JPS63249460A - Field magnet - Google Patents

Field magnet

Info

Publication number
JPS63249460A
JPS63249460A JP8291487A JP8291487A JPS63249460A JP S63249460 A JPS63249460 A JP S63249460A JP 8291487 A JP8291487 A JP 8291487A JP 8291487 A JP8291487 A JP 8291487A JP S63249460 A JPS63249460 A JP S63249460A
Authority
JP
Japan
Prior art keywords
magnet
permanent magnet
pole
magnetized
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8291487A
Other languages
Japanese (ja)
Other versions
JPH0517786B2 (en
Inventor
Hideki Nihei
秀樹 二瓶
Kunio Miyashita
邦夫 宮下
Koichi Saito
幸一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8291487A priority Critical patent/JPS63249460A/en
Priority to US07/178,213 priority patent/US4857786A/en
Publication of JPS63249460A publication Critical patent/JPS63249460A/en
Publication of JPH0517786B2 publication Critical patent/JPH0517786B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Abstract

PURPOSE:To improve accuracy in dimension, by forming holding holes, etc., at specified pitches and by inserting designated permanent magnets into a magnet base substance magnetized in the direction of thickness and into these holding holes to hold them. CONSTITUTION:A linear actuator is composed of a permanent magnet 1, an phase A pole 2 wound around with a coil 4, a phase B pole 3 wound around with a coil 5, a moving piece 6, etc. This phase A pole 2 of a stator has pole sections 21 and 22, while the phase B pole 3 of the stator has poles 31 and 32. A magnetic base substance 11 becomes the field magnet of a linear actuator, of which the whole surface is magnetized to an S-pole and the whole underside surface to an N-pole, while holding holes of specified dimension are formed in the moving direction, into which a magnetized permanent magnet 14 is inserted. Even if the permanent magnet 14 is arranged rather biasedly to a holding hole, the error is limited within the holding hole. No error is therefore accumulated, so that high pitch accuracy is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、界磁磁石に関し、*、νに、リニアアクチー
ユエータに好適な界磁磁石の構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field magnet, and *, ν, to a structure of a field magnet suitable for a linear actuator.

この種アクチュエータと同じ技(1・1としてはリニア
ステップモータやリニアパルスモータと弥さ、れるもの
があり、これらにも同様)、ぎ用さlしろものである。
The same technique as this type of actuator (1.1 includes linear step motors and linear pulse motors, and the same applies to these) is also used.

〔従来の技術〕[Conventional technology]

リニアパルスモータは、一般に特開昭56−74080
号公報記載のように構成されており、公報において固定
子(11)は第5図に示されているようにベース(12
)とその上面に接合、固定された永久磁石(13)とか
ら構成されている。又、この永久磁石(13)はN極と
S極とが可動子(14)の移動方向に沿って多数交互に
着磁されてなるものである。
Linear pulse motors are generally manufactured by Japanese Patent Application Laid-Open No. 56-74080.
The structure is as described in the publication, and in the publication, the stator (11) is attached to the base (12) as shown in FIG.
) and a permanent magnet (13) bonded and fixed to its upper surface. Further, this permanent magnet (13) has a large number of N poles and S poles alternately magnetized along the moving direction of the mover (14).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記のように、従来のアクチュエータやモータの界磁磁
石は微小ピッチで着磁によりその磁極を得ているもので
あり、大きな起磁力が得られないものであった。
As mentioned above, the field magnets of conventional actuators and motors obtain their magnetic poles by magnetization at minute pitches, and cannot obtain a large magnetomotive force.

したがって、モータとしての推力も小さく、大きな負荷
を取扱うことができず、この種モータやアクチュエータ
の用途が限定される要因となっている。
Therefore, the thrust as a motor is small and cannot handle a large load, which is a factor that limits the applications of this type of motor and actuator.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記に着目してなされたものであり、所定ピッ
チで保持穴あるいは保持溝が形成され、かつ厚さ方向に
磁化した磁石基体と、前記磁石基体の保持穴あるいは保
持溝にこの磁石基体の磁化方向と異なる方向に磁化され
ている永久磁石を挿入保持し、前者の磁石基体と後者の
永久磁石を組合せて界磁磁石を構成したものであります
The present invention has been made with attention to the above, and includes a magnet base in which holding holes or grooves are formed at a predetermined pitch and magnetized in the thickness direction, and a magnet base in which holding holes or grooves are formed in the magnet base. A field magnet is constructed by inserting and holding a permanent magnet that is magnetized in a direction different from the magnetization direction of the magnet, and combining the former magnet base and the latter permanent magnet.

