WO2011118318A1 - 棒材の振れ止め装置 - Google Patents

棒材の振れ止め装置 Download PDF

Info

Publication number
WO2011118318A1
WO2011118318A1 PCT/JP2011/053901 JP2011053901W WO2011118318A1 WO 2011118318 A1 WO2011118318 A1 WO 2011118318A1 JP 2011053901 W JP2011053901 W JP 2011053901W WO 2011118318 A1 WO2011118318 A1 WO 2011118318A1
Authority
WO
WIPO (PCT)
Prior art keywords
bar
rotation speed
main shaft
control means
deflection
Prior art date
Application number
PCT/JP2011/053901
Other languages
English (en)
French (fr)
Inventor
章全 柳川
Original Assignee
シチズンホールディングス株式会社
シチズンマシナリーミヤノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンホールディングス株式会社, シチズンマシナリーミヤノ株式会社 filed Critical シチズンホールディングス株式会社
Priority to JP2012506894A priority Critical patent/JPWO2011118318A1/ja
Publication of WO2011118318A1 publication Critical patent/WO2011118318A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B13/00Arrangements for automatically conveying or chucking or guiding stock
    • B23B13/08Arrangements for reducing vibrations in feeding-passages or for damping noise
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37434Measuring vibration of machine or workpiece or tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41128Compensate vibration beam, gantry, feedback of speed of non driven end

