WO2011118071A1 - 画像処理方法および装置,ならびに画像処理プログラムおよびこのプログラムを記録した媒体 - Google Patents

画像処理方法および装置,ならびに画像処理プログラムおよびこのプログラムを記録した媒体 Download PDF

Info

Publication number
WO2011118071A1
WO2011118071A1 PCT/JP2010/068417 JP2010068417W WO2011118071A1 WO 2011118071 A1 WO2011118071 A1 WO 2011118071A1 JP 2010068417 W JP2010068417 W JP 2010068417W WO 2011118071 A1 WO2011118071 A1 WO 2011118071A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
correction coefficient
purple fringe
purple
calculated
Prior art date
Application number
PCT/JP2010/068417
Other languages
English (en)
French (fr)
Inventor
慎也 藤原
芦田 哲郎
田中 誠二
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to US13/266,084 priority Critical patent/US8229217B2/en
Priority to EP10848463.5A priority patent/EP2429194B1/en
Priority to JP2011527107A priority patent/JP4904440B2/ja
Priority to CN201080032738.6A priority patent/CN102474628B/zh
Priority to BRPI1014549A priority patent/BRPI1014549A2/pt
Publication of WO2011118071A1 publication Critical patent/WO2011118071A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/58Edge or detail enhancement; Noise or error suppression, e.g. colour misregistration correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/646Circuits for processing colour signals for image enhancement, e.g. vertical detail restoration, cross-colour elimination, contour correction, chrominance trapping filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras

Definitions

  • the present invention relates to an image processing method and apparatus, an image processing program, and a medium on which the program is recorded.
  • a color fringe may be visually recognized in an image obtained by imaging with a digital still camera or the like.
  • a high brightness subject for example, a light source
  • a contour (edge) having a large luminance difference exists in the captured image
  • purple fringes tend to occur around the image contour.
  • blurring is reduced by making the blurring amount (the slope of the signal amount) of the blue (B) signal the same as that of the green (G) signal.
  • the slope of blue (B) is steeper than the slope of green (G).
  • the amount of blurring of the blue (B) signal If (the slope of the signal amount) is the same as that of the green (G) signal, a gray color may be generated.
  • the color connection becomes unnatural in the vicinity of the image portion where the amount of bleeding is changed.
  • International Publication WO2005 / 101854 describes that purple fringing is made inconspicuous by reducing the saturation of the purple fringing occurrence region. The purple fringe generation area remains purple as it is. Even when the saturation is partially lowered, the color connection becomes unnatural in the vicinity of the purple fringe generation region.
  • An object of the present invention is to make a purple fringe inconspicuous by changing the color of an image portion where the purple fringe is generated. Another object of the present invention is to realize color correction with a natural color connection.
  • the image processing method accepts input of given image data, determines whether or not purple fringes are generated for each pixel of the received image data, and determines whether purple fringes have occurred.
  • the RGB ratio of the fringe generation pixel and the RGB ratio of the purple fringe convergence pixel at a position separated from the purple fringe generation pixel by a predetermined number of pixels in the vicinity of the purple fringe generation pixel are calculated, respectively.
  • a purple fringe correction coefficient that causes the ratio to approach the RGB ratio of the purple fringe convergence pixel is calculated, and the purple fringe generation pixel is color-corrected using the calculated purple fringe correction coefficient.
  • the purple fringe convergence pixel may be a pixel determined to have no purple fringe. In any case, a pixel at a position separated by a predetermined number of pixels from the purple fringe generation pixel in the vicinity of the pixel determined to have purple fringe (purple fringe generation pixel) is set as the purple fringe convergence pixel. .
  • An image processing apparatus is an image input apparatus that accepts input of given image data, and a purple fringe that determines whether a purple fringe has occurred for each pixel in the image data received by the image input apparatus.
  • the RGB ratio of the purple fringe generation pixel for which the occurrence of purple fringe has been determined by the determination circuit and the purple fringe determination circuit, and a purple at a position separated from the purple fringe generation pixel by a predetermined number of pixels in the vicinity of the purple fringe generation pixel An RGB ratio calculation circuit for calculating the RGB ratio of the fringe convergence pixel, a purple fringe correction coefficient calculation circuit for calculating a purple fringe correction coefficient for bringing the RGB ratio of the purple fringe generation pixel close to the RGB ratio of the purple fringe convergence pixel, and With purple fringing correction coefficient calculated by the serial purple fringing correction coefficient calculation circuit in which includes a purple fringe reduction device for color correcting the purple fringe generation pixel.
  • the first invention also provides a program for causing a computer system to operate (function) as the image processing apparatus and a recording medium on which the program is recorded.
  • this program is executed by a general-purpose computer system, the general-purpose computer system functions as the image processing apparatus.
  • the recording medium includes a magnetic recording medium, an optical disk, a magneto-optical disk, and a semiconductor memory.
  • color correction is performed so that the RGB ratio of the purple fringe generation pixel is close to the RGB ratio of the purple fringe convergence pixel. Therefore, the color of the purple fringe generation pixel is not recognized as purple or is not easily recognized as purple. The color can be corrected.
  • the position separated by a predetermined number of pixels from the purple fringe occurrence pixel in the vicinity range of the purple fringe occurrence pixel is the size of the area including the purple fringe occurrence pixel existing in the image represented by the given image data, purple fringe It is determined according to the type of lens used in the digital camera used to capture the image data that causes the occurrence of the image, the chromatic coma of the lens, the number of pixels of the image sensor, and the like.
  • the purple fringe convergence pixel is a pixel existing in the vicinity of the purple fringe generation pixel
  • the purple fringe generation pixel is obtained by making the RGB ratio of the purple fringe generation pixel close to the RGB ratio of the purple fringe convergence pixel.
  • the purple fringe correction coefficient is a correction coefficient for at least one of a blue component signal and a red signal component of the purple fringe generation pixel. Purple fringe occurs when the blue component signal has a higher signal level (signal amount) than the green signal component. Purple fringing can be effectively suppressed by performing color correction on the blue component signal. Of course, purple fringing can also be suppressed by color correcting the red signal component.
  • a pixel having at least a blue component signal level higher than the green component signal level by a predetermined threshold is determined as a purple fringe generation pixel.
  • a pixel having at least a blue component signal level higher than the green component signal level by a predetermined threshold is determined as a purple fringe generation pixel.
  • the peripheral pixels of the image contour that have a luminance difference of a predetermined level or higher at least a blue component signal level that is higher than the green component signal level by a predetermined threshold value is determined as a purple fringe generation pixel, so that color correction is relatively reliable.
  • the target purple fringe occurrence pixel can be found.
  • the purple fringe convergence pixel a pixel located in the direction in which the luminance difference between the image contours in the vicinity of the purple fringe generation pixel is the largest and in which the luminance decreases is used.
  • Color correction that reduces the signal amount of the blue component signal or the red component signal of the purple fringe convergence pixel, which is characterized in that the signal amount of the blue component signal or the red component signal is large, can be performed.
  • the purple fringe correction coefficient increases the signal amount of at least one of the blue component signal and the red component signal of the purple fringe generation pixel, the color correction effect of the purple fringe generation pixel is weakened.
  • the purple fringe correction coefficient is adjusted.
  • An image processing method accepts input of given image data, and for each received pixel of the received image data, the noted pixel is set in at least one of a horizontal direction, a vertical direction and an oblique direction. Calculate the luminance of each pixel at the symmetrical position with respect to the center, calculate the difference of the calculated luminance, select the largest of the calculated luminance differences, and calculate the smaller weight as the maximum luminance difference is smaller.
  • an image processing apparatus for accepting input of given image data, and for image data received by the image input apparatus, at least one of a horizontal direction, a vertical direction and an oblique direction for each target pixel.
  • a luminance calculation circuit that calculates the luminance of each pixel at a symmetrical position with respect to the target pixel in one direction, a luminance difference calculation circuit that calculates a difference in luminance calculated by the luminance calculation circuit, and the luminance difference calculation circuit
  • a maximum luminance difference selection device that selects the maximum one of the luminance differences calculated by the above, a weight calculation circuit that calculates a smaller weight as the maximum luminance difference selected by the maximum luminance difference selection device is smaller, and the pixel of interest And the RGB ratio of the separated pixels separated from the target pixel by a predetermined number of pixels in the vicinity range of the target pixel.
  • the second invention also provides a program for causing a computer system to operate (function) as the image processing apparatus and a recording medium on which the program is recorded. Purple fringes occur around image contours with large luminance differences. If the maximum luminance difference between the pixels in the symmetrical position with respect to the target pixel is large, it can be said that the target pixel is highly likely to have purple fringes.
  • the target pixel is a pixel in which no purple fringe has occurred.
  • a smaller weight is calculated as the maximum luminance difference between the pixels at symmetrical positions with the pixel of interest as the center is smaller, and the calculated weight is weighted to the correction coefficient.
  • the weighting causes a pixel with a high probability of purple fringing to have a color correction effect with a correction coefficient, and a pixel with a low possibility of purple fringing has a color correction effect with a correction coefficient. It can be prevented from occurring or weakened.
  • the weight calculated when the maximum luminance difference is smaller than a predetermined value eliminates the effect of color correction by the weight correction coefficient.
  • the maximum luminance difference is a value that is low enough to prevent the occurrence of purple fringing, it is determined that purple fringing has not occurred in the target pixel. False correction can be reduced.
  • An image processing method receives input of given image data, determines whether the color of the pixel of interest is purple for each pixel of interest for the received image data, and determines the color of the pixel of interest
  • a correction coefficient for making the RGB ratio close to the RGB ratio of the separated pixels is calculated, and the pixel of interest is color-corrected using a weighted correction coefficient obtained by weighting the calculated correction coefficient with the weight.
  • an image input device that accepts input of given image data, and whether or not the color of the target pixel is purple for each target pixel in the image data received by the image input device.
  • a color determination circuit for determining, a weight calculation circuit for calculating a smaller weight as the color of the target pixel is farther from purple, an RGB ratio of the target pixel, and a predetermined number of pixels from the target pixel in the vicinity range of the target pixel Calculated by an RGB ratio calculation circuit that calculates the RGB ratio of each separated pixel, a correction coefficient calculation circuit that calculates a correction coefficient that approximates the RGB ratio of the pixel of interest to the RGB ratio of the separated pixel, and the correction coefficient calculation circuit Using the weight correction coefficient obtained by weighting the correction coefficient with the weight calculated by the weight calculation circuit, the target pixel is color corrected.
  • the third invention also provides a program for causing a computer system to operate (function) as the image processing apparatus and a recording medium on which the program is recorded.
  • Purple fringe has a purple color as its characteristic. If the color of the pixel of interest has a purple color or a color close to it, it can be said that the pixel of interest has a high possibility of purple fringing. Conversely, if the pixel of interest has a non-purple color, it can be said that the pixel of interest has no purple fringes.
  • the smaller the color of the pixel of interest is the smaller the weight is calculated, and the calculated weight is added to the correction coefficient.
  • the weighting causes a pixel with a high probability of purple fringing to have a color correction effect with a correction coefficient, and a pixel with a low possibility of purple fringing has a color correction effect with a correction coefficient. It can be prevented from occurring. Whether the color is far or near from purple is determined using color difference data (Cr data and Cb data), for example.
  • the weight calculated when the color of the pixel of interest is a color that is not recognized as purple eliminates the effect of color correction by the weight correction coefficient. False correction can be reduced.
  • FIG. 1 shows an example of an image in which purple fringes are generated.
  • FIG. 2 is a graph of the RGB signal amount for each pixel position.
  • FIG. 3 is a graph of the RGB signal amount for each pixel position.
  • FIG. 4 is a graph of the amount of RGB signals for each pixel position.
  • FIG. 5 is a block diagram showing the electrical configuration of the digital still camera of the first embodiment.
  • FIG. 6 is a flowchart showing the operation procedure of the purple fringe correction unit of the first embodiment.
  • FIG. 7 shows an example of the positional relationship between the target pixel and the purple fringe convergence pixel.
  • FIG. 8 shows a graph of the RGB signal amount before color correction.
  • FIG. 9 shows a graph of the RGB signal amount after color correction by the purple fringe correction unit.
  • FIG. 10 is a block diagram showing the electrical configuration of the digital still camera of the second embodiment.
  • FIG. 11 is a flowchart showing the operation procedure of the purple fringe correction unit of the second embodiment.
  • FIG. 12 shows a state of selecting a pixel whose luminance is to be calculated.
  • FIG. 13 shows a state of selecting a pixel whose luminance is to be calculated.
  • FIG. 14 shows a state of selecting a pixel whose luminance is to be calculated.
  • FIG. 15 shows the membership function.
  • FIG. 16 is a block diagram showing the electrical configuration of the digital still camera of the third embodiment.
  • FIG. 17 is a flowchart showing the operation procedure of the purple fringe correction unit of the third embodiment.
  • FIG. 18 shows the membership function.
  • FIG. 19 shows the membership function.
  • FIG. 20 is a block diagram showing the electrical configuration of the digital still camera of the fourth embodiment.
  • FIG. 21 is a flowchart showing the operation procedure of the purple fringe correction unit of the fourth embodiment.
  • FIG. 1 shows an image 80 in which purple fringes are generated.
  • 2, 3 and 4 show the signal amounts (intensities) of RGB components for each pixel position corresponding to each of the three line positions L 1 to L 3 shown in the image 80 shown in FIG. It is a graph which shows.
  • Purple fringing is a phenomenon in which the periphery of an image contour blurs purple when a high-luminance subject (for example, a light source) is imaged. Purple fringes are likely to occur in contour portions having a large luminance difference in the image. The purple fringe becomes more visible as the luminance difference in the contour portion increases.
  • the white high luminance part HA and the black low luminance part LA are in contact.
  • the boundary between the high luminance portion HA and the low luminance portion LA is an image contour (edge) E. Purple fringes are generated around the image contour E. A region (range) in which a purple fringe is generated in the image 80 is shown as a purple fringe generation region PF.
  • the brightness of the high brightness portion HA decreases as it goes upward.
  • the luminance of the low luminance part LA is constant. That is, the luminance difference between the high luminance portion HA and the low luminance portion LA in the vicinity of the lower end portion in the image 80 is very large, and the luminance difference between the high luminance portion HA and the low luminance portion LA is smaller in the vicinity of the upper end portion. Referring to FIG. 2 to FIG.
  • purple fringe has a blue (B) component, or a blue (B) component and a red (R) component signal amount is a green (G) component when viewed in terms of RGB components.
  • purple is expressed.
  • double-ended arrows D 1 to D 3 indicate the difference between the signal amount of the blue (B) component and the signal amount of the green (G) component at the pixel position near the image contour E. Yes.
  • the luminance difference between the high luminance portion HA and the low luminance portion LA is larger, the difference between the signal amount of the blue (B) component and the signal amount of the green (G) component at the pixel position near the image contour E is larger (D 1 ⁇ D 2 ⁇ D 3 ).
  • FIG. 5 is a block diagram schematically showing the electrical configuration of the digital still camera of the first embodiment.
  • the overall operation of the digital still camera is controlled by the CPU 1.
  • the CPU 1 communicates with the imaging unit 10, the digital signal processing device 7, the external memory interface (external memory I / F) 5, the memory interface (memory I / F) 8, and the compression / decompression processing circuit 2 via the data bus. It is connected.
  • the imaging unit 10 includes a CCD 12, and an optical unit 11 including an imaging lens, a diaphragm, an infrared cut filter, an optical low pass filter (OLPF), and the like is provided in front of the CCD 12.
  • the digital still camera is provided with a flash 3 for flash imaging and a charging circuit 4 for supplying power to the flash 3.
  • the CPU 1 issues a light emission instruction for the flash 3 and a charging instruction for the charging circuit 4.
  • a light beam representing a subject image enters the optical unit 11.
  • the light beam is incident on the light receiving surface of the CCD 12 via the optical unit 11.
  • the CCD 12 has a number of photodiodes (photoelectric conversion elements) arranged two-dimensionally on the light receiving surface, and a red array arranged on the light receiving surface with a predetermined arrangement structure (Bayer arrangement, G stripe arrangement, etc.). Color filters of (R), green (G), and blue (B) are provided.
  • a subject image formed by the optical unit 11 is electronically captured by the CCD 12.
  • the CCD 12 is driven by an image sensor driving circuit 16 that outputs a timing signal and the like in response to a command from the CPU 1.
  • An analog signal representing the subject image output from the CCD 12 is input to the analog signal processing device 13.
  • the analog signal processing device 13 includes a correlated double sampling circuit, a signal amplifier, and the like.
  • An analog signal representing the subject image output from the CCD 12 is input to the analog signal processing device 13 where correlated double sampling, signal amplification, and the like are performed.
  • An analog video signal (analog RGB signal) output from the analog signal processing device 13 is input to an analog / digital conversion circuit (ADC) 14 and is converted into digital image data (digital RGB data) after predetermined signal processing.
  • ADC analog / digital conversion circuit
  • the RGB data is converted into image data (YUV data) including luminance data (Y data) and color difference data (Cr, Cb data) as necessary.
  • the digital image data is temporarily recorded in the RAM 9A under the control of the memory I / F 8.
  • a ROM 9B is also connected to the memory I / F 8.
  • the ROM 9B stores a control program executed by the CPU 1, various data necessary for control, photographer setting information, and various setting information related to the operation of the digital still camera.
  • the digital image data is read from the RAM 9A and input to the digital signal processing device 7.
  • predetermined white balance adjustment, gamma correction, and synchronization processing processing for interpolating the spatial displacement of the color signal associated with the color filter array of the single-plate CCD and converting the color signal into a simultaneous expression), etc.