〔作用〕[Effect]

前記のように、予め磁化された磁石基体および永久磁石
を組合せるので1着磁による減磁作用がなく、界磁磁石
の起磁力を高めるように作用する。
As mentioned above, since the pre-magnetized magnet base and the permanent magnet are combined, there is no demagnetization effect due to single magnetization, and the magnetomotive force of the field magnet is increased.

〔実施例〕〔Example〕

以下本発明の一実施例構成を説明する。 The configuration of an embodiment of the present invention will be described below.

本発明は前述のように、リニアアクチュエータやリニア
ステップモータに適用されるので、まず、リニアアクチ
ュエータの原理構成を説明する。第3図において、1は
永久磁石、2はコイル4を巻装したA相磁極、3はコイ
ル5を巻装したB相磁極である。6は可動子で、固定子
磁極歯と同一ピッチで微小にN極、S極を交互に着磁し
た前記永久磁石】を担持している。固定子A+11磁極
2は、磁極部21と22を有し、2つの磁極部の位相関
係は、磁極部21の歯の突起が永久磁石1のN i:l
iに一致する時に、磁極部22の歯の突部が永久磁石1
のS極に一致するように構成されている。従って1図に
示したように、磁束Φ^がコイル4と鎖交する。また、
固定子B+I′I磁極3も、磁極31゜32を有し、こ
の2つの磁極部も同様な位相関係にある。更に固定子A
相磁極2と固定子B相磁極3の位相関係は、図に示した
ように固定子A和硫(函2の歯の突部が永久磁石1の微
小磁極に一致する場合、固定子B相磁極3の歯の突部の
中心は永久磁石1の微小磁極の切換り地点に一致するよ
うな関係にある。
As described above, the present invention is applied to a linear actuator and a linear step motor, so first, the basic structure of the linear actuator will be explained. In FIG. 3, 1 is a permanent magnet, 2 is an A-phase magnetic pole around which a coil 4 is wound, and 3 is a B-phase magnetic pole around which a coil 5 is wound. Reference numeral 6 denotes a movable element, which carries the above-mentioned permanent magnet, which is minutely magnetized with N poles and S poles alternately at the same pitch as the stator magnetic pole teeth. The stator A+11 magnetic pole 2 has magnetic pole parts 21 and 22, and the phase relationship between the two magnetic pole parts is such that the tooth protrusion of the magnetic pole part 21 is N i:l of the permanent magnet 1.
i, the protrusions of the teeth of the magnetic pole part 22 are aligned with the permanent magnet 1.
It is configured to coincide with the south pole of. Therefore, as shown in FIG. 1, the magnetic flux Φ^ interlinks with the coil 4. Also,
The stator B+I'I magnetic pole 3 also has magnetic poles 31° and 32, and these two magnetic pole portions also have a similar phase relationship. Furthermore, stator A
The phase relationship between the phase magnetic pole 2 and the stator B-phase magnetic pole 3 is as shown in the figure. The center of the tooth protrusion of the magnetic pole 3 is in such a relationship that it coincides with the switching point of the minute magnetic pole of the permanent magnet 1.

従って、第3図の位置に永久磁石1がある場合。Therefore, when the permanent magnet 1 is in the position shown in FIG.

コイル4に磁束ΦΔが鎖交し、コイル5に磁束は鎖交し
ない。また、可動子6が移動して固定子A相磁極2の磁
極部21と22の歯の突部に面する永久磁石1の微小磁
極の磁性が逆になった場合は、コイル4に鎖交する磁束
はΦ^と逆向になる。また第3図の固定子B相磁極3と
永久磁石1の位に関係と同様な関係に、固定子A相磁極
2と永久磁石1の位置関係がある場合は、コイル4に磁
束は鎖交しない。このように、コイル4の鎖交磁束は。
The magnetic flux ΦΔ interlinks with the coil 4, and the magnetic flux does not interlink with the coil 5. In addition, if the movable element 6 moves and the magnetism of the minute magnetic poles of the permanent magnet 1 facing the protrusions of the teeth of the magnetic pole parts 21 and 22 of the stator A-phase magnetic pole 2 becomes reversed, the coil 4 will be linked. The magnetic flux is in the opposite direction to Φ^. Furthermore, if the positional relationship between the stator A-phase magnetic pole 2 and the permanent magnet 1 is similar to the positional relationship between the stator B-phase magnetic pole 3 and the permanent magnet 1 in FIG. do not. In this way, the magnetic flux linkage of the coil 4 is:

則動子6の位置によって、向きと大きさを変化する。コ
イル5でも同様に、可動子6の位置によって鎖交磁束が
変化し、しかもその位相は電気角で90度ずれる。
The direction and size change depending on the position of the oscillator 6. Similarly, in the coil 5, the interlinkage magnetic flux changes depending on the position of the movable element 6, and the phase shifts by 90 degrees in electrical angle.

