JP2006034016A - Linear motor for machine tool - Google Patents

Linear motor for machine tool Download PDF

Info

Publication number
JP2006034016A
JP2006034016A JP2004210488A JP2004210488A JP2006034016A JP 2006034016 A JP2006034016 A JP 2006034016A JP 2004210488 A JP2004210488 A JP 2004210488A JP 2004210488 A JP2004210488 A JP 2004210488A JP 2006034016 A JP2006034016 A JP 2006034016A
Authority
JP
Japan
Prior art keywords
linear motor
mover
armature
stator
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004210488A
Other languages
Japanese (ja)
Inventor
Koji Miyata
浩二 宮田
Masanobu Uchida
政伸 内田
Takeshi Ohashi
健 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004210488A priority Critical patent/JP2006034016A/en
Priority to EP05254357A priority patent/EP1617545A3/en
Priority to US11/184,645 priority patent/US20060012252A1/en
Publication of JP2006034016A publication Critical patent/JP2006034016A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear motor for enhancing the processing speed of a laser processing system and realizing high speed high precision processing by reducing cogging force sharply. <P>SOLUTION: In the linear motor for use in a machine tool comprising a stator where a plurality of permanent magnets of identical profile are fixed to the opposite sides of a planar yoke, while spaced apart equally, such that different polarities are arranged alternately in the direction perpendicular to the moving direction of a mover, and an array of movers where movers each having an armature core applied with an armature coil are arranged oppositely to the array of permanent magnets on the opposite sides of the stator, the array of movers consists of three blocks of nine movers having a length eight times as long as the magnet pitch, i.e. the sum of the width of permanent magnet and the distance between permanent magnets, and applied with the armature coil of each phase for each set of three movers, and the interval of respective blocks is set equal to two third of the magnet pitch. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、工作機械の可動部を駆動する等の目的で広く用いられる永久磁石式リニアモータに関する。   The present invention relates to a permanent magnet linear motor widely used for the purpose of driving a movable part of a machine tool.

図3はレーザ加工機の一例を示す斜視図である。図3のフレーム121の上にテーブル122があり、その上に加工すべきワーク(図示せず)が置かれる。また、フレーム121の上方にX軸方向に移動可能な駆動装置123が取り付けられ、X軸方向駆動装置123には取付部品を介してY軸方向に移動可能な駆動装置124が取り付けられている。Y軸方向駆動装置124にはZ軸方向に移動可能な駆動装置125が取り付けられ、Z軸方向駆動装置125にはレーザ光を射出するトーチ126が取り付けられている。図3には駆動装置の配線や制御装置、レーザ光を伝達する部品は省略されている。レーザ加工機では、制御装置でX軸とY軸方向の駆動装置を制御して、先端に取り付けられたトーチからのレーザ光をワークに当てながら所望の形状に切断する。また、レーザ光の焦点を合わせるためにZ軸方向の駆動装置でトーチとワークの距離を制御する。従来のレーザ加工機では、駆動装置を回転形のサーボモータとボールネジで構成したものが用いられていた。しかし、高速で加工するには限界があり早送り速度で20m/分程度が限界となっていた。さらに、3mを超えるような長尺のワークになると、ボールネジのたわみなどから加工精度が落ちるという問題があった。そこで、駆動装置部分をリニアモータに置き換える検討を行ってきた。   FIG. 3 is a perspective view showing an example of a laser processing machine. A table 122 is provided on the frame 121 shown in FIG. 3, and a work (not shown) to be processed is placed thereon. A driving device 123 that can move in the X-axis direction is attached above the frame 121, and a driving device 124 that can move in the Y-axis direction is attached to the X-axis direction driving device 123 via an attachment component. A driving device 125 that can move in the Z-axis direction is attached to the Y-axis direction driving device 124, and a torch 126 that emits laser light is attached to the Z-axis direction driving device 125. In FIG. 3, the wiring of the driving device, the control device, and the components that transmit the laser light are omitted. In the laser processing machine, the drive device in the X-axis and Y-axis directions is controlled by the control device, and the laser beam from the torch attached to the tip is applied to the workpiece and cut into a desired shape. Further, the distance between the torch and the workpiece is controlled by a driving device in the Z-axis direction in order to focus the laser beam. In a conventional laser processing machine, a drive device composed of a rotary servo motor and a ball screw has been used. However, there is a limit to machining at high speed, and the fast feed speed is limited to about 20 m / min. Furthermore, when the workpiece is longer than 3 m, there is a problem that the machining accuracy is lowered due to the deflection of the ball screw. Therefore, studies have been made to replace the drive unit with a linear motor.

