JP2004364374A - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP2004364374A
JP2004364374A JP2003157772A JP2003157772A JP2004364374A JP 2004364374 A JP2004364374 A JP 2004364374A JP 2003157772 A JP2003157772 A JP 2003157772A JP 2003157772 A JP2003157772 A JP 2003157772A JP 2004364374 A JP2004364374 A JP 2004364374A
Authority
JP
Japan
Prior art keywords
armature
linear motor
armature core
core
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003157772A
Other languages
Japanese (ja)
Inventor
Atsushi Kawahara
敦志 川原
Tadahiro Miyamoto
恭祐 宮本
Masahiko Tanabe
政彦 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003157772A priority Critical patent/JP2004364374A/en
Publication of JP2004364374A publication Critical patent/JP2004364374A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high precision linear motor capable of reducing generation of cogging thrust as much as possible. <P>SOLUTION: The linear motor comprises a field pole 2 consisting of a field yoke 2a where a plurality of permanent magnets 2b are arranged linearly, and an armature 1 arranged to face the row of permanent magnets 2b in the field pole 2 through a magnetic air gap. The armature 1 comprises an armature core 3 having main teeth 4b and slots 4c, an armature winding 7 formed by winding a coil in the slots 4c of the armature core 3, and auxiliary teeth 5 arranged at the opposite ends of the armature core 3 in the direction parallel with the row of the permanent magnets 2b in the field pole 2 wherein any one of the field pole 2 or the armature 1 serves as a stator and the other serves as a moving member so that the field pole 2 and the armature 1 travel relatively. In such a linear motor, shape of the auxiliary teeth 5 at the opposite ends of the armature core 3 is differentiated depending on the length of the armature core 3 in the direction parallel with the row of the permanent magnets 2b in the field pole 2 or the number of main teeth 4b of the armature 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、工作機のテーブル送りなどに利用される高精度なリニアモータに関し、特にその電機子構造に関する。
【0002】
【従来の技術】
図7に従来技術によるギャップ対向型のリニアモータの側断面図を示す。図7において、1が電機子、2が界磁極である。
電機子1は、複数の電機子ブロック4からなる、いわゆる分割コア型の電機子コア3と、電機子コア3の両端に設けた補助ティース5で構成される。電機子ブロック4は、略長方形をした電磁鋼板を複数枚積層してなりスロット4cと主ティース4bを備えたコアブロック4aのスロット4cに、電機子巻線7を巻装すると共に、一方側面に凸状の係合部6aを、他方側面に凹状の係合部6bを設けた構成である。補助ティース5は、略L字状の積層鋼板や鋼部材などからなり、一端の補助ティース5の側面に凸状の係合部6aを、他端の補助ティース5の側面に凹状の係合部6bを設けてある。これらの複数の電機子ブロック4と補助ティース5を直線状に並べ、隣り合う各々の係合部6a、6bを嵌合させて結合した後、移動子8の下面に固定している。なお、上記分割コア型の電機子1に代えて、電機子コア3を、またはそれに加えて補助ティース5を含めて櫛歯状に抜いた積層鋼板からなる一体型コアの電機子も構成され得る。
界磁極2は、図示しない固定部に固定した界磁ヨーク2aに、複数の永久磁石2bを交互に極性が異なるように隣接、配置されている。
上記電機子1と界磁極2とが空隙を介し、互いが平行に対向するようにしてリニアモータが構成される。
このような構成のリニアモータにおいて、上記のような電機子1の構成であるため、電機子コア3の積層鋼板の枚数を増減して積み厚を変更したり、電機子ブロック4の個数を増減することにより、リニアモータの発生推力を自由に設計することができる。
また、補助ティース5を除いた電機子コア2だけでは電機子コア3の両端部の主ティース4bと中心部の主ティース4bでは、鎖交磁束が異なり、ひいては各々の主ティース4bに働く力がバラツキ、コギング推力が発生する。これを防ぐために、補助ティース5が設けられている(特許文献1)。それに加えて、コギング推力を最小とする界磁極2のピッチと補助ティース5の長さの関係や、主ティース4bと補助ティース5の長さの関係を、理論式や有限要素法を用いた数値解析により求めて、コギング推力を極力小さくする工夫がなされている(特許文献2、3)。
【0003】
【特許文献1】特公昭60−30195号公報
【特許文献2】WO01/80408公報
【特許文献3】実公平7−53427号公報
【0004】
【発明が解決しようとする課題】
