JP3791082B2 - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP3791082B2
JP3791082B2 JP34053396A JP34053396A JP3791082B2 JP 3791082 B2 JP3791082 B2 JP 3791082B2 JP 34053396 A JP34053396 A JP 34053396A JP 34053396 A JP34053396 A JP 34053396A JP 3791082 B2 JP3791082 B2 JP 3791082B2
Authority
JP
Japan
Prior art keywords
stator
magnetic
permanent magnet
mover
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34053396A
Other languages
Japanese (ja)
Other versions
JPH10174418A (en
Inventor
透 鹿山
憲昭 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP34053396A priority Critical patent/JP3791082B2/en
Publication of JPH10174418A publication Critical patent/JPH10174418A/en
Application granted granted Critical
Publication of JP3791082B2 publication Critical patent/JP3791082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Description

【0001】
【発明の属する技術分野】
本発明は,主に低速で駆動し直線運動をするステッピングモータ或いはサーボモータ、ダイレクトドライブモータに関する。
【0002】
【従来の技術】
従来、パルスモータの界磁を永久磁石で与えれば、コンパクトな構成で高い推力を得ることが知られており、様々な構造のものが考えられている。そのうち、可動子の応答性とダンピング特性を改善し、リード線処理を簡単にして安価に製造できるようにしたものが特開昭63−310361号公報に開示されている。そのリニアモータの構造は同公報に詳しく述べられているが、概ね次のようになっている。
断面がコ字状で上に開いた直線状の固定子には、内側に断面が同じくコ字状のヨークが2つ平行に並んで固定されており、ヨークの底にそれぞれコイルが長手方向に巻回されている。2つのヨークはそれぞれ上に伸びた2つの磁極を持っている。この磁極の上面にはそれぞれ磁極板が固定されており、他方の磁極板に向かって等間隔で突起状の極歯が伸びており、向かい合う極歯が互い違いになってクローポール形の磁極面をなしている。固定子の長手方向に移動可能に支持された可動子には、前記磁極面とエアギャップを介して対向するよう互いに平行な2組の永久磁石が設けられており、前記磁極板の突起と同じ間隔で極性が反転するよう着磁されている。このような構成において、2つのヨークに巻回されたコイルに位相が90度ずれた2相の正弦波電流を供給すると、広く知られているリニアモータのメカニズムによって可動子は固定子の上を長手方向に移動することができる。
【0003】
【発明が解決しようとする課題】
ところが前記の従来技術によると、次のような問題があった。すなわち、固定子に設けた2つのヨークと磁極板が前記のような構造となっているため、ヨークを塊状の鉄心で形成して、磁極板を薄い軟磁性鋼板で形成せざるをえず、コイルに流す励磁電流を大きくすると磁気飽和が生じてモータのピークの推力が抑えられてしまうほか、可動子の移動速度を大きくすると磁極板の鉄損が大きくなるという欠点があった。また、2つのヨーク上面から伸びて互い違いになった磁極板の極歯の間の隙間を通る磁束の漏れが全体として大きいので、励磁電流に対してモータの推力が小さい、すなわちモータ定数が小さいという欠点があった。さらに、固定子と可動子の間に磁気吸引力が生じるので、可動子の支持機構に大きな負担がかかり、構造に歪みが生じて様々な弊害を生じるという欠点もあった。
【0004】
【課題を解決するための手段】
