set to a value that allows the magnetic flux in the horizontal direction of the paper to flow sufficiently. Also, the base portion 33 through which magnetic flux does not flow can be made of a non-magnetic material. For example, the base portion 33 is made of alumina having high rigidity and a large Young's modulus. Alternatively, nonmagnetic stainless steel, aluminum alloy, or the like can be used.

図34A及び34Bは渦電流によるジュール損失の一例を示すグラフであり、図34Aは基本例におけるリニアモータ1のジュール損失を示すグラフである。図34Aは図29Bを再掲したものである。図34Bは第1変形例におけるリニアモータ1のジュール損失を示すグラフである。基本例は磁極歯31が積層構造となっているのに対し、第1変形例においては磁極歯及びベース板の一部が積層構造となっている。それ以外の条件、リニアモータの構造、寸法、及びコイルの巻き数、並びに駆動条件は同一とした。例えばコイルの駆動電流70.6Aであり可動子の移動速度は1000mm/sとした。 34A and 34B are graphs showing an example of Joule loss due to eddy current, and FIG. 34A is a graph showing Joule loss of linear motor 1 in a basic example. FIG. 34A reproduces FIG. 29B. FIG. 34B is a graph showing Joule loss of the linear motor 1 in the first modified example. While the magnetic pole teeth 31 have a laminated structure in the basic example, the magnetic pole teeth and part of the base plate have a laminated structure in the first modified example. Other conditions such as the structure and dimensions of the linear motor, the number of turns of the coil, and the drive conditions were the same. For example, the drive current of the coil was 70.6 A and the moving speed of the mover was 1000 mm/s.

図34Aに示すように、基本例におけるリニアモータ1では、バックヨーク3のジュール損失が50W前後であるのに対して、第1変形例のリニアモータ1では、図34Bに示すように、バックヨーク3のジュール損失が2.5W前後まで低減している。接続部341bが積層構造であるため、接続部341bに流れる磁束による渦電流も低減されるからである。図34A及び34Bにおいて、U、V、Wと付したグラフはそれぞれコイルU相、V相、W相で発生する通電によるジュール損失を絶対値で示したものである。なお、図34A及び34Bにおいてコイルへの通電によるコイルでのジュール損失は同じであるが、バックヨークでのジュール損失に大きな違いが出ている。本結果は、同一寸法形状下において磁極歯のみを積層構造とした場合と、磁極歯とバックヨークの一部を積層構造とした場合では、後者の方が渦電流によるジュール損失を低減できることを示す例であって、リニアモータの大きさやリニアモータの速度によって渦電流によるジュール損失の絶対値は変わってくるが同一速度における両者の効果の比率は維持される。 As shown in FIG. 34A, in the linear motor 1 of the basic example, the Joule loss of the back yoke 3 is around 50 W, whereas in the linear motor 1 of the first modified example, as shown in FIG. 3 is reduced to around 2.5W. This is because, since the connection portion 341b has a laminated structure, the eddy current due to the magnetic flux flowing through the connection portion 341b is also reduced. In FIGS. 34A and 34B, the graphs labeled U, V, and W show absolute values of Joule loss due to energization occurring in the U-phase, V-phase, and W-phase coils, respectively. Note that in FIGS. 34A and 34B, the joule loss in the coil due to the energization of the coil is the same, but there is a large difference in the joule loss in the back yoke. This result shows that the Joule loss due to eddy current can be reduced in the case where only the magnetic pole teeth have a laminated structure and in the case where the magnetic pole teeth and part of the back yoke have a laminated structure under the same size and shape. This is an example, and although the absolute value of Joule loss due to eddy current changes depending on the size of the linear motor and the speed of the linear motor, the ratio of both effects is maintained at the same speed.