Definitions

  • the present invention relates to a steady rest device for a bar held by a main shaft.
  • a shake detecting means for detecting a shake of a bar gripped by a spindle rotating at a predetermined processing speed
  • a shake suppressing means for suppressing the shake of the bar
  • an operation for controlling the operation of the shake suppressing means There is known a bar steadying device including a control unit, and the operation control unit is configured to actuate the deflection suppressing unit based on detection of the deflection of the rod by the deflection detection unit (for example, a patent) Reference 1).
  • the deflection restraining means includes bar holding means for holding the peripheral surface of the bar, and the operation control means sets the bar holding means based on the vibration level of the bar. It is configured to be close to or away from the surface in the lateral direction.
  • a bar steadying apparatus comprises a deflection detecting means for detecting a deflection of a bar gripped by a spindle rotating at a predetermined processing rotational speed, and a deflection of the bar.
  • a rotational speed at which the vibration suppression means controls the rotational speed of the main shaft, the vibration suppression means controlling the operation of the vibration suppression means based on the detection of the deflection of the bar by the vibration detection means Comprising a control means, and the operation control means controls the operation of the rotation speed control means so as to change the rotation speed of the main shaft based on the detection of the deflection of the bar by the shake detection means, and the change of the rotation speed of the main shaft.
  • the operation of the rotational speed control means is controlled so that the rotational speed of the main shaft is returned to the machining rotational speed by convergence of the deflection of the bar.
  • the operation control means may control the operation of the rotation speed control means so as to decrease the rotation speed of the spindle based on the detection of the deflection of the bar by the shake detection means, or increase the rotation speed.
  • the operation of the rotation speed control means may be controlled.
  • the operation control means adjusts the rotation speed of the main shaft by convergence of the deflection of the bar due to the change in the rotation speed of the main shaft. What is necessary is just to control the operation
  • the operation control means adjusts the rotation speed of the main shaft by convergence of the deflection of the bar due to the change in the rotation speed of the main shaft. What is necessary is just to control the operation
  • the runout detecting means is arranged to detect the runout of the bar at a position between the feeder for supplying the bar to the spindle and the headstock supporting the spindle. It is preferable that
  • the shake detection means is arranged so as to detect the deflection of the bar on the headstock side that supports the spindle.
  • the shake detecting means is constituted by a vibration sensor that detects the vibration of the cylinder through which the bar passes.
  • the deflection detecting means is formed from a displacement sensor that detects a position relative to the bar, and the bar and the displacement sensor are closer to each other than a predetermined distance. It is preferable to be configured so as to detect the fluctuation of the above.
  • the runout detecting means is a vibration sensor that detects the vibration of the feeder that supplies the bar to the main shaft.
  • the position detecting means for detecting the position of the bar supplying means for pressing the rear end of the bar and moving the bar in the axial direction of the main shaft to supply the main shaft. And when the operation control means determines that the position of the bar supply means detected by the position detection means is within a specific range where it is predicted that the bar will shake, the rotational speed of the spindle It is preferable that the operation of the rotation speed control means is controlled so as to change the angle.
  • the bar steadying apparatus of the present invention includes a feed amount changing means for changing the feed amount of at least one of the processing tool and the bar for processing the bar according to the rotational speed of the main shaft. It is preferable to do this.
  • the bar steadying device of the present invention is a configuration in which the deflection restraining means converges the deflection of the bar by changing the rotation speed of the main shaft, and the bar holding means etc. are brought into contact with the deflected bar Therefore, there is an effect that it is possible to prevent the peripheral surface of the bar from being damaged or the bending of the bar from occurring due to the contact of the bar holding means or the like.
  • the operation control means lowers the rotation speed of the main shaft based on the detection of the deflection of the bar by the shake detection means, and increases the rotation speed of the main shaft to the original machining rotation speed by convergence of the deflection of the bar.
  • the rotational speed of the main shaft rises to a predetermined processing rotational speed due to the convergence of the deflection of the bar, so the time for the main shaft to rotate at a low rotational speed Is prevented from becoming unnecessarily long, the processing time is prevented from being lengthened, and the processing efficiency is prevented from being lowered.
  • the operation control means increases the rotation speed of the spindle based on the detection of the deflection of the bar by the shake detection means, and reduces the rotation speed of the spindle to the original machining rotation speed by convergence of the deflection of the bar.
  • the processing quality at the preset processing speed can be ensured by returning to the original processing speed.
  • the shake detection means is arranged so as to detect the shake of the bar material at a position between the feeder for supplying the bar material to the main shaft and the headstock supporting the main shaft.
  • the shake can be detected at a position where the amplitude when the shake is relatively large, and the detection accuracy of the shake of the bar can be improved.
  • the shake detecting means is arranged so as to detect the shake of the bar on the side of the headstock that supports the spindle, the shake of the bar can be detected relatively easily on the side of the spindle.
  • a vibration sensor that detects vibration of a cylinder through which a bar passes, a displacement sensor that detects a position with respect to the bar, and the like can be easily configured.
  • a rod having a relatively small diameter (for example, a diameter of about 1 [mm]) is likely to swing like a jumping rope having nodes at both ends, whereas the rod has a relatively large diameter (for example, a diameter). 10 [mm] or more)
  • the rod and the rod having a relatively short length do not move like the jumping rope described above, and the end opposite to the end on the fixed main shaft side swings greatly. May take the form.
  • the shake detection means is a vibration sensor that detects the vibration of the feeder.
  • the runout of a bar having a relatively large diameter or a bar having a relatively short length can be appropriately detected by detecting the vibration of the feeder.
  • the operation is performed when the position of the bar supply means detected by the position detection means is within a specific range (may be a specific position) in which the deflection of the bar is expected to occur.
  • a specific range may be a specific position
  • the control means that controls the operation of the shake suppression means (rotation speed control means) so as to change the rotation speed of the main shaft the actual deflection of the bar material is highly likely to occur. Occurrence can be prevented in advance.
  • a feed amount changing means for changing the feed amount of at least one of the processing tool and the bar material for processing the bar material according to the rotation speed of the main shaft, A decrease can be prevented.
  • FIG. 9 It is a block diagram which shows the form which applied the thing of the structure considered that the deflection
  • a spindle 1 of a machine tool equipped with an embodiment of a steady rest device according to the present invention has a hollow cylindrical shape.
  • a chuck device 2 is attached to the tip of the main shaft 1.
  • the main shaft 1 is supported on a main shaft base 4 so as to be rotatable by a built-in motor 3.
  • the head stock 4 is supported on a guide rail 5 mounted on a bed 6 of a machine tool so as to be slidable in the axial direction (Z-axis direction) of the main shaft 1.
  • a hollow inner tube 7 (tubular body) that is inserted into the main shaft 1 from the rear end side of the main shaft 1 is fixed to the bed 6 via a support body 8.
  • the inner intubation 7 is supported at a rear position of the main shaft 1.
  • the support 8 is disposed at a substantially intermediate position between the rear end of the headstock 4 and the end of the guide 9a of the material feeder 9 disposed behind the machine tool.
  • a rod-shaped material (bar material) 11 is inserted into the inner intubation tube 7 from the material feeder 9.
  • the bar 11 passes through the inner tube 7 and protrudes from the tip of the main shaft 1.
  • the bar 11 is held by the main shaft 1 by the chuck device 2.