本発明はこれらの欠点を解消するためになされたものであり、信頼性があり、高い推力が得られるモータを提供することを目的とする。
そこで本発明は、ピッチPで極性が異なる矩形断面をした棒状の永久磁石とこの永久磁石を固着したテーブルとこれらを移動可能に支持する支持手段とを備えた可動子と、磁極がエアギャップを介して前記永久磁石を挟む電磁石を複数個備えた固定子とからなり、その固定子を交流励磁することによって前記可動子を移動させるm相のリニアモータにおいて、長方形の片方の側辺の上部を切欠いて対向する平行な磁極面を持つ磁極を形成した同じ形状のC形鉄心が前記永久磁石を前記磁極の間に挟んでピッチ2Pで並べられ、その鉄心に1つのコイルが共通に巻かれて片側磁石ユニットをなし、前記片側磁石ユニット2個を対向させ前記磁極を互いにピッチPずらして一列に並ぶよう配置して固定子ユニットをなし、その固定子ユニットをその隣り合う鉄心のピッチが(P+P/m)(m=2、3、4、・・・)となるよう複数個並べて固定子をなしてm相のリニアモータとしたのである。
【0005】
【発明の実施の形態】
このようにすると、固定子の鉄心は珪素鋼板を積層した上、磁路の断面を従来よりも大きくすることができるので、前記従来技術に比べて磁気飽和が生じにくく、モータのピーク推力を大きくすることができる。また、可動子と固定子の間に働く磁気吸引力が相殺されるので支持機構の負担が軽くなって信頼性の向上と機構の簡素化ができるのである。
以下、本発明の実施の形態を図に基づいて説明する。図1は本発明の第1実施例を示す2相のリニアモータの斜視図であり、図2はその一部を省略した平面図である。図において1はベースであり、この上に固定子ユニット21、22を搭載して固定子2をなしている。固定子ユニット21、22はそれぞれ同じ構成の2つの片側磁石ユニット31Aと31B、32Aと32Bを備えており、片側磁石ユニット31Aは2つの同じ形状のC形鉄心41、43を備えている。C形鉄心41は珪素鋼板が積層されており、長方形の片方の側辺の上部を切欠いて、対向する平行な磁極面を持つ磁極511、512を形成してC形としているものであり、同じ形状のC形鉄心43を鉄心の中心間距離が2Pとなるよう平行に並べられている。両鉄心の下辺に共通にコイル61が巻回され、前記磁極面が上側になるよう横に寝せてベース1に固定して片側磁石ユニット31Aをなしている。磁石ユニット31Bも同じように構成されており、C形鉄心41、42、43、44の磁極511、522、531、542と磁極512、521、532、541の磁極面がそれぞれ直線状にならび、互いに平行に対面している。同じ構成の固定子ユニット21と固定子ユニット22とは、中心間距離が4.5Pとなっており、隣り合うC形鉄心の中心間距離は1.5Pとなって、それぞれの磁極面が同一平面上にくるよう配置されている。C形鉄心41、42、43、44の磁極511、522、531、542と512、521、532、541の間には、断面が四角の棒状の永久磁石7が配置され図示しないテーブルに固定されている。そのテーブルは図示しない支持機構によって左右の移動方向に移動可能に支持されて可動子8をなしている。永久磁石7は前記C形鉄心の各磁極面に向かう方向に着磁されており、長手方向にピッチPで着磁の向きが逆になっている。
【0006】
以上の構成において、固定子ユニット21のコイル61、62に、電流を図2の向きに供給して励磁するときの状況について説明する。C形鉄心41、42を通る磁束はそれぞれ図3(a)、(b)に示すように、永久磁石7の着磁方向と一致して磁束が加算される。永久磁石7の極性とエアギャップを介して対面するC形鉄心の磁極の極性が異なり、磁気吸引力を生じるので、可動子8の移動方向位置は図2の状態で安定保持される。磁気吸引する力の和は、2つのC形鉄心の2つの磁極の吸引力の大きさが等しく、逆向きであるため、キャンセルされてゼロになる。