工作機械には大きな推力が必要なので、複数の永久磁石を等ピッチで極性が可動子の移動方向に交互に異なる極性で板状ヨークに取り付けた固定子と、固定子の磁石列に対向するように磁性体コアと電機子コイルからなる可動子を配置したリニアモータが用いられる。   Since a machine tool requires a large thrust, a plurality of permanent magnets are mounted on a plate-shaped yoke with the same pitch but with different polarities alternately in the moving direction of the mover, so that they face the stator magnet row. A linear motor is used in which a mover comprising a magnetic core and an armature coil is disposed.

図4〜図9を参照して本発明に関連した従来のリニアモータを説明する。
図4は複数の永久磁石からなる永久磁石列上をコイルが移動するタイプの従来のリニアモータ130の側面図、図5は図4のA−A断面での断面図である。図4に示すように、この従来のリニアモータ130は、鉄板131の上に複数の永久磁石132を等ピッチで極性が可動子の移動方向に交互に異なる極性で取り付けた固定子133と、この永久磁石列に対向するように磁性体からなる電機子コア134に電機子コイル135を巻いた可動子136から構成されている。電機子コイル135は電機子コア134に集中巻されておりU相、V相、W相として三相平衡結線にしている。
図4に示すリニアモータ130は9個の電機子コア134に対して永久磁石8個が対向しており、電機子コイル135に三相電流を流して8極の磁界を作るために図のような位置に各相のコイルが配置されている。永久磁石132の作る磁場に対して電流の位相を制御して電機子コイル135に磁場を発生させれば、保持機構(図示せず)によって支持された可動子136が固定子133上を移動する。図4の永久磁石132の夫々に記した矢印は磁化の方向を示し、図4の電機子コイル135の夫々に記した矢印は巻き方向を表している。
A conventional linear motor related to the present invention will be described with reference to FIGS.
FIG. 4 is a side view of a conventional linear motor 130 of a type in which a coil moves on a permanent magnet array composed of a plurality of permanent magnets, and FIG. 5 is a cross-sectional view taken along the line AA of FIG. As shown in FIG. 4, the conventional linear motor 130 includes a stator 133 in which a plurality of permanent magnets 132 are mounted on an iron plate 131 at equal pitches and polarities that are alternately different in the moving direction of the mover. The armature core 134 is composed of a mover 136 having an armature coil 135 wound around an armature core 134 made of a magnetic material so as to face the permanent magnet array. The armature coil 135 is concentratedly wound around the armature core 134 and has a three-phase balanced connection as a U phase, a V phase, and a W phase.
The linear motor 130 shown in FIG. 4 has eight permanent magnets opposed to nine armature cores 134, and a three-phase current is caused to flow through the armature coil 135 to create an eight-pole magnetic field as shown in the figure. The coils of each phase are arranged at various positions. When the phase of the current is controlled with respect to the magnetic field generated by the permanent magnet 132 to generate a magnetic field in the armature coil 135, the mover 136 supported by a holding mechanism (not shown) moves on the stator 133. . The arrows marked on each of the permanent magnets 132 in FIG. 4 indicate the direction of magnetization, and the arrows marked on each of the armature coils 135 in FIG. 4 indicate the winding direction.

図6は上述した従来のリニアモータ130を保持機構によって支えられた状態の移動方向から見た断面図である。図6に示すように、可動子136(電機子コイル135を巻回した電機子コア134)がテーブル140の下部に固定され、このテーブル140の下部両端から垂直に延びた垂直フレーム144の先端に可動子136を案内するLM(Liner Motion)ブロック141が固定されている。固定子133はリニアモータのベースプレート143上に固定され、ベースプレート143の両端上部には上記のLMブロック141と対をなす他のLMレール142が設けられている。   FIG. 6 is a cross-sectional view of the above-described conventional linear motor 130 viewed from the moving direction in a state where it is supported by the holding mechanism. As shown in FIG. 6, the mover 136 (the armature core 134 around which the armature coil 135 is wound) is fixed to the lower part of the table 140, and is attached to the tip of the vertical frame 144 that extends vertically from both lower ends of the table 140. An LM (Liner Motion) block 141 for guiding the mover 136 is fixed. The stator 133 is fixed on a base plate 143 of the linear motor, and other LM rails 142 that are paired with the LM block 141 are provided on both upper ends of the base plate 143.