第1変形例におけるリニアモータ1では、磁極歯ブロック34は珪素鋼板(磁極歯片341)を積層して構成してある。リニアモータ1は、磁極歯31に加えて、バックヨーク3の磁極歯31との接続部分から厚さ方向の一部を積層構造としてある。そのため、隣接する磁極歯31間を接続部341bに流れる磁束は磁極歯片341の表面に平行な方向である。磁束の流れにより発生する渦電流の方向は磁極歯片341の板面を貫こうとする方向となる。しかし、磁極歯片341表面の隙間やその表面に形成される酸化皮膜などにより、接続部341bにおける渦電流方向の電気抵抗は、積層構造としない場合と比べて、大きくなっている。したがって、接続部341bに流れる渦電流を低減することが可能となる。よって、バックヨーク3に流れる渦電流を更に低減することが可能となる。 In the linear motor 1 according to the first modification, the magnetic pole tooth block 34 is constructed by stacking silicon steel plates (magnetic pole tooth pieces 341). In the linear motor 1 , in addition to the magnetic pole teeth 31 , a portion of the back yoke 3 connected to the magnetic pole teeth 31 in the thickness direction has a laminated structure. Therefore, the magnetic flux flowing through the connecting portion 341 b between the adjacent magnetic pole teeth 31 is parallel to the surface of the magnetic pole tooth piece 341 . The direction of the eddy current generated by the flow of magnetic flux is the direction of penetrating the plate surface of the magnetic pole tooth piece 341 . However, due to the gaps on the surface of the magnetic pole tooth piece 341 and the oxide film formed on the surface thereof, the electrical resistance in the eddy current direction at the connecting portion 341b is greater than in the case where the laminated structure is not used. Therefore, it is possible to reduce the eddy current flowing through the connecting portion 341b. Therefore, the eddy current flowing through the back yoke 3 can be further reduced.

また、第1変形例においては、基本例1が奏する前述した効果に加えて、次のような効果を奏する。バックヨーク3の一部であるベース部33を非磁性材料で形成することが可能であるから、ヤング率の高い材料、例えばアルミナで構成することが可能となる。それにより、バックヨーク3全体の剛性が増加するので、可動子2との間で生じる吸引力による撓みを軽減することが可能なる。更にまた、ベース部33の材質によりバックヨーク3全体の剛性が求められる剛性を上回っている場合には、バックヨーク3を薄くすることが可能となる。 Moreover, in the first modified example, in addition to the above-described effects of the basic example 1, the following effects are obtained. Since the base portion 33, which is a part of the back yoke 3, can be made of a non-magnetic material, it can be made of a material with a high Young's modulus, such as alumina. As a result, the rigidity of the back yoke 3 as a whole is increased, so that bending caused by the attraction force generated between the back yoke 3 and the mover 2 can be reduced. Furthermore, when the rigidity of the back yoke 3 as a whole exceeds the required rigidity due to the material of the base portion 33, the thickness of the back yoke 3 can be reduced.

(実施の形態2の第2変形例)
第2変形例はバックヨーク3を構成するベース板32の一部を積層構造とする形態に関する。図35はバックヨーク3の他の構成例を示す側面図である。バックヨーク3は複数のバックヨークユニット301及びバックヨークユニット302を含む。バックヨークユニット301はベース部35及び磁極歯ユニット36を含む。バックヨークユニット302はベース部35及び磁極歯ユニット37を含む。バックヨークユニット301とバックヨークユニット302との違いは、含まれる磁極歯ユニットの違いである。バックヨーク3の一端部をバックヨークユニット301とし、他端部をバックヨークユニット302とする。それにより、図35に示すように、両端部に磁極歯31を備えるバックヨーク3を構成することが可能となっている。
(Second modification of Embodiment 2)
The second modified example relates to a mode in which a part of the base plate 32 constituting the back yoke 3 has a laminated structure. 35 is a side view showing another configuration example of the back yoke 3. FIG. The back yoke 3 includes multiple back yoke units 301 and back yoke units 302 . A back yoke unit 301 includes a base portion 35 and a magnetic pole tooth unit 36 . Back yoke unit 302 includes base portion 35 and magnetic pole tooth unit 37 . The difference between the back yoke unit 301 and the back yoke unit 302 is the included magnetic pole tooth unit. One end of the back yoke 3 is a back yoke unit 301 and the other end is a back yoke unit 302 . Thereby, as shown in FIG. 35, it is possible to configure the back yoke 3 having the magnetic pole teeth 31 at both ends.

図36A及び36Bは磁極歯ユニット36、37の構成例を示す斜視図であり、図36Aは磁極歯ユニット36の構成例を示し、図36Bは磁極歯ユニット37の構成例を示している。磁極歯ユニット36は櫛歯状に形成された複数の磁極歯31及び被嵌合部36aを含む。磁極歯31は断面矩形状をなしている。被嵌合部36aは断面逆台形状をなしている。 36A and 36B are perspective views showing configuration examples of the magnetic pole tooth units 36 and 37, FIG. 36A showing a configuration example of the magnetic pole tooth unit 36, and FIG. 36B showing a configuration example of the magnetic pole tooth unit 37. FIG. The magnetic pole tooth unit 36 includes a plurality of comb-shaped magnetic pole teeth 31 and a fitted portion 36a. The magnetic pole tooth 31 has a rectangular cross section. The fitted portion 36a has an inverted trapezoidal cross section.

