WO2013047610A1 - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
WO2013047610A1
WO2013047610A1 PCT/JP2012/074766 JP2012074766W WO2013047610A1 WO 2013047610 A1 WO2013047610 A1 WO 2013047610A1 JP 2012074766 W JP2012074766 W JP 2012074766W WO 2013047610 A1 WO2013047610 A1 WO 2013047610A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
coil
core
cores
magnet
Prior art date
Application number
PCT/JP2012/074766
Other languages
French (fr)
Japanese (ja)
Inventor
柴田 均
谷口 繁
鈴木 浩史
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Publication of WO2013047610A1 publication Critical patent/WO2013047610A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/141Stator cores with salient poles consisting of C-shaped cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/12Transversal flux machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Definitions

  • the present invention relates to an actuator.
  • This application claims priority based on Japanese Patent Application No. 2011-212953 filed in Japan on September 28, 2011, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses an ultra-precision positioning linear motor.
  • FIG. 11 is a perspective view showing a schematic configuration of a conventional linear motor 100.
  • FIG. 12 is a side view of a conventional linear motor 100.
  • the linear motor 100 has substantially the same configuration as the linear motor disclosed in Patent Document 1.
  • the linear motor 100 includes a plurality of armatures (primary side) having a core 103 and a magnet unit 106 (secondary side) having a permanent magnet.
  • the core 103 is formed with a local portion (gap) where the upper magnetic pole teeth and the lower magnetic pole teeth face each other.
  • the core 103 is formed such that a portion on the upper magnetic pole tooth side and a portion on the lower magnetic pole tooth side extend in opposite directions in the left-right direction when viewed from the traveling direction of the linear motor 100.
  • An IL 104 is wound around each of the cores 103.
  • the armature (core 103) of the conventional linear motor 100 is not a circular outer shape but a complicated ring shape having many bent portions. For this reason, the magnetic field generated in the armature (core 103) has a problem that magnetic saturation occurs because the magnetic path becomes long.
  • the magnet unit 106 is inserted into the gap of the armature (gap of the core 103).
  • the magnet part 106 is a both-ends support structure that supports both ends in the longitudinal direction. For this reason, when the magnet part 106 becomes long in the longitudinal direction, the central part of the magnet part 106 is bent by its own weight, so that it is necessary to increase the gap between the armatures (core 103). Therefore, the conventional linear motor 100 has a problem that the nonlinearity of the thrust with respect to the current appears in the magnetic saturation region and the controllability is deteriorated.
  • An object of the present invention is to provide an actuator capable of efficient and precise positioning.
  • the N pole and the S pole are alternately arranged in the first direction on the first surface and the second surface facing each other, and the first surface
  • the ring-shaped part of the C-shaped core is arranged on one side with respect to the magnet part in a second direction orthogonal to the first direction and parallel to the first surface and the second surface, and , Orthogonal to the first direction and the first surface and the They are staggered on opposite sides with respect to the said magnet portion in a third direction orthogonal to the second surface.
  • the coil corresponds to an annular portion of another adjacent C-shaped core among the annular portions of the C-shaped core.
  • a third embodiment of the actuator according to the present invention is the first or second embodiment according to the present invention, wherein the coil is relative to another adjacent C-shaped core among the ring-shaped portions of the C-shaped core.
  • the ring-shaped portion of the C-shaped core has a ring shape.
  • a fifth embodiment of the actuator according to the present invention is the actuator according to any one of the first to fourth embodiments according to the present invention, wherein the cross-sectional shape of the ring-shaped portion of the C-shaped core is the first end portion. It is the same shape over the two ends.
  • a sixth embodiment of the actuator according to the present invention is the encoder according to any one of the first to fifth embodiments according to the present invention, further comprising an encoder that detects a relative position between the magnet portion and the coil portion. Is disposed in proximity to the thrust generation location by the magnet portion and the coil portion.
  • a large driving force can be obtained by suppressing magnetic saturation, so that efficient and precise positioning can be performed.
  • FIG. 1 It is a figure which shows magnetic flux density distribution of the core of a linear motor.
  • A shows the case of the supply current 5A
  • (b) shows the case of the supply current 10A
  • (c) shows the case of the supply current 20A
  • (d) shows the case of the supply current 30A.
  • (A) shows the case of the supply current 5A
  • (b) shows the case of the supply current 10A
  • (c) shows the case of the supply current 20A
  • (d) shows the case of the supply current 30A.
  • FIG. 1 It is a figure which shows magnetic flux density distribution of the core of the conventional linear motor.
  • A shows the case of the supply current 5A
  • (b) shows the case of the supply current 10A
  • (c) shows the case of the supply current 20A
  • (d) shows the case of the supply current 30A.
  • FIG. 1 is a perspective view showing a schematic configuration of a linear motor 1 according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a main part of the linear motor 1 with the table 20 removed.
  • FIG. 3A is a front view (partially sectional view) showing a schematic configuration of the linear motor 1.
  • FIG. 3B is a diagram showing the U-phase core 61.
  • the traveling direction of the table 20 is the X direction (first direction), orthogonal to the X direction, the direction parallel to the top surface of the table 20 is the Y direction (third direction), and the direction perpendicular to the top surface of the table 20 is the Z direction (first direction). Bidirectional).
  • the direction indicated by each arrow on the coordinate axis is referred to as a + direction, and the direction opposite to each arrow is referred to as a ⁇ direction.
  • the linear motor (actuator) 1 is a magnetic attractive force cancel type.
  • the linear motor 1 includes a base 10 that is elongated in one direction (X direction) and a table 20 that is slidable with respect to the base 10.
  • a pair of linear guides 50 is provided between the base 10 and the table 20. For this reason, the table 20 can slide smoothly along the longitudinal direction of the linear guide 50 with respect to the base 10.
  • the base 10 includes an elongated rectangular bottom wall portion 11 and a pair of side wall portions 12 provided perpendicular to both ends in the width direction (Y direction) of the bottom wall portion 11.
  • the base 10 is made of, for example, a magnetic material such as steel or a nonmagnetic material such as aluminum.
  • a magnet portion 30 in which a plurality of permanent magnets 33 are arranged in the X direction is disposed at the center of the upper surface of the bottom wall portion 11 of the base 10.
  • Track rails 51 of the linear guide 50 are arranged along the X direction on the upper surfaces of the side wall portions 12 of the base 10.
  • the two track rails 51 are arranged substantially in parallel.
  • a moving block 52 is attached to each track rail 51.
  • the table 20 is made of a nonmagnetic material such as aluminum and is formed in a rectangular plate shape.
  • the moving blocks 52 of the linear guide 50 are attached to the four corners on the lower surface side of the table 20, respectively. Each moving block 52 is attached to the two track rails 51 described above. Accordingly, the table 20 is supported by the four sets of linear guides 50 in a state in which the table 20 can linearly move with respect to the base 10.
  • a coil portion 40 that functions as a three-phase coil is provided on the lower surface of the table 20.
  • the coil unit 40 is disposed in a region surrounded by the four moving blocks 52 on the lower surface of the table 20.
  • the magnet unit 30 includes an elongated thin plate-like magnet plate 31, a bottom plate 32 that fixes the magnet plate 31, and a plurality of permanent magnets 33 attached to both surfaces of the magnet plate 31.
  • the permanent magnet 33 is made of, for example, neodymium.
  • the magnet plate 31 is fixed so as to be orthogonal to the Y direction while being orthogonal to the bottom plate 32 (the bottom wall portion 11 of the base 10).
  • the magnet plate 31 has a longitudinal direction formed along the X direction and a short side direction formed along the Z direction.
  • the magnet plate 31 is inserted into a part (a gap g described later) of the coil portion 40 disposed on the lower surface of the table 20.
  • the magnet plate 31 has a first surface 31a and a second surface 31b that are orthogonal to the Y direction and face each other.
  • N-pole and S-pole permanent magnets 33 are alternately arranged in the X direction.
  • the polarity of the permanent magnet 33 disposed on the first surface 31 a is opposite to the polarity of the permanent magnet 33 disposed on the second surface 31 b facing away from the permanent magnet 33. That is, on the first surface 31a, from the ⁇ X direction to the + X direction (see FIG. 4, from the lower side to the upper side in FIG. 4), the N pole, the S pole, the N pole, the S pole,.
  • the permanent magnets 33 are alternately arranged.
  • permanent magnets 33 of S pole, N pole, S pole, N pole,... are alternately arranged on the second surface 31b from the ⁇ X direction to the + X direction.
  • the permanent magnets 33 arranged on the first surface 31 a and the second surface 31 b of the magnet plate 31 generate a magnetic field inside the coil unit 40 when entering the gap g of the coil unit 40.
  • the magnet unit 30 is different from the both-end support structure employed by the magnet unit 106 of the conventional linear motor 100 (see FIG. 11).
  • the magnet unit 30 employs a full support structure in which the entire area of the end surface of the magnet plate 31 in the ⁇ Z direction (the lower side in FIG. 3A) is supported by the bottom plate 32. For this reason, as for the magnet part 30, the magnet plate 31 does not bend by own weight.
  • FIG. 4 is a cross-sectional view (a view showing a cross section perpendicular to the Z direction) showing a schematic configuration of the coil section 40.
  • FIG. 5 is a top view of the coil unit 40.
  • FIG. 6 is a side view of the coil unit 40.
  • the coil unit 40 is a U, V, W three-phase coil.
  • Each of the three-phase coils has a C-shaped core and a coil wound around the core.
  • the coil unit 40 includes U-phase cores (C-shaped cores) 61, 62, 63, 64, U-phase outer coils (first coils) 66, 68, U-phase inner coils (second coils) 67, 69, V-phase core (C-shaped core) 71, 72, 73, 74, V-phase outer coil (first coil) 76, 78, V-phase inner coil (second coil) 77, 79, W-phase core (C-shaped) Core) 81, 82, 83, 84, W-phase outer coils (first coils) 86, 88, and W-phase inner coils (second coils) 87, 89.
  • the core and coil of each phase of U, V, and W have the same configuration and the same shape. Therefore, the U phase will be mainly described below.
  • the core shape will be described mainly with respect to the U-phase core 61.
  • the material of the U-phase cores 61, 62, 63, 64 is a magnetic material such as silicon steel. As shown in FIGS. 3A to 6, the U-phase cores 61, 62, 63, and 64 have the same shape.
  • the U-phase cores 61, 62, 63, 64 are formed in a C-shaped ring shape and have a gap g that is a gap into which the magnet plate 31 can be inserted.
  • the U-phase cores 61, 62, 63, 64 have a shape that is sandwiched across the magnet part 30.
  • the C-shape means an incomplete annular shape having a cut (gap g) in a part of the circumferential direction of a portion (annular portion 61c) formed in an annular shape.
  • the C-shape includes an annular member having a gap g at one place, such as a U-shape or a horseshoe shape.
  • the ring-shaped part 61c is a part excluding the first end part 61a and the second end part 61b that form the gap g.
  • the U-phase cores 61, 62, 63, and 64 have a bent portion or a straight portion, they are formed in a C-shape that is generally an arc shape.
  • the U-phase cores 61, 62, 63, 64 have a substantially uniform cross-sectional shape (a cross-sectional shape perpendicular to the magnetic path (magnetic flux direction)) in any part of the U-phase cores 61, 62, 63, 64. (Rectangular).
  • All of the U-phase cores 61, 62, 63, 64 are arranged with the gap g directed in the ⁇ Z direction where the magnet part 30 is arranged.
  • the U-phase cores 61, 62, 63, 64 are arranged at equal intervals in the X direction in a state parallel to each other in the Y direction.
  • All of the ring-shaped portions (61c) of the U-phase cores 61, 62, 63, and 64 are arranged toward the + Z direction (the upper side in FIG. 3A) with respect to the magnet portion 30.