しかしながら、従来のリニアモータを、コンタリング性能が重要視される工作機械、あるいは微細な位置決めを高速に行う半導体装置などに適用するに当って、実際に製作したリニアモータでは、次のような問題があった。
上述したように、電機子コアの補助ティースの形状は数値解析などによって求められ、電磁的に周期性や相似性のある等価な電機子コアにたいしては設計的、あるいはコスト的観点から同じ形状の補助ティースが用いられる。ここで、電磁的に周期性があるというのは、電機子コアの主ティース数が整数倍であるといったことである。これにより電機子コアはストローク方向に長短が生じる。
また、電磁的な相似性とは電機子コア形状などは同じで、積み厚が相違するといったことである。これにより電機子コアはストローク方向に垂直な方向に長短となる。
ところが、電磁的に周期性や相似性があったとしても、詳細には電機子コアの形状が変るとストローク方向、あるいはそれと垂直方向の電磁的端効果が変化する。従って、この端効果の変化の影響により、補助ティースによる主ティースに働く力のバラツキの抑制力減じられるという作用が生じ、界磁極によるティースに働く電磁力のバランスを崩して、コギング推力や推力リップルの原因となり、ひいてはリニアモータを組み込んだ工作機械や半導体装置などのコンタリング性能、あるいは位置決め性能を劣化させる原因となり、大きな問題となっていた。
本発明は、上記課題を解決するためになされたものであり、電磁的に周期性や相似性のある電機子コアに大して各々相違する形状の補助ティースを装着することでコギング推力の発生を極力低減することが可能な、高精度なリニアモータを提供することを目的とする。
【0005】
【課題を解決するための手段】
上記問題を解決するために、請求項1の本発明は、交互に極性が異なるように複数の永久磁石を直線状に並べて配置した界磁ヨークからなる界磁極と、前記界磁極の永久磁石列と磁気的空隙を介して対向するように配置した電機子とを備え、前記電機子は、主ティースとスロットを有する電機子コアと、前記電機子コアのスロットにコイルを巻回した電機子巻線と、前記電機子コアの前記界磁極の永久磁石列と平行方向の両端に配置した補助ティースより構成してあり、前記界磁極と前記電機子との何れか一方を固定子に、他方を可動子として、前記界磁極と前記電機子を相対的に走行するようにしたリニアモータにおいて、前記電機子コアの前記界磁極の永久磁石列と平行方向の長さ、もしくは前記電機子の主ティースの個数によって、前記電機子コア両端の補助ティースの形状が異なるようにする。
また、請求項2の本発明は、前記電機子コアの前記界磁極の永久磁石列と垂直方向の長さによって、前記電機子コア両端の補助ティースの形状が異なるようにする。
請求項3の本発明は、請求項1または2の発明において、前記電機子コアは、複数の分割コアで構成されると共に、前記分割コアを構成する継鉄部の一方側面に凸状の係合部を、他方側面に凹状の係合部を設け、隣り合う各々の係合部を嵌合させて結合したものとする
請求項4の本発明は、交互に極性が異なるように複数の永久磁石を直線状に並べて配置した2つの界磁ヨークを対向させた界磁極と、前記2つの界磁極の間に磁気的空隙を介して対向するように配置した電機子とを備え、前記電機子は、前記界磁極の永久磁石列と直交方向の両端に主ティースとスロットを有する電機子コアと、前記電機子コアの両端のスロットにコイルを巻回した電機子巻線と、前記電機子コアの前記界磁極の永久磁石列と平行方向の両端に配置した補助ティースより構成してあり、前記界磁極と前記電機子との何れか一方を固定子に、他方を可動子として、前記界磁極と前記電機子を相対的に走行するようにしたリニアモータにおいて、前記電機子コアの前記界磁極の永久磁石列と平行方向の長さ、もしくは前記電機子の主ティースの個数によって、前記電機子コア両端の補助ティースの形状が異なるようにする。
請求項5の本発明は、請求項4の発明において、前記電機子コアの前記界磁極の永久磁石列と垂直方向の長さによって、前記電機子コア両端の補助ティースの形状が異なるようにする。
請求項6の本発明は、請求項4または5の発明において、前記電機子コアは、複数の分割コアで構成されると共に、前記分割コアを構成する継鉄部の一方側面に凸状の係合部を、他方側面に凹状の係合部を設け、隣り合う各々の係合部を嵌合させて結合したものとする。
【0006】
【発明の実施の形態】
以下、本発明のリニアモータを図に示す実施例に基づいて説明する。
【0007】
(第1実施例)
本発明が従来と同じ構成要素については同一符号を付して説明を省略し、異なる点のみ説明する。
本発明のギャップ対向型のリニアモータを図1に示す。図2に、図1の片側(右側)の補助ティース5周辺部(一点鎖線の枠内)に関する拡大図を示す。
本発明のリニアモータは、図7に示した従来技術によるリニアモータは相似形であるが、積み厚(紙面の奥行き方向の寸法)が相違しており、加えて補助ティース5の形状が異なる。その他は従来の技術にて述べた構成と同じである。
図1の実施例での本発明のリニアモータは、より具体的には積み厚が図7の従来例よりも短く(例えば半分の積み厚)、積み厚方向の電磁的な端効果が顕著になる。この端効果の補助ティース5のコギング低減効果を最大限に得るため、例えば図2に示す補助ティース5のB寸法、すなわち補助ティース5の長さを従来よりも長くした構成としている。
このように構成された電機子1を備えたリニアモータは、電機子1で生じる端効果による界磁ヨーク2aによる主ティース4bの発生力のバラツキを最大限に抑制するように作用し、ひいてはコギング推力を最小に抑えることができる。
【0008】
(第2実施例)
次に、図3に第2実施例を示す。第2の実施例のリニアモータは第1の実施例のリニアモータとの構成の相違点は、第1の実施例のリニアモータの電機子コア3の電機子ブロック4は9個であるのに対し、第2の実施例のリニアモータの電機子コア3の電機子ブロック4の個数は18個と2倍である(周期的には同形)と共に、補助ティース5の形状が異なる。両者の積み厚は同じであり、リニアモータの発生推力としては、実施例2の発生推力は実施例1の2倍得られる構成である。
第2の実施例の構成のリニアモータと、第1の実施例のリニアモータのストローク方向端部の端効果は相違し、ストローク方向端部の端効果は、第2の実施例の方が小さくなる。よって、第2の実施例のリニアモータは、例えば図2に示す補助ティース5のB寸法、すなわち、補助ティース5の長さを第1の実施例よりも短くした構成としている。
このように構成された電機子1を備えたリニアモータは、第1の実施例と同様に、電機子1で生じる端効果による界磁ヨーク2aによる主ティース4bの発生力のバラツキを最大限に抑制するように作用し、ひいてはコギング推力を最小に抑えることができる。
【0009】
(第3実施例)
図4、図6には、2つの界磁極2の間に対向するように電機子1を磁気的空隙を介して配置した、磁束貫通型のリニアモータに本発明を適用した第3の実施例を示す。図5には、図4、図6の片側(右側)の補助ティース5周辺部(一点鎖線の枠内)に関する拡大図を示す。
図4、図6の磁束貫通型のリニアモータは、界磁極2が2つであること、そして2つの界磁極2の間にある電機子1がコアブロック4aの上下に主ティース4bとスロット4cを備え、上下両方のスロット4cに電機子巻線7を巻装した構成であり、2つの磁気的空隙面で推力を発生している点がギャップ対向型と大きく相違している。また、可動子取付け穴8aによって図示しない可動子とを結合する構成である。その他の基本的構成は図1のギャップ対向型のリニアモータと同じである。