  • Digital signal processing is performed.
  • a subject image represented by data that has undergone digital signal processing is displayed on a display screen of a display device (not shown).
  • a shutter release button (not shown) is pressed in the first stage, the lens of the optical unit 11 is driven by the motor drive circuit 15 to perform focusing.
  • Luminance data is obtained in the digital signal processor 7 based on the image data read from the RAM 9A.
  • Data representing the integrated value of the luminance data is given to the CPU 1 to calculate the exposure amount.
  • the aperture of the aperture of the optical unit 11 is controlled by the motor drive circuit 15 so that the calculated exposure amount is obtained, and the shutter speed of the CCD 12 is controlled by the image sensor drive circuit 16.
  • the shutter release button is pressed in the second stage, the image data output from the analog / digital conversion circuit 14 is stored in the RAM 9A.
  • predetermined digital signal processing is performed in the digital signal processing device 7 on the image data read from the RAM 9A.
  • the image data output from the digital signal processing device 7 is compressed in the compression / decompression processing circuit 2.
  • the compressed image data is recorded on the memory card 6 under the control of the external memory I / F 5.
  • the reproduction mode is set, the compressed image data recorded on the memory card 6 is read.
  • the read compressed image data is expanded by the compression / expansion processing circuit 2 and then given to the display device to display a reproduced image.
  • a purple fringe correction unit (PF correction unit) 20 is connected to the digital signal processing device 7.
  • the PF correction unit 20 includes a purple fringe determination circuit (PF determination circuit) 21, an RGB ratio calculation circuit 22, a purple fringe correction coefficient calculation circuit (PF correction coefficient calculation circuit) 23, and a purple fringe correction processing circuit (PF correction processing circuit) 24. Including.
  • image processing for reducing the above-described purple fringe is performed.
  • Image processing for reducing purple fringing by the purple correction unit 20 may be turned on / off by setting using an operation unit (not shown) of a digital still camera, or image data obtained by imaging and a memory card All of the image data read from 6 may be processed, or the image data selected by the user may be processed.
  • FIG. 6 is a flowchart showing the operation procedure of the PF correction unit 20 of the first embodiment. With reference to FIG.
  • the PF determination circuit 21 determines whether purple fringing has occurred in the subject image represented by the given image data. Whether or not purple fringing has occurred is determined for each of the pixels constituting the subject image (step 41). In one example, whether the purple fringe has occurred is determined by determining whether the signal amount (intensity) of the blue (B) component is the green (G) component for the processing target pixel (hereinafter referred to as the target pixel P (i, j)).
  • the signal amount of the blue (B) component is larger than the signal amount of the green (G) component by a predetermined first threshold value or more, and the signal amount of the red (B) component is a predetermined amount greater than the signal amount of the green (G) component.
  • a pixel larger by two thresholds or more may be determined as a pixel in which purple fringing has occurred.
  • an image (pixel) representing purple fringe has a large difference between the signal amount of the blue (B) component and the signal amount of the green (G) component, the signal amount of the red (R) component and the green ( This is because the characteristic is that there is a difference between the signal amount of the component G).
  • purple fringes are likely to appear around image contours (edges) with large luminance differences, so that an image contour having a luminance difference (luminance gradient) of a predetermined level or higher is detected (extracted) in advance, and pixels around the image contours are detected. It may be determined whether or not purple fringing has occurred. If it is determined that no purple fringe has occurred in the pixel of interest P (i, j) (NO in step 41), it is determined whether or not the processing has been completed for all pixels constituting the subject image (step). 46).
  • the pixel at a position shifted by one pixel in the horizontal direction or the vertical direction is set as a new target pixel P (i, j), and the new target pixel P (i, j)
  • it is determined whether or not purple fringing has occurred NO in step 46, step 41. If it is determined that a purple fringe has occurred in the target pixel P (i, j) (YES in step 41), the RGB ratio calculation circuit 22 determines that the target pixel (i, j) (hereinafter, purple fringe generation pixel).
  • a pixel P (m, n) (hereinafter referred to as a purple fringe convergence pixel P (m, n)) in which a purple fringe is not located at a position separated by N (N: integer) pixels from P (i, j)) ) Is selected and its RGB ratio is calculated (step 42).
  • N integer
  • N integer
  • N integer
  • Is selected Is selected and its RGB ratio is calculated (step 42).
  • the color of the purple fringe generation pixel P (i, j) is corrected so that its RGB ratio approaches the RGB ratio of the purple fringe convergence pixel P (m, n).
  • FIG. 7 shows an example of the positional relationship between the purple fringe generation pixel P (i, j) and the purple fringe convergence pixel P (m, n) on the subject image G.
  • N a pixel separated N pixels in the vertical (upward) direction from the purple fringe generation pixel P (i, j) is selected as the purple fringe convergence pixel P (m, n).
  • the specific number of “N” of the above N pixels depends on, for example, the characteristics of the lens used in the digital still camera used to capture the image data to be processed, the number of pixels of the CCD, etc. It is determined accordingly. This is because the ease of occurrence of purple fringes and the spread when purple fringes occur depend on the chromatic coma aberration of the lens, the number of pixels of the CCD, and the like. For example, 8 (8 pixels) is used as the value of N.
  • purple fringes are likely to occur around the image contour having a luminance difference of a predetermined level or more.
  • the purple fringe generation pixel P (i, j) has one of its characteristics that the signal amount of the blue (B) component is greatly different from the signal amount of the green (G) component. In order to reduce the fringe, it is necessary to reduce the signal amount of the blue (B) component. Accordingly, the direction of the purple fringe convergence pixel P (m, n) that is N pixels away from the purple fringe generation pixel P (i, j) is the luminance difference in the image contour near the purple fringe generation pixel P (i, j).
  • RGB ratio of the purple fringe convergence pixel P (m, n) is, for example, the following two values.
  • Expression 1 represents that the signal amount of the blue (B) component of the purple fringe convergence pixel P (m, n) is divided by the signal amount of the green (G) component.
  • Expression 2 represents that the signal amount of the red (R) component of the purple fringe convergence pixel P (m, n) is divided by the signal amount of the green (G) component.
  • the RGB ratio of the purple fringe generation pixel P (i, j) is also calculated by the following equation.
  • B / G (i, j) Equation 3 R / G (i, j) Equation 4
  • the PF correction coefficient calculation circuit 23 performs RGB of the purple fringe generation pixel P (i, j).
  • a correction coefficient Rev (i, j) that approximates the ratio to the RGB ratio of the purple fringe convergence pixel P (m, n) is calculated.
  • the correction coefficient Rev (i, j) includes a correction coefficient for the blue (B) component and a correction coefficient for the red (G) component.
  • the blue (B) component correction coefficient RevB (i, j) is calculated by the following equation.
  • Correction coefficient RevB (i, j) (B / G (m, n)) / (B / G (i, j)) ... Formula 5
  • the signal amount of the blue (B) component of the purple fringe generation pixel P (i, j) is larger than the signal amount of the green (G) component.
  • the purple fringe convergence pixel P (m, n) a pixel on the low luminance side is employed.
  • the blue (B) component correction coefficient RevB (i, j) is generally less than 1.
  • the correction coefficient RevR (i, j) of the red (R) component is calculated by the following equation.
  • Correction coefficient RevR (i, j) (R / G (m, n)) / (R / G (i, j)) ...
  • the calculated correction coefficient Rev (i, j) (for blue component and red component) is used, and the purple fringe generation pixel P (i, j) is color-corrected by the PF correction processing circuit 24.
  • the blue (B) component of the purple fringe generation pixel P (i, j) after color correction is expressed by the following equation.
  • Blue (B) component of purple fringe generation pixel P (i, j) after color correction B (i, j) ⁇ RevB (i, j) Expression 7
  • red (R) component of the purple fringe generation pixel P (i, j) is color-corrected by the following equation.
  • Red (R) component of purple fringe generation pixel P (i, j) after color correction R (i, j) ⁇ RevR (i, j) Expression 8 Since the color correction is performed so that the RGB ratio of the purple fringe generation pixel P (i, j) approaches the RGB ratio of the purple fringe convergence pixel P (m, n), the purple fringe generation pixel P (i, j) No or purple fringes are reduced. 8 and 9 show the color correction effect by the PF correction unit 20 described above.
  • FIG. 8 shows a graph (RGB signal amount) before the color correction processing by the PF correction unit 20. Shows graphs after color correction processing by the PF correction unit 20 respectively. Referring to FIG.
  • color correction is performed so that the signal amount of the blue (B) component signal in the pixel where the purple fringe is generated is reduced.
  • the red (R) component signal is also color-corrected so that the signal amount is reduced. Color correction with a natural color connection from the high luminance part to the low luminance part is achieved.
  • both the blue (B) component signal and the red (R) component signal are color-corrected.
  • blue (B ) Color correction may be performed only on component signals. Of course, color correction may be performed only for the red (R) component signal.
  • purple fringe correction processing (reduction processing) is executed by the PF correction unit 20, but the CPU 1 or the digital signal processing device 7 is caused to execute the same processing as that of the PF correction unit 20.
  • the purple fringe correction process may be executed.
  • a program for causing the CPU 1 or the digital signal processing device 7 to execute the purple fringe correction process is stored in the ROM 9B.
  • the program may be recorded on a recording medium such as a CD-ROM and installed.
  • the above-mentioned purple fringe correction process can be executed by a general-purpose computer system. When a program that causes a computer system to execute the same processing as that of the PF correction unit 20 is installed in the computer system, the computer system functions as an image processing device that executes purple fringe correction processing. This also applies to other embodiments described later.
  • FIG. 10 is a block diagram showing the electrical configuration of the digital still camera of the second embodiment.
  • FIG. 11 is a flowchart showing the processing procedure of the PF correction unit 20A of the digital still camera of the second embodiment.
  • the PF correction unit 20A included in the digital still camera of the second embodiment is provided with a pixel luminance calculation circuit 25, a luminance difference calculation circuit 26, and a purple fringe correction weight WeightY calculation circuit (PF correction weight WeightY calculation circuit) 27.
  • the luminance value Y of each of the eight peripheral pixels that are M pixels away from the target pixel P (i, j) in the horizontal direction, the vertical direction, and two diagonal directions (right diagonal direction and left diagonal direction) is obtained by the pixel luminance calculation circuit 25.
  • the brightness difference is calculated (step 51), and the brightness difference between the two neighboring pixels at the symmetrical positions with the purple fringe generation pixel P (i, j) as the center is calculated by the brightness difference calculation circuit 26 (step 52).
  • the luminance difference calculation process (steps 51 and 52) will be described with reference to FIG. 12, FIG. 13, and FIG.
  • the difference is calculated. That is, the luminance difference between the pixel P (i, j + 4) and the pixel P (i, j-4) in the vertical direction, the pixel P (i-4, j + 4) and the pixel P (i + 4, j-4) in the left diagonal direction.
  • the luminance difference and the luminance difference between the pixel P (i + 4, j + 4) and the pixel P (i-4, j-4) in the diagonally right direction are calculated.
  • FIG. 15 is a graph showing the membership function M1 used for calculating (determining) the above-mentioned weight WeightY (i, j).
  • the membership function M1 used for calculating (determining) the weight WeightY (i, j) is a function for determining a different weight WeightY (i, j) according to the luminance difference ⁇ Y (i, j).
  • the weight WeightY (i, j) is calculated by a value in the range from 0 to 1.
  • the luminance difference ⁇ Y (i, j) is a value in the range from 0 to the first predetermined luminance value Y1
  • the weight WeightY (i, j) 0. If the value is in the range from the first predetermined luminance value Y1 to the second predetermined luminance value Y2, the greater the luminance value ⁇ Y (i, j) by the membership function M1, the greater the weight WeightY (i, j).
  • the maximum weight WeightY (i, j) 1 is calculated.
  • the calculated weight WeightY (i, j) is given to the PF correction processing circuit 24.
  • the correction coefficient RevB (i, j) for the blue (B) component calculated by the PF correction coefficient calculation circuit 23 is also supplied to the PF correction processing circuit 24.
  • the correction coefficient RevB (i, j) of the blue (B) component is weighted by the following equation.
  • Weight correction coefficient RevB (i, j) RevB (i, j) ⁇ Weight Y (i, j) ...
  • Equation 9 The blue (B) component (or red (R) component) of the pixel of interest P (i, j) is color-corrected by the PF correction circuit 24 in accordance with the weighting correction coefficient Rev (i, j) (step 55, formula 7).
  • the luminance difference ⁇ Y (i, j) of the peripheral pixels of the target pixel P (i, j) is small, that is, referring to FIG. 15, the luminance difference ⁇ Y (i, j) is changed from 0 to the first predetermined luminance. If the value is in the range up to the value Y1, the weight WeightY (i, j) is 0, so the weight correction coefficient RevB (i, j) is 0.
  • the weight WeightY (i, j) is larger than 0 and smaller than 1.
  • the weight correction coefficient RevB (i, j) becomes a smaller value, so that the effect of color correction is weakened.
  • the purple fringe appears more strongly as the luminance difference in the image contour increases.
  • the membership function M1 (FIG. 15) may be stored in the PF correction weight WeightY calculation circuit 27 in the form of a lookup table, or may be stored in the ROM 9B.
  • FIG. 16 is a block diagram showing the electrical configuration of the digital still camera of the third embodiment.
  • FIG. 17 is a flowchart showing the processing procedure of the PF correction unit 20B of the digital still camera of the third embodiment.
  • the PF correction unit 20B included in the digital still camera according to the third embodiment includes a color calculation circuit 28 and a purple instead of the pixel luminance calculation circuit 25, the luminance difference calculation circuit 26, and the PF correction weight Weight Y calculation circuit 27.
  • a difference from the PF correction unit 20A of the digital still camera of the second embodiment is that a fringe weight WeightC calculation circuit (PF weight WeightC calculation circuit) 29 is provided.
  • Color difference data (Cr data and Cb data) of the pixel of interest P (i, j) is calculated by the color calculation circuit 28 (step 61).
  • the membership function M2 for the Cr data and the membership function M3 for the Cb data are used by the PF weight WeightC calculation circuit 29 to weight the weights Weight Cr and Weight for the pixel of interest P (i, j).
  • Cb is calculated (step 62).
  • FIG. 18 shows a membership function M2 for Cr data
  • FIG. 19 shows a membership function M3 for Cb data.
  • the Cr data is in the range from ⁇ 128 to the first color difference value Cr1, 0 is calculated as the weight (Weight Cr (i, j)) regarding the Cr data. If the Cr data is greater than or equal to the second color difference value Cr2, 1 is determined as the weight Weight Cr (i, j) for the Cr data. If the Cr data is a value within the range from the first color difference value Cr1 to the second color difference value Cr2, the smaller the Cr data, the smaller the weight Weight Cr (i, j) is in the range of 0 to 1. It is calculated based on the function M2. The same applies to Cb data with reference to FIG.
  • the Cb data is a value in the range from ⁇ 128 to the first color difference value Cb1, 0 is calculated as the weight (Weight Cb (i, j)) regarding the Cb data.
  • the weight of the Cb data Weight Cr (i, j) is 1.
  • the Cb data is a value within the range from the first color difference value Cb1 to the second color difference value Cb2, the smaller the Cb data, the smaller the weight Weight Cb (i, j) is in the range of 0 to 1 in the membership function M3. To be determined.
  • PF correction weight Weight C (i, j) Weight Cr (i, j) ⁇ Weight Cb (i, j) ... Formula 10
  • the calculated PF correction weight Weight C (i, j) is used for weighting the correction coefficient Rev (i, j) as in the second embodiment.
  • the correction coefficient RevB (i, j) of the blue (B) component is weighted by the following equation.
  • Weight correction coefficient RevB (i, j) RevB (i, j) ⁇ Weight C (i, j) ... Formula 11
  • the blue (B) component (or red (R) component) of the pixel of interest P (i, j) is color-corrected by the PF correction circuit 24 in accordance with the weighting correction coefficient RevB (i, j) (step 63, formula 7).
  • the membership functions M2 and M3 relating to the color difference data are determined from the viewpoint of whether the color difference data is close to purple. As mentioned above, purple fringes appear in purple.
  • FIG. 20 is a block diagram showing the electrical configuration of the digital still camera of the fourth embodiment.
  • FIG. 21 is a flowchart showing the processing procedure of the PF correction unit 20C of the digital still camera of the fourth embodiment.
  • the purple fringe correction unit 20C includes a purple fringe correction direction determination circuit (PF correction) in addition to the PF determination circuit 21, the RGB ratio calculation circuit 22, the PF correction coefficient calculation circuit 23, and the PF correction processing circuit 24 described in the first embodiment.
  • the purple fringe generation pixel P (i, j) is a pixel in which the signal amount of the blue (B) component and the red (R) component is larger than the signal amount of the green (G) component, Therefore, in the purple fringe reduction process, color correction is performed to reduce the signal amounts of the blue (B) component and the red (R) component.
  • FIG. 22 is a graph showing the membership function M4 used for calculating (determining) the weight WeightD (i, j) according to the correction coefficient Rev (i, j).
  • the correction coefficient RevB (i, j) is used as it is for color correction, and if the weight Weight D (i, j) is “0”, the color correction is performed. What is not performed is the same as in the second and third embodiments. Similar processing is performed for the red (R) component. When a malfunction occurs in the PF correction coefficient calculation circuit 23 and a correction coefficient that further increases the signal amount of the blue (B) component and the red (R) component is obtained, the PF correction is not performed. , Erroneous correction is prevented in advance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Television Image Signal Generators (AREA)
  • Color Image Communication Systems (AREA)
  • Image Processing (AREA)