  • the machine tool controls the spindle 11 from the spindle 1 by rotating the spindle 1 in the state of gripping the rod 11 and moving the spindle stock 4 in the Z-axis direction under the control of the NC device based on the NC program.
  • the protruding portion is configured as an NC lathe that processes with a processing tool (not shown).
  • the spindle 1 moves in the Z-axis direction by the movement of the headstock 4 as described above. Therefore, the feed amount of the bar 11 is equal to the feed amount of the spindle stock 4 in the Z-axis direction (main spindle 1 The amount of movement per rotation).
  • the inner intubation 7 is provided with a vibration sensor 12 (vibration detecting means) for detecting the vibration of the inner intubation 7.
  • the vibration sensor 12 includes a holding body 14 in which a slit 13 is formed. The vibration sensor 12 is attached to the inner intubation tube 7 by inserting the inner intubation tube 7 into the slit 13 and sandwiching the inner intubation tube 7 by the holding body 14.
  • the vibration sensor 12 is set so as to detect the vibration of the intubation tube 7 based on the vibration of the bar 11. That is, the vibration sensor 12 constitutes a shake detection unit that detects the shake of the bar 11 by detecting the vibration of the inner tube 7.
  • the vibration sensor 12 is disposed in the vicinity of the support 8 that is substantially in the middle between the rear end of the headstock 4 and the end of the guide 9a of the material feeder 9, and the amplitude when the bar 11 swings is compared. Since the shake is detected at a position where it becomes larger, the shake of the bar 11 can be detected with high accuracy.
  • the rod 11 having a small diameter swings like a jump rope between the rear end of the headstock 4 and the end of the guide 9a when the swing occurs. For this reason, the amount of vibration is maximized at a position approximately in the middle between the rear end of the headstock 4 and the end portion of the guide 9a, so that vibration detection at that position is highly accurate.
  • the NC device 16 is provided with a spindle control means 17 (configuration including a rotation speed control means (runout suppression means)) for controlling the rotation speed of the spindle 1 and the feed amount of the headstock 4. It has been. Further, the NC device 16 is provided with an operation control means 18 for controlling the operation of the spindle control means 17 based on the output of the vibration sensor 12.
  • a spindle control means 17 configuration including a rotation speed control means (runout suppression means) for controlling the rotation speed of the spindle 1 and the feed amount of the headstock 4. It has been.
  • the NC device 16 is provided with an operation control means 18 for controlling the operation of the spindle control means 17 based on the output of the vibration sensor 12.
  • the output from the vibration sensor 12 is input to the operation control means 18 side.
  • the spindle control means 17 and the operation control means 18 are realized by operating the NC device 16 based on the NC program stored on the NC device 16 side.
  • the operation control means 18 first designates (sets) the rotational speed of the spindle 1 and the feed amount of the headstock 4 in advance in step S ⁇ b> 1 in the NC program.
  • the predetermined processing rotational speed N and the feed amount F are respectively set.
  • the operation control means 18 controls the operation of the spindle control means 17, and the spindle 1 is rotated at the machining rotational speed N by the spindle control means 17, and the spindle stock 4 is moved by the feed amount F. Then processing starts.
  • step S2 the processing rotational speed N is compared with a predetermined minimum rotational speed Nmin. If the machining rotational speed N is greater than the minimum rotational speed Nmin (Nmin ⁇ N), the process proceeds to step S3 and the output from the vibration sensor 12 is checked.
  • the process proceeds to step S4 and an alarm is generated.
  • the operation control means 18 controls the operation of the main spindle control means 17 so as to stop the machining by generating.
  • step S3 if the vibration sensor 12 detects that the rod 11 has greatly shaken by causing a large runout exceeding the predetermined runout (allowable runout), the flow goes to step S5. Then, the operation control means 18 controls the operation of the main spindle control means 17 so as to reset the machining rotational speed N of the main spindle 1 at a predetermined rate, and proceeds to step S6. As a result, the spindle 1 is driven to rotate at the machining speed N reset by the spindle control means 17.
  • step S3 when the vibration sensor 12 does not detect the vibration of the intubation tube 7 (that is, when it does not detect the violence (vibration) of the bar 11), the process returns to step S1, and the predetermined value specified in advance by the NC program.
  • the machining is continued by the machining rotation speed N and the feed amount F.
  • the machining with the predetermined machining rotational speed N and the feed amount F specified in advance by the NC program is continued, and the processing from step S1 to step S3 is performed thereafter. repeat.
  • step S6 it is determined whether or not the feed amount F (the feed amount F set in advance by the NC program) with respect to the reset machining speed N is appropriate.
  • the process proceeds to step S7, and the feed amount F is set to a predetermined value by the control to the spindle control means 17 by the operation control means 18. The ratio is lowered and reset, and the process returns to step S2.
  • the headstock 4 is moved by the feed amount F reset by the spindle control means 17, and the feed amount F of the bar 11 is changed.
  • step S2 If it is determined that there is no need to decrease the feed amount F with respect to the reset machining speed N, the process returns to step S2 without resetting the feed amount F.
  • the necessity of changing the feed amount F with respect to the reset machining rotational speed N is determined by presetting the feed amount F with respect to the predetermined machining rotational speed N on the NC device 16 side in accordance with the grind etc. Can do.
  • step S2 When returning from step S6 or step S7 to step S2, in step S2, the reset processing rotational speed N and the minimum rotational speed Nmin are compared, and the reset processing rotational speed N is set to the minimum rotational speed Nmin. If larger, the process proceeds to step S3, and if the reset processing rotational speed N is less than the minimum rotational speed Nmin, the process proceeds to step S4.
  • the operation control means 18 detects the vibration of the inner tube 7 due to the deflection of the bar 11 during machining at a predetermined machining speed N and feed amount F specified by the NC program. Then, the processing rotation speed N of the main shaft 1 is within the minimum rotation speed Nmin or more by steps S2, S3, S5 of the operation control means 18 so that the deflection of the bar 11 converges and the vibration of the inner intubation tube 7 converges.
  • the operation control means 18 returns to step S1 from step S3, whereby a predetermined value specified in advance by the NC program is obtained.
  • the machining speed increases up to the machining speed N, and the process returns to the machining speed N.
  • the operation control means 18 functions as an operation control means for operating the spindle control means 17 based on detection of vibration of the inner tube 7 (vibration of the bar 11) by the vibration sensor 12. ing.
  • the highest possible rotation speed is designated as the processing rotation speed N out of the processing rotation speed in a range in which the bar 11 does not normally run out.
  • the bar 11 may be violated during machining at a predetermined machining speed N specified in advance by the NC program due to factors such as slight bending.
  • the rampage of the bar 11 can be converged by temporarily reducing the rotational speed of the spindle 1 (bar 11).
  • the rotational speed of the spindle 1 is again increased to a predetermined machining rotational speed N specified in advance by the NC program.
  • the rampage is not regenerated only by the factor of the increase in the rotational speed, it is possible to appropriately increase the machining rotational speed N that is designated in advance.
  • the steady rest device of this embodiment the processing in the state where the bar 11 is out of control is prevented, and the deterioration of the processing accuracy can be avoided.
  • the ramping of the bar 11 is converged by reducing the rotational speed of the main shaft 1 (bar 11). Therefore, it is possible to prevent scratches on the peripheral surface of the bar 11 due to the contact between the bar 11 and the bar holding means, etc. Can be performed smoothly.
  • the processing efficiency such as the number of products processed per unit time is determined by a predetermined processing speed N specified in advance by the NC program.
  • the machining efficiency is reduced when the machining rotation speed N is lowered, but the machining revolution speed N is temporarily lowered. Since the machining speed is increased to a predetermined machining speed N designated in advance by the NC program, the machining efficiency is not extremely lowered, and the machining efficiency is prevented from being extremely lowered.