ここで説明したものは、2相の例であるが、3相以上の
相数でも同様で、その場合、各相の位相差が相数に応じ
て異なるだけである。
What has been described here is an example of two phases, but the same applies to three or more phases, in which case only the phase difference between each phase differs depending on the number of phases.

また、永久磁石側を可動子としたが、逆に永久磁石を固
定子としても1本質的な違いはない。
Further, although the permanent magnet side is used as the mover, there is no essential difference if the permanent magnet is used as the stator.

このアクチュエータの推力は、上述の可動子位置変化に
対するコイルの鎖交磁束の変化量に比例する。このリニ
アステップアクチュエータで高推力を発揮するには、ス
テップのピッチすなオ〕ち、誘導子の歯のピッチと永久
磁石の磁極ピッチを微小化し、誘導子種のコイルの可動
子位置変化に対する鎖交磁束変化率を大きくする必要が
ある。
The thrust of this actuator is proportional to the amount of change in the magnetic flux linkage of the coil with respect to the above-mentioned change in the position of the movable element. In order to achieve high thrust with this linear step actuator, the pitch of the steps, i.e., the pitch of the teeth of the inductor and the pitch of the magnetic poles of the permanent magnet, must be miniaturized to provide a chain response to changes in the position of the movable element of the inductor type coil. It is necessary to increase the rate of change in alternating magnetic flux.

従って、永久磁石の着磁ピッチの微小化は、リニアステ
ップアクチュエータの高推力化のために必要不可欠な技
術である。
Therefore, miniaturization of the magnetization pitch of permanent magnets is an essential technology for increasing the thrust of linear step actuators.

従来の可動子に設ける永久磁石は第2図に示すように、
単純にN、S極を交互に着磁したものであった。このま
まの構造で、着磁ピッチを微小にすると以下の問題が生
じる。
The conventional permanent magnet installed in the mover is as shown in Figure 2.
It simply had N and S poles alternately magnetized. If the magnetization pitch is made minute with the structure as it is, the following problems will occur.

第2図の磁石を形成するための着磁装置の基本構造を第
4図に示す。この着磁装置の磁気媒体(永久磁石)7に
面するコアの先端部9の面積を所望の着磁幅に合せて微
小にし、着磁を行う。磁束は永久磁石中では、第4図矢
印方向に発散しながら通るので、永久磁石7の磁力は深
くなるにつれて弱くなる。また微小ピッチで多極に着磁
をするため、着磁装置のコアをピッチ分ずらして磁束を
反転させて着磁を行う。その様子を第5図に示す。図で
明らかなように隣接する磁極を着磁するとき前に着磁さ
れた部分をも、磁束が通過することになり、磁力が大幅
に弱められる。
FIG. 4 shows the basic structure of a magnetizing device for forming the magnet shown in FIG. 2. The area of the tip 9 of the core facing the magnetic medium (permanent magnet) 7 of this magnetizing device is made minute to match the desired magnetization width, and magnetization is performed. Since the magnetic flux passes through the permanent magnet while diverging in the direction of the arrow in FIG. 4, the magnetic force of the permanent magnet 7 becomes weaker as it becomes deeper. Furthermore, in order to magnetize multiple poles at minute pitches, the core of the magnetizing device is shifted by the pitch to reverse the magnetic flux and perform magnetization. The situation is shown in FIG. As is clear from the figure, when adjacent magnetic poles are magnetized, the magnetic flux also passes through previously magnetized parts, and the magnetic force is significantly weakened.

従って、一体の磁気媒体に永久磁石を微小ピッチで着磁
する方法では磁力の低下が避けられず、十分な性能が得
られないものである。
Therefore, in the method of magnetizing permanent magnets at minute pitches in an integrated magnetic medium, a decrease in magnetic force is unavoidable, and sufficient performance cannot be obtained.