  • one end surface (first end portion 61 a) that forms the gap g does not contact the first surface 31 a of the magnet plate 31 and has a constant gap. Opposite each other.
  • the other end surface (second end portion 61 b) that forms the gap g does not contact the second surface 31 b of the magnet plate 31 and has a certain gap. Opposite each other.
  • the ring-shaped portion (61c) of the U-phase core 61, 62, 63, 64 When viewed from the X direction (see FIG. 3A), the ring-shaped portion (61c) of the U-phase core 61, 62, 63, 64 has a center (center of gravity) in the + Y direction or the magnet portion 30 (magnet plate 31). -It is in a position shifted (offset) in the Y direction.
  • the ring-shaped portions (61c) of the U-phase cores 61 and 63 are arranged so as to be offset in the + Y direction (the left side in FIG. 3A).
  • the ring-shaped portions (61c) of the U-phase cores 62 and 64 are arranged so as to be offset in the ⁇ Y direction (the right side in FIG. 3A).
  • the ring-shaped portions (61c) of the U-phase cores 61 and 63 and the U-phase cores 62 and 64 are symmetrical with respect to an axis (not shown) in the Z direction passing through the magnet plate 31 of the magnet portion 30. Placed in.
  • the ring-shaped portions (61c) of the U-phase cores 61, 62, 63, and 64 are alternately arranged in the Y direction with respect to the magnet portion 30, and are arranged in the X direction.
  • the U-phase cores 61, 62, 63, and 64 are not complicated ring shapes that the core 103 of the conventional linear motor 100 has (see FIG. 12).
  • the U-phase cores 61, 62, 63, 64 are formed in a C-shape that is generally arcuate. For this reason, the U-phase cores 61, 62, 63, 64 have a shorter magnetic path than the core 103 of the conventional linear motor 100.
  • the cross-sectional shape of the U-phase cores 61, 62, 63, 64 does not vary greatly depending on the location as in the core 103 of the conventional linear motor 100 (see FIG. 12).
  • the U-phase cores 61, 62, 63, 64 have a substantially uniform cross-sectional shape at any portion.
  • the gap g of the U-phase cores 61, 62, 63, 64 is formed narrower than the gap of the core 103 of the conventional linear motor 100. Therefore, the U-phase cores 61, 62, 63, 64 are less likely to be magnetically saturated compared to the core 103 of the conventional linear motor 100.
  • the U-phase cores 61, 62, 63, 64 have coils (U-phase outer coils 66, 64) in the portion farthest from the magnet unit 30 (magnet plate 31) in the Y direction. 68) is wound.
  • a U-phase outer coil (coil, first coil) 66 is wound around a portion (region) farthest from the magnet plate 31 in the + Y direction.
  • the U-phase outer side of the annular region (61c) of the U-phase cores 61 and 63 is not overlapped with the annular region (61c) of the adjacent U-phase cores 62 and 64.
  • a coil 66 is wound.
  • One U-phase outer coil 66 is wound around the pair of U-phase cores 61 and 63.
  • a U-phase outer coil (coil, first coil) 68 is wound around a portion farthest from the magnet plate 31 in the ⁇ Y direction.
  • the U-phase outer coil 68 is wound on the first region 61d that does not overlap the annular portion (61c) of the adjacent U-phase cores 61 and 63 among the annular portions (61c) of the U-phase cores 62 and 64.
  • One U-phase outer coil 68 is wound around the pair of U-phase cores 62 and 64.
  • Coils (U-phase inner coils 67 and 69) are wound around the U-phase cores 61, 62, 63, and 64 in regions (regions) close to the magnet plate 31 in the Y direction.
  • a U-phase inner coil (coil, second coil) 67 is wound at a portion farthest in the ⁇ Y direction from the U-phase outer coil 66.
  • the U-phase inner coil 67 is formed in the second region 61 e that does not overlap the annular portion (61 c) of the adjacent U-phase cores 62, 64 among the annular portions 61 c of the U-phase cores 61, 63. Is wound.
  • One U-phase inner coil 67 is wound around the pair of U-phase cores 61 and 63.
  • a U-phase inner coil (coil, second coil) 69 is wound at a position farthest from the U-phase outer coil 68 in the + Y direction.
  • the U-phase inner coil 69 is wound around the second region 61e that does not overlap the annular portion (61c) of the adjacent U-phase cores 61 and 63 among the annular portions (61c) of the U-phase cores 62 and 64.
  • One U-phase inner coil 69 is wound around the pair of U-phase cores 62 and 64.
  • the U-phase inner coils 67 and 69 are closer to the magnet unit 30 than the U-phase outer coils 66 and 68.
  • the first region 61d is a region away from the magnet unit 30 among the two regions that do not overlap the adjacent U-phase core in the ring-shaped portion 61c.
  • the second region 61e is a region adjacent to the magnet unit 30 among the two regions that do not overlap the adjacent U-phase core in the annular portion 61c.
  • the number of coil turns of the U-phase outer coils 66 and 68 and the U-phase inner coils 67 and 69 is about half that of the U-phase outer coils 66 and 68. It is set as follows.
  • FIG. 7 is a circuit diagram showing a connection mode of the outer and inner coils of each of U, V, and W phases.
  • a U-phase outer coil 66 and a U-phase inner coil 67 wound around the same core pair (U-phase cores 61 and 63) are connected in series.
  • the U-phase outer coil 68 and the U-phase inner coil 69 wound around another identical core pair (U-phase cores 62 and 64) are connected in series.
  • the series connection circuit of the U-phase outer coil 66 and the U-phase inner coil 67 and the series connection circuit of the U-phase outer coil 68 and the U-phase inner coil 69 are connected in series (U-phase series circuit).
  • a three-phase alternating current is supplied to the U-phase series circuit.
  • an outer coil (V phase outer coil 76, W phase outer coil 86) and an inner coil (V) wound around the same core pair (V phase cores 71 and 73, W phase cores 81 and 83).
  • a phase inner coil 77 and a W phase inner coil 87) are connected in series.
  • a phase inner coil 89) is connected in series. Further, two series connection circuits are connected in series (V phase series circuit, W phase series circuit). A three-phase alternating current is also supplied to the V-phase series circuit and the W-phase series circuit.
  • FIG. 8 is a circuit diagram showing another connection mode of the outer and inner coils of each phase of U, V, and W.
  • a U-phase outer coil 66 and a U-phase inner coil 67 wound around the same core pair (U-phase cores 61 and 63) are connected in series.
  • the U-phase outer coil 68 and the U-phase inner coil 69 wound around another identical core pair (U-phase cores 62 and 64) are connected in series.
  • the series connection circuit of the U-phase outer coil 66 and the U-phase inner coil 67 and the series connection circuit of the U-phase outer coil 68 and the U-phase inner coil 69 are connected in parallel (U-phase parallel circuit).
  • a three-phase alternating current is supplied to the U-phase parallel circuit.
  • an outer coil (V phase outer coil 76, W phase outer coil 86) and an inner coil (V) wound around the same core pair (V phase cores 71 and 73, W phase cores 81 and 83).
  • a phase inner coil 77 and a W phase inner coil 87) are connected in series.
  • a coil 89) is connected in series. Further, two series connection circuits are connected in parallel (V phase parallel circuit, W phase parallel circuit). A three-phase alternating current is also supplied to the V-phase parallel circuit and the W-phase parallel circuit.
  • FIG. 9 is a diagram showing the magnetic flux density distribution of the U-phase cores 61 and 62 of the linear motor 1.
  • FIG. 10 is a diagram showing the magnetic flux density distribution of the U-phase cores 61 and 62 when the inner coils 67 and 69 are not provided as a reference example.
  • FIG. 13 is a diagram showing the magnetic flux density distribution of the core 103 of the conventional linear motor 100.
  • 9 and 10 are views of the U-phase cores 61 and 62 viewed from the X direction, and only the U-phase cores 61 and 62 are shown.
  • FIG. 13 is a view of the U-phase core 103 as viewed from the X direction, and shows only the U-phase core 103.
  • the supply current to the coil unit 40 is increased in the order of (a) to (d).
  • (A) shows the supply current 5A
  • (b) shows the supply current 10A
  • (c) shows the supply current 20A
  • (d) shows the supply current 30A.
  • the supply current to the coil section is increased in the order of (a) to (d).
  • (A) shows the case of the supply current 5A
  • (b) shows the case of the supply current 10A
  • (c) shows the case of the supply current 20A
  • (d) shows the case of the supply current 30A.
  • the U-phase cores 61 and 62 have a uniform magnetic flux density as a whole, although there are some portions where the magnetic flux density is slightly low in the vicinity of the gap g.
  • the U-phase cores 61 and 62 have a high magnetic flux density and are not easily magnetically saturated.
  • the magnetic flux density is uniform as a whole even when the current value of the supply current is changed.
  • the U-phase cores 61 and 62 have a uniform magnetic flux density as a whole, although there are some portions where the magnetic flux density is slightly low in the vicinity of the gap g.
  • the U-phase cores 61 and 62 have a high magnetic flux density and are not easily magnetically saturated.
  • the magnetic flux density is more uniform in the case of FIG. 9 than the case of FIG. 10 because the U-phase inner coils 67 and 69 are present, and the magnetic flux density is more uniform. high.
  • the linear motor 1 has the following features and effects as compared to the conventional linear motor 100.
  • the magnet plate 31 on which the permanent magnets 33 are arranged is fixed to the bottom plate 32, so that the magnet plate 31 does not bend due to its own weight. For this reason, the gap between the core of each phase and the magnet portion can be reduced. Therefore, the linear motor 1 can effectively use the magnetic flux.
  • the linear motor 1 there is no restriction
  • the core (annular portion) of each phase has a substantially circular C shape, so that the magnetic path inside the core is shortened.
  • the cross-sectional shape of the core (annular part) of each phase is almost uniform in any part.
  • FIG. 14A is a perspective view showing an installation mode of the linear encoder.
  • FIG. 14B is a front view showing an installation mode of the linear encoder.
  • the linear motor 1 includes a linear encoder 90 in order to measure the position, speed, and the like of the table 20 (coil unit 40) in the X direction with respect to the base 10 (magnet unit 30).
  • the linear encoder 90 includes a linear scale 91 disposed on the base 10 and a detector 92 disposed on the table 20.
  • the linear scale 91 is disposed at the upper end of the magnet plate 31.
  • An upper end plate 35 that is parallel to the XY plane and extends in the X direction is disposed at the upper end of the magnet plate 31.
  • the linear scale 91 is installed on the upper surface of the upper end plate 35.
  • the detector 92 is arranged with respect to the end surface of the table 20 in the X direction via the detector fixture 25.
  • the installation position of the linear encoder 90 substantially coincides with (is close to) the thrust generation location (gap g) of the linear motor 1. Therefore, the relative position of the table 20 (coil part 40) with respect to the base 10 (magnet part 30) can be detected accurately. If the linear encoder is arranged at a location away from the thrust generation location of the linear motor, a position detection error occurs due to mechanical distortion or the like, causing a control delay. For this reason, the linear motor may vibrate and precise positioning may be difficult. On the other hand, in the linear motor 1, since the installation position of the linear encoder 90 is substantially matched (close) to the thrust generation location, almost no position detection error occurs.
  • the control vibration in the linear motor 1 is suppressed, and the linear motor 1 can be accurately positioned.
  • the mechanical rigidity of the magnet part 30 becomes high. Accordingly, mechanical vibrations in the magnet unit 30 and the linear scale 91 are suppressed, and the linear motor 1 can be accurately positioned.
  • the present invention is not limited to this. It may be the case where only the outer coil is provided for one core, or the case where only the inner coil (auxiliary coil) is provided for one core.
  • the linear motor 1 is not limited to a three-phase type, and can be applied to a two-phase type, for example.
  • the number of cores of each phase of the coil unit 40 is not limited to four, and any number of cores can be used.
  • the cross-sectional shape of the core of each phase of the coil unit 40 is not limited to a rectangle.
  • it may be polygonal, circular or elliptical.
  • the cross-sectional shape of the core may be any shape as long as it is a substantially uniform cross-sectional shape.
  • W-phase outer coil (coil, first coil), 77, 79: W-phase inner coil (coil, second coil), 81, 82, 83, 84 ... V-phase core (C-shaped core), 86, 88 ... W-phase outer coil (coil, first coil) Le), 87, 89 ... W-phase inner coil (coil, a second coil), 90 ... linear encoder (encoder)