Abstract

注目画素P(i,j)ごとにパープルフリンジ(PF)が発生しているかどうかが判定される(ステップ41)。PF発生が判定されたPF発生画素P(i,j)のRGB比と,そのPF発生画素(i,j)の近傍範囲において上記PF発生画素P(i,j)からN画素離れたPF収束画素P(m,n)のRGB比がそれぞれ算出される(ステップ42,43)。PF発生画素(i,j)のRGB比を上記PF収束画素P(m,n)のRGB比に近づける補正係数Rev(i,j)が算出される(ステップ44)。算出された補正係数Rev(i,j)が用いられて上記PF発生画素P(i,j)が色補正される。パープルフリンジが発生している画像部分の色を異ならせることによって,パープルフリンジを目立たなくする。

Description

画像処理方法および装置,ならびに画像処理プログラムおよびこのプログラムを記録した媒体
 この発明は画像処理方法および装置,ならびに画像処理プログラムおよびこのプログラムを記録した媒体に関する。
 ディジタル・スチル・カメラ等による撮像によって得られた画像中に色にじみ(パープルフリンジ)が視認されることがある。高輝度の被写体(たとえば,光源)が撮像されることで輝度差の大きな輪郭(エッジ)が撮像画像中に存在する場合に,画像輪郭の周辺にパープルフリンジは生じやすい。
 特開2009−268033号公報では,青(B)信号のにじみ量(信号量の傾き)を緑(G)信号と同じにすることによってにじみを低減している。しかしながら,たとえば,白い光源の周囲に緑色の背景が存在する画像の場合,青(B)の傾きは緑(G)の傾きよりも急峻であり,この場合に,青(B)信号のにじみ量(信号量の傾き)を緑(G)信号と同じにするとグレー色が生じる可能性がある。また,にじみ量が変えられた画像部分付近において色のつながりが不自然になる。
 国際公開WO2005/101854には,パープルフリンジ発生領域の彩度を落とすことによってパープルフリンジを目立たなくすることが記載されている。パープルフリンジ発生領域の色はそのまま紫色で残ることになる。また,部分的に彩度が低められた場合も,パープルフリンジ発生領域付近において色のつながりが不自然になる。
 この発明は,パープルフリンジが発生している画像部分の色を異ならせることによって,パープルフリンジを目立たなくすることを目的とする。
 この発明はまた,色つながりが自然な色補正の実現を目的とする。
 第1の発明による画像処理方法は,与えられる画像データの入力を受付け,受付けられた画像データについて,画素ごとにパープルフリンジが発生しているかどうかを判定し,パープルフリンジの発生が判定されたパープルフリンジ発生画素のRGB比と,上記パープルフリンジ発生画素の近傍範囲において上記パープルフリンジ発生画素から所定画素数分離れた位置のパープルフリンジ収束画素のRGB比をそれぞれ算出し,上記パープルフリンジ発生画素のRGB比を上記パープルフリンジ収束画素のRGB比に近づけるパープルフリンジ補正係数を算出し,上記算出したパープルフリンジ補正係数を用いて上記パープルフリンジ発生画素を色補正するものである。パープルフリンジ収束画素はパープルフリンジが発生していないと判定される画素でもよい。いずれにしても,パープルフリンジが発生していると判定された画素(パープルフリンジ発生画素)の近傍範囲においてパープルフリンジ発生画素から所定画素数分離れた位置の画素が,パープルフリンジ収束画素とされる。
 第1の発明による画像処理装置は,与えられる画像データの入力を受付ける画像入力装置,上記画像入力装置によって受け付けられた画像データについて,画素ごとにパープルフリンジが発生しているかどうかを判定するパープルフリンジ判定回路,上記パープルフリンジ判定回路によってパープルフリンジの発生が判定されたパープルフリンジ発生画素のRGB比と,上記パープルフリンジ発生画素の近傍範囲において上記パープルフリンジ発生画素から所定画素数分離れた位置のパープルフリンジ収束画素のRGB比をそれぞれ算出するRGB比算出回路,上記パープルフリンジ発生画素のRGB比を上記パープルフリンジ収束画素のRGB比に近づけるパープルフリンジ補正係数を算出するパープルフリンジ補正係数算出回路,および上記パープルフリンジ補正係数算出回路によって算出されたパープルフリンジ補正係数を用いて上記パープルフリンジ発生画素を色補正するパープルフリンジ低減装置を備えるものである。
 第1の発明は,コンピュータ・システムを上記画像処理装置として動作(機能)させるためのプログラムおよびこのプログラムを記録した記録媒体も提供する。汎用のコンピュータ・システムによってこのプログラムが実行されると,汎用のコンピュータ・システムが上記画像処理装置として機能する。記録媒体は,磁気記録媒体,光ディスク,光磁気ディスク,半導体メモリを含む。
 第1の発明によると,パープルフリンジ発生画素のRGB比をパープルフリンジ収束画素のRGB比に近づける色補正が行われるので,パープルフリンジ発生画素の色を,紫色として認識されないまたは紫色として認識されにくい色に色補正することができる。
 上記パープルフリンジ発生画素の近傍範囲において上記パープルフリンジ発生画素から所定画素数分離れた位置は,与えられる画像データによって表される画像中に存在するパープルフリンジ発生画素を含む領域の大きさ,パープルフリンジの発生の原因となる画像データの撮像に用いられたディジタル・カメラに用いられているレンズの種類,レンズの色コマ収差,撮像素子の画素数等に応じて定められる。いずれにしても,パープルフリンジ収束画素は上記パープルフリンジ発生画素の近傍範囲に存在する画素であるから,パープルフリンジ発生画素のRGB比がパープルフリンジ収束画素のRGB比に近づけられることでパープルフリンジ発生画素の色が変化しても,変化後の色は上記パープルフリンジ発生画素の近傍範囲の色に調和した色になる。色つながりが不自然な色補正を防止することができる。近傍範囲はあらかじめ定められる範囲であってもよいし,ユーザによる設定によって定められる範囲であってもよい。
 一実施態様では,上記パープルフリンジ補正係数は,上記パープルフリンジ発生画素の青成分信号および赤信号成分の少なくともいずれか一方に対する補正係数である。パープルフリンジは,青成分信号が,緑信号成分に対して大きい信号レベル(信号量)を持つことによって発生する。青成分信号に対する色補正を行うことによってパープルフリンジを効果的に抑制することができる。もちろん,赤信号成分を色補正することによってもパープルフリンジを抑制することはできる。
 好ましくは,所定レベル以上の輝度差(輝度勾配)を有する画像輪郭(エッジ)の周辺画素のうち,少なくとも青成分信号レベルが緑成分信号レベルよりも所定閾値以上大きい画素をパープルフリンジ発生画素と判定する。パープルフリンジは輝度差の大きな画像輪郭において生じやすく,また青成分信号レベルが緑成分信号レベルに比べて大きいことを特徴とするからである。所定レベル以上の輝度差を有する画像輪郭の周辺画素のうち,少なくとも青成分信号レベルが緑成分信号レベルよりも所定閾値以上大きい画素をパープルフリンジ発生画素と判定することで,比較的確実に色補正対象のパープルフリンジ発生画素を見つけることができる。
 他の実施態様では,上記パープルフリンジ収束画素として,上記パープルフリンジ発生画素の近傍の画像輪郭の輝度差が最も大きい方向であって輝度が減少する方向に位置する画素を用いる。青成分信号または赤成分信号の信号量が多いことを特徴とするパープルフリンジ収束画素の青成分信号または赤成分信号の信号量を少なくする色補正を行うことができる。
 好ましくは,パープルフリンジ補正係数が,上記パープルフリンジ発生画素の青成分信号および赤成分信号の少なくともいずれか一方の信号量を増やすものである場合に,パープルフリンジ発生画素の色補正効果が弱められるように,上記パープルフリンジ補正係数が調節される。パープルフリンジ発生画素の誤検出等によって,パープルフリンジ補正係数として上記パープルフリンジ発生画素の青成分信号および赤成分信号の少なくともいずれか一方の信号量を増やすものが得られた場合に,色補正効果を弱めることによって色補正による悪影響を少なくすることができる。
 第2の発明による画像処理方法は,与えられる画像データの入力を受付け,受付けられた画像データについて,注目画素ごとに,水平方向,垂直方向および斜め方向のうち少なくとも1方向について,上記注目画素を中心にして対称位置にある画素の輝度をそれぞれ算出し,算出した輝度の差を算出し,算出された輝度差のうちの最大のものを選択し,最大輝度差が小さいほど小さい重みを算出し,上記注目画素のRGB比と,その注目画素の近傍範囲において上記注目画素から所定画素数分離れた離間画素のRGB比をそれぞれ算出し,上記注目画素のRGB比を上記離間画素のRGB比に近づける補正係数を算出し,算出し補正係数を上記重みによって重付けした重付け補正係数を用いて,上記注目画素を色補正する。
 第2の発明による画像処理装置は,与えられる画像データの入力を受付ける画像入力装置,上記画像入力装置によって受け付けられた画像データについて,注目画素ごとに,水平方向,垂直方向および斜め方向のうち少なくとも1方向について,上記注目画素を中心にして対称位置にある画素の輝度をそれぞれ算出する輝度算出回路,上記輝度算出回路によって算出された輝度の差を算出する輝度差算出回路,上記輝度差算出回路によって算出された輝度差のうちの最大のものを選択する最大輝度差選択装置,上記最大輝度差選択装置によって選択された最大輝度差が小さいほど,小さい重みを算出する重み算出回路,上記注目画素のRGB比と,その注目画素の近傍範囲において上記注目画素から所定画素数分離れた離間画素のRGB比をそれぞれ算出するRGB比算出回路,上記注目画素のRGB比を上記離間画素のRGB比に近づける補正係数を算出する補正係数算出回路,および上記補正係数算出回路によって算出された補正係数を上記重み算出回路によって算出された重みによって重付けした重付け補正係数を用いて,上記注目画素を色補正する色補正回路を備える。
 第2の発明は,コンピュータ・システムを上記画像処理装置として動作(機能)させるためのプログラムおよびこのプログラムを記録した記録媒体も提供する。
 パープルフリンジは輝度差の大きな画像輪郭周辺において発生する。上記注目画素を中心にして対称位置にある画素間の最大輝度差が大きければ,その注目画素はパープルフリンジが発生している可能性が高い画素と言える。逆に,上記注目画素を中心にして対称位置にある画素間の最大輝度差が小さければ,その注目画素はパープルフリンジが発生していない画素と言える。第2の発明によると,上記注目画素を中心にして対称位置にある画素間の最大輝度差が小さいほど小さい重みが算出され,算出された重みが補正係数に重付けされる。重付けによって,パープルフリンジが発生している可能性が高い画素に補正係数による色補正の効果を生じさせ,パープルフリンジが発生している可能性が低い画素には補正係数による色補正の効果を生じさせないまたは弱めるようにすることができる。
 好ましくは,上記最大輝度差が所定値よりも小さい場合に算出される重みは上記重付け補正係数による色補正の効果を無くすものである。最大輝度差がパープルフリンジ発生の可能性がない程度に低い値である場合に,その注目画素にはパープルフリンジが発生していないと判断するものである。誤補正を減らすことができる。
 第3の発明による画像処理方法は,与えられる画像データの入力を受付け,受け付けられた画像データについて,注目画素ごとに,上記注目画素の色味が紫色かどうかを判断し,上記注目画素の色味が紫色から遠いほど小さい重みを算出し,上記注目画素のRGB比と,上記注目画素の近傍範囲において上記注目画素から所定画素数分離れた離間画素のRGB比をそれぞれ算出し,上記注目画素のRGB比を上記離間画素のRGB比に近づける補正係数を算出し,算出した補正係数を上記重みによって重付けした重付け補正係数を用いて,上記注目画素を色補正するものである。
 第3の発明による画像処理装置は,与えられる画像データの入力を受付ける画像入力装置,上記画像入力装置によって受け付けられた画像データについて,注目画素ごとに,上記注目画素の色味が紫色かどうかを判断する色味判断回路,上記注目画素の色味が紫色から遠いほど小さい重みを算出する重み算出回路,上記注目画素のRGB比と,上記注目画素の近傍範囲において上記注目画素から所定画素数分離れた離間画素のRGB比をそれぞれ算出するRGB比算出回路,上記注目画素のRGB比を上記離間画素のRGB比に近づける補正係数を算出する補正係数算出回路,上記補正係数算出回路によって算出された補正係数を上記重み算出回路によって算出された重みによって重付けした重付け補正係数を用いて,上記注目画素を色補正する色補正回路を備える。
 第3の発明は,コンピュータ・システムを上記画像処理装置として動作(機能)させるためのプログラムおよびこのプログラムを記録した記録媒体も提供する。
 パープルフリンジはその特性として紫色の色味を持っている。上記注目画素の色味が紫色またはそれに近い色味を持てば,その注目画素はパープルフリンジが発生している可能性が高い画素と言える。逆に,上記注目画素の色味が紫色でない色味を持てばその注目画素はパープルフリンジが発生していない画素と言える。第3の発明によると,上記注目画素が紫色から遠い色であるほど小さい重みが算出され,算出された重みが補正係数に重付けされる。重付けによって,パープルフリンジが発生している可能性が高い画素に補正係数による色補正の効果を生じさせ,パープルフリンジが発生している可能性が低い画素には補正係数による色補正の効果を生じさせないようにすることができる。紫色から遠い色であるか近い色であるかは,たとえば色差データ(CrデータおよびCbデータ)を用いて判断される。
 好ましくは,上記注目画素の色味が紫色と認識されない色味である場合に算出される重みは,上記重付け補正係数による色補正の効果を無くすものである。誤補正を減らすことができる。
 第1図はパープルフリンジが発生している画像例を示す。
 第2図は画素位置ごとのRGB信号量のグラフである。
 第3図は画素位置ごとのRGB信号量のグラフである。
 第4図は画素位置ごとのRGB信号量のグラフである。
 第5図は第1実施例のディジタル・スチル・カメラの電気的構成を示すブロック図である。
 第6図は第1実施例のパープルフリンジ補正ユニットの動作手順を示すフローチャートである。
 第7図は注目画素とパープルフリンジ収束画素との位置関係の一例を示す。
 第8図は色補正前のRGB信号量のグラフを示す。
 第9図はパープルフリンジ補正ユニットによる色補正後のRGB信号量のグラフを示す。
 第10図は第2実施例のディジタル・スチル・カメラの電気的構成を示すブロック図である。
 第11図は第2実施例のパープルフリンジ補正ユニットの動作手順を示すフローチャートである。
 第12図は輝度を算出すべき画素の選択の様子を示す。
 第13図は輝度を算出すべき画素の選択の様子を示す。
 第14図は輝度を算出すべき画素の選択の様子を示す。
 第15図はメンバシップ関数を示す。
 第16図は第3実施例のディジタル・スチル・カメラの電気的構成を示すブロック図である。
 第17図は第3実施例のパープルフリンジ補正ユニットの動作手順を示すフローチャートである。
 第18図はメンバシップ関数を示す。
 第19図はメンバシップ関数を示す。
 第20図は第4実施例のディジタル・スチル・カメラの電気的構成を示すブロック図である。