そこで、永久磁石を磁極ピッチ毎に微小長方体に分割し
たものを、着磁した後に第2図に示すように接着して1
枚の微小着磁永久磁石とする方法も考えられている。こ
の方法だと、u81力は十分に得られるが、微小永久磁
石長方体の製造精度、及び接着精度が低く、多数組合せ
ると永久磁石の着磁ピッチ、永久磁石の高さにばらつき
が生じる。
Therefore, we divided a permanent magnet into minute rectangular bodies for each magnetic pole pitch, and after magnetizing them, we glued them together as shown in Figure 2.
A method of using a micro-magnetized permanent magnet as a single sheet is also being considered. With this method, sufficient U81 force can be obtained, but the manufacturing precision and adhesion precision of the micro permanent magnet rectangular bodies are low, and when a large number of them are combined, the magnetization pitch of the permanent magnets and the height of the permanent magnets will vary. .

このため、アクチュエータに用いた場合に十分な性能を
得ることができないものである。
For this reason, sufficient performance cannot be obtained when used in an actuator.

すなわち、前記の方法では微小ピンチでの高起磁力磁石
(磁極)で、かつ高精度で配することができないもので
ある。
That is, with the above method, it is not possible to arrange high magnetomotive force magnets (magnetic poles) with a small pinch and with high precision.

本発明は、微小ピッチでも充分な起磁力が得られ、かつ
寸法精度が高い界磁磁石を得ろものである。第1図は本
発明の一例を示す界磁磁石の斜面図であり、第6図は製
作手順を示した展開図である。第6図において、11は
磁石基体でリニアアクチュエータの界磁磁石として必要
な長さおよび幅を有する。そして、磁石基体11の全表
面がS極全下面がN極に磁化されている。すなオ〕ち、
この磁石基体11は板厚方向に着磁されているものであ
る。12は移動寸法Tの格子で、この格子12間には同
じく移動方向寸法Tで幅方向寸法Qの保持穴13が形成
されている。14はこの保持穴13に挿入され磁化済み
の永久磁石で移動方向寸法がT1幅方向寸法がQで保持
穴13に隙間なく1俣められろものである。この永久磁
石14は、前記磁石基体11とは逆極性になるように上
下にN。
The present invention aims to obtain a field magnet that can provide sufficient magnetomotive force even with a minute pitch and has high dimensional accuracy. FIG. 1 is a perspective view of a field magnet showing an example of the present invention, and FIG. 6 is a developed view showing the manufacturing procedure. In FIG. 6, reference numeral 11 denotes a magnet base having a length and width necessary for a field magnet of a linear actuator. The entire surface of the magnet base 11 is magnetized to the S pole, and the entire lower surface is magnetized to the N pole. Sunao〕chi,
This magnet base 11 is magnetized in the thickness direction. Reference numeral 12 denotes a grid having a movement dimension T, and holding holes 13 having a movement direction dimension T and a width direction dimension Q are formed between the grids 12. Reference numeral 14 denotes a magnetized permanent magnet inserted into the holding hole 13, which has a dimension in the moving direction of T1 and a dimension in the width direction of Q, and can be inserted into the holding hole 13 by one circle without any gap. This permanent magnet 14 is arranged vertically in N so that it has a polarity opposite to that of the magnet base 11.

S極が着磁されており、それぞれの保持穴13に1個ず
つ挿入保持されるものである。磁石基体11に総ての永
久磁石14が嵌込まれた状態が第1図であり、ピッチ1
゛の磁極N、Sが交互に配された界磁磁石が得られるも
のである。この界磁磁石の寸法精度は磁石基体11の製
造精度で決まるが、磁石基体11はプラスチックマグネ
ットで製造できるので高精度のものが得られる。又、永
久磁石14も同様にプラスチックマグネットで形成され
る。
The S pole is magnetized, and one is inserted and held in each holding hole 13. FIG. 1 shows a state in which all the permanent magnets 14 are fitted into the magnet base 11, and the pitch is 1.
A field magnet in which magnetic poles N and S are alternately arranged can be obtained. The dimensional accuracy of this field magnet is determined by the manufacturing accuracy of the magnet base 11, and since the magnet base 11 can be manufactured from a plastic magnet, a highly accurate one can be obtained. Further, the permanent magnet 14 is also made of a plastic magnet.

又、永久磁石14が保持穴13に多小片寄って配置され
ても、その誤差は保持穴13内に留まるので、誤差が累
積せず、非常に高いピンチ精度が得られるものである。
Further, even if the permanent magnet 14 is disposed slightly off-center to the holding hole 13, the error remains within the holding hole 13, so the error does not accumulate, and very high pinch accuracy can be obtained.