次に、固定子ユニット21、22の励磁を切替えるときの動作について図4を用いて説明する。図4は固定子1の励磁の状態を4ステップに分けて、それぞれ励磁中の磁極の状態を上から見たものを示している。(a)は、図2、図3で説明したものと同じ励磁の状態にあり、対面する固定子の磁極と可動子の磁極が異極になり磁気吸引力により安定保持されている。(b)は、(a)で固定子ユニット21に供給した電流と同じように固定子ユニット22に電流を供給した時の状態を示しており、(a)と同じ理由で、(a)に対して可動子8が右に0.5P移動した位置で安定保持されている。(c)は(a)の場合と逆向きの電流を供給した状態を示しており、(b)に対して0.5P右に移動した位置で安定保持されている。(d)は(b)の場合と逆向きの電流を供給した状態を示しており、(c)に対して0.5P右に移動した位置で安定保持されている。(a)から(d)までの4ステップを経て(a)に戻る1サイクルの電流の切替えにより、可動子8は2Pだけ右に移動することができるので、これを繰り返すことによって可動子8を連続的に右に移動させることができるのである。逆の順序で電流を切替えていくと、同じメカニズムで可動子8を左に移動させることができるのは言うまでもない。
【0007】
次に本発明の第2実施例を図を用いて説明する。図5(a)は一部を省略した第2実施例のリニアモータの平面図であり、(b)は(a)のA−A’断面図である。第2実施例は一部を除いて第1実施例と類似しており、異なる点のみ説明する。変更点の1つは、第1実施例のC形鉄心41をC形鉄心451とI形鉄心461とに分けた点にあり、それぞれ対面する磁極551、552の2組の磁極面が平行になるようベース1に剛に固定されている。もう一つの変更点は可動子8にあり、前記2組の磁極面の間に位置するよう永久磁石72、71が非磁性材73を間に挟んで直接または間接に図示しないテーブルに固着されている。そして、永久磁石71、72とC形鉄心、I形鉄心とで閉じた磁気回路をなしている。C形鉄心452、453、454はC形鉄心451と同じであり、I形鉄心462、463、464はI形鉄心461と同じであり、これらによって構成する片側磁極ユニット33A、33Bは第1実施例の片側ユニット31A、31Bに対応している。このような構成をした第2実施例のリニアモータの動作は、固定子2の磁束の発生状況が第1実施例と同じになるので、第1実施例と同じような動作をする。第1実施例に比べると、固定子2と可動子8との対向する磁極面の面積がおよそ2倍になっているので、推力が2倍になるという特徴がある。
以上述べた2つの実施例は片側磁石ユニットが2個の場合を述べたが、3個以上であってもよい。また2つの実施例は2相のリニアモータであるが、固定子ユニットを3個設け、その中心間距離を16P/3、すなわち隣り合う鉄心の中心間距離を4P/3とすることにより、3相のリニアモータとすることができる。同様に固定子ユニットをm個設け、その中心間距離を(P+P/m)とすればm相のモータとすることができ、いずれも前記の2相のモータと同様、電流の切換えで両方向に移動させることができる。
【0008】
【発明の効果】
以上述べたように、本発明によると、珪素鋼板を積層して固定子のC形鉄心或いはI形鉄心をなしているので、従来のものに比べて磁路の面積を大きくすることができ、磁気飽和が生じにくくなって高い推力を得ることができる。また各鉄心の並べられている方向に珪素鋼板が積層されているため、各鉄心間の漏れ磁束が小さく、推力の低下が最小に抑えられている。そして、可動子の永久磁石を薄くすると磁界変調率が大きくなるので、これによっても高い推力を得ることができる。さらに、固定子と可動子間に働く磁気吸引力が永久磁石の両側面で相殺されるので可動子の支持機構に与える負担が小さく、リニアモータの信頼性を高めるなどの効果がある。
【0009】
【図面の簡単な説明】
【図1】本発明の第1実施例を示すリニアモータの斜視図
【図2】第1実施例の平面図
【図3】第1実施例の説明図
【図4】第1実施例の説明図
【図5】第2実施例の構造図
【符号の説明】
1 ベース
2 固定子
21、22、23、24 固定子ユニット
31A、31B、32A、32B、33A、33B、34A、34B 片側磁石ユニット
41、42、43、44、451、452、453、454 C形鉄心
461、462、463、464 I形鉄心
511、512、521、522、531、532、541、542、551、552 磁極
61、62 コイル
7、71、72 永久磁石
73 非磁性材
8 可動子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stepping motor, a servo motor, or a direct drive motor that is driven at a low speed and moves linearly.