  • the feed amount F is also reset in accordance with the resetting of the processing rotational speed N by the processing of the operation control means 18 in steps S6 and S7 (specifically, the processing rotational speed N is reduced). Correspondingly, the feed amount F is also reduced.). That is, the operation control means 18 also serves as a feed amount changing means for setting and changing the feed amount F of the bar 11 in accordance with the rotational speed of the main shaft 1 at steps S6 and S7 in the flowchart.
  • the moving speed of the machining tool in the cutting direction into the bar 11 (the amount of movement per rotation of the spindle) is used as the feed amount of the machining tool, and the work control means 18 controls the feed amount F of the bar 11 and the machining tool.
  • Both the feed amount or only the feed amount of the machining tool may be configured to change according to the number of rotations of the spindle 1. Also in this case, it is possible to prevent an abnormality of the grind caused by a decrease in the processing rotational speed, and a decrease in processing accuracy is prevented.
  • the vibration sensor 12 can be attached to the support 8 via the bracket 21.
  • the bar 11 by configuring the bar 11 to pass through the bracket 21 and to be supplied to the main shaft 1, by detecting the vibration of the bracket 21 due to the shake (rambling) of the bar 11, the bar 11 shakes (ramps) can be detected.
  • the vibration sensor 12 can also be attached to the intubation holding body 22 (support side) attached to the headstock 4 so as to hold the inner intubation 7 as shown in FIG.
  • the vibration sensor 12 can also be attached to the intubation holding body 22 (support side) attached to the headstock 4 so as to hold the inner intubation 7 as shown in FIG.
  • the vibration sensor 12 can be easily attached to the headstock 4 side, and the vibration (rambling) of the bar 11 can be detected relatively easily.
  • a displacement sensor 23 can be attached to the bracket 21 to provide a shake detection means for detecting the shake of the bar 11.
  • the displacement sensor 23 detects a distance from the displacement sensor 23 to the bar 11 in the bracket 21 (a distance along the radial direction of the bar 11), and the bar 11 is displaced from a predetermined distance. It can be set as the structure which detects proximity
  • the operation control means 18 increases the machining rotational speed N of the spindle 1 at a predetermined rate and resets it. After the operation of the spindle control means 17 is controlled and the deflection of the bar 11 has converged, the operation control means 18 sets the machining speed N of the spindle 1 to the original machining speed N (specified in advance by the NC program). The operation of the spindle control means 17 may be controlled so as to be reset and reduced to the processing rotation number).
  • the deflection of the bar 11 can be converged by changing the rotation speed, such as increasing the rotation speed of the main shaft 1 as well as lowering the rotation speed. Since the rotational speed of the main shaft 1 is returned to the original processing rotational speed, it is possible to continue the processing at the processing rotational speed as an appropriate predetermined processing condition before the occurrence of deflection.
  • the shake detection means may be provided in the material feeder 9 as a vibration sensor 12 that detects the vibration of the material feeder 9.
  • the rod 11 having a relatively small diameter has both ends (one end; a portion fixed by the chuck device 2 installed at the tip of the main shaft 1; the other end;
  • the portion of the material machine 9 that is guided by the tip of the guide 9a is likely to swing like a jumping rope that becomes a node, whereas the diameter is relatively thick (for example, a diameter of 10 [mm] or more) 11 is not a movement like the skipping rope described above, but the end (the other end) on the side opposite to the fixed end (the one end) on the main shaft 1 side swings greatly. It may become.
  • the material feeder 9 which is the other end is vibrated by the vibration of the bar 11 transmitted thereto.
  • a structure in which, for example, a bracket 21 is attached to the main body (exterior case or the like) of the feeder 9 and a vibration sensor 12 as a vibration detecting means is installed on the bracket 21 can be adopted.
  • the vibration of the material 11 can be appropriately detected by detecting the vibration of the material feeder 9.
  • the length of the bar 11 is relatively short, the other end on the opposite side of the one end on the side of the main shaft 1 being fixed is the same as the bar 11 having a relatively large diameter. Since the part may be greatly shaken, even in an apparatus for processing the bar 11 having a relatively short length, the length is compared by adopting the configuration in which the vibration sensor 12 is installed in the material feeder 9. It is possible to appropriately detect the deflection of the short bar 11.
  • the feeder 9 pushes the rear end portion 11 b of the bar 11 to the pushing arrow 9 c (finger 9 b described later).
  • the finger 9b is pressed in the axial direction of the main shaft 1 by gripping it with a finger 9b provided at the tip of the bar supply means and moving the pushing arrow 9c in the Z-axis direction. Then, the bar 11 is moved and supplied to the main shaft 1.
  • a steadying roller 30 may be installed between the main shaft 1 and the material feeder 9 to sandwich and guide the bar 11 passing between the main shaft 1 and the material feeder 9 and suppress the deflection of the bar 11.
  • the deflection of the rod 11 when the deflection of the rod 11 occurs, the deflection of the rod 11 is transmitted as vibration to the main body of the feeder 9 through the fingers 9b and the pushing arrows 9c, so the vibration sensor 12 is attached to the feeder 9 Thus, the deflection of the bar 11 can be detected appropriately.
  • the steadying roller 30 moved in the K direction so as to pass the finger 9b is not displaced in the opposite direction to the K direction so as to hold the pushing arrow 9c even after passing the finger 9b.
  • the bar 11 is supplied to the main shaft 1 and the length of the bar 11 protruding from the rear end of the main shaft 1 is shortened and the position of the pushing arrow 9c reaches the predetermined position Z2, the deflection of the bar 11 Easy states converge.
  • the range of the position of the pushing arrow 9c where the bar 11 is likely to be shaken that is, the specific range M in which the deflection of the bar 11 is predicted to occur.
  • a range from the position Z1 to the position Z2 as the position Z of the push arrow 9c can be set in advance.
  • a position sensor 31 for detecting the position of the pushing arrow 9c in the Z-axis direction is provided as position detecting means, and the operation control means 18 is provided for the pushing arrow 9c detected by the position sensor 31.
  • the operation of the spindle control means 17 may be controlled so that the machining speed N of the spindle 1 is returned to the original machining speed N.
  • the range M may not be a range having a width (position Z1 to position Z2) but a pinpoint position.
  • the position sensor 31 is good also as a structure which uses the position data of the pushing arrow 9c output from the material feeder 9 side.
  • the operation control means 18 controls the operation of the spindle control means 17, thereby the NC program.
  • the spindle 1 rotates at the machining rotational speed N designated in advance by the above, and the spindle stock 4 moves at the feed amount F designated in advance (step S11).
  • the operation control means 18 compares the detected position Z of the push arrow 9c with the range M stored in the operation control means 18 (step S12, step S13), and the push arrow 9c is within the range M. When it is determined that there is, the operation control means 18 controls the operation of the spindle control means 17 so as to reduce the machining rotational speed N by a predetermined rate and also reduce the feed amount F as necessary (step S14). To do.
  • the operation control means 18 increases the machining rotational speed N of the spindle 1 to the original pre-designated machining rotational speed N.
  • the operation of the spindle control means 17 is controlled so that the feed amount is also returned to the original feed amount F (step S11).
  • the push arrow 9c is predicted to run the bar 11.
  • the actual runout of the bar 11 is reduced by reducing the processing speed N of the spindle 1 before the actual runout occurs in a state where the probability that the runout of the bar 11 is high is high. Can be prevented in advance.
  • the feed amount can be changed to at least one of the feed amount in the Z-axis direction of the bar 11 and the feed amount in the cutting direction of the machining tool.
  • the spindle control means 17 by the operation control means 18 shown in FIG. 9 that changes the machining rotational speed N of the spindle 1 according to the position Z detected by the position sensor 31 and then returns to the original machining rotational speed N.
  • the processing procedure of the control can be actually combined with the control processing procedure shown in FIG. 3 in which the actual deflection of the bar 11 is detected, and the overall processing procedure so combined is As shown in FIG.
  • the machining rotational speed of the spindle 1 is increased.
  • the machining rotational speed N of the spindle 1 is reduced to the original machining rotational speed. You may make it make it.
  • the change of the feed amount F performed as necessary increases the feed amount F as the machining rotational speed N increases, and decreases the feed amount F as the machining rotational speed N decreases. To do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