又、磁極が逆の磁石同志を上下に組合せることから、挿
入所期に永久磁石14と磁石基体11の表面間吸引力が
作用せず、滑らかに挿入でき、14分以上挿入後は吸引
力が作用し、挿入作業が容?↓になる。又、挿入完了後
は両者間に吸引力が作用しているの1両者が離脱するこ
とがない。この吸引力だけでも一体化が図られるが、(
イ〔実な一体(ヒのために接着剤にて一体固定するよう
にする。
In addition, since magnets with opposite magnetic poles are arranged vertically, there is no attraction force between the surfaces of the permanent magnet 14 and the magnet base 11 at the time of insertion, allowing smooth insertion, and the attraction force disappears after insertion for more than 14 minutes. Is it effective and the insertion work is easy? It becomes ↓. Further, after the insertion is completed, the suction force is applied between the two so that the two do not separate. Integration can be achieved with just this suction force, but (
(B) For the sake of safety, use adhesive to fix the parts together.

前記のピッチTは1 nwuから数1000程度であり
、それぞれの磁石は単体として非常に小さいもので1ち
るが、それぞれの磁石は光に磁化されているので、8磁
力は磁化された状態を維持しており、大きな磁力が得ら
れる。実験によれば、第5図に示すような一つの磁気媒
体7に交互にNとSを符磁装近で着磁する交互着磁方式
のものに比へ、約2〜3倍の起磁力を有することが確認
された。更に、磁石基体11や永久磁石111の形成精
度お上び粗\′を機械の精度が向上すれば更にピッチ′
Fを小さくすることが出来、起磁力を低下させないこと
で、1y解能を向上することもできる。
The pitch T mentioned above is from 1 nwu to several thousand, and each magnet is very small as a single unit, but since each magnet is magnetized by light, the 8 magnetic force maintains the magnetized state. It has a large magnetic force. According to experiments, the magnetomotive force is about 2 to 3 times higher than that of the alternate magnetization method in which one magnetic medium 7 is alternately magnetized with N and S as shown in Fig. 5. It was confirmed that the Furthermore, if the accuracy of forming the magnet base 11 and the permanent magnet 111 is increased and the precision of the machine is improved, the pitch '
Since F can be made small and the magnetomotive force is not reduced, the 1y resolution can also be improved.

次に、第9図に基づいて、磁石基体11に永久磁石14
を嵌め込む組立機械の概018 t11!成につき説明
する。21は床あるいは全体のベースを示し。
Next, based on FIG. 9, the permanent magnet 14 is attached to the magnet base 11.
Approximate assembly machine for fitting 018 t11! I will explain the process. 21 indicates the floor or the entire base.

この上面に矢印方向に移動可能なスライドベッド22が
担持されている。このスライドベッド22は矢印方向に
ピンチ2Tずつインデックス移動させるように図示しな
い駆動装はにて駆動されるものである。11はスライド
ベッド22上に一対のクランプ23にて固定された前記
の磁石基体である。24はベース21に固定され、磁石
基体11上に垂直に設けられたホルダである。25はホ
ルダ24に垂直に形成された案内孔で、永久磁石14を
挿入保持しており、その下端開口は前記磁石基体11の
保持穴13に一致させている。26はホルダ24の上端
に設けられたシリンダで、そのロッド27の先端をホル
ダ24の案内孔25に挿入された永久磁石14に所定の
下方向の力を付与している。この力は、もし、ホルダ2
4を鉄材で製作すれば永久磁石14がホルダ24に吸着
するが、この吸着力よりも大きなものでよい。ホルダ2
4をアルミや合成樹脂等の非磁性体で形成すればこの吸
着力は発生しないので、シリンダ2Gの力は僅かでもよ
い。
A slide bed 22 movable in the direction of the arrow is supported on this upper surface. This slide bed 22 is driven by a drive device (not shown) so as to move the slide bed 22 by a pinch 2T in the direction of the arrow. Reference numeral 11 denotes the aforementioned magnet base fixed on the slide bed 22 with a pair of clamps 23. A holder 24 is fixed to the base 21 and provided vertically on the magnet base 11. Reference numeral 25 denotes a guide hole formed perpendicularly to the holder 24, into which the permanent magnet 14 is inserted and held, and its lower end opening is aligned with the holding hole 13 of the magnet base 11. Reference numeral 26 denotes a cylinder provided at the upper end of the holder 24, and applies a predetermined downward force to the permanent magnet 14 with the tip of its rod 27 inserted into the guide hole 25 of the holder 24. This force is applied if holder 2
If the permanent magnet 4 is made of iron, the permanent magnet 14 will be attracted to the holder 24, but it may be larger than this attraction force. Holder 2
If cylinder 4 is made of a non-magnetic material such as aluminum or synthetic resin, this attraction force will not be generated, so the force of cylinder 2G may be small.