磁極歯ユニット36は複数の磁極歯片(板状部材)361を積層してなる。磁極歯片361の積層方向は、磁極歯31の配列方向に交差する方向である。磁極歯片361は被嵌合部361a、接続部361b及び複数の突出部361cを含む。被嵌合部361aは断面逆台形状をなす。被嵌合部361aは磁極歯ユニット36の被嵌合部36aとなる部分である。突出部361cは断面矩形状をなす。複数の突出部361cは、磁極歯片361の長手方向に等ピッチで形成してある。突出部361cは磁極歯ユニット36の磁極歯31となる部分である。接続部361bは磁極歯片361の高さ方向で被嵌合部361aと突出部361cとの間に位置する部分である。接続部361bは複数の突出部361cを接続している。磁極歯片361は例えば、珪素鋼板で形成する。接続部361bは、バックヨーク3のベース部分の一部となる積層部分を構成する板状部材である。突出部361cは磁極歯31を構成する板状部材である。磁極歯片361は、2つの板状部材を一体としたものである。 The magnetic pole tooth unit 36 is formed by laminating a plurality of magnetic pole tooth pieces (plate-like members) 361 . The stacking direction of the magnetic pole tooth pieces 361 is a direction that intersects the arrangement direction of the magnetic pole teeth 31 . The magnetic pole tooth piece 361 includes a mating portion 361a, a connecting portion 361b and a plurality of protrusions 361c. The fitted portion 361a has an inverted trapezoidal cross section. The fitted portion 361 a is a portion that becomes the fitted portion 36 a of the magnetic pole tooth unit 36 . The projecting portion 361c has a rectangular cross section. A plurality of protruding portions 361c are formed at equal pitches in the longitudinal direction of the magnetic pole tooth piece 361. As shown in FIG. The protruding portion 361c is a portion that becomes the magnetic pole tooth 31 of the magnetic pole tooth unit 36. As shown in FIG. The connecting portion 361b is a portion located between the fitted portion 361a and the projecting portion 361c in the height direction of the magnetic pole tooth piece 361. As shown in FIG. The connecting portion 361b connects a plurality of projecting portions 361c. The magnetic pole tooth piece 361 is made of, for example, a silicon steel plate. The connecting portion 361b is a plate-like member that constitutes a laminated portion that is a part of the base portion of the back yoke 3. As shown in FIG. The projecting portion 361 c is a plate-like member that constitutes the magnetic pole tooth 31 . The magnetic pole tooth piece 361 is formed by integrating two plate members.

磁極歯ユニット37は複数の磁極歯片371を積層してなる。磁極歯片371の積層方向は、磁極歯31の配列方向に交差する方向である。磁極歯片371は磁極歯片361とほぼ同様な構成である。以下では、磁極歯片371が磁極歯片361と異なる点を主として説明する。磁極歯片371は被嵌合部371a、接続部371b及び複数の突出部371cを含む。磁極歯片361の接続部361bは長手方向の一方の端部において、長手方向に飛び出ている。それに対して、磁極歯片371の接続部371bは長手方向の両端部において、長手方向に飛び出てはいない。磁極歯片371のその他の構成は、磁極歯片361と同様であるから説明を省略する。 The magnetic pole tooth unit 37 is formed by laminating a plurality of magnetic pole tooth pieces 371 . The stacking direction of the magnetic pole tooth pieces 371 is a direction that intersects the arrangement direction of the magnetic pole teeth 31 . The magnetic pole tooth piece 371 has substantially the same configuration as the magnetic pole tooth piece 361 . In the following, the differences between the magnetic pole tooth piece 371 and the magnetic pole tooth piece 361 will be mainly described. The magnetic pole tooth piece 371 includes a mated portion 371a, a connecting portion 371b, and a plurality of protrusions 371c. A connecting portion 361b of the magnetic pole tooth piece 361 protrudes in the longitudinal direction at one end in the longitudinal direction. On the other hand, the connecting portion 371b of the magnetic pole tooth piece 371 does not protrude in the longitudinal direction at both ends in the longitudinal direction. The rest of the configuration of the magnetic pole tooth piece 371 is the same as that of the magnetic pole tooth piece 361, so the description is omitted.

図37はベース部35の構成例を示す斜視図である。図37に示すベース部35は図35に示すベース部35とは、上下を反転している。ベース部35は矩形板状をなす。ベース部35は断面が台形状の嵌合溝35aが形成してある。 FIG. 37 is a perspective view showing a configuration example of the base portion 35. As shown in FIG. The base portion 35 shown in FIG. 37 is vertically inverted from the base portion 35 shown in FIG. The base portion 35 has a rectangular plate shape. The base portion 35 is formed with a fitting groove 35a having a trapezoidal cross section.