図4のリニアモータを組み込んだ場合には、永久磁石132と電機子コア134との間に非常に大きな磁気吸引力が作用し、その大きさは定格推力の数倍程度になる。そのために、LMブロック141とLMレール142間にも大きな力が作用し、摩擦力は非常に大きなものになるのでガイドの寿命を低下させるという問題もあった。   When the linear motor of FIG. 4 is incorporated, a very large magnetic attractive force acts between the permanent magnet 132 and the armature core 134, and the magnitude thereof is about several times the rated thrust. Therefore, a large force is also applied between the LM block 141 and the LM rail 142, and the frictional force becomes very large, which causes a problem that the life of the guide is reduced.

これを解決するために、特許文献1では、図7に示すように2個の固定子153(鉄板151と永久磁石152を含む)が対向しその間を可動子156(電機子コア154と電機子コイル155を含む)が移動するリニアモータ150を開示する。こうすることによって可動子と磁石列の吸引力が打ち消しあい可動子ガイドへの負荷が軽減できる。しかし、図7の構成では、固定子の鉄板151を精度良く垂直に立てるために、ある程度の厚みが必要で、図6の鉄板より厚くなっている。また、ベースプレート163が大きくなっており駆動装置全体を重くしてしまう。図3のレーザ加工機で説明したようにX軸方向への駆動装置の上にY軸方向の駆動装置とZ軸方向の駆動装置が載るので、駆動装置が重くなると同じ加速度を得るには、推力を増やすことになり駆動装置の大型化を招いてしまう。このため、駆動装置(リニアモータ)には軽量化が望まれる。リニアモータの重量を低減するには、駆動領域全域に配置される固定子および駆動装置のベースプレートの軽量化が効果的である。なお、図7はテーブル160、LMブロック161、LMレール162、ベースプレート163および垂直プレート164も示す。   In order to solve this, in Patent Document 1, as shown in FIG. 7, two stators 153 (including an iron plate 151 and a permanent magnet 152) are opposed to each other, and a mover 156 (an armature core 154 and an armature are interposed therebetween). Disclosed is a linear motor 150 that includes a coil 155. By doing so, the attractive force between the mover and the magnet array cancels out, and the load on the mover guide can be reduced. However, in the configuration of FIG. 7, in order to stand the stator iron plate 151 vertically with high accuracy, a certain amount of thickness is required, which is thicker than the iron plate of FIG. Further, the base plate 163 is large, which makes the entire driving device heavy. As described with reference to the laser beam machine in FIG. 3, the Y-axis direction driving device and the Z-axis direction driving device are mounted on the X-axis direction driving device. Thrust is increased and the drive device is increased in size. For this reason, weight reduction is desired for a drive device (linear motor). In order to reduce the weight of the linear motor, it is effective to reduce the weight of the stator and the base plate of the driving device that are arranged in the entire driving region. 7 also shows a table 160, an LM block 161, an LM rail 162, a base plate 163, and a vertical plate 164.

そこで、特許文献2で開示されている図8に示すリニアモータ170のように1枚の鉄板171の上に複数の永久磁石172を等ピッチで極性が可動子の移動方向に交互に異なる極性で取り付けた固定子173と、この永久磁石列に対向するように磁性体からなる電機子コア(磁性体コア)174に電機子コイル175を巻いた可動子176から構成されている。電機子コイル175への巻き線方法は、従来のリニアモータ130と同様である。図9は上述したリニアモータ170を保持機構によって支えられた状態の移動方向から見た断面図である。図9はテーブル180、LMブロック181、LMレール182、ベースプレート183および垂直プレート184も示す。図9のリニアモータ170の鉄板の厚みは、図7のリニアモータ150のものと同程度で、枚数が1枚減るのでリニアモータ全体の重量は軽量になる。   Therefore, as in the linear motor 170 shown in FIG. 8 disclosed in Patent Document 2, a plurality of permanent magnets 172 are arranged on a single iron plate 171 at the same pitch and with different polarities alternately in the moving direction of the mover. The stator 173 is attached, and a mover 176 is formed by winding an armature coil 175 around an armature core (magnetic core) 174 made of a magnetic material so as to face the permanent magnet row. The winding method to the armature coil 175 is the same as that of the conventional linear motor 130. FIG. 9 is a cross-sectional view seen from the moving direction of the linear motor 170 described above supported by the holding mechanism. FIG. 9 also shows a table 180, an LM block 181, an LM rail 182, a base plate 183 and a vertical plate 184. The thickness of the iron plate of the linear motor 170 in FIG. 9 is about the same as that of the linear motor 150 in FIG.