図4と図6の二つのリニアモータは、第2の実施例で述べたのと同様であり、図4のリニアモータは図6のリニアモータとの構成の相違点は、図4のリニアモータの電機子コア3の電機子ブロック4は9個であるのに対し、図6のリニアモータの電機子コア3の電機子ブロック4の個数は18個と2倍である(周期的には同形)と共に、補助ティース5の形状が異なる。両者の積み厚は同じであり、リニアモータの発生推力としては、図6の発生推力は、図4の2倍得られる構成である。
図6の構成のリニアモータと、図4のリニアモータのストローク方向端部の端効果は相違し、ストローク方向端部の端効果は、図6の方が小さくなる。よって、図6のリニアモータは、例えば図5に示す補助ティース5のB寸法、すなわち、補助ティース5の長さを図4のリニアモータよりも短くした構成としている。
このように構成されたリニアモータは第2の実施例で説明したものと同様な作用、効果が得られる。
また、図4、図6の磁束貫通型のリニアモータにおいても、電機子1の積み厚がことなる相似形の違いに対しても、実施例1で説明したように、各々異なる補助ティース寸法とすれば、コギング推力を極力低減でき得るリニアモータを実現できることに変わりない。
【0010】
なお、第1、および、第2の実施例では補助ティース5のB寸法のみを相違させたが、A寸法、すなわち、電機子コア3の両端の主ティースの中心線と補助ティース5の中心線間の寸法、および、C寸法、すなわち、補助ティース5の幅を相違させても構わない。
また、各実施例においては、電機子コア構造が分割コア型について説明したが、一体コア型についても同様である。また、ティースをセミオープンスロットとしたが、オープンスロットとしても構わない。
【0011】
【発明の効果】
以上述べたように、本発明によれば、電機子コアのストローク方向、あるいはストローク方向に垂直方向の端効果に対応した補助ティースを備えることで、各々の電磁的な端効果の影響による主ティースに働く力のアンバランスを極力低減できて、リニアモータのコギング推力を最小にできる。
以上から、コンタリング性能の高く、高精度加工ができる工作機械、高速に微小位置決めを行なえ、高スループットの半導体製造装置にも適用可能なリニアモータを提供できるといった大きな効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示すリニアモータの側断面図である。
【図2】図1の補助ティース周辺部の拡大図である。
【図3】本発明の第2の実施例を示すリニアモータの側断面図である。
【図4】本発明の第3の実施例を示すリニアモータの平断面図である。
【図5】図4の補助ティース周辺部の拡大図である。
【図6】本発明の第3の実施例を示す他のリニアモータの平断面図である。
【図7】従来のリニアモータの側断面図である。
【符号の説明】
1 電機子
2 界磁極
2a 界磁ヨーク
2b 永久磁石
3 電機子コア
4 電機子ブロック
4a コアブロック
4b 主ティース
4c スロット
5 補助ティース
6a 凸状係合部
6b 凹状係合部
7 電機子巻線
8 移動子
8a 移動子取付け穴
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-precision linear motor used for table feed of a machine tool, and particularly to an armature structure thereof.
[0002]
[Prior art]
FIG. 7 shows a sectional side view of a gap-facing linear motor according to the prior art. In FIG. 7, 1 is an armature and 2 is a field pole.
The armature 1 includes a so-called split core type armature core 3 including a plurality of armature blocks 4, and auxiliary teeth 5 provided at both ends of the armature core 3. The armature block 4 is formed by laminating a plurality of substantially rectangular electromagnetic steel sheets, and has an armature winding 7 wound around a slot 4c of a core block 4a having a slot 4c and a main tooth 4b. This is a configuration in which a convex engaging portion 6a is provided and a concave engaging portion 6b is provided on the other side surface. The auxiliary tooth 5 is made of a substantially L-shaped laminated steel plate or a steel member, and has a convex engaging portion 6a on the side surface of the auxiliary tooth 5 at one end and a concave engaging portion on the side surface of the auxiliary tooth 5 at the other end. 6b is provided. The plurality of armature blocks 4 and the auxiliary teeth 5 are arranged in a straight line, and the engaging portions 6a and 6b adjacent to each other are fitted together and fixed, and then fixed to the lower surface of the moving member 8. Note that, instead of the split core type armature 1, an armature of an integrated core made of a laminated steel plate in which the armature core 3 or the auxiliary teeth 5 are additionally extracted in a comb-tooth shape in addition to the armature core 3 may be configured. .