ベース部35の嵌合溝35aには磁極歯ユニット36の被嵌合部36a、または磁極歯ユニット37の被嵌合部37aが嵌合する。なおベース部35において、可動子2の可動方向の長さは、磁極歯ユニット36あるいは磁極歯ユニット37の可動方向の長さに合わせて設定すれば良い。ベース部35と磁極歯ユニット36または磁極歯ユニット37との固定は、次のように行う。嵌合溝35aと被嵌合部361aまたは被嵌合部371aの片方あるいは両方に接着剤を塗布した後に、嵌合し行う。それにより、ベース部35と磁極歯ユニット36または磁極歯ユニット37とは、固定される。以上の結果、バックヨークユニット301またはバックヨークユニット302が形成される。そして、リニアモータ1のストロークに応じて、バックヨークユニット301の個数を選択し、複数のバックヨークユニット301及び1つのバックヨークユニット302を結合することにより、図35に示すようにバックヨーク3が形成される。それぞれのバックヨークユニット301及び302は、公知の方法で結合、例えばバックヨークユニット301及び302の背面を矩形板状部材にて固定すればよい。 A fitted portion 36 a of the magnetic pole tooth unit 36 or a fitted portion 37 a of the magnetic pole tooth unit 37 is fitted into the fitting groove 35 a of the base portion 35 . In the base portion 35, the length of the mover 2 in the movable direction may be set according to the length of the magnetic pole tooth unit 36 or the magnetic pole tooth unit 37 in the movable direction. The fixing between the base portion 35 and the magnetic pole tooth unit 36 or the magnetic pole tooth unit 37 is performed as follows. After applying an adhesive to one or both of the fitting groove 35a and the fitted portion 361a or the fitted portion 371a, fitting is performed. Thereby, the base portion 35 and the magnetic pole tooth unit 36 or the magnetic pole tooth unit 37 are fixed. As a result, the back yoke unit 301 or the back yoke unit 302 is formed. By selecting the number of back yoke units 301 according to the stroke of the linear motor 1 and connecting a plurality of back yoke units 301 and one back yoke unit 302, the back yoke 3 can be formed as shown in FIG. It is formed. The respective back yoke units 301 and 302 may be connected by a known method, for example, the back surfaces of the back yoke units 301 and 302 may be fixed with a rectangular plate member.

第2変形例におけるリニアモータ1では、磁極歯ユニット36及び37は珪素鋼板(磁極歯片361及び371)を積層して構成してある。リニアモータ1は、磁極歯31に加えて、バックヨーク3の磁極歯31との接続部分から厚さ方向の一部を積層構造としてある。そのため、隣接する磁極歯31間を接続部361b及び371bに流れる磁束は磁極歯片361及び371の表面に平行な方向である。磁束の流れにより発生する渦電流の方向は磁極歯片361及び371の板面を貫こうとする方向となる。しかし、磁極歯片361及び371表面の隙間やその表面に形成される酸化皮膜などにより、接続部361b及び371bにおける渦電流方向の電気抵抗は、積層構造としない場合と比べて、大きくなっている。したがって、接続部361b及び371bに流れる渦電流を低減することが可能となる。よって、バックヨーク3に流れる渦電流を更に低減することが可能となる。 In the linear motor 1 according to the second modification, the magnetic pole tooth units 36 and 37 are constructed by laminating silicon steel plates (magnetic pole tooth pieces 361 and 371). In the linear motor 1 , in addition to the magnetic pole teeth 31 , a portion of the back yoke 3 connected to the magnetic pole teeth 31 in the thickness direction has a laminated structure. Therefore, the magnetic flux flowing through the connecting portions 361b and 371b between the adjacent magnetic pole teeth 31 is parallel to the surfaces of the magnetic pole teeth 361 and 371. As shown in FIG. The direction of eddy currents generated by the flow of magnetic flux is the direction of penetrating the plate surfaces of the magnetic pole teeth 361 and 371 . However, due to gaps between the surfaces of the magnetic pole teeth 361 and 371 and oxide films formed on the surfaces, the electrical resistance in the eddy current direction at the connection portions 361b and 371b is greater than in the case where the laminated structure is not used. . Therefore, it is possible to reduce the eddy current flowing through the connecting portions 361b and 371b. Therefore, the eddy current flowing through the back yoke 3 can be further reduced.