Abstract

This actuator is provided with: magnet units such that the N-poles and S-poles are disposed alternately facing a first direction respectively at first surfaces and second surfaces that trail each other; and a coil unit having a plurality of c-shaped cores of which the first ends face the first surfaces and the second ends face the second surfaces, and a plurality of coils wound around the plurality of c-shaped cores. The plurality of c-shaped cores are arrayed facing in the first direction, are disposed to one side in a second direction with the magnet units as a baseline, and are disposed far from each other to both sides in a third direction with the magnet units as a baseline.

Description

アクチュエータActuator
 本発明は、アクチュエータに関する。
 本願は、2011年9月28日に、日本に出願された特願2011-212953号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an actuator.
This application claims priority based on Japanese Patent Application No. 2011-212953 filed in Japan on September 28, 2011, the contents of which are incorporated herein by reference.
 特許文献1には、超精密位置決め用リニアモータが開示されている。 Patent Document 1 discloses an ultra-precision positioning linear motor.
 図11は、従来のリニアモータ100の概略構成を示す斜視図である。図12は、従来のリニアモータ100の側面図である。
 リニアモータ100は、特許文献1に開示されたリニアモータとほぼ同一構成である。このリニアモータ100は、コア103を有する複数の電機子(一次側)と、永久磁石を有する磁石部106(二次側)と、を備える。
 コア103には、上部磁極歯と下部磁極歯が対向する対局部(ギャップ)が形成される。コア103は、リニアモータ100の進行方向から見て、上部磁極歯側の部位と下部磁極歯側の部位とが左右方向に相反して延びて形成される。コア103のそれぞれには、イル104が巻かれる。
FIG. 11 is a perspective view showing a schematic configuration of a conventional linear motor 100. FIG. 12 is a side view of a conventional linear motor 100.
The linear motor 100 has substantially the same configuration as the linear motor disclosed in Patent Document 1. The linear motor 100 includes a plurality of armatures (primary side) having a core 103 and a magnet unit 106 (secondary side) having a permanent magnet.
The core 103 is formed with a local portion (gap) where the upper magnetic pole teeth and the lower magnetic pole teeth face each other. The core 103 is formed such that a portion on the upper magnetic pole tooth side and a portion on the lower magnetic pole tooth side extend in opposite directions in the left-right direction when viewed from the traveling direction of the linear motor 100. An IL 104 is wound around each of the cores 103.
特許第4089597号公報Japanese Patent No. 4089597
 従来のリニアモータ100の電機子(コア103)は、外形が円形ではなく、多くの屈曲部位を有する複雑な環形である。このため、電機子(コア103)に発生した磁界は、磁路が長くなるため磁気飽和が生じてしまう問題がある。 The armature (core 103) of the conventional linear motor 100 is not a circular outer shape but a complicated ring shape having many bent portions. For this reason, the magnetic field generated in the armature (core 103) has a problem that magnetic saturation occurs because the magnetic path becomes long.
 また、従来のリニアモータ100では、電機子の間隙(コア103のギャップ)に、磁石部106が挿入される。磁石部106は、長手方向の両端を支持する両端支持構造である。このため、磁石部106が長手方向に長くなると、磁石部106の中央部分が自重で撓んでしまうので、電機子(コア103)の間隙を大きくする必要がある。したがって、従来のリニアモータ100では、磁気飽和領域において電流に対する推力の非線形性が現れて、制御性が悪くなるという問題がある。 In the conventional linear motor 100, the magnet unit 106 is inserted into the gap of the armature (gap of the core 103). The magnet part 106 is a both-ends support structure that supports both ends in the longitudinal direction. For this reason, when the magnet part 106 becomes long in the longitudinal direction, the central part of the magnet part 106 is bent by its own weight, so that it is necessary to increase the gap between the armatures (core 103). Therefore, the conventional linear motor 100 has a problem that the nonlinearity of the thrust with respect to the current appears in the magnetic saturation region and the controllability is deteriorated.
 また、従来のリニアモータ100では、磁石部106を短くして撓みが生じないようにすると、十分な移動距離を確保できないという問題がある。 Further, in the conventional linear motor 100, there is a problem that a sufficient moving distance cannot be secured if the magnet portion 106 is shortened to prevent bending.
 本発明は、効率よく精密な位置決めが可能なアクチュエータを提供することを目的とする。 An object of the present invention is to provide an actuator capable of efficient and precise positioning.
 本発明に係るアクチュエータの第一の実施態様は、相互に背向する第一表面と第二表面のそれぞれにN極とS極が第一方向に向けて交互に配置され、かつ、前記第一表面の極性と前記第二表面の極性が相反する磁石部と、第一端部が前記第一表面に対して隙間を隔てて対向すると共に第二端部が前記第二表面に対して隙間を隔てて対向する複数のC字形コア及び前記複数のC字形コアに巻かれた複数のコイルを有するコイル部と、を備え、前記複数のC字形コアは、前記第一方向に向けて配列され、前記C字形コアの環形部は、前記第一方向に対して直交すると共に前記第一表面及び前記第二表面に対して平行な第二方向において前記磁石部を基準にして片側に配置され、かつ、前記第一方向に対して直交すると共に前記第一表面及び前記第二表面に対して直交する第三方向において前記磁石部を基準にして両側に互い違いに配置される。 In the first embodiment of the actuator according to the present invention, the N pole and the S pole are alternately arranged in the first direction on the first surface and the second surface facing each other, and the first surface The magnet part where the polarity of the surface and the polarity of the second surface are opposite to each other, the first end part is opposed to the first surface with a gap, and the second end part is a gap with respect to the second surface. A plurality of C-shaped cores facing each other and a coil portion having a plurality of coils wound around the plurality of C-shaped cores, the plurality of C-shaped cores being arranged in the first direction, The ring-shaped part of the C-shaped core is arranged on one side with respect to the magnet part in a second direction orthogonal to the first direction and parallel to the first surface and the second surface, and , Orthogonal to the first direction and the first surface and the They are staggered on opposite sides with respect to the said magnet portion in a third direction orthogonal to the second surface.
 本発明に係るアクチュエータの第二の実施態様は、本発明に係る第一の実施態様において、前記コイルは、前記C字形コアの環形部のうち、隣接する他のC字形コアの環形部に対して前記第一方向において重ならない第一領域に巻かれた第一コイルを含む。 According to a second embodiment of the actuator according to the present invention, in the first embodiment according to the present invention, the coil corresponds to an annular portion of another adjacent C-shaped core among the annular portions of the C-shaped core. A first coil wound around a first region that does not overlap in the first direction.
 本発明に係るアクチュエータの第三の実施態様は、本発明に係る第一または第二の実施態様において、前記コイルは、前記C字形コアの環形部のうち、隣接する他のC字形コアに対して前記第一方向において重ならない第二領域に巻かれた第二コイルを含む。 A third embodiment of the actuator according to the present invention is the first or second embodiment according to the present invention, wherein the coil is relative to another adjacent C-shaped core among the ring-shaped portions of the C-shaped core. A second coil wound around a second region that does not overlap in the first direction.
 本発明に係るアクチュエータの第四の実施態様は、本発明に係る第一から第三の実施態様のいずれかにおいて、前記C字形コアの環形部は、円環形である。 In a fourth embodiment of the actuator according to the present invention, in any one of the first to third embodiments according to the present invention, the ring-shaped portion of the C-shaped core has a ring shape.
 本発明に係るアクチュエータの第五の実施態様は、本発明に係る第一から第四の実施態様のいずれかにおいて、前記C字形コアの環形部の断面形状は、前記第一端部から前記第二端部に亘って同一形状である。 A fifth embodiment of the actuator according to the present invention is the actuator according to any one of the first to fourth embodiments according to the present invention, wherein the cross-sectional shape of the ring-shaped portion of the C-shaped core is the first end portion. It is the same shape over the two ends.
 本発明に係るアクチュエータの第六の実施態様は、本発明に係る第一から第五の実施態様のいずれかにおいて、前記磁石部と前記コイル部の相対位置を検出するエンコーダを更に備え、前記エンコーダは、前記磁石部と前記コイル部による推力発生箇所に近接配置される。 A sixth embodiment of the actuator according to the present invention is the encoder according to any one of the first to fifth embodiments according to the present invention, further comprising an encoder that detects a relative position between the magnet portion and the coil portion. Is disposed in proximity to the thrust generation location by the magnet portion and the coil portion.
 本発明に係るアクチュエータによれば、磁気飽和を抑制して大きな推進力が得られるので、効率よく精密な位置決めができる。 According to the actuator of the present invention, a large driving force can be obtained by suppressing magnetic saturation, so that efficient and precise positioning can be performed.
本発明の実施形態に係るリニアモータの概略構成を示す斜視図である。It is a perspective view showing a schematic structure of a linear motor concerning an embodiment of the present invention. リニアモータの要部斜視図である。It is a principal part perspective view of a linear motor. リニアモータの概略構成を示す正面図(一部断面図)である。It is a front view (partial sectional view) showing a schematic configuration of a linear motor. コアを示す図である。It is a figure which shows a core. コイル部の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of a coil part. コイル部の概略構成を示す上面図である。It is a top view which shows schematic structure of a coil part. コイル部の概略構成を示す側面図である。It is a side view which shows schematic structure of a coil part. U,V,Wの各相の外側コイル及び内側コイルの接続態様を示す回路図である。It is a circuit diagram which shows the connection aspect of the outer side coil of each phase of U, V, and W, and an inner side coil. U,V,Wの各相の外側コイル及び内側コイルの他の接続態様を示す回路図である。It is a circuit diagram which shows the other connection aspect of the outer side coil of each phase of U, V, and W, and an inner side coil. リニアモータのコアの磁束密度分布を示す図である。(a)は供給電流5Aの場合、(b)は供給電流10Aの場合、(c)は供給電流20Aの場合、(d)は供給電流30Aの場合を示す。It is a figure which shows magnetic flux density distribution of the core of a linear motor. (A) shows the case of the supply current 5A, (b) shows the case of the supply current 10A, (c) shows the case of the supply current 20A, and (d) shows the case of the supply current 30A. 内側コイル(補助コイル)がない場合におけるコアの磁束密度分布を示す図(参考例)である。(a)は供給電流5Aの場合、(b)は供給電流10Aの場合、(c)は供給電流20Aの場合、(d)は供給電流30Aの場合を示す。It is a figure (reference example) which shows the magnetic flux density distribution of a core in case there is no inner side coil (auxiliary coil). (A) shows the case of the supply current 5A, (b) shows the case of the supply current 10A, (c) shows the case of the supply current 20A, and (d) shows the case of the supply current 30A. 従来のリニアモータの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the conventional linear motor. 従来のリニアモータの側面図である。It is a side view of the conventional linear motor. 従来のリニアモータのコアの磁束密度分布を示す図である。(a)は供給電流5Aの場合、(b)は供給電流10Aの場合、(c)は供給電流20Aの場合、(d)は供給電流30Aの場合を示す。It is a figure which shows magnetic flux density distribution of the core of the conventional linear motor. (A) shows the case of the supply current 5A, (b) shows the case of the supply current 10A, (c) shows the case of the supply current 20A, and (d) shows the case of the supply current 30A. リニアエンコーダの設置態様を示す斜視図である。It is a perspective view which shows the installation aspect of a linear encoder. リニアエンコーダの設置態様を示す正面図である。It is a front view which shows the installation aspect of a linear encoder.
 図1は、本発明の実施形態に係るリニアモータ1の概略構成を示す斜視図である。
 図2は、テーブル20が取り除かれたリニアモータ1の要部斜視図である。
 図3Aは、リニアモータ1の概略構成を示す正面図(一部断面図)である。図3Bは、U相コア61を示す図である。
FIG. 1 is a perspective view showing a schematic configuration of a linear motor 1 according to an embodiment of the present invention.
FIG. 2 is a perspective view of a main part of the linear motor 1 with the table 20 removed.
FIG. 3A is a front view (partially sectional view) showing a schematic configuration of the linear motor 1. FIG. 3B is a diagram showing the U-phase core 61.