このようにして設計された従来のリニアモータ170で高推力を得ることができるが、コイルに電流を流さない場合でも永久磁石と磁性体コアの間に移動方向に吸引力が働く。これをコギングと呼んでいる。コギングが大きいと、リニアモータの位置制御がうまくいかなくなるので、レーザ加工機の加工精度を悪くしてしまうという問題があった。
特開平10−257750号公報 特開2002−34231号公報
High thrust can be obtained with the conventional linear motor 170 designed in this way, but an attractive force acts in the moving direction between the permanent magnet and the magnetic core even when no current is passed through the coil. This is called cogging. If the cogging is large, the position control of the linear motor will not be successful, and there is a problem that the processing accuracy of the laser processing machine is deteriorated.
JP-A-10-257750 JP 2002-34231 A

本発明の目的は、レーザ加工機の加工速度を向上させるリニアモータを提供すると共に、コギング力を大幅に低減し、高速で且つ高精度の加工が実現できるリニアモータを提供することである。   An object of the present invention is to provide a linear motor that improves the processing speed of a laser processing machine, and to provide a linear motor that can significantly reduce cogging force and realize high-speed and high-precision processing.

本発明は、複数の同一形状の永久磁石を可動子の移動方向に垂直で交互に異なる極性を有するように板状ヨークの両面に等間隔に取り付けられた固定子と、電機子コイルを巻かれた電機子コアを該固定子の両面の永久磁石の配列に対向するように配置した一対の可動子とを含んでなる工作機械に使用するリニアモータであって、各可動子が、永久磁石の幅と永久磁石間距離の和である磁石ピッチτの8倍となる長さを有し3個ずつU相とV相とW相の各相の電機子コイルが巻かれた9個の電機子コアを有する可動子ブロックを3つ含んでなり、各ブロックの間隔を該磁石ピッチτの2/3の長さにすることを特徴とする工作機械用リニアモータを提供する。
また、本発明は、上記永久磁石式リニアモータを三次元の移動機構に用いたレーザ加工機を提供する。
In the present invention, a plurality of identically shaped permanent magnets are wound with a stator and armature coils attached at equal intervals on both surfaces of a plate-like yoke so as to have different polarities perpendicular to the moving direction of the mover. A linear motor for use in a machine tool comprising a pair of movers in which armature cores are arranged to face the arrangement of permanent magnets on both sides of the stator, each mover being a permanent magnet Nine armatures each having a length that is eight times the magnet pitch τ, which is the sum of the width and the distance between the permanent magnets, and wound with three armature coils for each of the U, V, and W phases. There is provided a linear motor for a machine tool comprising three mover blocks each having a core, wherein the distance between the blocks is 2/3 of the magnet pitch τ.
The present invention also provides a laser processing machine using the permanent magnet type linear motor as a three-dimensional moving mechanism.

本発明によれば、固定子磁石ピッチの8倍の長さであり、歯の数(電機子コアの数)は9個であって3個ずつ各相の電機子コイルを巻いた可動子ブロックを3個配置し、各ブロックの間を固定子磁石ピッチの2/3にしたことでコギング力を大きく低減でき、高精度な加工が可能となる。   According to the present invention, the length of the stator magnet pitch is eight times, the number of teeth (the number of armature cores) is nine, and the mover block in which the armature coils of each phase are wound three by three. The three cogs are arranged, and between each block is set to 2/3 of the stator magnet pitch, so that the cogging force can be greatly reduced and high-precision machining can be performed.