また、第2変形例においては、基本例1が奏する前述した効果に加えて、次のような効果を奏する。バックヨーク3の一部であるベース部35を非磁性材料で形成することが可能であるから、ヤング率の高い材料、例えばアルミナで構成することが可能となる。それにより、バックヨーク3全体の剛性が増加するので、可動子2との間で生じる吸引力による撓みを軽減することが可能なる。更にまた、ベース部35の材質によりバックヨーク3全体の剛性が求められる剛性を上回っている場合には、バックヨーク3を薄くすることが可能となる。また、第2変形例においては、バックヨーク3に含めるバックヨークユニット301の個数を可変とすることにより、リニアモータ1のストロークを変えることが可能となる。 Moreover, in the second modification, in addition to the above-described effects of the basic example 1, the following effects are obtained. Since the base portion 35, which is a part of the back yoke 3, can be made of a non-magnetic material, it can be made of a material with a high Young's modulus, such as alumina. As a result, the rigidity of the back yoke 3 as a whole is increased, so that bending caused by the attraction force generated between the back yoke 3 and the mover 2 can be reduced. Furthermore, when the rigidity of the back yoke 3 as a whole exceeds the required rigidity due to the material of the base portion 35, the thickness of the back yoke 3 can be reduced. Further, in the second modification, the stroke of the linear motor 1 can be changed by making the number of the back yoke units 301 included in the back yoke 3 variable.

なお、バックヨークユニット301、302がそれぞれ備える磁極歯31は5本としたが、それに限らない。ベース部35は1つの磁極歯ユニット36または磁極歯ユニット37を備えるとしたが、それに限らない。磁極歯ユニット36及び磁極歯ユニット37はそれぞれ同じ個数の磁極歯31を備えるとしたが、それに限らない。 Although five magnetic pole teeth 31 are provided in each of the back yoke units 301 and 302, the present invention is not limited to this. Although the base portion 35 is provided with one magnetic pole tooth unit 36 or one magnetic pole tooth unit 37, it is not limited to this. Although the magnetic pole tooth unit 36 and the magnetic pole tooth unit 37 are each provided with the same number of magnetic pole teeth 31, the present invention is not limited to this.

(実施の形態2の第3変形例)
第3変形例は第2変形例において、ベース部35を一枚板にした構成に関する。図38Aはバックヨーク3の他の構成例を示す側面図である。バックヨーク3はベース部33、複数の磁極歯ユニット36及び磁極歯ユニット37を含む。磁極歯ユニット36及び磁極歯ユニット37の構成は、上述の第2変形例と同様であるから、説明を省略する。
(Third Modification of Second Embodiment)
The third modification relates to a configuration in which the base portion 35 is made of a single plate in the second modification. FIG. 38A is a side view showing another configuration example of the back yoke 3. FIG. The back yoke 3 includes a base portion 33 , a plurality of magnetic pole tooth units 36 and a magnetic pole tooth unit 37 . The configurations of the magnetic pole tooth unit 36 and the magnetic pole tooth unit 37 are the same as those of the above-described second modified example, so description thereof will be omitted.

図38Bはベース部33の構成例を示す斜視図である。図38Bに示すベース部33は図38Aに示すベース部33とは上下を反転している。ベース部33は矩形状の板材に複数のアリ溝(嵌合溝)33aを形成してある。アリ溝33aの形状は、磁極歯ユニット36及び37の被嵌合部36a及び37aと対応した形状としてある。バックヨーク3は、ベース部33のアリ溝33aに、磁極歯ユニット36及び37の被嵌合部36a及び37aに嵌合後に、接着剤等で固定する。ベース部33は非磁性材料で形成する。 38B is a perspective view showing a configuration example of the base portion 33. FIG. The base portion 33 shown in FIG. 38B is vertically inverted from the base portion 33 shown in FIG. 38A. The base portion 33 has a plurality of dovetail grooves (fitting grooves) 33a formed in a rectangular plate material. The dovetail groove 33a has a shape corresponding to the fitted portions 36a and 37a of the magnetic pole tooth units 36 and 37, respectively. After the back yoke 3 is fitted into the dovetail groove 33a of the base portion 33 and into the fitted portions 36a and 37a of the magnetic pole tooth units 36 and 37, the back yoke 3 is fixed with an adhesive or the like. The base portion 33 is made of a non-magnetic material.

第3変形例においては、基本例1が奏する前述した効果に加えて、次のような効果を奏する。バックヨーク3の一部であるベース部33をヤング率の高い非磁性材料、例えば、アルミナで構成することが可能となる。それにより、バックヨーク3全体の剛性が増加するので、可動子2との間で生じる吸引力による撓みを軽減することが可能なる。 In the third modified example, in addition to the above-described effects of the basic example 1, the following effects are obtained. The base portion 33, which is part of the back yoke 3, can be made of a non-magnetic material with a high Young's modulus, such as alumina. As a result, the rigidity of the back yoke 3 as a whole is increased, so that bending caused by the attraction force generated between the back yoke 3 and the mover 2 can be reduced.