The field pole 2 is arranged adjacent to a field yoke 2a fixed to a fixed portion (not shown) so that a plurality of permanent magnets 2b are alternately different in polarity.
A linear motor is configured such that the armature 1 and the field pole 2 face each other in parallel with a gap therebetween.
In the linear motor having such a configuration, since the configuration of the armature 1 is as described above, the number of laminated steel plates of the armature core 3 is increased or decreased to change the stacking thickness, or the number of the armature blocks 4 is increased or decreased. By doing so, the generated thrust of the linear motor can be freely designed.
In addition, only the armature core 2 excluding the auxiliary teeth 5 has different interlinkage magnetic fluxes between the main teeth 4b at both ends of the armature core 3 and the main teeth 4b at the center, and thus the force acting on each main tooth 4b. Variation and cogging thrust occur. To prevent this, an auxiliary tooth 5 is provided (Patent Document 1). In addition, the relationship between the pitch of the field pole 2 and the length of the auxiliary teeth 5 that minimizes the cogging thrust, and the relationship between the length of the main teeth 4b and the length of the auxiliary teeth 5 are represented by numerical values using theoretical formulas and finite element methods. Investigations have been made to reduce the cogging thrust as much as possible by analysis (Patent Documents 2 and 3).
[0003]
[Patent Document 1] Japanese Patent Publication No. 60-30195 [Patent Document 2] WO 01/80408 [Patent Document 3] Japanese Utility Model Publication No. 7-53427
[Problems to be solved by the invention]
However, in applying a conventional linear motor to a machine tool where contouring performance is important or a semiconductor device that performs fine positioning at high speed, the following problems occur in the actually manufactured linear motor. was there.
As described above, the shape of the auxiliary teeth of the armature core is determined by numerical analysis or the like. For an equivalent armature core having electromagnetic periodicity and similarity, the auxiliary shape of the same shape is designed from the viewpoint of design or cost. Teeth are used. Here, having electromagnetic periodicity means that the number of main teeth of the armature core is an integral multiple. As a result, the armature core lengthens in the stroke direction.
Further, the electromagnetic similarity means that the armature core shape and the like are the same and the stacking thickness is different. Thereby, the armature core becomes longer and shorter in the direction perpendicular to the stroke direction.
However, even if there is an electromagnetic periodicity or similarity, when the shape of the armature core changes, the electromagnetic end effect in the stroke direction or in the direction perpendicular thereto changes. Therefore, due to the effect of the change of the end effect, the effect of suppressing the variation of the force acting on the main teeth by the auxiliary teeth is reduced, and the balance of the electromagnetic force acting on the teeth due to the field poles is lost, so that the cogging thrust and thrust ripple are reduced. And, consequently, deteriorating contouring performance or positioning performance of a machine tool or a semiconductor device incorporating a linear motor, which has been a serious problem.
The present invention has been made to solve the above-described problem, and the generation of cogging thrust is minimized by mounting auxiliary teeth having different shapes to armature cores having electromagnetic periodicity and similarity. It is an object of the present invention to provide a highly accurate linear motor that can be reduced.
[0005]
[Means for Solving the Problems]
In order to solve the above problem, the present invention according to claim 1 includes a field pole composed of a field yoke in which a plurality of permanent magnets are arranged linearly so as to have alternately different polarities, and a permanent magnet array of the field poles. And an armature arranged to face each other with a magnetic gap therebetween, wherein the armature has an armature core having a main tooth and a slot, and an armature winding having a coil wound around a slot of the armature core. And the auxiliary teeth arranged at both ends of the armature core in the direction parallel to the permanent magnet rows of the field poles, one of the field poles and the armature being a stator, and the other being a stator. As a mover, in a linear motor in which the field pole and the armature run relatively, a length of the armature core in a direction parallel to a row of permanent magnets of the field pole, or a main tooth of the armature is used. By the number of Shape of the auxiliary teeth of the armature core ends are different.
Further, according to the invention of claim 2, the shape of the auxiliary teeth at both ends of the armature core differs depending on the length of the field poles of the armature core in the direction perpendicular to the permanent magnet row.
According to a third aspect of the present invention, in the first or second aspect, the armature core includes a plurality of split cores, and has a convex shape on one side surface of a yoke portion forming the split core. The present invention according to claim 4, wherein the joining portion is provided with a concave engaging portion on the other side surface, and the adjacent engaging portions are fitted to each other so as to be joined together. A field pole in which two field yokes in which magnets are arranged linearly are arranged facing each other; and an armature arranged so as to face through a magnetic gap between the two field poles, An armature core having main teeth and slots at both ends in a direction orthogonal to the permanent magnet row of the field poles; an armature winding having coils wound around slots at both ends of the armature core; Auxiliary tapes arranged at both ends of the field poles in the direction parallel to the permanent magnet row A linear motor that is configured to have one of the field pole and the armature as a stator and the other as a mover so that the field pole and the armature run relatively. The shape of the auxiliary teeth at both ends of the armature core is changed depending on the length of the armature core in the direction parallel to the permanent magnet rows of the field poles or the number of main teeth of the armature.