 第21図は第4実施例のパープルフリンジ補正ユニットの動作手順を示すフローチャートである。
 第22図はメンバシップ関数を示す。
 第1図はパープルフリンジが発生している画像80を示している。第2図,第3図および第4図は,第1図に示す画像80に示す3つのライン位置L~Lのそれぞれに対応する,画素位置ごとのRGB各成分の信号量(強度)を示すグラフである。
 パープルフリンジとは高輝度の被写体(たとえば,光源)を撮像したときに,画像輪郭の周辺が紫色に滲む現象である。画像中の輝度差の大きい輪郭部分においてパープルフリンジは生じやすい。輪郭部分における輝度差が大きいほどパープルフリンジは視認されやすくなる。
 第1図に示す画像80において白色の高輝度部HAと黒色の低輝度部LAが接している。高輝度部HAと低輝度部LAの境界が画像輪郭(エッジ)Eである。画像輪郭Eの周辺にパープルフリンジが生じている。画像80においてパープルフリンジが発生している領域(範囲)がパープルフリンジ発生領域PFとして示されている。
 画像80において高輝度部HAはその上側に向かうにつれて輝度が小さくなっている。低輝度部LAの輝度は一定である。すなわち,画像80における下端部付近における高輝度部HAと低輝度部LAの輝度差は非常に大きく,上端部付近では高輝度部HAと低輝度部LAの輝度差はそれよりも小さい。
 第2図~第4図を参照して,パープルフリンジは,RGB成分で見ると,青(B)成分,または青(B)成分および赤(R)成分の信号量が,緑(G)成分の信号量よりも大きな信号量を持つことで紫色を表すものになる。第2図~第4図において両端矢印D~Dは,画像輪郭Eの近傍の画素位置における,青(B)成分の信号量と緑(G)成分の信号量との差を示している。高輝度部HAと低輝度部LAの輝度差が大きいほど,画像輪郭Eの近傍の画素位置における青(B)成分の信号量と緑(G)成分の信号量との差は大きい(D<D<D)。この信号量差に比例してパープルフリンジ発生領域PFも大きくなり,目立つものになっている(第1図)。
 この発明の実施例では,上述のパープルフリンジを低減する画像処理装置を実装したディジタル・スチル・カメラを説明する。ディジタル・カメラは,パープルフリンジ発生領域PFを有する画像に対してパープルフリンジを低減する画像処理を行う。
 第5図は第1実施例のディジタル・スチル・カメラの電気的構成を概略的に示すブロック図である。
 ディジタル・スチル・カメラの全体的な動作はCPU1によって統括される。
 CPU1は,データバスを介して,撮像ユニット10,ディジタル信号処理装置7,外部メモリ・インターフェース(外部メモリI/F)5,メモリ・インターフェース(メモリI/F)8,および圧縮伸張処理回路2に接続されている。
 撮像ユニット10はCCD12を備え,CCD12の前方に撮像レンズ,絞り,赤外線カット・フィルタ,光学的ロウパス・フィルタ(OLPF)等を含む光学ユニット11が設けられている。
 ディジタル・スチル・カメラには,フラッシュ撮像のためのフラッシュ3,およびフラッシュ3に電源を供給する充電回路4を備えている。CPU1によってフラッシュ3に対する発光指示および充電回路4に対する充電指示が行われる。
 ディジタル・スチル・カメラの電源がオンされ,撮影モードが設定されると,被写体像を表す光線束が光学ユニット11に入射する。光線束は光学ユニット11を介してCCD12の受光面上に入射する。CCD12には多数のフォトダイオード(光電変換素子)がその受光面に二次元的に配置され,かつ受光面上には所定の配列構造(ベイヤー配列,Gストライプ配列など)を持って配列された赤(R),緑(G),青(B)のカラーフィルタが設けられている。光学ユニット11によって結像された被写体像がCCD12によって電子的に撮像される。CCD12はCPU1からの指令に応じてタイミング信号等を出力する撮像素子駆動回路16によって駆動される。
 CCD12から出力された被写体像を表すアナログ信号は,アナログ信号処理装置13に入力する。
 アナログ信号処理装置13には,相関二重サンプリング回路,信号増幅器などが含まれている。CCD12から出力された被写体像を表すアナログ信号はアナログ信号処理装置13に入力し,相関二重サンプリング,信号増幅などが行われる。アナログ信号処理装置13から出力されたアナログ映像信号(アナログのRGB信号)はアナログ/ディジタル変換回路(ADC)14に入力し,所定の信号処理の後,ディジタル画像データ(デジタルRGBデータ)に変換される。また,必要に応じてRGBデータは輝度データ(Yデータ)と色差データ(Cr,Cbデータ)とからなる画像データ(YUVデータ)に変換される。
 ディジタル画像データはメモリI/F8の制御のもとでRAM9Aに一時的に記録される。メモリI/F8にはROM9Bも接続されている。ROM9Bには,CPU1が実行する制御プログラム,制御に必要な各種データ,撮影者設定情報等,デジタル・スチル・カメラの動作に関する各種設定情報等が記憶されている。
 ディジタル画像データはRAM9Aから読出されてディジタル信号処理装置7に入力する。ディジタル信号処理装置7では白バランス調整,ガンマ補正,同時化処理(単板CCDのカラーフィルタ配列に伴う色信号の空間的ズレを補間して色信号を同時式に変換する処理)などの所定のディジタル信号処理が行われる。ディジタル信号処理が行われたデータによって表される被写体像は,表示装置(図示略)の表示画面上に表示される。
 シャッタ・レリーズ・ボタン(図示略)の第一段階の押下があると,モータ駆動回路15によって光学ユニット11のレンズが駆動されて焦点合わせが行われる。RAM9Aから読出される画像データに基づいてディジタル信号処理装置7において輝度データが得られる。輝度データの積算値を表すデータがCPU1に与えられて露出量が算出される。算出された露出量となるように光学ユニット11の絞りの開口がモータ駆動回路15によって制御され,撮像素子駆動回路16によってCCD12のシャッタ速度が制御される。
 シャッタ・レリーズ・ボタンの第二段階の押下があると,アナログ/ディジタル変換回路14から出力された画像データはRAM9Aに記憶される。RAM9Aから読み出された画像データに対し,上述のように所定のディジタル信号処理がデジタル信号処理装置7において行われる。ディジタル信号処理装置7から出力された画像データは圧縮伸張処理回路2においてデータ圧縮される。圧縮された画像データが外部メモリI/F5の制御によってメモリカード6に記録される。
 再生モードが設定されると,メモリカード6に記録されている圧縮画像データが読み取られる。読取られた圧縮画像データは圧縮伸張処理回路2において伸張された後,表示装置に与えられて再生画像が表示される。
 ディジタル信号処理装置7にパープルフリンジ補正ユニット(PF補正ユニット)20が接続されている。PF補正ユニット20はパープルフリンジ判定回路(PF判定回路)21,RGB比算出回路22,パープルフリンジ補正係数算出回路(PF補正係数算出回路)23およびパープルフリンジ補正処理回路(PF補正処理回路)24を含む。PF補正ユニット20において,上述したパープルフリンジを低減する画像処理が行われる。パープル補正ユニット20によるパープルフリンジを低減する画像処理は,ディジタル・スチル・カメラの操作部(図示略)を用いた設定によってオン/オフしてもよいし,撮像によって得られた画像データおよびメモリカード6から読出された画像データのすべてを処理対象としても,ユーザによって選択された画像データを処理対象としてもよい。
 第6図は第1実施例のPF補正ユニット20の動作手順を示すフローチャートである。第6図を参照して,PF補正ユニット20に含まれるPF判定回路21,RGB比算出回路22,PF補正係数算出回路23およびPF補正処理回路24を説明する。
 ディジタル信号処理装置7を介してPF補正ユニット20に与えられた画像データは,PF判定回路21に入力する。
 PF判定回路21は,与えられた画像データによって表される被写体像中にパープルフリンジが発生しているかどうかを判定する。パープルフリンジが発生しているかどうかの判断は被写体像を構成する画素のそれぞれに対して行われる(ステップ41)。
 パープルフリンジが発生しているかどうかの判定は,一例では,処理対象画素(以下,注目画素P(i,j)という)について,青(B)成分の信号量(強度)が緑(G)成分の信号量よりも所定閾値以上大きいかどうかによって判定される。青(B)成分の信号量が緑(G)成分の信号量よりも所定の第1閾値以上大きく,かつ赤(B)成分の信号量が緑(G)成分の信号量よりも所定の第2閾値以上大きい画素をパープルフリンジが発生している画素と判定してもよい。上述したように,パープルフリンジを表す画像(画素)は,青(B)成分の信号量と緑(G)成分の信号量との差が大きいこと,赤(R)成分の信号量と緑(G)成分の信号量との間に差があることをその特性として有するからである。
 また,パープルフリンジは輝度差の大きい画像輪郭(エッジ)周辺に現れやすいので,所定レベル以上の輝度差(輝度勾配)を有する画像輪郭をあらかじめ検出(抽出)して,その画像輪郭の周辺の画素を処理対象にしてパープルフリンジが発生しているかどうかを判定してもよい。
 注目画素P(i,j)にパープルフリンジは発生していないと判定されると(ステップ41でNO),被写体像を構成する全ての画素についての処理が完了したかどうかが判断される(ステップ46)。全画素について処理が完了していない場合,水平方向または垂直方向に1画素分ずれた位置の画素が新たな注目画素P(i,j)とされ,新たな注目画素P(i,j)に対してパープルフリンジが発生しているかどうかが判定される(ステップ46でNO,ステップ41)。
 注目画素P(i,j)にパープルフリンジが発生していると判定されると(ステップ41でYES),RGB比算出回路22が,その注目画素(i,j)(以下,パープルフリンジ発生画素P(i,j)という)からN(N:整数)画素だけ離れた位置にあるパープルフリンジが発生していない画素P(m,n)(以下,パープルフリンジ収束画素P(m,n)という)が選択され,そのRGB比が算出される(ステップ42)。後述するように,パープルフリンジ発生画素P(i,j)は,そのRGB比がパープルフリンジ収束画素P(m,n)のRGB比に近づくように色補正される。
 第7図は,被写体像G上におけるパープルフリンジ発生画素P(i,j)とパープルフリンジ収束画素P(m,n)の位置関係の一例を示している。第7図では,パープルフリンジ発生画素P(i,j)から垂直(上)方向にN画素分離れた画素が,パープルフリンジ収束画素P(m,n)として選択されている様子を示す。
 上述のN画素の「N」を具体的にいくつするかは,たとえば,処理対象の画像データの撮像に用いられたディジタル・スチル・カメラにおいて使用されているレンズの特性,CCDの画素数等に応じて定められる。パープルフリンジの発生のしやすさ,パープルフリンジが発生したときの広がり等はレンズの色コマ収差,CCDの画素数等に依存するからである。たとえばNの値としては8(8画素)が用いられる。
 また,上述したように,パープルフリンジは所定レベル以上の輝度差を有する画像輪郭の周辺に生じやすい。さらに,パープルフリンジ発生画素P(i,j)は青(B)成分の信号量が緑(G)成分の信号量とからかけ離れて大きくなっていることをその特性の一つとしているので,パープルフリンジを低減するには青(B)成分の信号量を低くする必要がある。したがって,パープルフリンジ発生画素P(i,j)に対するN画素離れたパープルフリンジ収束画素P(m,n)の方向としては,パープルフリンジ発生画素P(i,j)の近傍の画像輪郭において輝度差の最も大きな方向に沿う方向(画像輪郭に垂直な方向)であって,輝度が減少する方向(低輝度部側)が採用される。
 上述のようにして,パープルフリンジ発生画素P(i,j)からN画素離れた位置にある画素がパープルフリンジ収束画素P(m,n)として選択され,そのRGB比が算出される。パープルフリンジ収束画素P(m,n)のRGB比は,たとえば,以下の2つの値である。
 B/G(m,n)   ・・・式1
 R/G(m,n)   ・・・式2
 式1はパープルフリンジ収束画素P(m,n)の青(B)成分の信号量を,緑(G)成分の信号量によって除算することを表している。式2はパープルフリンジ収束画素P(m,n)の赤(R)成分の信号量を,緑(G)成分の信号量によって除算することを表している。
 同様にして,パープルフリンジ発生画素P(i,j)のRGB比も,次式によって算出される。
 B/G(i,j)   ・・・式3
 R/G(i,j)   ・・・式4
 パープルフリンジ収束画素P(m,n)およびパープルフリンジ発生画素P(i,j)のRGB比が算出されると,PF補正係数算出回路23が,パープルフリンジ発生画素P(i,j)のRGB比を,パープルフリンジ収束画素P(m,n)のRGB比に近づける補正係数Rev(i,j)を算出する。補正係数Rev(i,j)は青(B)成分に対する補正係数と赤(G)成分に対する補正係数を含む。青(B)成分の補正係数RevB(i,j)は次式によって算出される。
 補正係数RevB(i,j)=(B/G(m,n))/(B/G(i,j))
                               ・・・式5
 上述したように,パープルフリンジ発生画素P(i,j)の青(B)成分の信号量は緑(G)成分の信号量よりも大きい。また,パープルフリンジ収束画素P(m,n)としては低輝度側の画素が採用されている。したがって,B/G(m,n)の値よりもB/G(i,j)の値の方が大きくなるので,上記式5によって算出される青(B)成分の補正係数RevB(i,j)は,一般に1よりも小さい値になる。
 同様にして,赤(R)成分の補正係数RevR(i,j)は,次式によって算出される。
 補正係数RevR(i,j)=(R/G(m,n))/(R/G(i,j))
                               ・・・式6
 算出された補正係数Rev(i,j)(青成分用および赤成分用)が用いられて,PF補正処理回路24によってパープルフリンジ発生画素P(i,j)が色補正される。色補正後のパープルフリンジ発生画素P(i,j)の青(B)成分は,次式によって表される。
 色補正後のパープルフリンジ発生画素P(i,j)の青(B)成分
 =B(i,j)×RevB(i,j)             ・・・式7
 同様に,パープルフリンジ発生画素P(i,j)の赤(R)成分は,次式によって色補正される。
 色補正後のパープルフリンジ発生画素P(i,j)の赤(R)成分
 =R(i,j)×RevR(i,j)             ・・・式8
 パープルフリンジ発生画素P(i,j)のRGB比がパープルフリンジ収束画素P(m,n)のRGB比に近づくように色補正されるので,パープルフリンジ発生画素P(i,j)はパープルフリンジの無いまたはパープルフリンジが低減されたものになる。
 第8図および第9図は,上述したPF補正ユニット20による色補正効果を示すもので,第8図がPF補正ユニット20による色補正処理前のグラフ(RGBの信号量)を,第9図がPF補正ユニット20による色補正処理後のグラフをそれぞれ示している。第9図を参照して,パープルフリンジが発生している画素中の青(B)成分信号の信号量が低められるように色補正されている。赤(R)成分信号もその信号量が低められるように色補正されている。高輝度部から低輝度部までの色のつながりが自然な色補正が達成されている。