上述の基本例及び第1-第3変形例において、隣接する磁極歯31間の隙間を非磁性材料、例えば樹脂モールドなどにより埋めてもよい。それにより、バックヨーク3の強度が増し、可動子2との間で発生する吸引力に起因するバックヨーク3の撓みをより効果的に抑制可能となる。 In the basic example and the first to third modifications described above, the gaps between the adjacent magnetic pole teeth 31 may be filled with a non-magnetic material such as a resin mold. As a result, the strength of the back yoke 3 is increased, and the bending of the back yoke 3 due to the attraction force generated between it and the mover 2 can be suppressed more effectively.

上述した基本例でのベース板32は、磁極歯31の根元部から磁極歯31の突出する方向とは逆方向(厚さ方向)の一部を積層構造としてもよい。言い換えると積層構造である磁極歯31(突出部31a、31a)が、一部を積層構造としたベース板32の積層構造部分おいて、凹部32a,32aと係合されていても良い。それにより、第1変形例及び第2変形例と同様に、可動子2の可動方向に流れる磁束による渦電流を抑制することが可能となる。 The base plate 32 in the basic example described above may have a laminated structure partially in the direction (thickness direction) opposite to the direction in which the magnetic pole teeth 31 protrude from the roots of the magnetic pole teeth 31 . In other words, the magnetic pole teeth 31 (protrusions 31a, 31a) having a laminated structure may be engaged with the concave portions 32a, 32a in the laminated structure portion of the base plate 32 having a partially laminated structure. As a result, eddy current due to the magnetic flux flowing in the moving direction of the mover 2 can be suppressed, as in the first and second modifications.

各実施の形態で記載されている技術的特徴(構成要件)はお互いに組み合わせ可能であり、組み合わせすることにより、新しい技術的特徴を形成することができる。今回開示された実施の形態はすべての点で例示であって、制限的なものでは無いと考えられるべきである。本発明の範囲は、上記した意味では無く、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The technical features (components) described in each embodiment can be combined with each other, and new technical features can be formed by combining them. The embodiments disclosed this time are illustrative in all respects and should be considered not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the meaning described above, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.

1 リニアモータ
2 可動子
3 バックヨーク
4 電機子
21 永久磁石
22 保持枠
23 固定板
31 磁極歯
32 ベース板
33 ベース部
34 磁極歯ブロック
35 ベース部
36 磁極歯ユニット
37 磁極歯ユニット
41 コア
42 磁極歯
43 駆動コイル
221 孔
301 バックヨークユニット
302 バックヨークユニット
311 磁極片
341 磁極歯片
361 磁極歯片
371 磁極歯片
1 linear motor 2 mover 3 back yoke 4 armature 21 permanent magnet 22 holding frame 23 fixed plate 31 magnetic pole tooth 32 base plate 33 base portion 34 magnetic pole tooth block 35 base portion 36 magnetic pole tooth unit 37 magnetic pole tooth unit 41 core 42 magnetic pole tooth 43 drive coil 221 hole 301 back yoke unit 302 back yoke unit 311 magnetic pole piece 341 magnetic pole tooth piece 361 magnetic pole tooth piece 371 magnetic pole tooth piece

Claims (5)