本発明に用いる永久磁石は、Nd系、Sm系等が挙げられるが、特に限定するものではない。磁石の配向はヨークに対して垂直になっている。
本発明に用いる電機子コア(磁性体コアとも呼ばれる)は、磁性体であれば特に限定はしないが、一体化形状になっていることが好ましい。
Examples of the permanent magnet used in the present invention include Nd and Sm, but are not particularly limited. The orientation of the magnet is perpendicular to the yoke.
The armature core (also referred to as a magnetic core) used in the present invention is not particularly limited as long as it is a magnetic body, but preferably has an integrated shape.

以下、図1を参照して本発明に係る実施の形態を説明する。
図1は本発明の実施形態を説明する図であり、リニアモータの中央部の垂直断面図である。図1に示すように、本発明のリニアモータ10は、1枚のヨーク(例えば鉄板)11の上に複数の永久磁石12を等ピッチで極性が可動子の移動方向に垂直な交互に異なる極性で取り付けた固定子13と、この永久磁石の配列に対向するように磁性体からなる電機子コア(磁性体コア)14に電機子コイル15を巻いた一対の可動子16(可動子ブロック16a〜bを含む)から構成されている。
Hereinafter, an embodiment according to the present invention will be described with reference to FIG.
FIG. 1 is a diagram illustrating an embodiment of the present invention, and is a vertical sectional view of a central portion of a linear motor. As shown in FIG. 1, a linear motor 10 of the present invention has a plurality of permanent magnets 12 on a single yoke (for example, an iron plate) 11 and has different polarities alternately at the same pitch and perpendicular to the moving direction of the mover. And a pair of movers 16 (mover blocks 16a to 16a) in which an armature coil 15 is wound around an armature core (magnetic body core) 14 made of a magnetic material so as to face the arrangement of the permanent magnets. b).

各可動子ブロックの長さは固定子磁石ピッチの8倍であり、可動子の歯(電機子コア)の数は9個である。3つの可動子ブロックは進行方向に直列に配置されており、各ブロックの間(電機子コアの間)には、好ましくは、固定子磁石ピッチの2/3の寸法のスペーサ17が入っている。但し、各ブロックの間隔を磁石ピッチの2/3の長さとする空間であってもよい。
スペーサ17の材質は、3つの可動子ブロックの磁気的な干渉を無くすために非磁性ステンレスやアルミなどの非磁性体が好ましい。スペーサの形状は、特に限定しないが、直方体ブロック形状が好ましい。各可動子ブロックとの接続は、接着剤で固定する方法、可動子とともに別にフレームを設け機械的に固定する方法等が挙げられる。
電機子コイル15への巻き線方法は、U相、V相、W相のコイルが各々合計3個になるように配置して、U相、V相、W相の配置は適宜選択すればよく、例えば、第1ブロック目を図の左の歯から3個ずつU相、V相、W相のコイルが集中巻されている場合、第2ブロック目は左の歯から3個ずつV相、W相、U相のコイル、第2ブロック目は左の歯から3個ずつW相、U相、V相のコイルが巻かれている。
The length of each mover block is eight times the stator magnet pitch, and the number of mover teeth (armature cores) is nine. The three mover blocks are arranged in series in the traveling direction, and a spacer 17 having a size of 2/3 of the stator magnet pitch is preferably inserted between the blocks (between the armature cores). . However, the space which makes the space | interval of each block the length of 2/3 of a magnet pitch may be sufficient.
The material of the spacer 17 is preferably a non-magnetic material such as non-magnetic stainless steel or aluminum in order to eliminate magnetic interference between the three mover blocks. The shape of the spacer is not particularly limited, but a rectangular parallelepiped block shape is preferable. Examples of the connection with each mover block include a method of fixing with an adhesive, a method of providing a frame separately with the mover and mechanically fixing, and the like.
The winding method for the armature coil 15 may be arranged such that there are a total of three U-phase, V-phase, and W-phase coils, and the arrangement of the U-phase, V-phase, and W-phase may be appropriately selected. For example, when the U-phase, V-phase, and W-phase coils of the first block are three wound from the left tooth in the figure, the second block is three V coils from the left tooth, The W-phase, U-phase coils, and the second block are wound with three W-phase, U-phase, and V-phase coils from the left tooth.