[0002]
[Prior art]
Conventionally, it has been known that if a field of a pulse motor is given by a permanent magnet, high thrust can be obtained with a compact configuration, and various structures are considered. Among them, Japanese Patent Application Laid-Open No. Sho 63-310361 discloses an improvement in the responsiveness and damping characteristics of the mover, which can simplify lead wire processing and can be manufactured at low cost. The structure of the linear motor is described in detail in the publication, but is generally as follows.
A linear stator with a U-shaped cross-section and opened upward has two U-shaped yokes with the same cross-section arranged in parallel on the inside, and the coils are arranged in the longitudinal direction at the bottom of the yoke. It is wound. The two yokes each have two magnetic poles extending upward. A magnetic pole plate is fixed to the top surface of each magnetic pole. Protruding pole teeth extend at equal intervals toward the other magnetic pole plate. Opposing pole teeth are staggered to form a claw pole type magnetic pole surface. There is no. The movable element supported so as to be movable in the longitudinal direction of the stator is provided with two sets of permanent magnets parallel to each other so as to face the magnetic pole surface through an air gap, and is the same as the protrusion of the magnetic pole plate. It is magnetized so that the polarity is reversed at intervals. In such a configuration, when a two-phase sine wave current having a phase difference of 90 degrees is supplied to the coils wound around the two yokes, the mover moves over the stator by a widely known linear motor mechanism. It can move in the longitudinal direction.
[0003]
[Problems to be solved by the invention]
However, according to the above prior art, there are the following problems. That is, since the two yokes and the magnetic pole plate provided on the stator have the structure as described above, the yoke must be formed of a massive iron core, and the magnetic pole plate must be formed of a thin soft magnetic steel plate. Increasing the excitation current flowing through the coil causes magnetic saturation and suppresses the peak thrust of the motor, and increasing the moving speed of the mover increases the iron loss of the magnetic pole plate. In addition, since the leakage of magnetic flux passing through the gap between the pole teeth of the pole plates that are staggered extending from the upper surfaces of the two yokes is large as a whole, the motor thrust is small with respect to the excitation current, that is, the motor constant is small. There were drawbacks. Further, since a magnetic attractive force is generated between the stator and the mover, there is a drawback that a large load is applied to the support mechanism of the mover, and the structure is distorted to cause various adverse effects.
[0004]
[Means for Solving the Problems]
The present invention has been made to solve these drawbacks, and an object of the present invention is to provide a motor that is reliable and can provide high thrust.
Accordingly, the present invention provides a rod-shaped permanent magnet having a rectangular cross-section with different polarities at a pitch P, a table having the permanent magnet fixed thereto, and a support means for movably supporting them, and the magnetic poles having an air gap. In an m-phase linear motor that moves the mover by alternating current excitation of the stator, an upper portion of one side of the rectangle is formed. C-shaped iron cores having the same shape and formed with magnetic poles having parallel magnetic pole faces facing each other are arranged at a pitch of 2P with the permanent magnets sandwiched between the magnetic poles, and one coil is wound around the iron core in common. A single-side magnet unit is formed, and the two single-side magnet units are opposed to each other, and the magnetic poles are arranged so as to be aligned in a line at a pitch P from each other to form a stator unit. Pitch of adjacent iron cores (P + P / m) (m = 2,3,4, ···) and arranged plurality so that it had a linear motor of m phases form a stator.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In this way, the stator iron core can be laminated with silicon steel sheets and the magnetic path cross section can be made larger than before, so that magnetic saturation is less likely to occur and the peak thrust of the motor is increased. can do. In addition, since the magnetic attractive force acting between the mover and the stator is offset, the burden on the support mechanism is reduced, and the reliability can be improved and the mechanism can be simplified.