According to a fifth aspect of the present invention, in the invention of the fourth aspect, the shape of the auxiliary teeth at both ends of the armature core is changed depending on the length of the field poles of the armature core in the direction perpendicular to the permanent magnet row. .
According to a sixth aspect of the present invention, in the invention of the fourth or fifth aspect, the armature core is constituted by a plurality of divided cores, and the armature core has a convex shape on one side surface of the yoke portion constituting the divided core. It is assumed that the joining portion is provided with a concave engaging portion on the other side surface, and each of the adjacent engaging portions is fitted and joined.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a linear motor of the present invention will be described based on an embodiment shown in the drawings.
[0007]
(First embodiment)
The same components as those of the prior art are denoted by the same reference numerals, and the description thereof will be omitted.
FIG. 1 shows a gap-facing linear motor according to the present invention. FIG. 2 is an enlarged view of the periphery (in the frame of the dashed line) of the auxiliary teeth 5 on one side (right side) of FIG.
The linear motor according to the present invention has a similar shape to the linear motor according to the prior art shown in FIG. 7, but has a different stacking thickness (dimensions in the depth direction of the paper surface), and additionally has a different shape of the auxiliary teeth 5. The rest is the same as the configuration described in the related art.
More specifically, the linear motor of the present invention in the embodiment of FIG. 1 has a stacking thickness shorter than that of the conventional example of FIG. 7 (for example, half the stacking thickness), and the electromagnetic end effect in the stacking direction is remarkable. Become. In order to maximize the effect of reducing the cogging of the auxiliary teeth 5 of the end effect, for example, the dimension B of the auxiliary teeth 5 shown in FIG. 2, that is, the length of the auxiliary teeth 5 is made longer than before.
The linear motor having the armature 1 configured as described above acts to minimize the variation in the force generated by the main teeth 4b due to the field yoke 2a due to the end effect generated in the armature 1, and thus cogging. Thrust can be minimized.
[0008]
(Second embodiment)
Next, FIG. 3 shows a second embodiment. The difference between the linear motor of the second embodiment and the linear motor of the first embodiment is that the number of the armature blocks 4 of the armature core 3 of the linear motor of the first embodiment is nine. On the other hand, the number of the armature blocks 4 of the armature core 3 of the linear motor of the second embodiment is twice as large as 18 (periodically the same), and the shape of the auxiliary teeth 5 is different. The stacked thicknesses of both are the same, and the generated thrust of the linear motor is twice as large as that of the first embodiment.
The end effect of the end portion in the stroke direction of the linear motor of the configuration of the second embodiment and the linear motor of the first embodiment are different, and the end effect of the end portion in the stroke direction is smaller in the second embodiment. Become. Therefore, the linear motor of the second embodiment has a configuration in which, for example, the dimension B of the auxiliary teeth 5 shown in FIG. 2, that is, the length of the auxiliary teeth 5 is shorter than that of the first embodiment.
As in the first embodiment, the linear motor having the armature 1 configured as described above minimizes the variation in the generation force of the main teeth 4b by the field yoke 2a due to the end effect generated in the armature 1. It acts so as to suppress the cogging thrust.
[0009]
(Third embodiment)
FIGS. 4 and 6 show a third embodiment in which the present invention is applied to a magnetic flux penetrating linear motor in which the armature 1 is arranged via a magnetic gap so as to face between two field poles 2. Is shown. FIG. 5 is an enlarged view of the periphery of the auxiliary teeth 5 on one side (right side) in FIGS. 4 and 6 (within the dashed line frame).
The linear motor of the magnetic flux penetration type shown in FIGS. 4 and 6 has two field poles 2, and the armature 1 between the two field poles 2 has main teeth 4b and slots 4c above and below a core block 4a. And the armature winding 7 is wound around both the upper and lower slots 4c. The point that the thrust is generated on the two magnetic gap surfaces is greatly different from the gap facing type. In addition, the configuration is such that a mover (not shown) is coupled to the mover by a mover mounting hole 8a. Other basic configurations are the same as those of the gap-facing linear motor of FIG.
The two linear motors shown in FIGS. 4 and 6 are the same as those described in the second embodiment. The difference between the linear motor shown in FIG. 4 and the linear motor shown in FIG. The number of the armature blocks 4 of the armature core 3 of the linear motor of FIG. 6 is twice as large as 18 while the number of the armature blocks 4 of the armature core 3 of FIG. ), The shape of the auxiliary teeth 5 is different. 6 are the same, and the generated thrust of the linear motor is twice as large as that of FIG. 4.
The end effect at the end in the stroke direction of the linear motor having the configuration shown in FIG. 6 is different from that of the linear motor shown in FIG. 4, and the end effect at the end in the stroke direction is smaller in FIG. Therefore, the linear motor of FIG. 6 has a configuration in which, for example, the dimension B of the auxiliary teeth 5 shown in FIG. 5, that is, the length of the auxiliary teeth 5 is shorter than that of the linear motor of FIG.
The linear motor configured as described above can obtain the same operation and effect as those described in the second embodiment.
Also, in the magnetic flux penetrating linear motors of FIGS. 4 and 6, as described in the first embodiment, different auxiliary teeth dimensions and different By doing so, a linear motor capable of reducing cogging thrust as much as possible can be realized.