図2は、3つの可動子ブロックで構成され、その間隔が磁石ピッチの2/3である可動子を一対有する図1のリニアモータ10のコギング力ついて説明する。
図2には図8の進行方向に各可動子が1ブロックで構成された従来例のリニアモータ170のコギング力が点線で示されている。コギング力は、可動子が移動したときに進行方向またはその逆方向に周期的に働く力で、その周期は磁石のピッチになっている。今の場合、最大最小の差が144Nになっている。従来例のリニアモータ170にコギング力の波形の位相が240°ずつ違う可動子を2個つけると、波形の合成からコギング力が打ち消しあう。従って、ブロックの間を固定子磁石ピッチの2/3にする本発明によれば、でコギング力を大きく低減できると考えられる。
FIG. 2 illustrates the cogging force of the linear motor 10 of FIG. 1 that includes a pair of movers each having two mover blocks, the interval of which is 2/3 of the magnet pitch.
2 shows the cogging force of a conventional linear motor 170 in which each mover is constituted by one block in the traveling direction of FIG. The cogging force is a force that periodically acts in the traveling direction or the opposite direction when the mover moves, and the cycle is the pitch of the magnet. In this case, the maximum and minimum difference is 144N. If two movers having different phases of the cogging force waveform by 240 ° are attached to the linear motor 170 of the conventional example, the cogging force cancels out from the waveform synthesis. Therefore, according to the present invention in which the space between the blocks is 2/3 of the stator magnet pitch, it is considered that the cogging force can be greatly reduced.

本発明によれば、このように補助コアを設けたリニアモータをX、Y、Z軸の三次元の移動機構に用いたレーザ加工機に応用できる。本発明のレーザ加工機を用いると、ゴギング力低減による推力むらがなくなり、位置制御精度が高まり、高速で精度のよい加工が行える。   According to the present invention, the linear motor provided with the auxiliary core as described above can be applied to a laser processing machine using a three-dimensional moving mechanism of X, Y, and Z axes. When the laser processing machine of the present invention is used, thrust unevenness due to reduced gogging force is eliminated, position control accuracy is increased, and high-speed and accurate processing can be performed.

実施例
図1で示すように、第2、第3の可動子ブロックをコギング力の波形の240°に相当する磁石ピッチの2/3の間隔を設け配置した。Nd−Fe−B系の永久磁石を使用し、コア材は鉄ヨークを使用した。ここで、図1の断面寸法は磁石幅18mm、磁化方向厚さ5mm、磁石ピッチ25mm、電機子コアの歯の幅10mm、歯の長さ34mm、固定子ヨークの厚さ19mmであった。可動子と固定子磁石の隙間は1mmであった。第1のブロックと第2のブロックと第3のブロックのスペーサ(非磁性ステンレスSUS304)の各幅は16.7mmであった。可動子および固定子の断面方向の厚さは33mmであった。なお、図8の従来例の寸法は、本発明と同じ推力を得るために可動子および固定子の断面方向の厚さは100mmで、他の寸法は同じにしている。
図2の実線で示すように本発明のコギング力は小さくなり、最大最小の差で10Nとなった。このように、3ブロックの可動子コアを磁石ピッチの2/3の間を空けて配置することでコギング力を低減できた。
このように補助コアを設けたリニアモータをX、Y、Z軸の三次元の移動機構に用いたレーザ加工機に応用できた。
Example As shown in FIG. 1, the second and third mover blocks were arranged with an interval of 2/3 of the magnet pitch corresponding to 240 ° of the waveform of the cogging force. An Nd—Fe—B permanent magnet was used, and an iron yoke was used as the core material. Here, the cross-sectional dimensions in FIG. 1 were magnet width 18 mm, magnetization direction thickness 5 mm, magnet pitch 25 mm, armature core tooth width 10 mm, tooth length 34 mm, and stator yoke thickness 19 mm. The gap between the mover and the stator magnet was 1 mm. Each width of the spacer (nonmagnetic stainless steel SUS304) of the first block, the second block, and the third block was 16.7 mm. The thickness of the mover and the stator in the cross-sectional direction was 33 mm. In order to obtain the same thrust as that of the present invention, the dimensions of the conventional example in FIG. 8 are 100 mm in thickness in the cross-sectional direction of the mover and the stator, and other dimensions are the same.
As shown by the solid line in FIG. 2, the cogging force of the present invention was reduced, and the maximum and minimum difference was 10N. As described above, the cogging force can be reduced by disposing the three-block mover core with a gap of 2/3 of the magnet pitch.
Thus, the linear motor provided with the auxiliary core could be applied to the laser processing machine used for the three-dimensional moving mechanism of the X, Y, and Z axes.