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a two-phase linear motor showing a first embodiment of the present invention, and FIG. 2 is a plan view with a part thereof omitted. In the figure, reference numeral 1 denotes a base, on which stator units 21 and 22 are mounted to form a stator 2. Each of the stator units 21 and 22 includes two one-side magnet units 31A and 31B and 32A and 32B having the same configuration, and the one-side magnet unit 31A includes two C-shaped iron cores 41 and 43 having the same shape. The C-shaped iron core 41 is formed by laminating silicon steel plates, and cuts the upper part of one side of a rectangle to form magnetic poles 511 and 512 having parallel magnetic pole faces facing each other. The shaped C-shaped iron cores 43 are arranged in parallel so that the distance between the centers of the iron cores is 2P. A coil 61 is wound in common on the lower sides of both iron cores, and laid sideways so that the magnetic pole surface is on the upper side and fixed to the base 1 to form a one-side magnet unit 31A. The magnet unit 31B is configured in the same manner, and the magnetic pole surfaces of the magnetic poles 511, 522, 531, and 542 of the C-shaped iron cores 41, 42, 43, and 44 and the magnetic pole surfaces of the magnetic poles 512, 521, 532, and 541 are linearly arranged. They face each other in parallel. The stator unit 21 and the stator unit 22 having the same configuration have a center-to-center distance of 4.5 P, and the center-to-center distance between adjacent C-shaped iron cores is 1.5 P, and the magnetic pole surfaces are the same. They are placed on a flat surface. Between the magnetic poles 511, 522, 531, 542 and 512, 521, 532, 541 of the C-shaped iron cores 41, 42, 43, 44, a rod-shaped permanent magnet 7 having a square cross section is arranged and fixed to a table (not shown). ing. The table is supported by a support mechanism (not shown) so as to be movable in the left and right movement directions to form a movable element 8. The permanent magnet 7 is magnetized in the direction toward each magnetic pole surface of the C-shaped iron core, and the direction of magnetization is reversed at a pitch P in the longitudinal direction.
[0006]
In the above configuration, the situation when the current is supplied to the coils 61 and 62 of the stator unit 21 in the direction shown in FIG. As shown in FIGS. 3A and 3B, the magnetic flux passing through the C-shaped iron cores 41 and 42 is added in accordance with the magnetization direction of the permanent magnet 7. Since the polarity of the permanent magnet 7 and the polarity of the magnetic pole of the C-shaped iron core facing each other through the air gap are different and magnetic attractive force is generated, the moving direction position of the mover 8 is stably held in the state of FIG. The sum of the magnetic attractive forces is canceled and becomes zero because the attractive forces of the two magnetic poles of the two C-shaped iron cores are equal and in opposite directions.
Next, the operation when switching the excitation of the stator units 21 and 22 will be described with reference to FIG. FIG. 4 shows the state of excitation of the stator 1 divided into four steps, and the state of the magnetic pole being excited is viewed from above. (A) is in the same excitation state as described with reference to FIGS. 2 and 3, and the stator magnetic poles and the mover magnetic poles facing each other have different polarities and are stably held by the magnetic attractive force. (B) shows the state when a current is supplied to the stator unit 22 in the same manner as the current supplied to the stator unit 21 in (a). For the same reason as (a), (a) On the other hand, the mover 8 is stably held at a position moved 0.5P to the right. (C) shows a state in which a current having a direction opposite to that in the case of (a) is supplied, and is stably held at a position moved to the right by 0.5P with respect to (b). (D) has shown the state which supplied the electric current of the reverse direction to the case of (b), and is stably hold | maintained in the position which moved 0.5P right with respect to (c). By switching the current for one cycle, which returns to (a) after going through the four steps from (a) to (d), the mover 8 can move to the right by 2P. It can be moved continuously to the right. Needless to say, if the current is switched in the reverse order, the movable element 8 can be moved to the left by the same mechanism.