 回転する主軸の振れを抑制する棒材の振れ止め装置を提供する。 予め定められた加工回転数で回転する主軸1に把持される棒材11の振れを検出する振れ検出手段を設け、主軸1の回転数を制御する回転数制御手段17により、前記棒材の振れを抑制する振れ抑制手段を構成する。該振れ抑制手段の作動を制御する作動制御手段18を、振れ検出手段による棒材の振れの検出により、前記主軸1の回転数を低下させ、前記主軸1の回転数低下による前記棒材の振れの収束により、前記主軸1の回転数を前記加工回転数に上昇させるように、前記回転数制御手段17を作動させる構成とする。該作動制御手段18が、前記振れ検出手段による棒材の振れの検出に基づき、前記振れ抑制手段を作動させる。

Description

棒材の振れ止め装置
 本発明は、主軸に把持される棒材の振れ止め装置に関する。
 従来、予め定められた加工回転数で回転する主軸に把持される棒材の振れを検出する振れ検出手段と、棒材の振れを抑制する振れ抑制手段と、振れ抑制手段の作動を制御する作動制御手段とを備え、作動制御手段が、振れ検出手段による棒材の振れの検出に基づき、振れ抑制手段を作動させるように構成された棒材の振れ止め装置が知られている(例えば、特許文献1)。
特許第3357279号公報(第3-5頁、図1,3-6)
 この棒材の振れ止め装置は、振れ抑制手段が、棒材の周面を保持する棒材保持手段からなり、作動制御手段が棒材の振動レベルに基づいて棒材保持手段を棒材の周面に対して横方向に近づけたり遠ざけたりするように構成されている。
 このため、振れ抑制手段(棒材保持手段)による棒材の振れの抑制時に、棒材保持手段と棒材とが当接し、棒材の振れの抑制に起因して、棒材保持手段により棒材の周面に傷や曲がり等が発生する場合があるという欠点があった。
 上記課題を解決するための本発明の棒材の振れ止め装置は、予め定められた加工回転数で回転する主軸に把持される棒材の振れを検出する振れ検出手段と、棒材の振れを抑制する振れ抑制手段と、振れ検出手段による前記棒材の振れの検出に基づいて振れ抑制手段の作動を制御する作動制御手段とを備え、振れ抑制手段が、主軸の回転数を制御する回転数制御手段からなり、作動制御手段が、振れ検出手段による棒材の振れの検出に基づいて主軸の回転数を変化させるように回転数制御手段の作動を制御するとともに、主軸の回転数の変化による棒材の振れの収束により主軸の回転数を加工回転数に復帰させるように回転数制御手段の作動を制御するものであることを特徴とする。
 ここで、作動制御手段が、振れ検出手段による棒材の振れの検出に基づいて主軸の回転数を低下させるように回転数制御手段の作動を制御してもよいし、回転数を上昇させるように回転数制御手段の作動を制御してもよい。
 そして、主軸の回転数を低下させるように回転数制御手段の作動を制御するものにあっては、作動制御手段が、主軸の回転数の変化による棒材の振れの収束により主軸の回転数を元の加工回転数まで上昇させるように回転数制御手段の作動を制御すればよい。
 一方、主軸の回転数を上昇させるように回転数制御手段の作動を制御するものにあっては、作動制御手段が、主軸の回転数の変化による棒材の振れの収束により主軸の回転数を元の加工回転数まで低下させるように回転数制御手段の作動を制御すればよい。
 本発明の棒材の振れ止め装置においては、振れ検出手段が、主軸に棒材を供給する給材機と主軸を支持する主軸台との間の位置で棒材の振れを検出するように配置されていることが好ましい。
 本発明の棒材の振れ止め装置においては、振れ検出手段が、主軸を支持する主軸台側で棒材の振れを検出するように配置されていることが好ましい。
 本発明の棒材の振れ止め装置においては、振れ検出手段を、棒材が通過する筒体の振動を検出する振動センサから構成したことが好ましい。
 本発明の棒材の振れ止め装置においては、振れ検出手段を、棒材に対する位置を検出する変位センサから形成し、棒材と変位センサとが予め定められた距離より近接することによって、棒材の振れを検出するように構成したものとするのが好ましい。
 本発明の棒材の振れ止め装置においては、振れ検出手段が、主軸に棒材を供給する給材機の振動を検出する振動センサであることが好ましい。
 本発明の棒材の振れ止め装置においては、棒材の後端部を押圧し、棒材を主軸の軸線方向に移動させて主軸に供給する棒材供給手段の位置を検出する位置検出手段を備え、作動制御手段を、位置検出手段によって検出された棒材供給手段の位置が、棒材の振れが発生することが予測される特定の範囲内であると判定したときに、主軸の回転数を変化させるように回転数制御手段の作動を制御する構成であることが好ましい。
 本発明の棒材の振れ止め装置においては、主軸の回転数に応じて、棒材を加工する加工工具と棒材とのうち少なくとも一方の送り量を変更する送り量変更手段を備えたものとするのが好ましい。
 本発明の棒材の振れ止め装置は、振れ抑制手段が主軸の回転数を変化させることによって棒材の振れを収束させるものであって、振れた棒材に棒材保持手段等を接触させる構成ではないため、その棒材保持手段等の接触によって棒材の周面に傷が生じたり棒材の曲がり等が発生するのを防止することができる、という効果がある。
 また、主軸の回転数を変化させることで棒材の振れが収束したときは、主軸の回転数を元の加工回転数に復帰させるため、振れが発生する前の、予め定められた適正な加工条件としての加工回転数での加工を継続することができる。
 本発明において、作動制御手段が、振れ検出手段による棒材の振れの検出に基づいて主軸の回転数を低下させ、棒材の振れの収束により主軸の回転数を元の加工回転数に上昇させるように回転数制御手段の作動を制御するものによれば、棒材の振れの収束により、主軸の回転数が予め定められた加工回転数に上昇するため、主軸が低回転数で回転する時間が必要以上に長くなることが防止され、加工時間が長くなるのが抑制されて、加工効率の低下が防止されるという利点もある。
 本発明において、作動制御手段が、振れ検出手段による棒材の振れの検出に基づいて主軸の回転数を上昇させ、棒材の振れの収束により主軸の回転数を元の加工回転数に低下させるように回転数制御手段の作動を制御するものによれば、主軸の回転数の上昇によって棒材の振れを収束させるため、主軸の回転数の低下によって棒材の振れを収束させるものよりも、加工時間が長くなる程度を抑制することができる。
 また、棒材の振れが収束した後は、予め定められた元の加工回転数に戻すことで、予め設定された加工回転数での加工品質を確保することができる。
 本発明において、振れ検出手段を、主軸に棒材を供給する給材機と主軸を支持する主軸台との間の位置で棒材の振れを検出するように配置したものによれば、棒材が振れた際の振幅が比較的大きくなる位置で振れを検出することができ、棒材の振れの検出精度を向上させることができる。
 本発明において、振れ検出手段を、主軸を支持する主軸台側で棒材の振れを検出するように配置したものによっても、主軸側で比較的容易に棒材の振れを検出することができる。
 なお、本発明において、振れ検出手段として、棒材が通過する筒体の振動を検出する振動センサや棒材に対する位置を検出する変位センサ等を適用したものは、容易に構成することができる。
 また、直径が比較的細い(例えば、直径1[mm]程度)棒材は、両端が節となる縄跳びの縄の動きのように振れ易いのに対して、直径が比較的太い(例えば、直径10[mm]以上)棒材や比較的長さが短い棒材は、上述した縄跳びの縄のような動きではなく、固定されている主軸側の端部とは反対側の端部が大きく振れる形態となる場合がある。
 そして、その主軸側の端部とは反対側の端部は給材機側に位置しているため、本発明において、振れ検出手段を、給材機の振動を検出する振動センサとすることで、直径が比較的太い棒材や比較的長さが短い棒材の振れを、給材機の振動を検出することで適切に検出することができる。
 また、本発明において、位置検出手段によって検出された棒材供給手段の位置が棒材の振れが発生することが予測される特定の範囲(特定の位置であってもよい)にあるときに作動制御手段が主軸の回転数を変化させるように振れ抑制手段(回転数制御手段)の作動を制御するものによれば、棒材の振れが発生する蓋然性が高い状態で棒材の実際の振れの発生を未然に防ぐことができる。
 また、本発明において、主軸の回転数に応じて、棒材を加工する加工工具と棒材とのうち少なくとも一方の送り量を変更する送り量変更手段を設けたものによれば、加工精度の低下を防止することができる。
本発明の振れ止め装置を搭載した工作機械の主軸部分の要部側断面図である。 NC装置の概略イメージ図である。 作動制御手段の作動の概要を示すフローチャート図である。 (A)~(C)は、振れ検出手段の他の実施例を示す要部側断面図である。 給材機に振動センサを設置した形態を示す図である。 (A)は棒材が振れ止めローラによって案内される状態、(B)は振れ止めローラによる棒材の案内が解除された状態、をそれぞれ示す図である。 押し矢に位置センサを備えた状態を示す模式図である。 押し矢の位置に応じて棒材の振れを検出したと見なす構成のものを適用した形態を示すブロック図である。 図7,8に示した実施形態における作動制御手段の作動の概要を示すフローチャート図である。 棒材の実際の振れの検出の有無に応じた処理手順(図3)に、位置センサにより検出された位置に応じた処理手順(図9)を組み合わせた処理手順を示すフローチャート図である。
 図1に示されるように、本発明に係る振れ止め装置の一実施形態を搭載した工作機械の主軸1は、中空の筒状をなす。主軸1の先端にチャック装置2が装着されている。主軸1は、ビルトインモータ3によって回転駆動自在に主軸台4に支持されている。主軸台4は、工作機械のベッド6に搭載されたガイドレール5に、主軸1の軸線方向(Z軸方向)にスライド移動自在に支持されている。