 テーブル20の進行方向をX方向(第一方向)、X方向に直交し、テーブル20の上面に平行な方向をY方向(第三方向)、テーブル20の上面に垂直な方向をZ方向(第二方向)とする。
 各図において、座標軸の各矢印が指す方向を+方向、各矢印とは反対方向を-方向と呼ぶ。
The traveling direction of the table 20 is the X direction (first direction), orthogonal to the X direction, the direction parallel to the top surface of the table 20 is the Y direction (third direction), and the direction perpendicular to the top surface of the table 20 is the Z direction (first direction). Bidirectional).
In each figure, the direction indicated by each arrow on the coordinate axis is referred to as a + direction, and the direction opposite to each arrow is referred to as a − direction.
 以下では、リニアモータ1の特徴を説明するため、適宜、従来のリニアモータ100と比較して説明する(図11、図12参照)。 In the following, in order to describe the characteristics of the linear motor 1, it will be described in comparison with the conventional linear motor 100 as appropriate (see FIGS. 11 and 12).
 リニアモータ(アクチュエータ)1は、磁気吸引力キャンセル型である。リニアモータ1は、一方向(X方向)に細長く伸びて形成されたベース10と、ベース10に対して摺動自在に設けられたテーブル20と、を備える。
 ベース10とテーブル20の間には、一対のリニアガイド50が設けられる。このため、テーブル20は、ベース10に対して、リニアガイド50の長手方向に沿って円滑に摺動可能である。
The linear motor (actuator) 1 is a magnetic attractive force cancel type. The linear motor 1 includes a base 10 that is elongated in one direction (X direction) and a table 20 that is slidable with respect to the base 10.
A pair of linear guides 50 is provided between the base 10 and the table 20. For this reason, the table 20 can slide smoothly along the longitudinal direction of the linear guide 50 with respect to the base 10.
 ベース10は、細長い矩形の底壁部11と、この底壁部11の幅方向(Y方向)の両端に垂直に設けられた一対の側壁部12と、を備える。ベース10は、例えば、鉄鋼等の磁性体材料又はアルミニウム等の非磁性体材から形成される。
 ベース10の底壁部11の上面中央部には、複数の永久磁石33がX方向に配列された磁石部30が配置される。
 ベース10の側壁部12のそれぞれの上面には、リニアガイド50の軌道レール51がX方向に沿って配置される。この2本の軌道レール51は、ほぼ平行に配置される。各軌道レール51には、それぞれ移動ブロック52が取り付けられる。
The base 10 includes an elongated rectangular bottom wall portion 11 and a pair of side wall portions 12 provided perpendicular to both ends in the width direction (Y direction) of the bottom wall portion 11. The base 10 is made of, for example, a magnetic material such as steel or a nonmagnetic material such as aluminum.
A magnet portion 30 in which a plurality of permanent magnets 33 are arranged in the X direction is disposed at the center of the upper surface of the bottom wall portion 11 of the base 10.
Track rails 51 of the linear guide 50 are arranged along the X direction on the upper surfaces of the side wall portions 12 of the base 10. The two track rails 51 are arranged substantially in parallel. A moving block 52 is attached to each track rail 51.
 テーブル20は、例えば、アルミニウム等の非磁性材料からなり、矩形の板状に形成される。
 テーブル20の下面側の四隅には、リニアガイド50の移動ブロック52がそれぞれ取り付けられる。各移動ブロック52は、上述した2本の軌道レール51にそれぞれ取り付けられる。これにより、テーブル20は、4組のリニアガイド50により、ベース10に対して直線運動可能な状態で支持される。
 また、テーブル20の下面には、三相コイルとして機能するコイル部40が設けられる。コイル部40は、テーブル20の下面のうち、4つの移動ブロック52に囲まれる領域に配置される。
The table 20 is made of a nonmagnetic material such as aluminum and is formed in a rectangular plate shape.
The moving blocks 52 of the linear guide 50 are attached to the four corners on the lower surface side of the table 20, respectively. Each moving block 52 is attached to the two track rails 51 described above. Accordingly, the table 20 is supported by the four sets of linear guides 50 in a state in which the table 20 can linearly move with respect to the base 10.
In addition, a coil portion 40 that functions as a three-phase coil is provided on the lower surface of the table 20. The coil unit 40 is disposed in a region surrounded by the four moving blocks 52 on the lower surface of the table 20.
 磁石部30は、細長い薄板状の磁石プレート31と、磁石プレート31を固定する底面プレート32と、磁石プレート31の両面に貼り付けられた複数の永久磁石33と、を備える。永久磁石33は、例えばネオジムで形成される。
 磁石プレート31は、底面プレート32(ベース10の底壁部11)に対して直交しつつ、Y方向に直交するように固定される。磁石プレート31は、長手方向がX方向に沿って形成されると共に、短手方向がZ方向に沿って形成される。
 磁石プレート31は、テーブル20の下面に配置されたコイル部40の一部(後述するギャップg)に挿入される。
The magnet unit 30 includes an elongated thin plate-like magnet plate 31, a bottom plate 32 that fixes the magnet plate 31, and a plurality of permanent magnets 33 attached to both surfaces of the magnet plate 31. The permanent magnet 33 is made of, for example, neodymium.
The magnet plate 31 is fixed so as to be orthogonal to the Y direction while being orthogonal to the bottom plate 32 (the bottom wall portion 11 of the base 10). The magnet plate 31 has a longitudinal direction formed along the X direction and a short side direction formed along the Z direction.
The magnet plate 31 is inserted into a part (a gap g described later) of the coil portion 40 disposed on the lower surface of the table 20.
 磁石プレート31は、Y方向に直交すると共に互いに背向する第一表面31aと第二表面31bを有する。磁石プレート31の第一表面31a及び第二表面31bには、それぞれN極とS極の永久磁石33がX方向に向けて交互に配置される。第一表面31aに配置された永久磁石33の極性と、永久磁石33に背向する第二表面31bに配置された永久磁石33の極性とは、相反する。つまり、第一表面31aには、-X方向から+X方向に向けて(図4参照、図4において紙面下側から上側に向けて)、N極、S極、N極、S極、…の各永久磁石33が交互に配置される。一方、第二表面31bには、-X方向から+X方向に向けて、S極、N極、S極、N極、…の各永久磁石33が交互に配置される。
 磁石プレート31の第一表面31a及び第二表面31bに配置された各永久磁石33は、コイル部40のギャップgに入ったときに、コイル部40の内部に磁界を発生させる。
The magnet plate 31 has a first surface 31a and a second surface 31b that are orthogonal to the Y direction and face each other. On the first surface 31a and the second surface 31b of the magnet plate 31, N-pole and S-pole permanent magnets 33 are alternately arranged in the X direction. The polarity of the permanent magnet 33 disposed on the first surface 31 a is opposite to the polarity of the permanent magnet 33 disposed on the second surface 31 b facing away from the permanent magnet 33. That is, on the first surface 31a, from the −X direction to the + X direction (see FIG. 4, from the lower side to the upper side in FIG. 4), the N pole, the S pole, the N pole, the S pole,. The permanent magnets 33 are alternately arranged. On the other hand, permanent magnets 33 of S pole, N pole, S pole, N pole,... Are alternately arranged on the second surface 31b from the −X direction to the + X direction.
The permanent magnets 33 arranged on the first surface 31 a and the second surface 31 b of the magnet plate 31 generate a magnetic field inside the coil unit 40 when entering the gap g of the coil unit 40.
 磁石部30は、従来のリニアモータ100の磁石部106が採用する両端支持構造とは異なる(図11参照)。磁石部30は、磁石プレート31の-Z方向(図3Aにおいて紙面下側)の端面の全領域を底面プレート32により支持する全面支持構造を採用する。このため、磁石部30は、磁石プレート31が自重により撓まない。 The magnet unit 30 is different from the both-end support structure employed by the magnet unit 106 of the conventional linear motor 100 (see FIG. 11). The magnet unit 30 employs a full support structure in which the entire area of the end surface of the magnet plate 31 in the −Z direction (the lower side in FIG. 3A) is supported by the bottom plate 32. For this reason, as for the magnet part 30, the magnet plate 31 does not bend by own weight.
 図4は、コイル部40の概略構成を示す断面図(Z方向に垂直な断面を示す図)である。図5は、コイル部40の上面図である。図6は、コイル部40の側面図である。 FIG. 4 is a cross-sectional view (a view showing a cross section perpendicular to the Z direction) showing a schematic configuration of the coil section 40. FIG. 5 is a top view of the coil unit 40. FIG. 6 is a side view of the coil unit 40.
 コイル部40は、U,V,Wの三相コイルである。三相の各コイルは、C字形に形成されたコアと、コアに巻かれたコイルと、をそれぞれ有する。
 具体的には、コイル部40は、U相コア(C字形コア)61,62,63,64、U相外側コイル(第一コイル)66,68、U相内側コイル(第二コイル)67,69、V相コア(C字形コア)71,72,73,74、V相外側コイル(第一コイル)76,78、V相内側コイル(第二コイル)77,79、W相コア(C字形コア)81,82,83,84、W相外側コイル(第一コイル)86,88、W相内側コイル(第二コイル)87,89、を備える。
The coil unit 40 is a U, V, W three-phase coil. Each of the three-phase coils has a C-shaped core and a coil wound around the core.
Specifically, the coil unit 40 includes U-phase cores (C-shaped cores) 61, 62, 63, 64, U-phase outer coils (first coils) 66, 68, U-phase inner coils (second coils) 67, 69, V-phase core (C-shaped core) 71, 72, 73, 74, V-phase outer coil (first coil) 76, 78, V-phase inner coil (second coil) 77, 79, W-phase core (C-shaped) Core) 81, 82, 83, 84, W-phase outer coils (first coils) 86, 88, and W-phase inner coils (second coils) 87, 89.
 U,V,Wの各相のコア及びコイルは、同一構成、同一形状である。そこで、以下では、主にU相について説明する。また、コアの形状については、主にU相コア61について説明する。 The core and coil of each phase of U, V, and W have the same configuration and the same shape. Therefore, the U phase will be mainly described below. The core shape will be described mainly with respect to the U-phase core 61.
 U相コア61,62,63,64の材質は、例えばケイ素鋼等の磁性体である。
 図3Aから図6に示すように、U相コア61,62,63,64は、同一形状を有する。U相コア61,62,63,64は、C字形の環形に形成され、磁石プレート31が挿入可能な間隙であるギャップgを有する。U相コア61,62,63,64は、磁石部30を跨いて挟みこむ形状である。
 C字形とは、環形に形成された部位(環形部61c)の周方向の一部に切れ目(ギャップg)を有する不完全な円環形を意味する。C字形には、U字形や馬蹄形のように、1箇所にギャップgのある環状部材が含まれる。環形部61cは、ギャップgを形成する第一端部61aと第二端部61bを除く部位である。
The material of the U-phase cores 61, 62, 63, 64 is a magnetic material such as silicon steel.
As shown in FIGS. 3A to 6, the U-phase cores 61, 62, 63, and 64 have the same shape. The U-phase cores 61, 62, 63, 64 are formed in a C-shaped ring shape and have a gap g that is a gap into which the magnet plate 31 can be inserted. The U-phase cores 61, 62, 63, 64 have a shape that is sandwiched across the magnet part 30.
The C-shape means an incomplete annular shape having a cut (gap g) in a part of the circumferential direction of a portion (annular portion 61c) formed in an annular shape. The C-shape includes an annular member having a gap g at one place, such as a U-shape or a horseshoe shape. The ring-shaped part 61c is a part excluding the first end part 61a and the second end part 61b that form the gap g.
 U相コア61,62,63,64は、屈曲部位や直線部位を有するものの、全体的にほぼ円弧形であるC字形に形成される。
 U相コア61,62,63,64の断面形状(磁路(磁束方向)に垂直な断面形状)は、U相コア61,62,63,64のいずれの部分であってもほぼ均一な形状(矩形)である。
Although the U-phase cores 61, 62, 63, and 64 have a bent portion or a straight portion, they are formed in a C-shape that is generally an arc shape.
The U-phase cores 61, 62, 63, 64 have a substantially uniform cross-sectional shape (a cross-sectional shape perpendicular to the magnetic path (magnetic flux direction)) in any part of the U-phase cores 61, 62, 63, 64. (Rectangular).
 U相コア61,62,63,64はいずれも、ギャップgを、磁石部30が配置される-Z方向に向けて配置される。また、U相コア61,62,63,64は、Y方向において相互に平行な状態で、X方向に向けて等間隔に配列される。U相コア61,62,63,64の環形部(61c)はいずれも、磁石部30を基準にして、+Z方向(図3Aにおいて紙面上側)に向けて配置される。 All of the U-phase cores 61, 62, 63, 64 are arranged with the gap g directed in the −Z direction where the magnet part 30 is arranged. The U-phase cores 61, 62, 63, 64 are arranged at equal intervals in the X direction in a state parallel to each other in the Y direction. All of the ring-shaped portions (61c) of the U-phase cores 61, 62, 63, and 64 are arranged toward the + Z direction (the upper side in FIG. 3A) with respect to the magnet portion 30.
 U相コア61,62,63,64のうち、ギャップgを形成する一方の端面(第一端部61a)は、磁石プレート31の第一表面31aに対して、接することなく、一定の間隙を隔てて対向する。U相コア61,62,63,64のうち、ギャップgを形成する他方の端面(第二端部61b)は、磁石プレート31の第二表面31bに対して、接することなく、一定の間隙を隔てて対向する。 Of the U-phase cores 61, 62, 63, 64, one end surface (first end portion 61 a) that forms the gap g does not contact the first surface 31 a of the magnet plate 31 and has a constant gap. Opposite each other. Of the U-phase cores 61, 62, 63, 64, the other end surface (second end portion 61 b) that forms the gap g does not contact the second surface 31 b of the magnet plate 31 and has a certain gap. Opposite each other.