 上述した第1実施例では,青(B)成分信号および赤(R)成分信号の両方を色補正しているが,パープルフリンジは青(B)成分信号が支配的であるので,青(B)成分信号のみについて色補正を行うようにしてもよい。もちろん,赤(R)成分信号のみについて色補正を行うようにしてもよい。青(B)成分信号および赤(R)成分信号の色補正は同様に行われるので,以下の実施例では,基本的に青(B)成分信号の色補正について説明する。
 また上述した第1実施例では,パープルフリンジ補正処理(低減処理)がPF補正ユニット20によって実行されているが,PF補正ユニット20の処理と同様の処理をCPU1またはディジタル信号処理装置7に実行させることでパープルフリンジ補正処理を実行してもよい。この場合には,CPU1またはディジタル信号処理装置7に上述のパープルフリンジ補正処理を実行させるプログラムが,ROM9Bに記憶される。CD−ROM等の記録媒体に上記プログラムを記録しておき,これをインストールしてもよい。さらに,汎用のコンピュータ・システムに上述のパープルフリンジ補正処理を実行させることもできる。PF補正ユニット20の処理と同様の処理をコンピュータ・システムに実行させるプログラムがコンピュータ・システムにインストールされると,そのコンピュータ・システムがパープルフリンジ補正処理を実行する画像処理装置として機能する。このことは,後述する他の実施例でも同様である。
 第10図は第2実施例のディジタル・スチル・カメラの電気的構成を示すブロック図である。第11図は第2実施例のディジタル・スチル・カメラのPF補正ユニット20Aの処理手順を示すフローチャートである。第10図に示すブロック図において,第5図に示す第1実施例のディジタル・スチル・カメラのブロック図中のブロックと同じブロックは同一符号を付し重複説明を避ける。第11図に示すフローチャートにおいて第6図に示すフローチャート中の処理と同一処理には同一符号を付し,重複説明を避ける。
 第2実施例のディジタル・スチル・カメラに含まれるPF補正ユニット20Aは,画素輝度算出回路25,輝度差算出回路26およびパープルフリンジ補正重みWeightY算出回路(PF補正重みWeightY算出回路)27が加えられている点,およびPF判定回路21が無い点が,第1実施例のディジタル・スチル・カメラのPF補正ユニット20と異なる。
 注目画素P(i,j)から水平方向,垂直方向および2つの斜め方向(右斜め方向および左斜め方向)にM画素離れた8つの周辺画素のそれぞれの輝度値Yが画素輝度算出回路25によって算出され(ステップ51),パープルフリンジ発生画素P(i,j)を中心にして対称位置にある2つの周辺画素の輝度差が輝度差算出回路26によって算出される(ステップ52)。
 第12図,第13図および第14図を参照して輝度差算出処理(ステップ51,52)を説明する。ここでは,M=4である場合を例に説明する。
 注目画素P(i,j)が第12図に示す位置にある場合,注目画素P(i,j)から水平方向に4画素離れた周辺画素は,第13図に示すように画素P(i−4,j)と画素P(i+4,j)である。水平方向について注目画素P(i,j)を中心にして対称位置にある画素P(i−4,j)と画素P(i+4,j)の輝度差が算出される。
 第14図に示すように,垂直方向,左斜め方向および右斜め方向に4画素離れた他の周辺画素についても,注目画素P(i,j)を中心にして対称位置にある画素同士の輝度差が算出される。すなわち,垂直方向の画素P(i,j+4)と画素P(i,j−4)の輝度差,左斜め方向の画素P(i−4,j+4)と画素P(i+4,j−4)の輝度差,および右斜め方向の画素P(i+4,j+4)と画素P(i−4,j−4)の輝度差がそれぞれ算出される。注目画素P(i,j)について,4つの輝度差が算出されることになる。
 第11図に戻って,PF補正重みWeightY算出回路27によって,算出された4つの輝度差のうち最も大きい輝度差ΔY(i,j)が選択され(ステップ53),その最大輝度差ΔY(i,j)に応じた重みWeightY(i,j)が算出(決定)される。算出された重みWeightY(i,j)はPF補正処理回路24に与えられる。
 第15図は,上述の重みWeightY(i,j)の算出(決定)に用いられるメンバシップ関数M1を示すグラフである。
 重みWeightY(i,j)の算出(決定)に用いられるメンバシップ関数M1は,輝度差ΔY(i,j)に応じて異なる重みWeightY(i,j)を決定する関数である。重みWeightY(i,j)は0から1までの範囲の値によって算出される。
 輝度差ΔY(i,j)が0から第1の所定輝度値Y1まで範囲の値の場合,重みWeightY(i,j)=0である。第1の所定輝度値Y1から第2の所定輝度値Y2までの範囲の値であればメンバシップ関数M1によって輝度値ΔY(i,j)が大きいほど大きな値の重みWeightY(i,j)が決定される。算出される輝度差ΔY(i,j)が第2の所定輝度値Y2以上であれば,最大の重みWeightY(i,j)=1が算出される。
 上述のように,算出された重みWeightY(i,j)はPF補正処理回路24に与えられる。第1実施例において説明したように,PF補正係数算出回路23において算出された青(B)成分についての補正係数RevB(i,j)もPF補正処理回路24に与えられる。PF補正処理回路24において,次式によって,青(B)成分の補正係数RevB(i,j)が重付けされる。
 重付け補正係数RevB(i,j)=RevB(i,j)×Weight Y(i,j)
                                   ・・・式9
 重付け補正係数Rev(i,j)に応じて注目画素P(i,j)の青(B)成分(ないし赤(R)成分)がPF補正回路24によって色補正される(ステップ55,式7参照)。
 注目画素P(i,j)の周辺画素の輝度差ΔY(i,j)が小さい場合,すなわち,第15図を参照して,輝度差ΔY(i,j)が0から第1の所定輝度値Y1までの範囲の値であれば,重みWeightY(i,j)は0になるので重付け補正係数RevB(i,j)は0になる。この場合,注目画素P(i,j)の青(B)成分について色補正は行われない。すなわち,その注目画素P(i,j)はパープルフリンジは発生していないと判断され,パープルフリンジを低減する色補正が行われないことを意味する。
 第15図を参照して,注目画素P(i,j)の周辺画素の輝度差ΔY(i,j)が第2の所定輝度値Y2以上であれば,重みWeightY(i,j)は1となる。重付け補正係数RevB(i,j)として補正係数RevB(i,j)がそのまま用いられる(式9)。
 注目画素P(i,j)の周辺画素の輝度差ΔY(i,j)が第1の所定輝度値Y1から第2の所定輝度値Y2までの範囲の値であれば,重みWeightY(i,j)は0よりも大きく,かつ1よりも小さい値になる。最大輝度差ΔY(i,j)が小さくなればなるほど,重付け補正係数RevB(i,j)は小さな値となるので色補正の効果が弱められることになる。
 パープルフリンジは画像輪郭における輝度差が大きいほどが強く表れる。第2実施例では,上述のように,注目画素(i,j)と周辺画素Pとの間の最大の輝度差ΔY(i,j)を用いて各画素がパープルフリンジ低減処理を行うべき画素(パープルフリンジ発生画素P(i,j))かどうかが判定される。パープルフリンジが発生しているかどうかの判定の精度は高い。また,メンバーシップ関数M1を用いた重付けによって,すなわち,パープルフリンジ発生画素P(i,j)である確度に応じて補正係数RevB(i,j)を用いた色補正の効果が弱められるので,誤補正も低減される。
 メンバシップ関数M1(第15図)は,PF補正重みWeightY算出回路27にルックアップテーブルの形で記憶させておいてもよいし,ROM9Bに記憶させておいてもよい。
 第16図は,第3実施例のディジタル・スチル・カメラの電気的構成を示すブロック図である。第17図は第3実施例のディジタル・スチル・カメラのPF補正ユニット20Bの処理手順を示すフローチャートである。第16図に示すブロック図において,第10図に示す第2実施例のディジタル・スチル・カメラのブロック図中のブロックと同じブロックには同一符号を付し重複説明を避ける。第17図に示すフローチャートにおいて第11図に示すフローチャート中の処理と同一処理には同一符号を付し,重複説明を避ける。
 第3実施例のディジタル・スチル・カメラに含まれるPF補正ユニット20Bは,画素輝度算出回路25,輝度差算出回路26およびPF補正重みWeight Y算出回路27に代えて,色味算出回路28およびパープルフリンジ重みWeightC算出回路(PF重みWeightC算出回路)29が設けられている点が,第2実施例のディジタル・スチル・カメラのPF補正ユニット20Aと異なる。
 色味算出回路28によって注目画素P(i,j)の色差データ(CrデータおよびCbデータ)が算出される(ステップ61)。その後,PF重みWeightC算出回路29によって,Crデータについてのメンバシップ関数M2およびCbデータについてのメンバシップ関数M3が用いられて,注目画素P(i,j)に対する色味についての重みWeight CrおよびWeight Cbがそれぞれ算出される(ステップ62)。
 第18図はCrデータについてのメンバシップ関数M2を,第19図はCbデータについてのメンバシップ関数M3をそれぞれ示している。
 第18図を参照してCrデータが−128から第1色差値Cr1までの範囲の値であれば,Crデータに関する重み(Weight Cr(i,j))として0が算出される。Crデータが第2色差値Cr2以上の場合であればCrデータに関する重みWeight Cr(i,j)として1が決定される。Crデータが第1色差値Cr1から第2色差値Cr2までの範囲内の値であれば,Crデータが小さいほど,小さい値の重みWeight Cr(i,j)が0~1の範囲でメンバシップ関数M2に基づいて算出される。
 第19図を参照して,Cbデータについても同様である。Cbデータが−128から第1色差値Cb1までの範囲の値であれば,Cbデータに関する重み(Weight Cb(i,j))として0が算出される。Cbデータが第2色差値Cb2以上の場合,Cbデータの重みWeight Cr(i,j)は1になる。Cbデータが第1色差値Cb1から第2色差値Cb2までの範囲内の値であれば,Cbデータが小さいほど小さい重みWeight Cb(i,j)が0~1の範囲でメンバシップ関数M3に基づいて決定される。
 注目画素P(i,j)についてCrデータの重みWeight Cr(i,j)およびCbデータの重みWeight Cb(i,j)が決定されると,次式によって2つの重みが統合されてPF補正重みWeightCが算出される。
 PF補正重みWeightC(i,j)=Weight Cr(i,j)×Weight Cb(i,j)
                                  ・・・式10
 算出されたPF補正重みWeight C(i,j)が,第2実施例と同様,補正係数Rev(i,j)の重付けに用いられる。PF補正処理回路24において,次式によって,青(B)成分の補正係数RevB(i,j)が重付けされる。
 重付け補正係数RevB(i,j)=RevB(i,j)×Weight C(i,j)
                                  ・・・式11
 重付け補正係数RevB(i,j)に応じて注目画素P(i,j)の青(B)成分(ないし赤(R)成分)がPF補正回路24によって色補正される(ステップ63,式7参照)。
 色差データに関するメンバーシップ関数M2,M3は,紫色の色味に近いかどうかの観点から定められる。上述したように,パープルフリンジは紫色によって現れる。注目画素P(i,j)の色味が紫色またはこれに近い色である場合(紫色を表す色差データCr,Cbを持つ場合)に,メンバーシップ関数M2,M3によって1または1に近い値が算出され,この場合にはPF補正係数算出回路23によって算出された補正係数Rev(i,j)がそのまま用いられる(式11)。他方,注目画素P(i,j)の色味が紫色と異なる色味であればあるほど,重付けによって色補正の適用効果が弱められる。色補正における誤補正が低減される。
 もっとも,輝度差の大きな画素輪郭の近傍でない位置にある紫色画素が色補正されるのを防止するために,輝度差の大きな画像輪郭の近傍画素のみを注目画素P(i,j)としてもよい。
 第20図は,第4実施例のディジタル・スチル・カメラの電気的構成を示すブロック図である。第21図は第4実施例のディジタル・スチル・カメラのPF補正ユニット20Cの処理手順を示すフローチャートである。第20図に示すブロック図において,第5図に示す第1実施例のディジタル・スチル・カメラのブロック図中のブロックと同じブロックには同一符号を付し重複説明を避ける。第21図に示すフローチャートにおいて,第6図に示すフローチャート中の処理と同一処理には同一符号を付し,重複説明を避ける。
 パープルフリンジ補正ユニット20Cは,第1実施例で説明したPF判定回路21,RGB比算出回路22,PF補正係数算出回路23およびPF補正処理回路24に加えて,パープルフリンジ補正方向判定回路(PF補正方向判定回路)30およびパープルフリンジ重みWeight D算出回路(PF重みWeight D算出回路)31を備えている。
 上述のように,パープルフリンジ発生画素P(i,j)は,青(B)成分および赤(R)成分の信号量が緑(G)成分の信号量よりも大きくなっている画素であり,したがってパープルフリンジの低減処理では,青(B)成分および赤(R)成分の信号量を低くする色補正が行われる。第4実施例では,パープルフリンジ発生画素P(i,j)の誤検出等によって,補正係数RevB(i,j)および補正係数RevR(i,j)として1以上の値が算出された場合,すなわち,青(B)成分および赤(R)成分の信号量をさらに大きくする補正係数RevB(i,j),補正係数RevR(i,j)が算出された場合,補正係数による補正効果を無くす,または補正効果を弱める処理が行われる。
 第22図は補正係数Rev(i,j)に応じた重みWeightD(i,j)の算出(決定)に用いられるメンバシップ関数M4を示すグラフである。
 青成分については,PF補正方向判定回路30によって,PF補正係数算出回路23によって算出された補正係数RevB(i,j)が青(B)成分の信号量をさらに大きくするものであるかどうか(補正の方向がプラス方向であるかどうか)に応じて,大きくするものであるであれば重みWeightD(i,j)として「0」が算出(決定)され,大きくするものでなければ重みWeightD(i,j)として「1」が算出される(ステップ71,第22図)。すなわち,補正係数RevB(i,j)として,1を超える補正係数RevR(i,j)がPF補正係数算出回路23によって算出された場合,重みWeight Dとして色補正の効果を無くす値(=0)が算出される。
 重みWeight D(i,j)が「1」であれば補正係数RevB(i,j)がそのまま用いられて色補正され,重みWeight D(i,j)が「0」であれば色補正が行われないのは,上述した実施例2および3と同様である。赤(R)成分についても同様の処理が行われる。
 PF補正係数算出回路23において誤動作等が生じ,青(B)成分および赤(R)成分の信号量をさらに大きくする補正係数が得られたときに,PF補正を行わないようにすることができ,誤補正が未然に防止される。