[0007]
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 5A is a plan view of the linear motor of the second embodiment with a part thereof omitted, and FIG. 5B is a cross-sectional view taken along line AA ′ of FIG. The second embodiment is similar to the first embodiment except for a part, and only different points will be described. One of the changes is that the C-shaped iron core 41 of the first embodiment is divided into a C-shaped iron core 451 and an I-shaped iron core 461, and two sets of magnetic pole surfaces 551 and 552 facing each other are parallel to each other. It is rigidly fixed to the base 1 so that it becomes. Another change is in the mover 8, and permanent magnets 72 and 71 are directly or indirectly fixed to a table (not shown) with a nonmagnetic material 73 in between so as to be positioned between the two sets of magnetic pole surfaces. Yes. The permanent magnets 71 and 72 and the C-shaped iron core and the I-shaped iron core form a closed magnetic circuit. The C-shaped iron cores 452, 453, and 454 are the same as the C-shaped iron core 451, the I-shaped iron cores 462, 463, and 464 are the same as the I-shaped iron core 461, and the one-side magnetic pole units 33A and 33B constituted by them are the first embodiment. This corresponds to the one-side units 31A and 31B in the example. The operation of the linear motor of the second embodiment having such a configuration is the same as that of the first embodiment because the magnetic flux generation state of the stator 2 is the same as that of the first embodiment. Compared to the first embodiment, the area of the opposing magnetic pole surfaces of the stator 2 and the mover 8 is approximately doubled, so that the thrust is doubled.
In the two embodiments described above, the case where there are two one-side magnet units has been described, but three or more magnet units may be used. The two embodiments are two-phase linear motors, but three stator units are provided and the center-to-center distance is 16 P / 3, that is, the center-to-center distance between adjacent iron cores is 4 P / 3. Phase linear motor. Similarly, if m stator units are provided and the distance between the centers is (P + P / m), an m-phase motor can be obtained. In both cases, the current is switched in both directions as in the case of the two-phase motor. Can be moved.
[0008]
【The invention's effect】
As described above, according to the present invention, since the silicon steel plates are laminated to form the C-shaped iron core or I-shaped iron core of the stator, the area of the magnetic path can be increased compared to the conventional one, Magnetic saturation hardly occurs and high thrust can be obtained. Moreover, since the silicon steel plates are laminated in the direction in which the iron cores are arranged, the leakage magnetic flux between the iron cores is small, and the reduction in thrust is minimized. If the permanent magnet of the mover is thinned, the magnetic field modulation factor increases, and thus a high thrust can be obtained. Furthermore, since the magnetic attractive force acting between the stator and the mover is canceled by both side surfaces of the permanent magnet, the burden on the support mechanism of the mover is small, and there is an effect that the reliability of the linear motor is improved.