[0010]
In the first and second embodiments, only the B dimension of the auxiliary teeth 5 is different, but the A dimension, that is, the center line of the main teeth at both ends of the armature core 3 and the center line of the auxiliary teeth 5 are used. The dimension between them and the dimension C, that is, the width of the auxiliary teeth 5 may be different.
In each embodiment, the armature core structure has been described as a split core type, but the same applies to an integral core type. Although the teeth are semi-open slots, they may be open slots.
[0011]
【The invention's effect】
As described above, according to the present invention, by providing the auxiliary teeth corresponding to the end effect in the stroke direction of the armature core or in the direction perpendicular to the stroke direction, the main teeth caused by the electromagnetic end effects are provided. The imbalance of the forces acting on the linear motor can be reduced as much as possible, and the cogging thrust of the linear motor can be minimized.
As described above, there is a great effect that a machine tool having high contouring performance and capable of high-precision processing and a linear motor capable of performing fine positioning at high speed and applicable to a high-throughput semiconductor manufacturing apparatus can be provided.
[Brief description of the drawings]
FIG. 1 is a side sectional view of a linear motor according to a first embodiment of the present invention.
FIG. 2 is an enlarged view of a periphery of an auxiliary tooth of FIG. 1;
FIG. 3 is a side sectional view of a linear motor showing a second embodiment of the present invention.
FIG. 4 is a plan sectional view of a linear motor according to a third embodiment of the present invention.
FIG. 5 is an enlarged view of a part around the auxiliary teeth of FIG. 4;
FIG. 6 is a plan sectional view of another linear motor according to a third embodiment of the present invention.
FIG. 7 is a side sectional view of a conventional linear motor.
[Explanation of symbols]
Reference Signs List 1 armature 2 field pole 2a field yoke 2b permanent magnet 3 armature core 4 armature block 4a core block 4b main tooth 4c slot 5 auxiliary tooth 6a convex engagement portion 6b concave engagement portion 7 armature winding 8 move Child 8a Slider mounting hole

Claims (6)

交互に極性が異なるように複数の永久磁石(2b)を直線状に並べて配置した界磁ヨーク(2a)からなる界磁極(2)と、前記界磁極(2)の永久磁石(2b)列と磁気的空隙を介して対向するように配置した電機子(1)とを備え、
前記電機子(1)は、主ティース(4b)とスロット(4c)を有する電機子コア(3)と、前記電機子コア(3)のスロット(4c)にコイルを巻回した電機子巻線(7)と、前記電機子コア(3)の前記界磁極(2)の永久磁石(2b)列と平行方向の両端に配置した補助ティース(5)より構成してあり、
前記界磁極(2)と前記電機子(1)との何れか一方を固定子に、他方を可動子として、前記界磁極(2)と前記電機子(1)を相対的に走行するようにしたリニアモータにおいて、
前記電機子コア(3)の前記界磁極(2)の永久磁石(2b)列と平行方向の長さ、もしくは前記電機子(1)の主ティース(4b)の個数によって、前記電機子コア(3)両端の補助ティース(5)の形状が異なることを特徴とするリニアモータ。
A field pole (2) composed of a field yoke (2a) in which a plurality of permanent magnets (2b) are arranged in a line so as to have alternately different polarities, and a row of permanent magnets (2b) of the field pole (2). An armature (1) disposed so as to face through a magnetic gap,
The armature (1) includes an armature core (3) having a main tooth (4b) and a slot (4c), and an armature winding having a coil wound around a slot (4c) of the armature core (3). (7) and auxiliary teeth (5) arranged at both ends of the armature core (3) in the direction parallel to the row of the permanent magnets (2b) of the field poles (2),
One of the field pole (2) and the armature (1) is used as a stator and the other is used as a mover so that the field pole (2) and the armature (1) run relatively. Linear motor
The length of the armature core (3) in the direction parallel to the row of the permanent magnets (2b) of the field poles (2) or the number of the main teeth (4b) of the armature (1) depends on the armature core ( 3) A linear motor characterized in that the shapes of the auxiliary teeth (5) at both ends are different.