 ベッド6には、主軸1の後端側から主軸1内に挿入される中空の内挿管7(筒体)が、支持体8を介して固定されている。内挿管7は、主軸1の後方位置で支持されている。支持体8は、主軸台4の後端と、工作機械の後方に配置された給材機9のガイド9aの端部との略中間位置に配置されている。
 内挿管7内には、給材機9から棒状の材料(棒材)11が挿入される。棒材11は、内挿管7を通過し、主軸1の先端から突出する。棒材11は、チャック装置2によって主軸1に把持される。
 工作機械は、従来同様、NCプログラムに基づくNC装置による制御により、棒材11を把持した状態の主軸1の回転と、主軸台4のZ軸方向の移動によって、棒材11の主軸1からの突出部分を、図示しない加工工具によって加工するNC旋盤として構成されている。
 本実施形態の工作機械は、上記のように主軸台4の移動により主軸1がZ軸方向に移動するため、棒材11の送り量が、主軸台4のZ軸方向の送り量(主軸1回転あたりの移動量)によって定まる。
 一方、内挿管7には、内挿管7の振動を検出する振動センサ12(振れ検出手段)が設けられている。振動センサ12は、スリット13が形成された保持体14を備えている。振動センサ12は、スリット13に内挿管7を挿入し、保持体14によって内挿管7を挟持することによって、内挿管7に取り付けられている。
 主軸1の回転により棒材11に振れが発生すると、棒材11の振れによって内挿管7に振動が発生する。振動センサ12は、棒材11の振れに基づく内挿管7の振動を検出するように設定されている。つまり、振動センサ12が、内挿管7の振動を検出することによって棒材11の振れを検出する振れ検出手段を構成している。
 振動センサ12は、主軸台4の後端と、給材機9のガイド9aの端部との略中間となる支持体8の近傍位置に配置され、棒材11が振れた際の振幅が比較的大きくなる位置で振れを検出するため、棒材11の振れを高精度で検出することができる。
 特に、直径の細い(例えば、直径1[mm]等の)棒材11は、振れが発生したとき、主軸台4の後端とガイド9aの端部との間で縄跳びの縄のように振れるため、主軸台4の後端とガイド9aの端部との略中間となる位置で、その振れの量が最大になるため、その位置での振動の検出は精度の高いものとなる。
 図2に示されるように、NC装置16には、主軸1の回転数と主軸台4の送り量とを制御する主軸制御手段17(回転数制御手段(振れ抑制手段)を含む構成)が設けられている。また、NC装置16には、振動センサ12の出力に基づき主軸制御手段17の作動を制御する作動制御手段18が備えられている。
 振動センサ12からの出力は、作動制御手段18側に入力されている。本実施形態において主軸制御手段17と作動制御手段18は、NC装置16側に記憶されたNCプログラムに基づきNC装置16が作動することによって実現されている。
 作動制御手段18は、図3のフローチャートに示されるように、棒材11の加工に際し、まずステップS1において主軸1の回転数と主軸台4の送り量とを、NCプログラムで予め指定(設定)された所定の加工回転数Nと送り量Fに各々設定する。
 そして、作動制御手段18が主軸制御手段17の作動を制御し、工作機械は、主軸制御手段17によって、その主軸1が加工回転数Nで回転駆動され、主軸台4が送り量Fで移動して加工が開始される。
 次に、ステップS2において、加工回転数Nと予め定められた最低回転数Nminとを比較する。そして、加工回転数Nが最低回転数Nminより大きい(Nmin≦N)場合は、ステップS3に進んで振動センサ12からの出力をチェックする。
 一方、加工回転数Nが最低回転数Nmin未満(N<Nmin)の場合は、工作機械に予め定められた最低回転数の条件(適切な加工条件)を満たさないため、ステップS4に進み、アラームを発生させて加工を停止させるように、作動制御手段18が主軸制御手段17の作動を制御する。
 処理がステップS3に進んだときは、棒材11が予め定められた振れ(許容振れ)を超える大きな振れを生じることで内挿管7が大きく振動したことを振動センサ12が検出すると、ステップS5に進み、作動制御手段18が、主軸1の加工回転数Nを所定の割合で低下させて再設定するように主軸制御手段17の作動を制御し、ステップS6に進む。これにより、主軸1は、主軸制御手段17によって再設定された加工回転数Nで回転駆動される。
 なお、ステップS3において、振動センサ12が内挿管7の振動を検出しないとき(すなわち、棒材11の暴れ(振れ)を検出しないとき)は、ステップS1に戻り、予めNCプログラムで指定された所定の加工回転数Nと送り量Fにより加工を継続させる。これにより加工開始から前記棒材11の暴れが発生しない場合は、NCプログラムで予め指定された所定の加工回転数Nと送り量Fによる加工が継続され、以下、ステップS1~ステップS3の処理を繰り返す。
 ステップS6においては、再設定された加工回転数Nに対する送り量F(NCプログラムで予め設定されていた送り量F)の適否を判断する。再設定された加工回転数Nに対して送り量Fを低下させる必要があると判断したときは、ステップS7に進み、作動制御手段18による主軸制御手段17への制御により、送り量Fを所定の割合で低下させて再設定し、ステップS2に戻る。
 これにより、主軸台4が、主軸制御手段17によって再設定された送り量Fで移動され、棒材11の送り量Fが変更される。
 なお、再設定された加工回転数Nに対して送り量Fを低下させる必要がないと判断したときは、送り量Fを再設定することなくステップS2に戻る。
 再設定された加工回転数Nに対する送り量Fの変更の要否は、挽き目等に応じて所定の加工回転数Nに対する送り量FをNC装置16側に予め設定すること等によって判断することができる。
 ステップS6又はステップS7からステップS2に戻ると、ステップS2において、再設定された加工回転数Nと最低回転数Nminとの大小比較が行われ、再設定された加工回転数Nが最低回転数Nminより大きい場合はステップS3に進み、再設定された加工回転数Nが最低回転数Nmin未満の場合はステップS4に進む。
 工作機械は、作動制御手段18により、NCプログラムによって指定される予め定められた加工回転数Nと送り量Fでの加工中に、棒材11の振れが発生して内挿管7の振動が検出されると、棒材11の振れが収束して内挿管7の振動が収束するように作動制御手段18のステップS2,S3,S5によって最低回転数Nmin以上の範囲で主軸1の加工回転数Nを低下させて加工を行い、棒材11の振れが収束して内挿管7の振動が収束すると、作動制御手段18のステップS3からステップS1に戻ることによって、NCプログラムによって予め指定された所定の加工回転数Nまで加工回転数が上昇し、この加工回転数Nによる加工に戻る。
 作動制御手段18は、図3のフローチャートに示したように、振動センサ12による内挿管7の振動(棒材11の振れ)の検出に基づき、主軸制御手段17を作動させる作動制御手段として機能している。
 なお、一般的にNCプログラムでは、通常は棒材11の暴れが発生しない範囲の加工回転数のうち、できるだけ高い回転数が加工回転数Nとして指定される。しかし、棒材11は、僅かな曲がり等の要因によって、NCプログラムで予め指定された所定の加工回転数Nでの加工中に暴れが発生する場合があり得る。
 ただし、その暴れが外乱等による一時的な要因に起因したもののときは、一時的に主軸1(棒材11)の回転数を低下させることによって、棒材11の暴れを収束することができる。
 また、一時的な要因に起因する暴れであるため、棒材11の暴れが収束した後は、主軸1の回転数を再度、NCプログラムで予め指定された所定の加工回転数Nに上昇させても、その回転数の上昇という要因だけで暴れが再発生することはないため、その予め指定された加工回転数Nまで適切に上昇させることができる。
 このため、本実施形態の振れ止め装置によって、棒材11が暴れた状態での加工が防止され、加工精度の低下を回避することができる。特に、棒材11を棒材保持手段等に当接させて振れを収束させる従来の構成とは異なり、主軸1(棒材11)の回転数を低下させることで棒材11の暴れを収束することができるため、棒材11と棒材保持手段等との当接に起因する棒材11の周面の傷等を防止することができ、精度の低下や傷の発生等を嫌う製品の加工を円滑に行うことができる。
 また、予めNCプログラムで指定された所定の加工回転数Nによって、単位時間当たりの製品の加工数等の加工効率が定まる。本実施形態の振れ止め装置は、加工回転数Nの低下状態では加工効率が低下するが、加工回転数Nの低下が一時的であり、棒材11の暴れが収束すると加工回転数Nが、NCプログラムで予め指定された所定の加工回転数Nに上昇するため、加工効率が極端に低下することはなく、加工効率の極端な低下が防止される。
 なお、本実施形態では、ステップS6,S7における作動制御手段18の処理によって、加工回転数Nの再設定に応じて送り量Fも再設定する(具体的には、加工回転数Nの低下に対応して送り量Fも低下させる。)ことができるように構成されている。つまり、作動制御手段18は、フローチャートのステップS6,S7により、主軸1の回転数に応じて、棒材11の送り量Fを設定変更する送り量変更手段を兼用する。
 これにより、加工回転数の低下に起因する挽き目の異常等を防止することができ、加工精度の低下が防止される。ただし、挽き目異常等の不具合がなければ、必ずしも加工回転数Nの再設定に応じて棒材11の送り量Fを再設定する必要はない。
 また、主軸固定型の自動旋盤や主軸(主軸台)と加工工具(刃物台)の両方がZ軸方向に移動する自動旋盤の場合、加工工具のZ軸方向の送り量や加工工具と主軸の両方のZ軸方向の送り量を変更して、棒材11の送り量Fを変更する構成とすることもできる。