本発明の実施の形態に係るリニアモータを説明する図である。It is a figure explaining the linear motor which concerns on embodiment of this invention. 本発明と従来例のコギング力の波形を説明する図である。It is a figure explaining the waveform of the cogging force of this invention and a prior art example. レーザ加工機を説明する断面図である。It is sectional drawing explaining a laser beam machine. 従来のリニアモータの可動子と固定子の関係を説明する断面図である。It is sectional drawing explaining the relationship between the needle | mover of a conventional linear motor, and a stator. 図4のA−B断面図である。FIG. 5 is a cross-sectional view taken along line AB in FIG. 4. 図4のリニアモータの保持機構を説明する図である。It is a figure explaining the holding mechanism of the linear motor of FIG. 磁気吸引力を打ち消し合う従来のリニアモータを説明する図である。It is a figure explaining the conventional linear motor which cancels out a magnetic attraction force. 磁気吸引力を打ち消し合う従来のリニアモータの可動子と固定子の関係を説明する図である。It is a figure explaining the relationship between the needle | mover and stator of the conventional linear motor which cancels out magnetic attraction force. 図8のリニアモータの保持機構を説明する図である。It is a figure explaining the holding mechanism of the linear motor of FIG.

符号の説明Explanation of symbols

10,130,150,170 リニアモータ
11,131,151,171 板状ヨーク
12,132,152,172 永久磁石
13,133,153,173 固定子
14,134,154,174 電機子コア
15,135,155,175 電機子コイル
16,136,156,176 可動子
20,140,160,180 テーブル
21,141,161,181 LMブロック
22,142,162,182 LMレール
23,143,163,183 ベースプレート
24,144,164,184 垂直フレーム
121 フレーム
122 テーブル
123 X軸方向駆動装置
124 Y軸方向駆動装置
125 Z軸方向駆動装置
126 トーチ
10, 130, 150, 170 Linear motor 11, 131, 151, 171 Plate-shaped yoke 12, 132, 152, 172 Permanent magnet 13, 133, 153, 173 Stator 14, 134, 154, 174 Armature core 15, 135 , 155, 175 Armature coil 16, 136, 156, 176 Movers 20, 140, 160, 180 Table 21, 141, 161, 181 LM block 22, 142, 162, 182 LM rail 23, 143, 163, 183 Base plate 24, 144, 164, 184 Vertical frame 121 Frame 122 Table 123 X-axis direction driving device 124 Y-axis direction driving device 125 Z-axis direction driving device 126 Torch

Claims (3)

複数の同一形状の永久磁石を可動子の移動方向に垂直で交互に異なる極性を有するように板状ヨークの両面に等間隔に取り付けられた固定子と、電機子コイルを巻かれた電機子コアを該固定子の両面の永久磁石の配列に対向するように配置した一対の可動子とを含んでなる工作機械に使用するリニアモータであって、
各可動子が、永久磁石の幅と永久磁石間距離の和である磁石ピッチτの8倍となる長さを有し3個ずつU相とV相とW相の各相の電機子コイルが巻かれた9個の電機子コアを有する可動子ブロックを3つ含んでなり、各ブロックの間隔を該磁石ピッチτの2/3の長さにすることを特徴とする工作機械用リニアモータ。
A stator in which a plurality of permanent magnets having the same shape are perpendicular to the moving direction of the mover and have different polarities alternately on both surfaces of the plate-like yoke, and an armature core wound with an armature coil A linear motor used for a machine tool comprising a pair of movers arranged so as to face the arrangement of permanent magnets on both sides of the stator,
Each armature has a length that is eight times the magnet pitch τ, which is the sum of the width of the permanent magnet and the distance between the permanent magnets, and three armature coils for each of the U, V, and W phases. A linear motor for a machine tool, comprising three mover blocks each having nine wound armature cores, wherein the distance between the blocks is 2/3 of the magnet pitch τ.
上記各ブロックの間隔を上記磁石ピッチτの2/3の長さにするために、該各ブロックの間に非磁性体のスペーサを含んでなる請求項1に記載の工作機械用リニアモータ。   The linear motor for machine tools according to claim 1, further comprising a non-magnetic spacer between the blocks in order to make the interval between the blocks 2/3 of the magnet pitch τ. 請求項1に記載の永久磁石式リニアモータを三次元の移動機構に用いたレーザ加工機。   A laser processing machine using the permanent magnet linear motor according to claim 1 as a three-dimensional moving mechanism.
JP2004210488A 2004-07-16 2004-07-16 Linear motor for machine tool Pending JP2006034016A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004210488A JP2006034016A (en) 2004-07-16 2004-07-16 Linear motor for machine tool
EP05254357A EP1617545A3 (en) 2004-07-16 2005-07-12 Linear motor for use in machine tool
US11/184,645 US20060012252A1 (en) 2004-07-16 2005-07-18 Linear motor for use in machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210488A JP2006034016A (en) 2004-07-16 2004-07-16 Linear motor for machine tool