 U相コア61,62,63,64の環形部(61c)は、X方向から見ると(図3A参照)、それぞれの中心(重心)が磁石部30(磁石プレート31)に対して+Y方向又は-Y方向にずれた(片寄った)位置にある。
 U相コア61,63の環形部(61c)は、+Y方向(図3Aにおいて紙面左側)に片寄って配置される。U相コア62,64の環形部(61c)は、-Y方向(図3Aにおいて紙面右側)に片寄って配置される。
 磁石部30の磁石プレート31を通るZ方向の軸線(不図示)を基準にして、U相コア61,63とU相コア62,64のそれぞれの環形部(61c)は、線対称となるように配置される。U相コア61,62,63,64の環形部(61c)は、磁石部30を基準にして、Y方向において互い違いになって、X方向に向けて配置される。
When viewed from the X direction (see FIG. 3A), the ring-shaped portion (61c) of the U-phase core 61, 62, 63, 64 has a center (center of gravity) in the + Y direction or the magnet portion 30 (magnet plate 31). -It is in a position shifted (offset) in the Y direction.
The ring-shaped portions (61c) of the U-phase cores 61 and 63 are arranged so as to be offset in the + Y direction (the left side in FIG. 3A). The ring-shaped portions (61c) of the U-phase cores 62 and 64 are arranged so as to be offset in the −Y direction (the right side in FIG. 3A).
The ring-shaped portions (61c) of the U-phase cores 61 and 63 and the U-phase cores 62 and 64 are symmetrical with respect to an axis (not shown) in the Z direction passing through the magnet plate 31 of the magnet portion 30. Placed in. The ring-shaped portions (61c) of the U-phase cores 61, 62, 63, and 64 are alternately arranged in the Y direction with respect to the magnet portion 30, and are arranged in the X direction.
 U相コア61,62,63,64は、従来のリニアモータ100のコア103が有する複雑な環形ではない(図12参照)。U相コア61,62,63,64は、全体的にほぼ円弧形であるC字形に形成される。このため、U相コア61,62,63,64は、従来のリニアモータ100のコア103に比べて、磁路が短い。
 U相コア61,62,63,64の断面形状は、従来のリニアモータ100のコア103のように場所によって大きく異なることがない(図12参照)。U相コア61,62,63,64の断面形状は、いずれの部分であってもほぼ均一である。
 U相コア61,62,63,64のギャップgは、従来のリニアモータ100のコア103のギャップに比べて、狭く形成される。
 したがって、U相コア61,62,63,64は、従来のリニアモータ100のコア103に比べて、磁気飽和しづらい。
The U-phase cores 61, 62, 63, and 64 are not complicated ring shapes that the core 103 of the conventional linear motor 100 has (see FIG. 12). The U-phase cores 61, 62, 63, 64 are formed in a C-shape that is generally arcuate. For this reason, the U-phase cores 61, 62, 63, 64 have a shorter magnetic path than the core 103 of the conventional linear motor 100.
The cross-sectional shape of the U-phase cores 61, 62, 63, 64 does not vary greatly depending on the location as in the core 103 of the conventional linear motor 100 (see FIG. 12). The U-phase cores 61, 62, 63, 64 have a substantially uniform cross-sectional shape at any portion.
The gap g of the U-phase cores 61, 62, 63, 64 is formed narrower than the gap of the core 103 of the conventional linear motor 100.
Therefore, the U-phase cores 61, 62, 63, 64 are less likely to be magnetically saturated compared to the core 103 of the conventional linear motor 100.
 図3Aから図6に示すように、U相コア61,62,63,64には、Y方向において、磁石部30(磁石プレート31)から最も離れた部分に、コイル(U相外側コイル66,68)が巻かれる。
 U相コア61,63では、磁石プレート31から+Y方向に最も離れた部位(領域)にU相外側コイル(コイル、第一コイル)66が巻かれる。X方向において(図3A参照)、U相コア61,63の環形部(61c)のうち、隣接するU相コア62,64の環形部(61c)と重ならない第一領域61dに、U相外側コイル66が巻かれる。一対のU相コア61,63に対して、一つのU相外側コイル66が巻かれる。
 U相コア62,64では、磁石プレート31から-Y方向に最も離れた部位にU相外側コイル(コイル、第一コイル)68が巻かれる。Y方向において、U相コア62,64の環形部(61c)のうち、隣接するU相コア61,63の環形部(61c)と重ならない第一領域61dに、U相外側コイル68が巻かれる。一対のU相コア62,64に対して、一つのU相外側コイル68が巻かれる。
As shown in FIGS. 3A to 6, the U-phase cores 61, 62, 63, 64 have coils (U-phase outer coils 66, 64) in the portion farthest from the magnet unit 30 (magnet plate 31) in the Y direction. 68) is wound.
In the U-phase cores 61 and 63, a U-phase outer coil (coil, first coil) 66 is wound around a portion (region) farthest from the magnet plate 31 in the + Y direction. In the X direction (see FIG. 3A), the U-phase outer side of the annular region (61c) of the U-phase cores 61 and 63 is not overlapped with the annular region (61c) of the adjacent U-phase cores 62 and 64. A coil 66 is wound. One U-phase outer coil 66 is wound around the pair of U-phase cores 61 and 63.
In the U-phase cores 62 and 64, a U-phase outer coil (coil, first coil) 68 is wound around a portion farthest from the magnet plate 31 in the −Y direction. In the Y direction, the U-phase outer coil 68 is wound on the first region 61d that does not overlap the annular portion (61c) of the adjacent U-phase cores 61 and 63 among the annular portions (61c) of the U-phase cores 62 and 64. . One U-phase outer coil 68 is wound around the pair of U-phase cores 62 and 64.
 U相コア61,62,63,64には、Y方向において、磁石プレート31に近接する部位(領域)に、コイル(U相内側コイル67,69)が巻かれる。
 U相コア61,63では、U相外側コイル66から-Y方向に最も離れた部位に、U相内側コイル(コイル、第二コイル)67が巻かれる。X方向において(図3A参照)、U相コア61,63の環形部61cのうち、隣接するU相コア62,64の環形部(61c)と重ならない第二領域61eに、U相内側コイル67が巻かれる。一対のU相コア61,63に対して、一つのU相内側コイル67が巻かれる。
 U相コア62,64では、U相外側コイル68から+Y方向に最も離れた部位に、U相内側コイル(コイル、第二コイル)69が巻かれる。X方向において、U相コア62,64の環形部(61c)のうち、隣接するU相コア61,63の環形部(61c)と重ならない第二領域61eに、U相内側コイル69が巻かれる。一対のU相コア62,64に対して、一つのU相内側コイル69が巻かれる。
Coils (U-phase inner coils 67 and 69) are wound around the U-phase cores 61, 62, 63, and 64 in regions (regions) close to the magnet plate 31 in the Y direction.
In the U-phase cores 61, 63, a U-phase inner coil (coil, second coil) 67 is wound at a portion farthest in the −Y direction from the U-phase outer coil 66. In the X direction (see FIG. 3A), the U-phase inner coil 67 is formed in the second region 61 e that does not overlap the annular portion (61 c) of the adjacent U-phase cores 62, 64 among the annular portions 61 c of the U-phase cores 61, 63. Is wound. One U-phase inner coil 67 is wound around the pair of U-phase cores 61 and 63.
In the U-phase cores 62 and 64, a U-phase inner coil (coil, second coil) 69 is wound at a position farthest from the U-phase outer coil 68 in the + Y direction. In the X direction, the U-phase inner coil 69 is wound around the second region 61e that does not overlap the annular portion (61c) of the adjacent U-phase cores 61 and 63 among the annular portions (61c) of the U-phase cores 62 and 64. . One U-phase inner coil 69 is wound around the pair of U-phase cores 62 and 64.
 U相内側コイル67,69は、U相外側コイル66,68よりも磁石部30に近接する。X方向から見ると(図3A参照)、第一領域61dは、環形部61cにおいて、隣接するU相コアに重ならない2つの領域のうち、磁石部30から離れた領域である。一方、第二領域61eは、環形部61cにおいて、隣接するU相コアに重ならない2つの領域のうち、磁石部30に隣接する領域である。 The U-phase inner coils 67 and 69 are closer to the magnet unit 30 than the U-phase outer coils 66 and 68. When viewed from the X direction (see FIG. 3A), the first region 61d is a region away from the magnet unit 30 among the two regions that do not overlap the adjacent U-phase core in the ring-shaped portion 61c. On the other hand, the second region 61e is a region adjacent to the magnet unit 30 among the two regions that do not overlap the adjacent U-phase core in the annular portion 61c.
 U相外側コイル66,68とU相内側コイル67,69のコイル巻数は、U相外側コイル66,68のコイル巻数に対して、U相内側コイル67,69のコイル巻数が約半分程度になるよう設定される。 The number of coil turns of the U-phase outer coils 66 and 68 and the U-phase inner coils 67 and 69 is about half that of the U-phase outer coils 66 and 68. It is set as follows.
 図7は、U,V,Wの各相の外側コイル及び内側コイルの接続態様を示す回路図である。
 同一のコア対(U相コア61,63)に巻かれるU相外側コイル66とU相内側コイル67は、直列に接続される。
 他の同一のコア対(U相コア62,64)に巻かれるU相外側コイル68とU相内側コイル69は、直列に接続される。
 さらに、U相外側コイル66とU相内側コイル67の直列接続回路と、U相外側コイル68とU相内側コイル69の直列接続回路と、が直列に接続される(U相直列回路)。
 U相直列回路には、三相交流電流が供給される。
FIG. 7 is a circuit diagram showing a connection mode of the outer and inner coils of each of U, V, and W phases.
A U-phase outer coil 66 and a U-phase inner coil 67 wound around the same core pair (U-phase cores 61 and 63) are connected in series.
The U-phase outer coil 68 and the U-phase inner coil 69 wound around another identical core pair (U-phase cores 62 and 64) are connected in series.
Furthermore, the series connection circuit of the U-phase outer coil 66 and the U-phase inner coil 67 and the series connection circuit of the U-phase outer coil 68 and the U-phase inner coil 69 are connected in series (U-phase series circuit).
A three-phase alternating current is supplied to the U-phase series circuit.
 V相及びW相においても、同一のコア対(V相コア71,73、W相コア81,83)に巻かれる外側コイル(V相外側コイル76、W相外側コイル86)と内側コイル(V相内側コイル77、W相内側コイル87)が直列に接続される。
 他の同一のコア対(V相コア72,74、W相コア82,84)に巻かれる外側コイル(V相外側コイル78、W相外側コイル88)と内側コイル(V相内側コイル79、W相内側コイル89)が直列に接続される。
 さらに、2つの直列接続回路が直列に接続される(V相直列回路、W相直列回路)。
 V相直列回路及びW相直列回路にも三相交流電流が供給される。
Also in the V phase and the W phase, an outer coil (V phase outer coil 76, W phase outer coil 86) and an inner coil (V) wound around the same core pair ( V phase cores 71 and 73, W phase cores 81 and 83). A phase inner coil 77 and a W phase inner coil 87) are connected in series.
An outer coil (V-phase outer coil 78, W-phase outer coil 88) and inner coil (V-phase inner coil 79, W) wound around another identical core pair (V- phase cores 72, 74, W-phase cores 82, 84). A phase inner coil 89) is connected in series.
Further, two series connection circuits are connected in series (V phase series circuit, W phase series circuit).
A three-phase alternating current is also supplied to the V-phase series circuit and the W-phase series circuit.
 各相の外側コイル及び内側コイルの接続態様は、次のようにしてもよい。
 図8は、U,V,Wの各相の外側コイル及び内側コイルの他の接続態様を示す回路図である。
 同一のコア対(U相コア61,63)に巻かれるU相外側コイル66とU相内側コイル67は、直列に接続される。
 他の同一のコア対(U相コア62,64)に巻かれるU相外側コイル68とU相内側コイル69は、直列に接続される。
 さらに、U相外側コイル66とU相内側コイル67の直列接続回路と、U相外側コイル68とU相内側コイル69の直列接続回路と、が並列に接続される(U相並列回路)。
 U相並列回路に三相交流電流が供給される。
The connection mode of the outer coil and the inner coil of each phase may be as follows.
FIG. 8 is a circuit diagram showing another connection mode of the outer and inner coils of each phase of U, V, and W.
A U-phase outer coil 66 and a U-phase inner coil 67 wound around the same core pair (U-phase cores 61 and 63) are connected in series.
The U-phase outer coil 68 and the U-phase inner coil 69 wound around another identical core pair (U-phase cores 62 and 64) are connected in series.
Furthermore, the series connection circuit of the U-phase outer coil 66 and the U-phase inner coil 67 and the series connection circuit of the U-phase outer coil 68 and the U-phase inner coil 69 are connected in parallel (U-phase parallel circuit).
A three-phase alternating current is supplied to the U-phase parallel circuit.
 V相及びW相においても、同一のコア対(V相コア71,73、W相コア81,83)に巻かれる外側コイル(V相外側コイル76、W相外側コイル86)と内側コイル(V相内側コイル77、W相内側コイル87)が直列に接続される。
 同一のコア対(V相コア72,74、W相コア82,84)に巻かれる外側コイル(V相外側コイル78、W相外側コイル88)と内側コイル(V相内側コイル79、W相内側コイル89)が直列に接続される。
 さらに、2つの直列接続回路が並列に接続される(V相並列回路、W相並列回路)。
 V相並列回路及びW相並列回路にも三相交流電流が供給される。
Also in the V phase and the W phase, an outer coil (V phase outer coil 76, W phase outer coil 86) and an inner coil (V) wound around the same core pair ( V phase cores 71 and 73, W phase cores 81 and 83). A phase inner coil 77 and a W phase inner coil 87) are connected in series.
Outer coil (V-phase outer coil 78, W-phase outer coil 88) and inner coil (V-phase inner coil 79, W-phase inner side) wound around the same core pair (V- phase cores 72, 74, W-phase cores 82, 84) A coil 89) is connected in series.
Further, two series connection circuits are connected in parallel (V phase parallel circuit, W phase parallel circuit).
A three-phase alternating current is also supplied to the V-phase parallel circuit and the W-phase parallel circuit.