 なお、加工工具の棒材11への切込み方向への移動速度(主軸1回転あたりの移動量)を加工工具の送り量とし、作業制御手段18を、棒材11の送り量Fと加工工具の送り量の両方または加工工具の送り量のみを、主軸1の回転数に応じて設定変更するように構成してもよい。この場合も加工回転数の低下に起因する挽き目の異常等を防止することができ、加工精度の低下が防止される。
 図4(A)に示されるように、内挿管7を主軸台4側に固定して設ける場合、支持体8にブラケット21を介して振動センサ12を取り付けることもできる。この場合、棒材11がブラケット21内を通過して主軸1に供給されるように構成することによって、棒材11の振れ(暴れ)に起因するブラケット21の振動を検出することで、棒材11の振れ(暴れ)を検出することができる。
 なお、振動センサ12は、図4(B)に示されるように、内挿管7を保持するように主軸台4に取り付けられた内挿管保持体22(支持体側)に取り付けることもできる。この場合は、棒材11が内挿管保持体22内を通過して主軸1に供給されるように構成することによって、棒材11の振れ(暴れ)に起因する内挿管保持体22の振動を検出することで、棒材11の振れ(暴れ)を検出することができる。振動センサ12を上記のように主軸台4側に簡単に取り付け、棒材11の振れ(暴れ)を比較的容易に検出することができる。
 一方、図4(C)に示されるように、ブラケット21に変位センサ23を装着し、棒材11の振れを検出する振れ検出手段とすることもできる。この場合、変位センサ23によって、変位センサ23からブラケット21内の棒材11までの距離(棒材11の半径方向に沿った距離)を検出し、棒材11が、予め定められた距離より変位センサ23に近接することを検出して、棒材11の振れ(暴れ)を検出する構成とすることができる。
 また、棒材11の振れが発生した場合の音をマイク等によって検出することにより、棒材11の振れ(暴れ)を検出する構成とすることもできる。
 なお、振動センサ12や変位センサ23等の振れ検出手段が棒材11の振れを検出したとき、作動制御手段18が、主軸1の加工回転数Nを所定の割合で上昇させて再設定するように主軸制御手段17の作動を制御し、棒材11の振れが収束した後は、作動制御手段18が、主軸1の加工回転数Nを元の加工回転数N(NCプログラムによって予め指定された加工回転数)に低下させて再設定するように主軸制御手段17の作動を制御するようにしてもよい。
 このように、棒材11の振れは、主軸1の回転数を低下させるだけでなく上昇させるなど、回転数を変化させることで収束させることができ、棒材11の振れが収束したときは、主軸1の回転数を元の加工回転数に復帰させるため、振れが発生する前の、予め定められた適正な加工条件としての加工回転数での加工を継続することができる。
 また、振れ検出手段を、図5に示したように、給材機9に、この給材機9の振動を検出する振動センサ12として設けたものであってもよい。
 直径が比較的細い(例えば、直径1[mm]程度)棒材11は、両端(一方の端部;主軸1の先端に設置されたチャック装置2で固定された部分、他方の端部;給材機9のガイド9aの先端でガイドされた部分)が節となる縄跳びの縄の動きのように振れ易いのに対して、直径が比較的太い(例えば、直径10[mm]以上)棒材11は、上述した縄跳びの縄のような動きではなく、固定されている主軸1側の端部(上記一方の端部)とは反対側の端部(上記他方の端部)が大きく振れる形態となる場合がある。
 この場合、上記他方の端部である給材機9は、その棒材11の振れが伝達されて、振動する。
 そこで、給材機9の本体(外装のケース等)に例えばブラケット21を取り付け、このブラケット21に振れ検出手段としての振動センサ12を設置した構成を採用することができ、直径が比較的太い棒材11の振れを、給材機9の振動を検出することで適切に検出することができる。
 なお、棒材11の長さが比較的短い場合も、直径が比較的太い前記棒材11と同様に、固定されている主軸1側の上記一方の端部とは反対側の上記他方の端部が大きく振れる形態となる場合があるため、長さが比較的短い棒材11を加工する装置においても、給材機9に振動センサ12を設置した構成を採用することにより、長さが比較的短い棒材11の振れを適切に検出することができる。
 図6に示すように、棒材11を給材機9によって、主軸1に向けて供給する場合、給材機9は、棒材11の後端部11bを、押し矢9c(後述のフィンガ9bとともに棒材供給手段を構成)の先端に設けられたフィンガ9bによって把持し、押し矢9cをZ軸方向に移動させることによって棒材11の後端部をフィンガ9bが主軸1の軸線方向に押圧して棒材11を移動させ、主軸1に供給する。
 主軸1と給材機9との間には、その間を通過する棒材11を挟持して案内し、棒材11の振れを抑制する振れ止めローラ30が設置される場合がある。
 主軸1に供給される棒材11の長さが比較的長い図6(A)の状態のときは、棒材11は振れ止めローラ30に接することで、その振れが抑制されているが、図6(B)の状態のように、棒材11が比較的短くなり、フィンガ9bが振れ止めローラ30を通過する際は、フィンガ9bの通過を許容するように、振れ止めローラ30がK方向に移動して押し矢9c(フィンガ9b)から離れ、押し矢9cの位置Z1で振れ止めローラ30による棒材11の案内が解除され、棒材11が振れ易くなる。
 この場合も、棒材11に振れが発生すると、棒材11の振れは、フィンガ9bおよび押し矢9cを通じて給材機9の本体に振動として伝達するため、給材機9に振動センサ12を取り付けることによって、棒材11の振れを適切に検出することができる。
 なお、フィンガ9bを通過させるように、K方向に移動した振れ止めローラ30は、フィンガ9bの通過後も、押し矢9cを挟持するように、K方向とは反対方向に変位することはないが、棒材11の主軸1への供給に伴い、主軸1の後端から突出する棒材11の長さが短くなり、押し矢9cの位置が所定の位置Z2に到達すると、棒材11の振れ易い状態は収束する。
 このためフィンガ9bが、振れ止めローラ30を通過する位置近傍に、棒材11の振れが発生し易い押し矢9cの位置の範囲、すなわち棒材11の振れが発生すると予測される特定の範囲M(押し矢9cの位置Zとして位置Z1~位置Z2の範囲)を予め設定することができる。
 そして、図7,8に示すように、押し矢9cのZ軸方向の位置を検出する位置センサ31を位置検出手段として設け、作動制御手段18を、位置センサ31によって検出された押し矢9cの位置が、棒材11の振れが発生すると予測されるZ軸方向の特定の範囲M内にあるときは、主軸1の加工回転数を変化させ、フィンガ9bの位置が上記範囲M外(特定の範囲Mから離脱した範囲)にあるときは、主軸1の加工回転数Nを元の加工回転数Nに復帰させるように、主軸制御手段17の作動を制御する構成としてもよい。
 なお、範囲Mは、幅を持った範囲(位置Z1~位置Z2)ではなく、ピンポイントの位置であってもよい。また、位置センサ31は、給材機9側から出力される押し矢9cの位置データを使用する構成としてもよい。
 このように構成された実施形態に係る棒材の振れ止め装置によれば、図9のフローチャートに示すように、まず、作動制御手段18が主軸制御手段17の作動を制御し、これによりNCプログラムによって予め指定された加工回転数Nで主軸1は回転し、予め指定された送り量Fで主軸台4は移動する(ステップS11)。
 そして、作動制御手段18が、検出された押し矢9cの位置Zと作動制御手段18に記憶されている前記範囲Mとを比較し(ステップS12、ステップS13)、押し矢9cが範囲M内にあると判定したときは、作動制御手段18は、加工回転数Nを所定割合だけ低下させ、必要に応じて併せて送り量Fも低下させる(ステップS14)ように主軸制御手段17の作動を制御する。
 その後、押し矢9cの位置Zが範囲M外に離脱した(Z2<Z)ときは、作動制御手段18は、主軸1の加工回転数Nを元の予め指定されている加工回転数Nに上昇させるとともに、加工回転数Nの低下とともに送り量Fも低下させていたときは送り量も元の送り量Fに戻す(ステップS11)ように主軸制御手段17の作動を制御する。
 このように構成された棒材の振れ止め装置によれば、棒材11の実際の振れが発生していない状態であっても、押し矢9cが棒材11の振れが発生することが予測される特定の範囲M内にあり、棒材11の振れが発生する蓋然性が高い状態で、実際の振れが発生する以前に主軸1の加工回転数Nを低下させることで棒材11の実際の振れの発生を未然に防ぐことができる。
 なお、送り量の変更は、棒材11のZ軸方向の送り量と加工工具の切込み方向の送り量とのうち少なくとも一方とすることもできる。
 図9に示した、位置センサ31によって検出された位置Zに応じて主軸1の加工回転数Nを変化させ、さらにその後、元の加工回転数Nに復帰させる作動制御手段18による主軸制御手段17への制御の処理手順は、実際には、図3に示した、棒材11の実際の振れを検出した制御の処理手順と組み合わせることができ、そのように組み合わされた全体の処理手順は、図10に示すものとなる。
 この実施形態においても、棒材11の振れを検出したときや、押し矢9cの位置が前記範囲M内にあり、振れを検出したと見なしたときは、主軸1の加工回転数を上昇させ、振れの収束を検出したときや、押し矢9cの位置が前記範囲M外にあり、振れの収束を検出したとみなしたときは、主軸1の加工回転数Nを元の加工回転数まで低下させるようにしてもよい。
 この場合、必要に応じて併せて行う送り量Fの変更は、加工回転数Nの上昇に伴って送り量Fを大きくし、加工回転数Nの低下に伴って送り量Fを小さくするものとする。
関連出願の相互参照
 本出願は、2010年3月24日に日本国特許庁に出願された特願2010-067423に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。
 