Publications (1)

Publication Number Publication Date
JP2006034016A true JP2006034016A (en) 2006-02-02

Family

ID=35899682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210488A Pending JP2006034016A (en) 2004-07-16 2004-07-16 Linear motor for machine tool

Country Status (1)

Country Link
JP (1) JP2006034016A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183041A (en) * 2008-01-30 2009-08-13 Nidec Sankyo Corp Linear motor
CN108023460A (en) * 2018-02-02 2018-05-11 上海莫戈纳机电科技有限公司 Linear electric machine
KR20190090371A (en) * 2016-12-23 2019-08-01 한국전기연구원 Permanent magnet electrical equipment for detent reduction
CN111293855A (en) * 2018-12-07 2020-06-16 佳能株式会社 Conveying device and article manufacturing method
CN114362472A (en) * 2021-12-28 2022-04-15 中国人民解放军海军工程大学 Segmented splicing modular motor with intersegment magnetic field compensation winding and splicing compensation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183041A (en) * 2008-01-30 2009-08-13 Nidec Sankyo Corp Linear motor
KR20190090371A (en) * 2016-12-23 2019-08-01 한국전기연구원 Permanent magnet electrical equipment for detent reduction
KR102401588B1 (en) 2016-12-23 2022-05-25 한국전기연구원 Permanent magnet electric device to reduce detent force
CN108023460A (en) * 2018-02-02 2018-05-11 上海莫戈纳机电科技有限公司 Linear electric machine
CN111293855A (en) * 2018-12-07 2020-06-16 佳能株式会社 Conveying device and article manufacturing method
CN111293855B (en) * 2018-12-07 2023-09-01 佳能株式会社 Conveying device and article manufacturing method
CN114362472A (en) * 2021-12-28 2022-04-15 中国人民解放军海军工程大学 Segmented splicing modular motor with intersegment magnetic field compensation winding and splicing compensation method thereof

Similar Documents

Publication Publication Date Title
US20060012252A1 (en) Linear motor for use in machine tool
US20060012251A1 (en) Linear motor for use in machine tool
US7154198B2 (en) Linear motor
JP6269895B2 (en) Linear motor
US7944095B2 (en) Linear motor with integrally formed stator
JP4993609B2 (en) Linear synchronous motor and linear motor actuator
JP2002064968A (en) Slider with built-in moving coil linear motor
JP5289799B2 (en) Linear motor
JP2001211630A (en) Linear slider
JP2006034016A (en) Linear motor for machine tool
JP5365775B2 (en) Manufacturing method of linear motor system and linear motor system
JP2006054974A (en) Linear motor
WO2013047610A1 (en) Actuator
JP2006034013A (en) Linear motor for machine tool
JP5431295B2 (en) XY stage
JP5345047B2 (en) Linear motor
JP2006034014A (en) Linear motor for machine tool
JP2006054971A (en) Linear motor for machine tool
JP2006034015A (en) Linear motor for machine tool
JP2006054973A (en) Linear motor for machine tool
JP2007082352A (en) Linear actuator
JP2006054972A (en) Linear motor for machine tool
JP2002096233A (en) Linear slider
JP2005295678A (en) Linear drive system
JP2006087180A (en) Permanent magnet type synchronous linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302