そして、磁石基体11をスライドベッド22上に担持し
、最初の保持穴13に案内孔25内の最下部に位置して
いる永久磁石14をシリンダ26によって押込む。次に
スライドベッド22を矢印方向にピッチ2T前進させる
と、案内孔25の下端間1コに次の保持穴]3が位置す
る。そして、このときシリンダ26を作動させれば、こ
の保持穴13に次の永久磁石14が落し込まれ挿入保持
される。このようにして次々にあたかもダルマ落しの要
領で保持穴に永久磁石を挿入保持することができる。尚
、この挿入過程において、前述のように挿入当初は磁極
の磁性が同一で、互いに反発するので互いに吸着するこ
とはなく、スムースに中間まで挿入でき、それ以後は同
極になるが、永久磁石は半分以上挿入されているのでず
れることがなく、シリンダ26でこれに力を付与すれば
確実に挿入作業が出来るものである。
Then, the magnet base 11 is supported on the slide bed 22, and the permanent magnet 14 located at the lowest position in the guide hole 25 is pushed into the first holding hole 13 by the cylinder 26. Next, when the slide bed 22 is moved forward by a pitch of 2T in the direction of the arrow, the next holding hole] 3 is located between the lower ends of the guide hole 25. If the cylinder 26 is actuated at this time, the next permanent magnet 14 is dropped into this holding hole 13 and is inserted and held. In this way, the permanent magnets can be inserted and held in the holding holes one after another in the same way as a Daruma drop. In addition, in this insertion process, as mentioned above, at the beginning of insertion, the magnetism of the magnetic poles is the same and they repel each other, so they do not attract each other, and can be inserted smoothly to the middle, and after that, the polarity becomes the same, but the permanent magnet Since it is more than half inserted, it will not shift, and by applying force to it with the cylinder 26, the insertion operation can be performed reliably.

前記一実施例は、1つ1つの永久磁石24を磁石」↓体
11の保持穴13に挿入保持するものであるが、磁石基
体11に設ける保持穴は、完全な穴ではなく、湾でもよ
く、いわば永久磁石の保持機能をもつ保持部であればよ
い。尚、この保持部の形や深さは任意に変更し得る。
In the above-mentioned embodiment, each permanent magnet 24 is inserted and held in the holding hole 13 of the magnet body 11, but the holding hole provided in the magnet base 11 is not a perfect hole, but may be a bay. , so to speak, any holding part that has the function of holding a permanent magnet may be used. Note that the shape and depth of this holding portion can be changed arbitrarily.

第8図は保持穴を保持溝13 Aとした全体かくしtI
I状の磁石基体11Aとしていたもので、磁極方向性や
組合せ方向等はI′111記したものと同様である。尚
、これによれば第6図に比較してくし歯状の片方の根本
側が不要であり小形になる効果がある。当然第9図に示
す挿入装置で両者を組合せることができろ。
Figure 8 shows the entire structure with a holding hole and a holding groove 13A.
It has an I-shaped magnet base 11A, and the magnetic pole orientation, combination direction, etc. are the same as those described in I'111. In this case, compared to FIG. 6, one root side of the comb-like shape is unnecessary, which has the effect of reducing the size. Naturally, both could be combined with the insertion device shown in FIG.

今まで説明したものは、永久磁石14をいずれも独立し
た単体とし、これを個々の保持穴13や保持溝13Aに
挿入保持するものであることから、永久磁石がバラバラ
であり、挿入作業に時間がかかるという問題がある。
In what has been described so far, each permanent magnet 14 is an independent unit, and this is inserted and held in each holding hole 13 or holding groove 13A, so the permanent magnets are separate and the insertion work takes time. There is a problem that it takes

これの解決機構を、第7り1に示す。第7図には磁石基
体11Bおよび永久磁石14BをそれぞれピッチTのく
し歯状とし、互いのくし歯を相手の保持溝13Bに挿入
し、両者を組合せ結合するものである。このときの挿入
組合せ方向は横方向から行う場合と、上方から行う場合
があるが、最初反発力、次いで吸引力を作用させる点で
、後者の上方から行うのが好ましいといえる。
The solution mechanism for this problem is shown in Section 7.1. In FIG. 7, the magnet base 11B and the permanent magnet 14B are each shaped like a comb with a pitch T, and the comb teeth of each are inserted into the holding grooves 13B of the other to combine and connect them. The insertion and combination direction at this time may be performed from the side or from above, but the latter method from above is preferable in that the repulsive force is applied first and then the suction force is applied.