複数の矩形状の永久磁石を配列させた磁石配列を有する可動子と、前記可動子に隙間をあけて対向配置した固定子としてのバックヨークと、前記可動子に隙間をあけて前記バックヨークとは反対側に対向配置した固定子としての電機子とを備えており、
前記複数の永久磁石夫々の磁化方向は厚さ方向であって、隣り合う永久磁石同士の磁化方向は逆向きであり、
前記電機子は、夫々に駆動コイルが捲かれている複数の磁極歯を等ピッチで有しており、
前記バックヨークは、前記可動子に対向する面に、前記電機子の磁極歯と前記可動子の可動方向にあって同じ位置に、夫々に駆動コイルが捲かれていない複数の磁極歯を有しており、
前記バックヨークが有する前記磁極歯は、複数の板状部材を前記可動子の可動方向と交差する方向に積層してなることを特徴とするリニアモータ。
A mover having a magnet arrangement in which a plurality of rectangular permanent magnets are arranged, a back yoke as a stator disposed facing the mover with a gap therebetween, and the back yoke with a gap between the mover. has an armature as a stator arranged opposite to the opposite side,
The magnetization direction of each of the plurality of permanent magnets is the thickness direction, and the magnetization directions of adjacent permanent magnets are opposite to each other,
The armature has a plurality of magnetic pole teeth, each of which is wound with a drive coil, at an equal pitch,
The back yoke has a plurality of magnetic pole teeth, on the surface facing the mover, at the same position as the magnetic pole teeth of the armature in the moving direction of the mover, and having no drive coil wound thereon. and
A linear motor, wherein the magnetic pole teeth of the back yoke are formed by stacking a plurality of plate members in a direction intersecting the moving direction of the mover.
前記バックヨークは、前記磁極歯の根元部から前記磁極歯の突出する方向とは逆方向の一部が、複数の板状部材を前記磁極歯の積層方向に積層してなり、
前記バックヨークの積層部分を構成する板状部材と、前記磁極歯を構成する板状部材とは、一体となっていることを特徴とする請求項1に記載のリニアモータ。
A part of the back yoke in a direction opposite to the direction in which the magnetic pole teeth protrude from the root of the magnetic pole teeth is formed by stacking a plurality of plate-like members in the stacking direction of the magnetic pole teeth,
2. The linear motor according to claim 1, wherein the plate member forming the laminated portion of the back yoke and the plate member forming the magnetic pole teeth are integrated.
前記複数の板状部材は、積層面に絶縁処理を施してあることを特徴とする請求項1または2に記載のリニアモータ。 3. The linear motor according to claim 1, wherein said plurality of plate-shaped members are subjected to insulation treatment on the laminated surfaces. 前記可動子は、前記磁石配列を保持する保持部材を有しており、前記保持部材は、前記複数の永久磁石それぞれが挿入される複数の孔を有していることを特徴とする請求項1から3の何れか1項に記載のリニアモータ。 2. The mover has a holding member that holds the magnet array, and the holding member has a plurality of holes into which the plurality of permanent magnets are inserted respectively. 3. The linear motor according to any one of 3. 前記可動子は、前記保持部材及び前記複数の永久磁石が接着固定される板状のベース材を有することを特徴とする請求項4に記載のリニアモータ。
5. The linear motor according to claim 4, wherein the mover has a plate-like base member to which the holding member and the plurality of permanent magnets are adhered and fixed.
JP2019507014A 2017-03-24 2018-03-23 linear motor Active JP7151698B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017059699 2017-03-24
JP2017059699 2017-03-24
PCT/JP2018/011655 WO2018174235A1 (en) 2017-03-24 2018-03-23 Linear motor

Publications (2)

Publication Number Publication Date
JPWO2018174235A1 JPWO2018174235A1 (en) 2020-01-23
JP7151698B2 true JP7151698B2 (en) 2022-10-12

Family

ID=63585844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019507014A Active JP7151698B2 (en) 2017-03-24 2018-03-23 linear motor

Country Status (5)

Country Link
JP (1) JP7151698B2 (en)
KR (1) KR102339956B1 (en)
CN (1) CN110476340B (en)
TW (1) TWI664795B (en)
WO (1) WO2018174235A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7289933B2 (en) * 2019-12-17 2023-06-12 ヤマハ発動機株式会社 Linear conveyor and its installation method
CN213461501U (en) * 2020-09-04 2021-06-15 瑞声科技(南京)有限公司 Linear motor
JP7540937B2 (en) * 2020-12-01 2024-08-27 株式会社神戸製鋼所 Magnetic field generator and electric motor
DE102022000363A1 (en) 2022-01-31 2023-08-03 Roland Burk Multi-chamber sorption module for large temperature spread and operating method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287185A (en) 2004-03-30 2005-10-13 Hitachi Ltd Linear motor
JP2016073005A (en) 2014-09-26 2016-05-09 日立金属株式会社 Stator for linear motor