 以上のように構成されたリニアモータ1において、U,V,Wの各相のコイルには、120度ずつ位相が異なる三相交流電流が流される。これにより、コイル部40から進行磁界が発生する。そして、コイル部40に発生された進行磁界と磁石部30に発生された磁界との作用により、コイル部40(テーブル20)に推力が発生する。 In the linear motor 1 configured as described above, three-phase alternating currents having different phases by 120 degrees are passed through the coils of the U, V, and W phases. As a result, a traveling magnetic field is generated from the coil unit 40. And a thrust generate | occur | produces in the coil part 40 (table 20) by the effect | action of the advancing magnetic field generate | occur | produced in the coil part 40, and the magnetic field generated in the magnet part 30. FIG.
 図9は、リニアモータ1のU相コア61,62の磁束密度分布を示す図である。
 図10は、参考例として、内側コイル67,69を設けない場合におけるU相コア61,62の磁束密度分布を示す図である。
 図13は、従来のリニアモータ100のコア103の磁束密度分布を示す図である。
 図9、図10は、U相コア61,62をX方向から見た図であり、U相コア61,62のみを示す。
 図13は、U相コア103をX方向から見た図であり、U相コア103のみを示す。
 図9、図10では、(a)~(d)の順に、コイル部40への供給電流を増加している。(a)は供給電流5Aの場合、(b)は供給電流10Aの場合、(c)は供給電流20Aの場合、(d)は供給電流30Aを示す。
 同様に、図13では、(a)~(d)の順に、コイル部への供給電流を増加している。(a)は供給電流5Aの場合、(b)は供給電流10Aの場合、(c)は供給電流20Aの場合、(d)は供給電流30Aの場合を示す。
FIG. 9 is a diagram showing the magnetic flux density distribution of the U-phase cores 61 and 62 of the linear motor 1.
FIG. 10 is a diagram showing the magnetic flux density distribution of the U-phase cores 61 and 62 when the inner coils 67 and 69 are not provided as a reference example.
FIG. 13 is a diagram showing the magnetic flux density distribution of the core 103 of the conventional linear motor 100.
9 and 10 are views of the U-phase cores 61 and 62 viewed from the X direction, and only the U-phase cores 61 and 62 are shown.
FIG. 13 is a view of the U-phase core 103 as viewed from the X direction, and shows only the U-phase core 103.
9 and 10, the supply current to the coil unit 40 is increased in the order of (a) to (d). (A) shows the supply current 5A, (b) shows the supply current 10A, (c) shows the supply current 20A, and (d) shows the supply current 30A.
Similarly, in FIG. 13, the supply current to the coil section is increased in the order of (a) to (d). (A) shows the case of the supply current 5A, (b) shows the case of the supply current 10A, (c) shows the case of the supply current 20A, and (d) shows the case of the supply current 30A.
 図9に示すように、U相コア61,62は、いずれも、ギャップgの近傍において磁束密度が若干低い部分が見受けられるものの、全体的に磁束密度が均一である。
 従来のリニアモータ100のコア103の磁束密度(図13)に比べて、U相コア61,62は、磁束密度が高く、磁気飽和しづらい。
 U相コア61,62では、供給電流の電流値を変化させた場合であっても、全体的に磁束密度が均一である。
As shown in FIG. 9, the U-phase cores 61 and 62 have a uniform magnetic flux density as a whole, although there are some portions where the magnetic flux density is slightly low in the vicinity of the gap g.
Compared to the magnetic flux density of the core 103 of the conventional linear motor 100 (FIG. 13), the U-phase cores 61 and 62 have a high magnetic flux density and are not easily magnetically saturated.
In the U-phase cores 61 and 62, the magnetic flux density is uniform as a whole even when the current value of the supply current is changed.
 図10に示すように、U相コア61,62は、いずれも、ギャップgの近傍において磁束密度が若干低い部分が見受けられるものの、全体的に磁束密度が均一である。
 従来のリニアモータ100のコア103の磁束密度(図13)に比べて、U相コア61,62は、磁束密度が高く、磁気飽和しづらい。
As shown in FIG. 10, the U-phase cores 61 and 62 have a uniform magnetic flux density as a whole, although there are some portions where the magnetic flux density is slightly low in the vicinity of the gap g.
Compared to the magnetic flux density of the core 103 of the conventional linear motor 100 (FIG. 13), the U-phase cores 61 and 62 have a high magnetic flux density and are not easily magnetically saturated.
 図9と図10を比べると、図9の場合の方が図10の場合に比べて、U相内側コイル67,69が存在する分だけ磁束密度がより全体的に均一であり、磁束密度が高い。 9 is compared with FIG. 10, the magnetic flux density is more uniform in the case of FIG. 9 than the case of FIG. 10 because the U-phase inner coils 67 and 69 are present, and the magnetic flux density is more uniform. high.
 本発明の実施形態に係るリニアモータ1は、従来のリニアモータ100に比べて、以下に示す特徴及び効果を有する。
 リニアモータ1では、永久磁石33が配置された磁石プレート31は底面プレート32に固定される構造なので、磁石プレート31に自重によるたわみが生じない。このため、各相のコアと磁石部とのギャップを小さくできる。したがって、リニアモータ1では、磁束を有効に利用できる。
 また、リニアモータ1では、磁石プレート31のたわみに起因するテーブル20(コイル部40)の移動距離の制限がない。
The linear motor 1 according to the embodiment of the present invention has the following features and effects as compared to the conventional linear motor 100.
In the linear motor 1, the magnet plate 31 on which the permanent magnets 33 are arranged is fixed to the bottom plate 32, so that the magnet plate 31 does not bend due to its own weight. For this reason, the gap between the core of each phase and the magnet portion can be reduced. Therefore, the linear motor 1 can effectively use the magnetic flux.
Moreover, in the linear motor 1, there is no restriction | limiting of the movement distance of the table 20 (coil part 40) resulting from the bending of the magnet plate 31. FIG.
 リニアモータ1は、各相のコア(環形部)がほぼ円環のC字形であるため、コア内部の磁路が短くなる。各相のコア(環形部)の断面形状は、いずれの部分においてもほぼ均一である。
 これにより、リニアモータ1は、各相のコアの磁気飽和が抑制されるので、三相交流電流値に応じて円滑にテーブル20の推進力が得られる。したがって、リニアモータ1は、従来のリニアモータ100よりも制御性が向上する。
In the linear motor 1, the core (annular portion) of each phase has a substantially circular C shape, so that the magnetic path inside the core is shortened. The cross-sectional shape of the core (annular part) of each phase is almost uniform in any part.
Thereby, since the magnetic saturation of the core of each phase is suppressed in the linear motor 1, the propulsive force of the table 20 can be obtained smoothly according to the three-phase alternating current value. Therefore, the controllability of the linear motor 1 is improved compared to the conventional linear motor 100.
 なお、上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 The various shapes and combinations of the constituent members shown in the above-described embodiments are merely examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
 図14Aは、リニアエンコーダの設置態様を示す斜視図である。図14Bは、リニアエンコーダの設置態様を示す正面図である。
 リニアモータ1は、ベース10(磁石部30)に対するテーブル20(コイル部40)のX方向の位置、速度等を計測するために、リニアエンコーダ90を備える。
 リニアエンコーダ90は、ベース10に配置されるリニアスケール91及びテーブル20に配置される検出器92から構成される。リニアスケール91は、磁石プレート31の上端に配置される。磁石プレート31の上端に、XY平面に平行かつX方向に沿う上端プレート35を配置する。リニアスケール91は、この上端プレート35の上面に設置される。検出器92は、テーブル20のX方向の端面に対して検出器取付具25を介して配置される。
FIG. 14A is a perspective view showing an installation mode of the linear encoder. FIG. 14B is a front view showing an installation mode of the linear encoder.
The linear motor 1 includes a linear encoder 90 in order to measure the position, speed, and the like of the table 20 (coil unit 40) in the X direction with respect to the base 10 (magnet unit 30).
The linear encoder 90 includes a linear scale 91 disposed on the base 10 and a detector 92 disposed on the table 20. The linear scale 91 is disposed at the upper end of the magnet plate 31. An upper end plate 35 that is parallel to the XY plane and extends in the X direction is disposed at the upper end of the magnet plate 31. The linear scale 91 is installed on the upper surface of the upper end plate 35. The detector 92 is arranged with respect to the end surface of the table 20 in the X direction via the detector fixture 25.
 リニアエンコーダ90の設置位置は、リニアモータ1の推力発生箇所(ギャップg)にほぼ一致(近接)する。したがって、ベース10(磁石部30)に対するテーブル20(コイル部40)の相対位置を正確に検出することができる。
 仮に、リニアエンコーダをリニアモータの推力発生箇所から離れた場所に配置すると、機械的な歪み等により位置検出誤差が発生して、制御的な遅れの原因となる。このため、リニアモータが振動して精密な位置決めが困難となる場合がある。
 一方、リニアモータ1では、リニアエンコーダ90の設置位置を推力発生箇所にほぼ一致(近接)させたので、位置検出誤差が殆ど発生しない。したがって、リニアモータ1における制御的振動が抑制されて、リニアモータ1の精密な位置決めが可能となる。
 また、リニアモータ1では、磁石プレート31に上端プレート35を設けたので磁石部30の機械的剛性が高くなる。したがって、磁石部30及びリニアスケール91における機械的振動が抑制されて、リニアモータ1の精密な位置決めが可能となる。
The installation position of the linear encoder 90 substantially coincides with (is close to) the thrust generation location (gap g) of the linear motor 1. Therefore, the relative position of the table 20 (coil part 40) with respect to the base 10 (magnet part 30) can be detected accurately.
If the linear encoder is arranged at a location away from the thrust generation location of the linear motor, a position detection error occurs due to mechanical distortion or the like, causing a control delay. For this reason, the linear motor may vibrate and precise positioning may be difficult.
On the other hand, in the linear motor 1, since the installation position of the linear encoder 90 is substantially matched (close) to the thrust generation location, almost no position detection error occurs. Therefore, the control vibration in the linear motor 1 is suppressed, and the linear motor 1 can be accurately positioned.
Moreover, in the linear motor 1, since the upper end plate 35 is provided in the magnet plate 31, the mechanical rigidity of the magnet part 30 becomes high. Accordingly, mechanical vibrations in the magnet unit 30 and the linear scale 91 are suppressed, and the linear motor 1 can be accurately positioned.
 上述した実施形態では、1つのコアに対して2つのコイル(外側コイル及び内側コイル)を設けた場合について説明したが、これに限らない。1つのコアに対して外側コイルのみを設けた場合や、1つのコアに対して内側コイル(補助コイル)のみを設けた場合であってもよい。 In the embodiment described above, the case where two coils (an outer coil and an inner coil) are provided for one core has been described, but the present invention is not limited to this. It may be the case where only the outer coil is provided for one core, or the case where only the inner coil (auxiliary coil) is provided for one core.
 リニアモータ1は、三相型の場合に限らず、例えば二相型の場合であっても適用可能である。 The linear motor 1 is not limited to a three-phase type, and can be applied to a two-phase type, for example.
 コイル部40の各相のコアの数は、4つの場合に限定されるものでなく、偶数であれば適用可能である。 The number of cores of each phase of the coil unit 40 is not limited to four, and any number of cores can be used.
 コイル部40の各相のコアの断面形状は、矩形に限らない。例えば多角形であってもよいし、円形や楕円形などであってもよい。コアの断面形状は、ほぼ均一な断面形状であれば、どのような形状であってもよい。 The cross-sectional shape of the core of each phase of the coil unit 40 is not limited to a rectangle. For example, it may be polygonal, circular or elliptical. The cross-sectional shape of the core may be any shape as long as it is a substantially uniform cross-sectional shape.
 1…リニアモータ(アクチュエータ)、  30…磁石部、  31a…第一表面、  31b…第二表面、  33…永久磁石、  40…コイル部、  61,62,63,64…U相コア(C字形コア)、  61a…第一端部、  61b…第二端部、  61c…環形部、  61d…第一領域、  61e…第二領域、  66,68…U相外側コイル(コイル、第一コイル)、  67,69…U相内側コイル(コイル、第二コイル)、  71,72,73,74…V相コア(C字形コア)、  76,78…W相外側コイル(コイル、第一コイル)、  77,79…W相内側コイル(コイル、第二コイル)、  81,82,83,84…V相コア(C字形コア)、  86,88…W相外側コイル(コイル、第一コイル)、  87,89…W相内側コイル(コイル、第二コイル)、  90…リニアエンコーダ(エンコーダ)   DESCRIPTION OF SYMBOLS 1 ... Linear motor (actuator), 30 ... Magnet part, 31a ... First surface, 31b ... Second surface, 33 ... Permanent magnet, 40 ... Coil part, 61, 62, 63, 64 ... U-phase core (C-shaped core) ), 61a ... first end, 61b ... second end, 61c ... annular part, 61d ... first region, 61e ... second region, 66,68 ... U-phase outer coil (coil, first coil), 67 , 69 ... U-phase inner coil (coil, second coil), 71, 72, 73, 74 ... V-phase core (C-shaped core), 76, 78 ... W-phase outer coil (coil, first coil), 77, 79: W-phase inner coil (coil, second coil), 81, 82, 83, 84 ... V-phase core (C-shaped core), 86, 88 ... W-phase outer coil (coil, first coil) Le), 87, 89 ... W-phase inner coil (coil, a second coil), 90 ... linear encoder (encoder)