この第7図では、−回の組合せ作業で組合せが完了する
長所を有する。第7図に示すものの極性は、前記したも
のと同一である。又、8磁力は第6図に示すものと全く
同一である。
This figure 7 has the advantage that the combination can be completed in - times of combination operations. The polarity shown in FIG. 7 is the same as described above. Moreover, the 8 magnetic forces are exactly the same as those shown in FIG.

尚、界磁磁石として必要な寸法が長いときは、いくつか
の単位くし歯を用意して、所要数直線状に並へて図示し
ない基板に固定すればよい。
Incidentally, when the required dimension of the field magnet is long, it is sufficient to prepare several unit comb teeth, arrange the required number of unit teeth in a straight line, and fix them to a substrate (not shown).

前記界磁磁石は可動子の構成要素として用いら汎ている
が、固定子の界B1石装置として用いることが出来るこ
とは当然である。
Although the field magnet is widely used as a component of a mover, it is natural that it can be used as a field B1 magnet device of a stator.

【発明の効果〕【Effect of the invention〕

以上述べたように、本発明によれば、所定ピッチで保持
穴あるいは保持溝が形成さお、かつ厚さ方向に磁化した
磁石基体と、前記磁石基体の保持穴あるいは保持溝にこ
の磁石基体の磁化方向と異なる方向に磁化されている永
久磁石を挿入保持し、前者の磁石基体と後者の永久磁石
を組合せて界磁磁石を構成したので、着磁による減磁作
用が皆無となり、起磁力が大でピッチを可及的に小とす
ることができ、又、寸Y五精度も向上することができた
ものである。
As described above, according to the present invention, there is provided a magnet base having retaining holes or retaining grooves formed at a predetermined pitch and magnetized in the thickness direction, and a magnet base having retaining holes or retaining grooves formed in the retaining holes or retaining grooves of the magnet base. A permanent magnet that is magnetized in a direction different from the magnetization direction is inserted and held, and the field magnet is constructed by combining the former magnet base and the latter permanent magnet, so there is no demagnetization effect due to magnetization, and the magnetomotive force is reduced. The pitch can be made as small as possible, and the accuracy of dimension Y5 can also be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す界6J&磁石の斜面図
、第2図は従来の界lF!磁石の斜面図、第3図は本発
明が適用されるリニアアクチュエータの原理図、第4図
および第5図は従来の界磁磁石に着磁する手法を示す図
、第6図は第1図に示す本発明界磁磁石の組立手順を示
す展開図、第7図および第8図は本発明の他の実施例を
示す斜面図、第9図は第1図および第8図に示す界磁磁
石を構成する組立機を示す断面Vである。 晶1 図 /4 エ〃 /4−m−永久A、5 第3記 乙−円知子 築40 第 52 h ′l暑l″3
Fig. 1 is a perspective view of a field 6J & magnet showing an embodiment of the present invention, and Fig. 2 is a conventional field 1F! An oblique view of the magnet, FIG. 3 is a principle diagram of a linear actuator to which the present invention is applied, FIGS. 4 and 5 are diagrams showing a conventional method of magnetizing a field magnet, and FIG. 6 is a diagram showing the principle of a linear actuator to which the present invention is applied. 7 and 8 are perspective views showing other embodiments of the present invention, and FIG. 9 shows the field magnet shown in FIGS. 1 and 8. It is a cross section V showing an assembly machine that constitutes a magnet. Akira 1 Figure/4 E/4-m-Eternal A, 5 3rd entry B-Enchiko Tsuki 40th 52 h'l heat l''3

Claims (1)