Claims (10)

  1.  予め定められた加工回転数で回転する主軸に把持される棒材の振れを検出する振れ検出手段と、前記棒材の振れを抑制する振れ抑制手段と、前記振れ検出手段による前記棒材の振れの検出に基づいて前記振れ抑制手段の作動を制御する作動制御手段とを備え、
     前記振れ抑制手段が、前記主軸の回転数を制御する回転数制御手段からなり、
     前記作動制御手段が、前記振れ検出手段による棒材の振れの検出に基づいて前記主軸の回転数を変化させるように前記回転数制御手段の作動を制御するとともに、前記主軸の回転数の変化による前記棒材の振れの収束により前記主軸の回転数を、前記加工回転数に復帰させるように前記回転数制御手段の作動を制御するものであることを特徴とする棒材の振れ止め装置。
  2.  前記作動制御手段が、前記振れ検出手段による棒材の振れの検出に基づいて前記主軸の回転数を低下させるように前記回転数制御手段の作動を制御するとともに、前記主軸の回転数の変化による前記棒材の振れの収束により前記主軸の回転数を前記加工回転数に上昇させるように前記回転数制御手段の作動を制御するものであることを特徴とする請求項1に記載の棒材の振れ止め装置。
  3.  前記作動制御手段が、前記振れ検出手段による棒材の振れの検出に基づいて前記主軸の回転数を上昇させるように前記回転数制御手段の作動を制御するとともに、前記主軸の回転数の変化による前記棒材の振れの収束により前記主軸の回転数を前記加工回転数に低下させるように前記回転数制御手段の作動を制御するものであることを特徴とする請求項1に記載の棒材の振れ止め装置。
  4.  前記振れ検出手段が、前記主軸に前記棒材を供給する給材機と前記主軸を支持する主軸台との間の位置で前記棒材の振れを検出するように配置されたことを特徴とする請求項1から3のうちいずれか1項に記載の棒材の振れ止め装置。
  5.  前記振れ検出手段が、前記主軸を支持する主軸台側で前記棒材の振れを検出するように配置されたことを特徴とする請求項1から3のうちいずれか1項に記載の棒材の振れ止め装置。
  6.  前記振れ検出手段を、前記棒材が通過する筒体の振動を検出する振動センサから構成したことを特徴とする請求項1から5のうちいずれか1項に記載の棒材の振れ止め装置。
  7.  前記振れ検出手段を、前記棒材に対する位置を検出する変位センサから形成し、前記棒材と前記変位センサとが予め定められた距離より近接することによって、前記棒材の振れを検出するように構成したことを特徴とする請求項1から5のうちいずれか1項に記載の棒材の振れ止め装置。
  8.  前記振れ検出手段が、前記主軸に前記棒材を供給する給材機の振動を検出する振動センサであることを特徴とする請求項1に記載の棒材の振れ止め装置。
  9.  前記棒材の後端部を押圧し、前記棒材を前記主軸の軸線方向に移動させて前記主軸に供給する棒材供給手段の位置を検出する位置検出手段を備え、
     前記作動制御手段を、前記位置検出手段によって検出された前記棒材供給手段の位置が、前記棒材の振れが発生することが予測される特定の範囲内であると判定したときに、前記主軸の回転数を変化させるように前記回転数制御手段の作動を制御する構成としたことを特徴とする請求項1から8のうちいずれか1項に記載の棒材の振れ止め装置。
  10.  前記主軸の回転数に応じて、前記棒材を加工する加工工具と前記棒材とのうち少なくとも一方の送り量を変更する送り量変更手段を備えたことを特徴とする請求項1から9のうちいずれか1項に記載の棒材の振れ止め装置。
PCT/JP2011/053901 2010-03-24 2011-02-23 棒材の振れ止め装置 WO2011118318A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012506894A JPWO2011118318A1 (ja) 2010-03-24 2011-02-23 棒材の振れ止め装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-067423 2010-03-24
JP2010067423 2010-03-24

Publications (1)

Publication Number Publication Date
WO2011118318A1 true WO2011118318A1 (ja) 2011-09-29

Family

ID=44672890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053901 WO2011118318A1 (ja) 2010-03-24 2011-02-23 棒材の振れ止め装置

Country Status (3)

Country Link
JP (1) JPWO2011118318A1 (ja)
TW (1) TW201201930A (ja)
WO (1) WO2011118318A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2949423A3 (en) * 2014-05-30 2015-12-30 Nakamura-Tome Precision Industry Co., Ltd. Machine tool with oscillation sensor and workpiece processing method
FR3078281A1 (fr) * 2018-02-28 2019-08-30 Centre Technique Des Industries Mecaniques Et Du Decolletage Procede de controle d'un usinage et systeme d'usinage associe
CN111037361A (zh) * 2019-12-30 2020-04-21 湖南中大创远数控装备有限公司 一种伺服主轴反馈机构及数控机床
JP7109340B2 (ja) 2018-11-02 2022-07-29 株式会社ツガミ 振れ止め装置及び工作機械

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220161333A1 (en) * 2019-04-11 2022-05-26 Citizen Watch Co., Ltd. Machine tool and detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453649A (ja) * 1990-06-18 1992-02-21 Okuma Mach Works Ltd 不規則回転速度切削方法
JP3357279B2 (ja) * 1997-11-12 2002-12-16 株式会社育良精機製作所 棒材振止め装置
JP2007044852A (ja) * 2005-08-12 2007-02-22 Univ Nagoya 機械加工装置、機械加工装置の回転数演算装置、機械加工装置のびびり振動評価装置および機械加工装置のびびり振動評価方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453649A (ja) * 1990-06-18 1992-02-21 Okuma Mach Works Ltd 不規則回転速度切削方法
JP3357279B2 (ja) * 1997-11-12 2002-12-16 株式会社育良精機製作所 棒材振止め装置
JP2007044852A (ja) * 2005-08-12 2007-02-22 Univ Nagoya 機械加工装置、機械加工装置の回転数演算装置、機械加工装置のびびり振動評価装置および機械加工装置のびびり振動評価方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2949423A3 (en) * 2014-05-30 2015-12-30 Nakamura-Tome Precision Industry Co., Ltd. Machine tool with oscillation sensor and workpiece processing method
FR3078281A1 (fr) * 2018-02-28 2019-08-30 Centre Technique Des Industries Mecaniques Et Du Decolletage Procede de controle d'un usinage et systeme d'usinage associe
JP7109340B2 (ja) 2018-11-02 2022-07-29 株式会社ツガミ 振れ止め装置及び工作機械
CN111037361A (zh) * 2019-12-30 2020-04-21 湖南中大创远数控装备有限公司 一种伺服主轴反馈机构及数控机床
CN111037361B (zh) * 2019-12-30 2022-04-29 湖南中大创远数控装备有限公司 一种伺服主轴反馈机构及数控机床

Also Published As

Publication number Publication date
JPWO2011118318A1 (ja) 2013-07-04
TW201201930A (en) 2012-01-16

Similar Documents

Publication Publication Date Title
WO2011118318A1 (ja) 棒材の振れ止め装置
JP4734409B2 (ja) 巻線装置、テンション装置、及び巻線方法
JP5514229B2 (ja) ワイヤソー装置およびワイヤソー装置を動作させる方法
JP5930536B2 (ja) 巻線装置及び巻線方法
JP4469325B2 (ja) 熱変位補正装置
JP2012144323A (ja) 紡糸巻取装置及び紡糸巻取設備
TWI606883B (zh) Wire feed device
JP4684323B2 (ja) ワイヤソーおよびワーク加工方法
EP2105400B1 (en) Yarn winding machine and yarn winding method
JPH0753338B2 (ja) プリント基板外形加工方法及び装置
KR20160045097A (ko) 봉재 공급 장치 및 봉재 공급 장치를 갖는 수치 제어 공작 기계
KR101665555B1 (ko) 추를 이용한 연료봉에 선재 감는 장치 및 방법
JP2006089157A (ja) 糸巻取方法及びその装置
JPH0558548A (ja) 繊維巻取り機用トラバース装置
JP4807665B2 (ja) バーワーク供給手段付き旋盤
JPH106194A (ja) 微小孔加工装置
CN114057030A (zh) 丝线卷绕机
WO2020031457A1 (ja) 糸巻取機
WO2009110014A1 (en) Control and management method for lathes and loaders for lathes and apparatus for performing the method
JP6075076B2 (ja) 主軸装置
JP6577861B2 (ja) 工作機械
JP2002144101A (ja) 振動切削加工装置及び方法
EP4005959A1 (en) Yarn winder
US10639753B2 (en) Machine tool and plastic forming method
JP2007221945A (ja) テンション装置,巻線巻回装置および巻線巻回方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759126

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506894

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759126

Country of ref document: EP

Kind code of ref document: A1