Claims (19)

  1. 与えられる画像データの入力を受付け,
     受付けられた画像データについて,画素ごとにパープルフリンジが発生しているかどうかを判定し,
     パープルフリンジの発生が判定されたパープルフリンジ発生画素のRGB比と,そのパープルフリンジ発生画素の近傍範囲において上記パープルフリンジ発生画素から所定画素数分離れたパープルフリンジ収束画素のRGB比をそれぞれ算出し,
     上記パープルフリンジ発生画素のRGB比を上記パープルフリンジ収束画素のRGB比に近づけるパープルフリンジ補正係数を算出し,
     算出されたパープルフリンジ補正係数を用いて上記パープルフリンジ発生画素を色補正する,
     画像処理方法。
  2. 上記パープルフリンジ補正係数は,上記パープルフリンジ発生画素の青成分信号および赤成分信号の少なくともいずれか一方に対する補正係数である,
     請求の範囲第1項に記載の画像処理方法。
  3. 所定レベル以上の輝度差を有する画像輪郭の周辺画素のうち,少なくとも青成分信号レベルが緑成分信号レベルよりも所定閾値以上大きい画素をパープルフリンジ発生画素と判定する,
     請求の範囲第1項に記載の画像処理方法。
  4. 上記パープルフリンジ収束画素として,上記パープルフリンジ発生画素の近傍の画像輪郭の輝度差が最も大きい方向であって輝度が減少する方向に位置する画素を用いる,
     請求の範囲第1項に記載の画像処理方法。
  5. 上記パープルフリンジ補正係数が,上記パープルフリンジ発生画素の青成分信号および赤成分信号の少なくともいずれか一方の信号量を増やすものである場合に,パープルフリンジ発生画素の色補正効果が弱められるように上記パープルフリンジ補正係数を調節する,
     請求の範囲第1項に記載の画像処理方法。
  6. 与えられる画像データの入力を受付け,
     受け付けられた画像データについて,注目画素ごとに,水平方向,垂直方向および斜め方向のうち少なくとも1方向について,上記注目画素を中心にして対称位置にある画素の輝度をそれぞれ算出し,
     算出された輝度の差を算出し,
     算出された輝度差のうちの最大のものを選択し,
     選択された最大輝度差が小さいほど小さい重みを算出し,
     上記注目画素のRGB比と,その注目画素の近傍範囲において上記注目画素から所定画素数分離れた離間画素のRGB比をそれぞれ算出し,
     上記注目画素のRGB比を上記離間画素のRGB比に近づける補正係数を算出し,
     算出された補正係数を上記算出された重みによって重付けした重付け補正係数を用いて,上記注目画素を色補正する,
     画像処理方法。
  7. 上記離間画素として,上記注目画素の近傍の画像輪郭の輝度差が最も大きい方向であって輝度が減少する方向に位置する画素を用いる,
     請求の範囲第6項に記載の画像処理方法。
  8. 上記最大輝度差が所定値よりも小さい場合に算出される重みは,上記重付け補正係数による色補正の効果を無くすものである,
     請求の範囲第6項に記載の画像処理方法。
  9. 与えられる画像データの入力を受付け,
     受け付けられた画像データについて,注目画素ごとに,上記注目画素の色味が紫色かどうかを判断し,
     上記注目画素の色味が紫色から遠いほど小さい重みを算出し,
     上記注目画素のRGB比と,上記注目画素の近傍範囲において上記注目画素から所定画素数分離れた離間画素のRGB比をそれぞれ算出し,
     上記注目画素のRGB比を上記離間画素のRGB比に近づける補正係数を算出し,
     算出された補正係数を上記算出された重みによって重付けした重付け補正係数を用いて,上記注目画素を色補正する,
     画像処理方法。
  10. 上記離間画素として,上記注目画素の近傍の画像輪郭の輝度差が最も大きい方向であって輝度が減少する方向に位置する画素を用いる,
     請求の範囲第9項に記載の画像処理方法。
  11. 上記注目画素の色味が紫色と認識されない色味である場合に算出される重みは,上記重付け補正係数による色補正の効果を無くすものである,
     請求の範囲第9項に記載の画像処理方法。
  12. 算出された補正係数が,上記注目画素の青成分信号および赤成分信号の少なくともいずれか一方の信号量を増やすものである場合に,色補正効果が弱められるように上記補正係数を調節する,
     請求の範囲第6項および第9項に記載の画像処理方法。
  13. 与えられる画像データの入力を受付ける画像データ入力装置,
     上記画像データ入力装置によって受付けられた画像データについて,画素ごとにパープルフリンジが発生しているかどうかを判定するパープルフリンジ判定回路,
     上記パープルフリンジ判定回路によってパープルフリンジの発生が判定されたパープルフリンジ発生画素のRGB比と,そのパープルフリンジ発生画素の近傍範囲において上記パープルフリンジ発生画素から所定画素数分離れたパープルフリンジ収束画素のRGB比をそれぞれ算出するRGB比算出回路,
     上記パープルフリンジ発生画素のRGB比を上記パープルフリンジ収束画素のRGB比に近づけるパープルフリンジ補正係数を算出するパープルフリンジ補正係数算出回路,および
     上記パープルフリンジ補正係数算出回路によって算出されたパープルフリンジ補正係数を用いて上記パープルフリンジ発生画素を色補正するパープルフリンジ低減装置を備える,
     画像処理装置。
  14. 与えられる画像データの入力を受付ける画像データ入力装置,
     上記画像データ入力装置によって受け付けられた画像データについて,注目画素ごとに,水平方向,垂直方向および斜め方向のうち少なくとも1方向について,上記注目画素を中心にして対称位置にある画素の輝度をそれぞれ算出する輝度算出回路,
     上記輝度算出回路によって算出された輝度の差を算出する輝度差算出回路,
     上記輝度差算出回路によって算出された輝度差のうちの最大のものを選択する最大輝度差選択装置,
     上記最大輝度差選択装置によって選択された最大輝度差が小さいほど,小さい重みを算出する重み算出装置,
     上記注目画素のRGB比と,その注目画素の近傍範囲において上記注目画素から所定画素数分離れた離間画素のRGB比をそれぞれ算出するRGB比算出回路,
     上記注目画素のRGB比を上記離間画素のRGB比に近づける補正係数を算出する補正係数算出回路,および
     上記補正係数算出回路によって算出された補正係数を上記重み算出装置によって算出された重みによって重付けした重付け補正係数を用いて,上記注目画素を色補正する色補正回路を備える,
     画像処理装置。
  15. 与えられる画像データの入力を受付ける画像データ入力装置,
     上記画像入力装置によって受け付けられた画像データについて,注目画素ごとに,上記注目画素の色味が紫色かどうかを判断する色味判断回路,
     上記注目画素の色味が紫色から遠いほど小さい重みを算出する重み算出回路,
     上記注目画素のRGB比と,上記注目画素の近傍範囲において上記注目画素から所定画素数分離れた離間画素のRGB比をそれぞれ算出するRGB比算出回路,
     上記注目画素のRGB比を上記離間画素のRGB比に近づける補正係数を算出する補正係数算出回路,および
     上記補正係数算出回路によって算出された補正係数を上記重み算出回路によって算出された重みによって重付けした重付け補正係数を用いて,上記注目画素を色補正する色補正回路を備える,
     画像処理装置。
  16. コンピュータ・システムを画像処理装置として動作させるためのプログラムであって,
     与えられる画像データの入力を受付けさせ,
     受付けられた画像データについて,画素ごとにパープルフリンジが発生しているかどうかを判定させ,
     パープルフリンジの発生が判定されたパープルフリンジ発生画素のRGB比と,そのパープルフリンジ発生画素の近傍範囲において上記パープルフリンジ発生画素から所定画素数分離れたパープルフリンジ収束画素のRGB比をそれぞれ算出させ,
     上記パープルフリンジ発生画素のRGB比を上記パープルフリンジ収束画素のRGB比に近づけるパープルフリンジ補正係数を算出させ,
     算出されたパープルフリンジ補正係数を用いて上記パープルフリンジ発生画素を色補正させるように,上記コンピュータ・システムを制御する,
     プログラム。
  17. コンピュータ・システムを画像処理装置として動作させるためのプログラムであって,
     与えられる画像データの入力を受付けさせ,
     受け付けられた画像データについて,注目画素ごとに,水平方向,垂直方向および斜め方向のうち少なくとも1方向について,上記注目画素を中心にして対称位置にある画素の輝度をそれぞれ算出させ,
     算出された輝度の差を算出させ,
     算出された輝度差のうちの最大のものを選択させ,
     選択された最大輝度差が小さいほど,小さい重みを算出させ,
     上記注目画素のRGB比と,その注目画素の近傍範囲において上記注目画素から所定画素数分離れた離間画素のRGB比をそれぞれ算出させ,
     上記注目画素のRGB比を上記離間画素のRGB比に近づける補正係数を算出させ,
     算出された補正係数を上記算出された重みによって重付けした重付け補正係数を用いて,上記注目画素を色補正させるように,上記コンピュータ・システムを制御する,
     プログラム。
  18. コンピュータ・システムを画像処理装置として動作させるためのプログラムであって,
     与えられる画像データの入力を受付けさせ,
     受け付けられた画像データについて,注目画素ごとに,上記注目画素の色味が紫色かどうかを判断させ,
     上記注目画素の色味が紫色から遠いほど小さい重みを算出させ,
     上記注目画素のRGB比と,上記注目画素の近傍範囲において上記注目画素から所定画素数分離れた離間画素のRGB比をそれぞれ算出させ,
     上記注目画素のRGB比を上記離間画素のRGB比に近づける補正係数を算出させ,
     算出された補正係数を上記算出された重みによって重付けした重付け補正係数を用いて,上記注目画素を色補正させるように,上記コンピュータ・システムを制御する,
     プログラム。
  19. 請求の範囲第16項から第18項のいずれか一項に記載のプログラムを記録した,コンピュータ読取り可能な記録媒体。
PCT/JP2010/068417 2010-03-25 2010-10-13 画像処理方法および装置,ならびに画像処理プログラムおよびこのプログラムを記録した媒体 WO2011118071A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/266,084 US8229217B2 (en) 2010-03-25 2010-10-13 Image processing method and apparatus, image processing program and medium storing this program
EP10848463.5A EP2429194B1 (en) 2010-03-25 2010-10-13 Image processing method and device, image processing program, and medium having said program recorded thereon
JP2011527107A JP4904440B2 (ja) 2010-03-25 2010-10-13 画像処理方法および装置,ならびに画像処理プログラムおよびこのプログラムを記録した媒体
CN201080032738.6A CN102474628B (zh) 2010-03-25 2010-10-13 图像处理方法和设备
BRPI1014549A BRPI1014549A2 (pt) 2010-03-25 2010-10-13 método e aparelho de processamento de imagem, programa de processamento de imagem e meio de armazenamento deste programa