【特許請求の範囲】 1、長手方向に多数の磁極N、Sを交互に配した界磁磁
石において、 所定ピッチで保持穴あるいは保持溝が形成され、かつ厚
さ方向に磁化した磁石基体と、前記磁石基体の保持穴あ
るいは保持溝にこの磁石基体の磁化方向と異なる方向に
磁化されている永久磁石を挿入保持し、前者の磁石基体
と後者の永久磁石を組合せて界磁磁石を構成したことを
特徴とする界磁磁石。 2、前記特許請求の範囲第1項記載のものにおいて、 前記永久磁石は互いに分離された独立のものであること
を特徴とする界磁磁石。 3、前記特許請求の範囲第1項記載のものにおいて、 前記永久磁石は、それらの端部を永久磁石と同一材料で
一体に連結したくし歯形状としてなることを特徴とする
界磁磁石。 4、前記特許請求の範囲第1項記載のものにおいて、 前記磁石基体と永久磁石はその板厚が同一であることを
特徴とする界磁磁石。 5、前記特許請求の範囲第1項記載のものにおいて、 前記磁石基体および永久磁石は、いずれもプラスチック
マグネットで形成したことを特徴とする界磁磁石。
[Claims] 1. A field magnet in which a large number of magnetic poles N and S are arranged alternately in the longitudinal direction, including a magnet base in which holding holes or holding grooves are formed at a predetermined pitch and magnetized in the thickness direction; A permanent magnet magnetized in a direction different from the magnetization direction of the magnet base is inserted and held in a holding hole or a holding groove of the magnet base, and a field magnet is constructed by combining the former magnet base and the latter permanent magnet. A field magnet featuring: 2. The field magnet according to claim 1, wherein the permanent magnets are independent and separated from each other. 3. The field magnet according to claim 1, wherein the permanent magnet has a comb-like shape in which the ends thereof are integrally connected with the same material as the permanent magnet. 4. The field magnet according to claim 1, wherein the magnet base and the permanent magnet have the same plate thickness. 5. The field magnet according to claim 1, wherein the magnet base and the permanent magnet are both made of plastic magnets.
JP8291487A 1987-04-06 1987-04-06 Field magnet Granted JPS63249460A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8291487A JPS63249460A (en) 1987-04-06 1987-04-06 Field magnet
US07/178,213 US4857786A (en) 1987-04-06 1988-04-06 Structure of stepping motor and method of driving the stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8291487A JPS63249460A (en) 1987-04-06 1987-04-06 Field magnet

Publications (2)

Publication Number Publication Date
JPS63249460A true JPS63249460A (en) 1988-10-17
JPH0517786B2 JPH0517786B2 (en) 1993-03-10

Family

ID=13787519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8291487A Granted JPS63249460A (en) 1987-04-06 1987-04-06 Field magnet

Country Status (1)

Country Link
JP (1) JPS63249460A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012521742A (en) * 2009-09-08 2012-09-13 ムーグ インコーポレーテッド Stepping motor with short step interval
WO2018174235A1 (en) * 2017-03-24 2018-09-27 日立金属株式会社 Linear motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226083A (en) * 1984-04-24 1985-11-11 Takahashi Yoshiteru Floppy disk drive device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226083A (en) * 1984-04-24 1985-11-11 Takahashi Yoshiteru Floppy disk drive device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012521742A (en) * 2009-09-08 2012-09-13 ムーグ インコーポレーテッド Stepping motor with short step interval
WO2018174235A1 (en) * 2017-03-24 2018-09-27 日立金属株式会社 Linear motor

Also Published As

Publication number Publication date
JPH0517786B2 (en) 1993-03-10

Similar Documents

Publication Publication Date Title
KR100443590B1 (en) Linear motor and production method therefor
US4857786A (en) Structure of stepping motor and method of driving the stepping motor
KR100932017B1 (en) Mover and associated three-phase linear motor system
JP3791082B2 (en) Linear motor
US7425770B2 (en) Vibration wave motor
US7230355B2 (en) Linear hybrid brushless servo motor
EP1198055A2 (en) Linear motor, driving and control system thereof and manufacturing method thereof
JP4788986B2 (en) Linear motor
JP4061834B2 (en) Linear motor
US5302873A (en) Linear pulse motor having a high resolution
JPS6062863A (en) Electromagnetic actuator
JPS63249460A (en) Field magnet
US4433273A (en) Camera motor belt drive system
KR930007591B1 (en) Step linear actuator
JPS5855748B2 (en) linear pulse motor
JP2663533B2 (en) Pulse motor
JPS644434B2 (en)
JPS63206153A (en) Linear pulse motor
JPS6116504A (en) Multistable electromagnet operating device
JPH0116384Y2 (en)
JPS60200757A (en) Hybrid type linear pulse motor
JPH0312058Y2 (en)
JPS591415Y2 (en) linear motion motor
JPH0125309B2 (en)
KR100381819B1 (en) Linear motor with electromagnetic clamper