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198582A (en) * 1977-06-24 1980-04-15 Exxon Research & Engineering Co. High performance stepper motor
JPS63249460A (en) * 1987-04-06 1988-10-17 Hitachi Ltd Field magnet
US5032746A (en) * 1988-03-22 1991-07-16 Sharp Kabushiki Kaisha Linear motor with driving device
JPH0295162A (en) * 1988-09-27 1990-04-05 Matsushita Electric Works Ltd Linear stepping motor
JP3796608B2 (en) * 1997-04-11 2006-07-12 株式会社安川電機 Moving magnet type linear motor
JP4535231B2 (en) 2003-10-10 2010-09-01 株式会社安川電機 Moving magnet type linear actuator
JP2005184984A (en) * 2003-12-19 2005-07-07 Yaskawa Electric Corp Moving magnet type linear actuator
JP2005269822A (en) 2004-03-19 2005-09-29 Yaskawa Electric Corp Moving magnet type linear slider
CN100521468C (en) * 2004-08-20 2009-07-29 清华大学 Permanent-magnet synchronous planar motor
JP4640375B2 (en) * 2007-05-15 2011-03-02 セイコーエプソン株式会社 Electric motor
US8847522B2 (en) * 2008-11-14 2014-09-30 Denso Corporation Reluctance motor with improved stator structure
TWI460966B (en) * 2009-01-23 2014-11-11 Hitachi Metals Ltd Moving elements and linear motors
WO2011118568A1 (en) * 2010-03-23 2011-09-29 日立金属株式会社 Linear motor
JP5655071B2 (en) * 2010-06-08 2015-01-14 株式会社日立製作所 Linear motor
CN102299607B (en) * 2011-08-25 2013-02-13 哈尔滨工业大学 Transverse magnetic flux linear reluctance motor with offset permanent magnet
CN102403872B (en) * 2011-11-04 2013-05-08 哈尔滨工业大学 Positioning force compensating type linear permanent magnet synchronous motor
CN202455246U (en) * 2012-02-23 2012-09-26 南京埃斯顿自动控制技术有限公司 Secondary structure of built-in permanent magnetic synchronous linear motor
CN104870244B (en) * 2012-09-20 2017-09-15 麦克纳莫绅有限公司 Short block linear synchronous motor and changement
CN105103422A (en) * 2013-04-12 2015-11-25 三菱电机株式会社 Movable element and linear motor
JP5991286B2 (en) * 2013-08-28 2016-09-14 株式会社安川電機 Linear motor armature and linear motor
DE102013019958B4 (en) * 2013-12-09 2024-06-27 Jenny Science Ag Linear motor with optimized performance
JP5855631B2 (en) * 2013-12-17 2016-02-09 ファナック株式会社 Machine tool having linear drive device with linear motor
JP6115729B2 (en) 2014-01-08 2017-04-19 株式会社安川電機 Linear motor and method for manufacturing linear motor
JP2016152668A (en) * 2015-02-17 2016-08-22 住友重機械工業株式会社 Linear motor, magnet unit, stage device
US10700585B2 (en) 2015-03-31 2020-06-30 Hitachi Metals, Ltd. Linear motor
CN204858933U (en) * 2015-07-01 2015-12-09 深圳德康威尔科技有限公司 C type does not have iron core linear motor
CN105119463A (en) 2015-07-22 2015-12-02 北京顿一科技有限公司 Novel core-including linear motor, motor servo system and core preparation method
CN105871171B (en) * 2016-04-08 2018-06-01 浙江大学 A kind of change flux linear synchronous motor
JP6790656B2 (en) * 2016-09-23 2020-11-25 日立金属株式会社 Linear motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005287185A (en) 2004-03-30 2005-10-13 Hitachi Ltd Linear motor
JP2016073005A (en) 2014-09-26 2016-05-09 日立金属株式会社 Stator for linear motor

Also Published As

Publication number Publication date
KR20190112153A (en) 2019-10-02
CN110476340B (en) 2021-07-06
TWI664795B (en) 2019-07-01
KR102339956B1 (en) 2021-12-16
WO2018174235A1 (en) 2018-09-27
CN110476340A (en) 2019-11-19
JPWO2018174235A1 (en) 2020-01-23
TW201840105A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US20210273509A1 (en) Electric machine
JP7151698B2 (en) linear motor
US7145271B2 (en) High performance linear motor and magnet assembly therefor
JP5370313B2 (en) Linear motor
JP5770417B2 (en) Linear motor
WO2001080408A1 (en) Permanent magnet synchronous linear motor
JP4458238B2 (en) Permanent magnet synchronous linear motor
US8164223B2 (en) Linear motor mounting structure
JPH11262236A (en) Linear motor
JP4382437B2 (en) Linear motor
JP6790656B2 (en) Linear motor
JP2004364374A (en) Linear motor
JP2003244930A (en) Driving device
JP3944766B2 (en) Permanent magnet synchronous linear motor
JP4110335B2 (en) Linear motor
JP3818342B2 (en) Linear motor
JP3824060B2 (en) Linear motor
JP2006527576A (en) Linear brushless DC motor with an iron core with reduced detent power
JP6036221B2 (en) Linear motor
JP5460991B2 (en) Linear motor stator
JP6001828B2 (en) Linear motor stator
JPH07108086B2 (en) Linear motion motor
JP2006136156A (en) Linear motor
JP2005057822A (en) Linear motor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7151698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350