[0009]
[Brief description of the drawings]
FIG. 1 is a perspective view of a linear motor showing a first embodiment of the present invention. FIG. 2 is a plan view of the first embodiment. FIG. 3 is an explanatory view of the first embodiment. [Fig. 5] Structural diagram of the second embodiment [Explanation of symbols]
1 Base 2 Stator 21, 22, 23, 24 Stator unit 31A, 31B, 32A, 32B, 33A, 33B, 34A, 34B One side magnet unit 41, 42, 43, 44, 451, 452, 453, 454 C type Iron cores 461, 462, 463, 464 I-type iron cores 511, 512, 521, 522, 531, 532, 541, 542, 551, 552 Magnetic poles 61, 62 Coils 7, 71, 72 Permanent magnet 73 Non-magnetic material 8 Movable element

Claims (1)

ピッチPで極性が異なる矩形断面をした棒状の永久磁石とこの永久磁石を固着したテーブルとこれらを移動可能に支持する支持手段とを備えた可動子と、
磁極がエアギャップを介して前記永久磁石を挟む電磁石を複数個備えた固定子とからなり、
その固定子を交流励磁することによって前記可動子を移動させるm相のリニアモータにおいて、
長方形の片方の側辺の上部を切欠いて対向する平行な磁極面を持つ磁極を形成した同じ形状のC形鉄心が前記永久磁石を前記磁極の間に挟んでピッチ2Pで並べられ、
その鉄心に1つのコイルが共通に巻かれて片側磁石ユニットをなし、
前記片側磁石ユニット2個を対向させ前記磁極を互いにピッチPずらして一列に並ぶよう配置して固定子ユニットをなし、
その固定子ユニットをその隣り合う鉄心のピッチが(P+P/m)(m=2、3、4、・・・)となるよう複数個並べて固定子をなした
ことを特徴とするm相のリニアモータ。
A mover comprising a rod-shaped permanent magnet having a rectangular cross section with different polarities at a pitch P, a table to which the permanent magnet is fixed, and a supporting means for movably supporting these;
The magnetic pole comprises a stator having a plurality of electromagnets sandwiching the permanent magnet through an air gap,
In an m-phase linear motor that moves the mover by AC excitation of the stator,
C-shaped iron cores having the same shape and formed with magnetic poles having parallel magnetic pole faces facing each other by cutting out the upper part of one side of the rectangle are arranged at a pitch of 2P with the permanent magnet sandwiched between the magnetic poles,
One coil is wound around the iron core to form a one-side magnet unit,
The two magnetic units on one side are opposed to each other, and the magnetic poles are arranged so as to be aligned in a row with a pitch P shift from each other.
M-phase linear, characterized in that a plurality of the stator units are arranged side by side so that the pitch of the adjacent iron cores is (P + P / m) (m = 2, 3, 4,...). motor.
JP34053396A 1996-12-04 1996-12-04 Linear motor Expired - Fee Related JP3791082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34053396A JP3791082B2 (en) 1996-12-04 1996-12-04 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34053396A JP3791082B2 (en) 1996-12-04 1996-12-04 Linear motor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006037098A Division JP4106571B2 (en) 2006-02-14 2006-02-14 Linear motor

Publications (2)

Publication Number Publication Date
JPH10174418A JPH10174418A (en) 1998-06-26
JP3791082B2 true JP3791082B2 (en) 2006-06-28

Family

ID=18337906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34053396A Expired - Fee Related JP3791082B2 (en) 1996-12-04 1996-12-04 Linear motor

Country Status (1)

Country Link
JP (1) JP3791082B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246401A (en) * 2008-12-10 2011-11-16 株式会社日立制作所 Thrust generation mechanism, drive device, XY stage, and XYZ stage

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE521607C2 (en) * 2000-04-07 2003-11-18 Abb Ab A linear electric machine
JP3945142B2 (en) 2000-10-12 2007-07-18 株式会社日立製作所 Linear motor and control method thereof
JP4061834B2 (en) 2000-11-02 2008-03-19 株式会社日立製作所 Linear motor
JP3945148B2 (en) * 2000-11-02 2007-07-18 株式会社日立製作所 XY table and XYZ table
JP3876611B2 (en) 2000-11-02 2007-02-07 株式会社日立製作所 Fluid transfer device