前記電機子コア(3)の前記界磁極(2)の永久磁石(2b)列と垂直方向の長さによって、前記電機子コア(3)両端の補助ティース(5)の形状が異なることを特徴とする請求項1記載のリニアモータ。The shape of the auxiliary teeth (5) at both ends of the armature core (3) differs depending on the length of the armature core (3) in the direction perpendicular to the row of the permanent magnets (2b) of the field poles (2). The linear motor according to claim 1, wherein 前記電機子コア(3)は、複数の分割コアで構成されると共に、前記分割コアを構成する継鉄部の一方側面に凸状の係合部(6a)を、他方側面に凹状の係合部(6b)を設け、隣り合う各々の係合部を嵌合させて結合したことを特徴とする請求項1、または2に記載のリニアモータ。The armature core (3) is composed of a plurality of split cores, and has a convex engaging portion (6a) on one side of a yoke portion forming the split core and a concave engaging portion on the other side. The linear motor according to claim 1 or 2, wherein a portion (6b) is provided, and each adjacent engaging portion is fitted and connected. 交互に極性が異なるように複数の永久磁石(2b)を直線状に並べて配置した2つの界磁ヨーク(2a)を対向させた界磁極(2)と、前記2つの界磁極(2)の間に磁気的空隙を介して対向するように配置した電機子(1)とを備え、
前記電機子(1)は、前記界磁極(2)の永久磁石(2b)列と直交方向の両端に主ティース(4b)とスロット(4c)を有する電機子コア(3)と、前記電機子コア(3)の両端のスロットにコイルを巻回した電機子巻線(7)と、前記電機子コア(3)の前記界磁極(2)の永久磁石(2b)列と平行方向の両端に配置した補助ティース(5)より構成してあり、
前記界磁極(2)と前記電機子(1)との何れか一方を固定子に、他方を可動子として、前記界磁極(2)と前記電機子(1)を相対的に走行するようにしたリニアモータにおいて、
前記電機子コア(3)の前記界磁極(2)の永久磁石(2b)列と平行方向の長さ、もしくは前記電機子(1)の主ティース(4b)の個数によって、前記電機子コア(3)両端の補助ティース(5)の形状が異なることを特徴とするリニアモータ。
Between a field pole (2) in which two field yokes (2a), in each of which a plurality of permanent magnets (2b) are arranged in a line so as to have alternately different polarities, face each other, and the two field poles (2); And an armature (1) arranged so as to be opposed via a magnetic air gap,
The armature (1) includes an armature core (3) having main teeth (4b) and slots (4c) at both ends in a direction orthogonal to the row of the permanent magnets (2b) of the field poles (2); An armature winding (7) having coils wound around slots at both ends of a core (3), and two ends of the armature core (3) in the direction parallel to the row of permanent magnets (2b) of the field poles (2). It is composed of the auxiliary teeth (5) arranged,
One of the field pole (2) and the armature (1) is used as a stator and the other is used as a mover so that the field pole (2) and the armature (1) run relatively. Linear motor
The length of the armature core (3) in the direction parallel to the row of the permanent magnets (2b) of the field poles (2) or the number of the main teeth (4b) of the armature (1) depends on the armature core ( 3) A linear motor characterized in that the shapes of the auxiliary teeth (5) at both ends are different.
前記電機子コア(3)の前記界磁極(2)の永久磁石(2b)列と垂直方向の長さによって、前記電機子コア(3)両端の補助ティース(5)の形状が異なることを特徴とする請求項4記載のリニアモータ。The shape of the auxiliary teeth (5) at both ends of the armature core (3) differs depending on the length of the armature core (3) in the direction perpendicular to the row of the permanent magnets (2b) of the field poles (2). The linear motor according to claim 4, wherein 前記電機子コア(3)は、複数の分割コアで構成されると共に、前記分割コアを構成する継鉄部の一方側面に凸状の係合部(6a)を、他方側面に凹状の係合部(6b)を設け、隣り合う各々の係合部を嵌合させて結合したことを特徴とする請求項4、または5に記載のリニアモータ。The armature core (3) is composed of a plurality of split cores, and has a convex engaging portion (6a) on one side of a yoke portion forming the split core and a concave engaging portion on the other side. The linear motor according to claim 4 or 5, wherein a portion (6b) is provided, and each adjacent engaging portion is fitted and connected.
JP2003157772A 2003-06-03 2003-06-03 Linear motor Pending JP2004364374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003157772A JP2004364374A (en) 2003-06-03 2003-06-03 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003157772A JP2004364374A (en) 2003-06-03 2003-06-03 Linear motor

Publications (1)

Publication Number Publication Date
JP2004364374A true JP2004364374A (en) 2004-12-24

Family

ID=34051382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157772A Pending JP2004364374A (en) 2003-06-03 2003-06-03 Linear motor

Country Status (1)

Country Link
JP (1) JP2004364374A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082134A1 (en) * 2005-01-31 2006-08-10 Siemens Aktiengesellschaft Linear motor with force ripple compensation
WO2008133017A1 (en) * 2007-04-24 2008-11-06 Kabushiki Kaisha Yaskawa Denki Linear motor armature and linear motor
JP2009112152A (en) * 2007-10-31 2009-05-21 Mitsubishi Electric Corp Armature of linear motor, and linear motor
JP2009171659A (en) * 2008-01-11 2009-07-30 Yamaha Motor Co Ltd Linear motor and component transfer apparatus
JP2009545940A (en) * 2006-07-31 2009-12-24 シーメンス アクチエンゲゼルシヤフト Force ripple compensation linear motor
KR101082035B1 (en) * 2009-11-23 2011-11-10 (주) 나노모션테크놀러지 Linear motor
WO2012147212A1 (en) * 2011-04-29 2012-11-01 三菱電機株式会社 Laminated core for linear motor and manufacturing method therefor