Claims (6)

  1.  相互に背向する第一表面と第二表面のそれぞれにN極とS極が第一方向に向けて交互に配置され、かつ、前記第一表面の極性と前記第二表面の極性が相反する磁石部と、
     第一端部が前記第一表面に対して隙間を隔てて対向すると共に第二端部が前記第二表面に対して隙間を隔てて対向する複数のC字形コア及び前記複数のC字形コアに巻かれた複数のコイルを有するコイル部と、
    を備え、
     前記複数のC字形コアは、前記第一方向に向けて配列され、
     前記C字形コアの環形部は、前記第一方向に対して直交すると共に前記第一表面及び前記第二表面に対して平行な第二方向において前記磁石部を基準にして片側に配置され、かつ、前記第一方向に対して直交すると共に前記第一表面及び前記第二表面に対して直交する第三方向において前記磁石部を基準にして両側に互い違いに配置されるアクチュエータ。
    N poles and S poles are alternately arranged in the first direction on the first surface and the second surface facing each other, and the polarities of the first surface and the second surface are opposite to each other. A magnet section;
    A plurality of C-shaped cores and a plurality of C-shaped cores having a first end opposed to the first surface with a gap and a second end opposed to the second surface with a gap A coil portion having a plurality of coils wound;
    With
    The plurality of C-shaped cores are arranged toward the first direction,
    The ring-shaped part of the C-shaped core is arranged on one side with respect to the magnet part in a second direction orthogonal to the first direction and parallel to the first surface and the second surface, and The actuators are alternately arranged on both sides with respect to the magnet portion in a third direction orthogonal to the first direction and orthogonal to the first surface and the second surface.
  2.  前記コイルは、
     前記C字形コアの環形部のうち、隣接する他のC字形コアの環形部に対して前記第一方向において重ならない第一領域に巻かれた第一コイルを含む請求項1に記載のアクチュエータ。
    The coil is
    2. The actuator according to claim 1, further comprising: a first coil wound in a first region that does not overlap in the first direction with respect to an annular portion of another adjacent C-shaped core among the annular portions of the C-shaped core.
  3.  前記コイルは、
     前記C字形コアの環形部のうち、隣接する他のC字形コアに対して前記第一方向において重ならない第二領域に巻かれた第二コイルを含む請求項1に記載のアクチュエータ。
    The coil is
    2. The actuator according to claim 1, comprising a second coil wound in a second region that does not overlap in the first direction with respect to another adjacent C-shaped core of the ring-shaped portion of the C-shaped core.
  4.  前記C字形コアの環形部は、円環形である請求項1に記載のアクチュエータ。 The actuator according to claim 1, wherein the ring-shaped portion of the C-shaped core is a ring shape.
  5.  前記C字形コアの環形部の断面形状は、前記第一端部から前記第二端部に亘って同一形状である請求項1に記載のアクチュエータ。 2. The actuator according to claim 1, wherein a cross-sectional shape of the ring-shaped portion of the C-shaped core is the same shape from the first end portion to the second end portion.
  6.  前記磁石部と前記コイル部の相対位置を検出するエンコーダを更に備え、
     前記エンコーダは、前記磁石部と前記コイル部による推力発生箇所に近接配置される請求項1に記載のアクチュエータ。
    An encoder for detecting a relative position between the magnet part and the coil part;
    The actuator according to claim 1, wherein the encoder is disposed in proximity to a thrust generation location by the magnet portion and the coil portion.
PCT/JP2012/074766 2011-09-28 2012-09-26 Actuator WO2013047610A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011212953 2011-09-28
JP2011-212953 2011-09-28