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010070594 2010-03-25
JP2010-070594 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011118071A1 true WO2011118071A1 (ja) 2011-09-29

Family

ID=44672656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068417 WO2011118071A1 (ja) 2010-03-25 2010-10-13 画像処理方法および装置,ならびに画像処理プログラムおよびこのプログラムを記録した媒体

Country Status (6)

Country Link
US (1) US8229217B2 (ja)
EP (1) EP2429194B1 (ja)
JP (1) JP4904440B2 (ja)
CN (1) CN102474628B (ja)
BR (1) BRPI1014549A2 (ja)
WO (1) WO2011118071A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5349790B2 (ja) * 2007-11-16 2013-11-20 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
US8553978B2 (en) 2010-11-03 2013-10-08 Csr Technology Inc. System and method for providing multi resolution purple fringing detection and correction
JP2013101484A (ja) * 2011-11-08 2013-05-23 Sony Corp 画像処理装置と画像処理方法およびプログラム
JP2013219705A (ja) * 2012-04-12 2013-10-24 Sony Corp 画像処理装置、および画像処理方法、並びにプログラム
US9401012B2 (en) * 2012-10-18 2016-07-26 Athentech Technologies Inc. Method for correcting purple distortion in digital images and a computing device employing same
CN103973997B (zh) * 2013-02-05 2017-09-26 浙江大华技术股份有限公司 一种图像处理方法及装置
US9443290B2 (en) * 2013-04-15 2016-09-13 Apple Inc. Defringing RAW images
US9443292B2 (en) 2013-06-26 2016-09-13 Apple Inc. Blind defringing for color images
US9619862B2 (en) 2014-05-30 2017-04-11 Apple Inc. Raw camera noise reduction using alignment mapping
CN106303483B (zh) * 2015-05-20 2019-05-24 浙江大华技术股份有限公司 一种图像处理方法及装置
CN106657946B (zh) * 2017-01-12 2019-03-01 深圳岚锋创视网络科技有限公司 图像紫边消除系统和方法
US10417752B2 (en) * 2017-10-13 2019-09-17 Axis Ab Method of reducing purple fringing in images
US10701328B2 (en) * 2017-12-19 2020-06-30 JVC Kenwood Corporation Image processing device, image processing method, and image processing program
CN109978961B (zh) * 2019-03-15 2021-03-12 湖南国科微电子股份有限公司 一种图像色边消除方法、装置及电子设备
CN111080559B (zh) * 2019-12-30 2023-08-25 上海富瀚微电子股份有限公司 一种图像紫边消除装置及方法
CN111353960B (zh) * 2020-03-02 2022-04-26 浙江大学 一种基于区域生长与交叉通道信息的图像紫边校正方法
CN113132705A (zh) * 2021-04-20 2021-07-16 Oppo广东移动通信有限公司 图像色边的校正方法、校正装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101854A1 (ja) 2004-04-12 2005-10-27 Nikon Corporation 色ずれ補正機能を有する画像処理装置、画像処理プログラム、および電子カメラ
JP2006014261A (ja) * 2004-05-27 2006-01-12 Sony Corp 画像処理装置、および画像処理方法、並びにコンピュータ・プログラム
JP2006135745A (ja) * 2004-11-08 2006-05-25 Sony Corp 画像処理装置、および画像処理方法、並びにコンピュータ・プログラム
JP2008289090A (ja) * 2007-05-21 2008-11-27 Toshiba Corp 撮像信号処理装置
JP2009017544A (ja) * 2007-06-07 2009-01-22 Toshiba Corp 撮像装置
JP2009268033A (ja) 2008-04-30 2009-11-12 Canon Inc 画像処理装置、撮像装置、制御方法、プログラム、及び記憶媒体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117283A (en) * 1990-06-25 1992-05-26 Eastman Kodak Company Photobooth compositing apparatus
US8339462B2 (en) * 2008-01-28 2012-12-25 DigitalOptics Corporation Europe Limited Methods and apparatuses for addressing chromatic abberations and purple fringing
CN100576924C (zh) * 2004-05-27 2009-12-30 索尼株式会社 图像处理设备和图像处理方法
US7577292B2 (en) * 2005-12-30 2009-08-18 Microsoft Corporation Automatic removal of purple fringing from images
US8144984B2 (en) * 2006-12-08 2012-03-27 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and program for color fringing estimation and compensation
KR100866490B1 (ko) * 2007-01-17 2008-11-03 삼성전자주식회사 영상의 색 수차를 보정하기 위한 장치 및 방법
JP4966035B2 (ja) * 2007-01-26 2012-07-04 株式会社東芝 固体撮像装置
JP4992698B2 (ja) * 2007-12-17 2012-08-08 ソニー株式会社 色収差補正装置、撮像装置、色収差算出方法および色収差算出プログラム
KR101460610B1 (ko) * 2008-07-30 2014-11-13 삼성전자주식회사 색수차 제거 방법 및 장치
TWI414748B (zh) * 2009-01-23 2013-11-11 Univ Nat Taipei Technology 同步色相相移轉換方法以及其三維形貌量測系統
US9378685B2 (en) * 2009-03-13 2016-06-28 Dolby Laboratories Licensing Corporation Artifact mitigation method and apparatus for images generated using three dimensional color synthesis
US8260044B2 (en) * 2010-07-07 2012-09-04 DigitalOptics Corporation Europe Limited Reducing erroneous colors in edge areas with chromatic abberation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101854A1 (ja) 2004-04-12 2005-10-27 Nikon Corporation 色ずれ補正機能を有する画像処理装置、画像処理プログラム、および電子カメラ
JP2006014261A (ja) * 2004-05-27 2006-01-12 Sony Corp 画像処理装置、および画像処理方法、並びにコンピュータ・プログラム
JP2006135745A (ja) * 2004-11-08 2006-05-25 Sony Corp 画像処理装置、および画像処理方法、並びにコンピュータ・プログラム
JP2008289090A (ja) * 2007-05-21 2008-11-27 Toshiba Corp 撮像信号処理装置
JP2009017544A (ja) * 2007-06-07 2009-01-22 Toshiba Corp 撮像装置
JP2009268033A (ja) 2008-04-30 2009-11-12 Canon Inc 画像処理装置、撮像装置、制御方法、プログラム、及び記憶媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2429194A4

Also Published As

Publication number Publication date
EP2429194B1 (en) 2016-04-20
US20120082380A1 (en) 2012-04-05
EP2429194A1 (en) 2012-03-14
JP4904440B2 (ja) 2012-03-28
EP2429194A4 (en) 2013-01-02
CN102474628B (zh) 2014-09-17
BRPI1014549A2 (pt) 2016-04-05
JPWO2011118071A1 (ja) 2013-07-04
CN102474628A (zh) 2012-05-23
US8229217B2 (en) 2012-07-24

Similar Documents

Publication Publication Date Title
JP4904440B2 (ja) 画像処理方法および装置,ならびに画像処理プログラムおよびこのプログラムを記録した媒体
US8363123B2 (en) Image pickup apparatus, color noise reduction method, and color noise reduction program
JP5527448B2 (ja) 画像入力装置
US9437171B2 (en) Local tone mapping for high dynamic range images
US9426437B2 (en) Image processor performing noise reduction processing, imaging apparatus equipped with the same, and image processing method for performing noise reduction processing
US7969480B2 (en) Method of controlling auto white balance
US20100066868A1 (en) Image processing apparatus and method of processing image
JP4894907B2 (ja) 撮像装置、撮像処理方法及びプログラム
US9936172B2 (en) Signal processing device, signal processing method, and signal processing program for performing color reproduction of an image
JP2004088149A (ja) 撮像システムおよび画像処理プログラム
CN107533756B (zh) 图像处理装置、摄像装置、图像处理方法以及存储图像处理装置的图像处理程序的存储介质
JP2012165204A (ja) 信号処理装置、信号処理方法、撮像装置及び撮像処理方法
JP2008227945A (ja) 画像処理装置および画像処理プログラム
US20230196530A1 (en) Image processing apparatus, image processing method, and image capture apparatus
JP5591026B2 (ja) 撮像装置及びその制御方法
JP2007266956A (ja) 撮像装置、インパルス成分検出回路、インパルス成分除去回路、インパルス成分検出方法、インパルス成分除去方法及びコンピュータプログラム
JP4880375B2 (ja) 画像信号処理装置及び画像信号処理方法
US11678060B2 (en) Apparatus, method for controlling apparatus, and storage medium
JP2011205399A (ja) 画像処理装置および方法,ならびに画像処理プログラム
JP4993275B2 (ja) 画像処理装置
JP2009506722A (ja) ホワイトバランス統計計算のための改良された色差フィルタ
JP2005354585A (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP2012222412A (ja) 撮像システム、階調補正方法、及び電子情報機器
JP2012134671A (ja) 画像処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032738.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011527107

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13266084

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848463

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010848463

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1014549

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1014549

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111125