KR101215547B1 (en) * 2011-02-22 2012-12-26 (주) 나노모션테크놀러지 Amature for motor and manufacturing method thereof
CN104362827A (en) * 2014-12-01 2015-02-18 哈尔滨工业大学 Linear reluctance motor
CN104779772A (en) * 2015-04-29 2015-07-15 哈尔滨工业大学 Modularization flat plate type multiphase permanent magnet linear motor based on single and double layer compound windings
JP5911658B1 (en) * 2015-05-26 2016-04-27 三菱電機株式会社 Armature core, armature and linear motor
DE102015013638A1 (en) 2014-10-29 2016-05-04 Fanuc Corporation Linear motor with reduced latching force
KR20170021738A (en) 2015-08-18 2017-02-28 산요 덴키 가부시키가이샤 Linear motor
CN108365730A (en) * 2018-03-08 2018-08-03 华中科技大学 The short primary LEM that a kind of dynamic longitudinal direction end effect weakens
CN109104065A (en) * 2018-09-25 2018-12-28 珠海格力电器股份有限公司 Mover assembly and linear motor
JP7204058B1 (en) * 2022-04-08 2023-01-13 三菱電機株式会社 Modular linear motor

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082134A1 (en) * 2005-01-31 2006-08-10 Siemens Aktiengesellschaft Linear motor with force ripple compensation
JP2009545940A (en) * 2006-07-31 2009-12-24 シーメンス アクチエンゲゼルシヤフト Force ripple compensation linear motor
JP5273040B2 (en) * 2007-04-24 2013-08-28 株式会社安川電機 Linear motor armature and linear motor
WO2008133017A1 (en) * 2007-04-24 2008-11-06 Kabushiki Kaisha Yaskawa Denki Linear motor armature and linear motor
JP2009112152A (en) * 2007-10-31 2009-05-21 Mitsubishi Electric Corp Armature of linear motor, and linear motor
JP2009171659A (en) * 2008-01-11 2009-07-30 Yamaha Motor Co Ltd Linear motor and component transfer apparatus
KR101082035B1 (en) * 2009-11-23 2011-11-10 (주) 나노모션테크놀러지 Linear motor
KR101215547B1 (en) * 2011-02-22 2012-12-26 (주) 나노모션테크놀러지 Amature for motor and manufacturing method thereof
CN103430435A (en) * 2011-04-29 2013-12-04 三菱电机株式会社 Laminated core for linear motor and manufacturing method therefor
JP5518258B2 (en) * 2011-04-29 2014-06-11 三菱電機株式会社 Laminated iron core of linear motor and method of manufacturing the same
TWI454018B (en) * 2011-04-29 2014-09-21 Mitsubishi Electric Corp Laminated iron core of linear motor and method of making same
KR101514167B1 (en) * 2011-04-29 2015-04-22 미쓰비시덴키 가부시키가이샤 Laminated core for linear motor and manufacturing method therefor
WO2012147212A1 (en) * 2011-04-29 2012-11-01 三菱電機株式会社 Laminated core for linear motor and manufacturing method therefor
US10355575B2 (en) 2014-10-29 2019-07-16 Fanuc Corporation Linear motor with reduced cogging force
DE102015013638B4 (en) 2014-10-29 2021-08-19 Fanuc Corporation Linear motor with reduced detent force
DE102015013638A1 (en) 2014-10-29 2016-05-04 Fanuc Corporation Linear motor with reduced latching force
CN104362827A (en) * 2014-12-01 2015-02-18 哈尔滨工业大学 Linear reluctance motor
CN104779772A (en) * 2015-04-29 2015-07-15 哈尔滨工业大学 Modularization flat plate type multiphase permanent magnet linear motor based on single and double layer compound windings
TWI563774B (en) * 2015-05-26 2016-12-21 Mitsubishi Electric Corp Electric core, armature and linear motor
CN107615630A (en) * 2015-05-26 2018-01-19 三菱电机株式会社 Armature core, armature and linear motor
WO2016189659A1 (en) * 2015-05-26 2016-12-01 三菱電機株式会社 Armature core, armature, and linear motor
JP5911658B1 (en) * 2015-05-26 2016-04-27 三菱電機株式会社 Armature core, armature and linear motor
KR20170021738A (en) 2015-08-18 2017-02-28 산요 덴키 가부시키가이샤 Linear motor
US10224797B2 (en) 2015-08-18 2019-03-05 Sanyo Denki Co., Ltd. Linear motor
CN108365730A (en) * 2018-03-08 2018-08-03 华中科技大学 The short primary LEM that a kind of dynamic longitudinal direction end effect weakens
CN109104065A (en) * 2018-09-25 2018-12-28 珠海格力电器股份有限公司 Mover assembly and linear motor
JP7204058B1 (en) * 2022-04-08 2023-01-13 三菱電機株式会社 Modular linear motor
WO2023195170A1 (en) * 2022-04-08 2023-10-12 三菱電機株式会社 Module-type linear motor

Similar Documents

Publication Publication Date Title
US6831379B2 (en) Permanent magnet synchronous linear motor
JP5991326B2 (en) Linear motor
JP2004364374A (en) Linear motor
JP5655071B2 (en) Linear motor
JP4458238B2 (en) Permanent magnet synchronous linear motor
JP2010130871A (en) Linear motor
JP2000037070A (en) Linear motor
JP3916048B2 (en) Linear motor
JPWO2011154995A1 (en) Linear motor and positioning device using the same
JP5511713B2 (en) Linear motor
WO2018174235A1 (en) Linear motor
JP2009219199A (en) Linear motor
JPH11206100A (en) Linear motor
JP2002209371A (en) Linear motor
JPH08205514A (en) Linear synchronous motor
JP2012175851A (en) Linear motor armature and linear motor
JPH11178310A (en) Linear motor
JP2001119919A (en) Linear motor
JPH11313475A (en) Linear motor
JP2001095225A (en) Linear motor
JP4662302B2 (en) Linear motor
JP2002101636A (en) Linear motor
JP2001145327A (en) Armature for linear motor
JPH11308848A (en) Linear motor
JP6036221B2 (en) Linear motor