Publications (1)

Publication Number Publication Date
WO2013047610A1 true WO2013047610A1 (en) 2013-04-04

Family

ID=47995641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074766 WO2013047610A1 (en) 2011-09-28 2012-09-26 Actuator

Country Status (3)

Country Link
JP (1) JPWO2013047610A1 (en)
TW (1) TW201325030A (en)
WO (1) WO2013047610A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181843A1 (en) * 2013-05-09 2014-11-13 Thk株式会社 Linear encoder device and reference position detection method
WO2016132465A1 (en) * 2015-02-18 2016-08-25 株式会社日立製作所 Linear motor
TWI577112B (en) * 2016-07-15 2017-04-01 台達電子工業股份有限公司 Linear-rotary actuator
EP3859956A4 (en) * 2018-12-04 2021-11-17 Gree Electric Appliances, Inc. of Zhuhai Linear motor
US11962213B2 (en) 2018-12-04 2024-04-16 Gree Electric Appliances, Inc. Of Zhuhai Linear motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791664A (en) * 1980-11-25 1982-06-07 Japanese National Railways<Jnr> Vehicle-mounted electromagnet for linear motor
JPH08275490A (en) * 1995-03-31 1996-10-18 Minolta Co Ltd Electric motor with encoder
JPH10174418A (en) * 1996-12-04 1998-06-26 Yaskawa Electric Corp Linear motor
JP2006042485A (en) * 2004-07-27 2006-02-09 Mitsubishi Electric Corp Permanent magnet unit of linear motor and linear motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791664A (en) * 1980-11-25 1982-06-07 Japanese National Railways<Jnr> Vehicle-mounted electromagnet for linear motor
JPH08275490A (en) * 1995-03-31 1996-10-18 Minolta Co Ltd Electric motor with encoder
JPH10174418A (en) * 1996-12-04 1998-06-26 Yaskawa Electric Corp Linear motor
JP2006042485A (en) * 2004-07-27 2006-02-09 Mitsubishi Electric Corp Permanent magnet unit of linear motor and linear motor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181843A1 (en) * 2013-05-09 2014-11-13 Thk株式会社 Linear encoder device and reference position detection method
JP2014219296A (en) * 2013-05-09 2014-11-20 Thk株式会社 Linear encoder device and standard position detection method
CN105190250A (en) * 2013-05-09 2015-12-23 Thk株式会社 Linear encoder device and reference position detection method
US9518842B2 (en) 2013-05-09 2016-12-13 Thk Co., Ltd. Linear encoder device and reference position detection method
WO2016132465A1 (en) * 2015-02-18 2016-08-25 株式会社日立製作所 Linear motor
JPWO2016132465A1 (en) * 2015-02-18 2017-08-31 株式会社日立製作所 Linear motor
EP3261236A4 (en) * 2015-02-18 2018-10-17 Hitachi, Ltd. Linear motor
TWI577112B (en) * 2016-07-15 2017-04-01 台達電子工業股份有限公司 Linear-rotary actuator
EP3859956A4 (en) * 2018-12-04 2021-11-17 Gree Electric Appliances, Inc. of Zhuhai Linear motor
US11962213B2 (en) 2018-12-04 2024-04-16 Gree Electric Appliances, Inc. Of Zhuhai Linear motor

Also Published As

Publication number Publication date
JPWO2013047610A1 (en) 2015-03-26
TW201325030A (en) 2013-06-16

Similar Documents

Publication Publication Date Title
JP4938355B2 (en) Linear motor
JP5015316B2 (en) Reluctance motor
JP2010213374A (en) Linear motor
JP2006109653A (en) Linear motor
JP5648873B2 (en) Linear motor
WO2013047610A1 (en) Actuator
JPWO2009035050A1 (en) Linear motor and cogging reduction method of linear motor
JP2006034017A (en) Linear motor for machine tool
TWI597926B (en) Linear motor
JP2009213211A (en) Mounting structure for linear motors
TWI505608B (en) Linear motors and platform devices
JP2005151753A (en) Linear motor
JP5589507B2 (en) Mover and stator of linear drive unit
JP6345355B1 (en) Linear motor
WO2014141887A1 (en) Linear motor
JP2010148233A (en) Linear motor driving and feeding device
WO2017025998A1 (en) Linear motor and device provided with linear motor
JP2015089189A (en) Linear motor
JP5379458B2 (en) Coreless linear motor
JP2003134791A (en) Permanent magnet synchronous linear motor
JP2006034016A (en) Linear motor for machine tool
JP2007209175A (en) Three-phase linear motor
JP2004289895A (en) Linear motor
JP2012060853A (en) Actuator with two-degrees of freedom
JP6197346B2 (en) Linear motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536364

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836858

Country of ref document: EP

Kind code of ref document: A1