JP3758496B2 (en) * 2000-11-06 2006-03-22 株式会社日立製作所 Joint drive device
JP3945150B2 (en) 2000-11-06 2007-07-18 株式会社日立製作所 Linear motor
JP3945149B2 (en) * 2000-11-06 2007-07-18 株式会社日立製作所 Linear motor and manufacturing method thereof
JP3861593B2 (en) * 2000-12-11 2006-12-20 株式会社日立製作所 Linear motor
JP3744437B2 (en) 2002-02-20 2006-02-08 株式会社日立製作所 Drive device
JP3821101B2 (en) 2003-02-04 2006-09-13 株式会社日立製作所 Linear drive device, control method thereof, and XY table
JP4497986B2 (en) * 2004-03-31 2010-07-07 山洋電気株式会社 Claw pole type three-phase linear motor
DE102005017482B4 (en) 2005-04-15 2007-05-03 Compact Dynamics Gmbh Gas exchange valve actuator for a valve-controlled internal combustion engine
DE102005017481B4 (en) 2005-04-15 2007-08-30 Compact Dynamics Gmbh Linear Actuator
JP5277040B2 (en) * 2009-03-31 2013-08-28 株式会社日立製作所 Drive unit, XY stage and XYZ stage
JP2010141978A (en) * 2008-12-10 2010-06-24 Hitachi Ltd Thrust generation mechanism
WO2010103575A1 (en) * 2009-03-13 2010-09-16 株式会社日立製作所 Linear motor
JP5477126B2 (en) * 2010-04-07 2014-04-23 日立金属株式会社 Linear motor
WO2011155022A1 (en) * 2010-06-08 2011-12-15 株式会社日立製作所 Linear motor
US20130088099A1 (en) * 2010-06-09 2013-04-11 Hitachi, Ltd. Generator and Electricity-Generating System
US10218252B2 (en) * 2010-06-09 2019-02-26 Hitachi, Ltd. Linear motor and positioning apparatus
WO2013047610A1 (en) * 2011-09-28 2013-04-04 Thk株式会社 Actuator
JP2013176269A (en) * 2012-02-27 2013-09-05 Hitachi Metals Ltd Linear motor
GB2503015A (en) 2012-06-14 2013-12-18 Isis Innovation Stator core module and reinforced armature in a linear electromechanical transducer
JP5678025B2 (en) * 2012-11-19 2015-02-25 株式会社日立製作所 Thrust generating mechanism
EP3047559B1 (en) * 2013-09-18 2022-02-23 Evr Motors Ltd. Multipole electrical machine
WO2016047390A1 (en) * 2014-09-25 2016-03-31 アイシン・エィ・ダブリュ株式会社 Electromagnetic actuator
JP6028013B2 (en) 2014-12-25 2016-11-16 Thk株式会社 Linear motor
CN113410963B (en) * 2021-06-25 2022-06-07 中国船舶重工集团公司第七0七研究所 Magnetic retention and guide assembly method of aluminum-nickel-cobalt magnetic steel integrally-mounted torque motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246401A (en) * 2008-12-10 2011-11-16 株式会社日立制作所 Thrust generation mechanism, drive device, XY stage, and XYZ stage
CN102246401B (en) * 2008-12-10 2015-10-21 株式会社日立制作所 Thrust generation mechanism, drive unit, XY worktable and XYZ workbench

Also Published As

Publication number Publication date
JPH10174418A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
JP3791082B2 (en) Linear motor
JP3395155B2 (en) Linear motor and manufacturing method thereof
US6236124B1 (en) Linear motor
EP1198055B1 (en) Linear motor, driving and control system thereof and manufacturing method thereof
US5087844A (en) Linear motor
JP4788986B2 (en) Linear motor
KR101798548B1 (en) Linear motor
JP4106571B2 (en) Linear motor
JPS62193543A (en) Moving-coil type linear motor
US20020117905A1 (en) Linear actuator
JP2785406B2 (en) Linear servo motor
JP2524103Y2 (en) Synchronous linear motor
JP2001008432A (en) Linear motor
JP2642240B2 (en) Linear motor
JP4476502B2 (en) Linear motor
JPH02246762A (en) Linear motor
JP2003134791A (en) Permanent magnet synchronous linear motor
JP3491881B2 (en) Straight electric machine
JP3906443B2 (en) Linear motor
JPH01315250A (en) Linear motor and linear driving device using the motor
JP2782830B2 (en) Linear servo motor
JP3700883B2 (en) Linear motor stator
JPS61277362A (en) Three-phase linear inductor type synchronous motor
KR20130008725A (en) Motor
JP4352439B2 (en) Linear motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees