WO2011118039A1 - 充電状態推定装置 - Google Patents

充電状態推定装置 Download PDF

Info

Publication number
WO2011118039A1
WO2011118039A1 PCT/JP2010/055457 JP2010055457W WO2011118039A1 WO 2011118039 A1 WO2011118039 A1 WO 2011118039A1 JP 2010055457 W JP2010055457 W JP 2010055457W WO 2011118039 A1 WO2011118039 A1 WO 2011118039A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
power storage
gain
unit
voltage
Prior art date
Application number
PCT/JP2010/055457
Other languages
English (en)
French (fr)
Inventor
朗子 田渕
吉岡 省二
啓太 畠中
英俊 北中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to BR112012023275A priority Critical patent/BR112012023275A2/pt
Priority to AU2010349140A priority patent/AU2010349140B2/en
Priority to PCT/JP2010/055457 priority patent/WO2011118039A1/ja
Priority to EP10848432.0A priority patent/EP2551686B1/en
Priority to JP2010549366A priority patent/JP4818468B1/ja
Priority to US13/580,625 priority patent/US9013151B2/en
Priority to CN201080065769.1A priority patent/CN102822690B/zh
Priority to KR1020127024518A priority patent/KR101315654B1/ko
Publication of WO2011118039A1 publication Critical patent/WO2011118039A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an apparatus for estimating a state of charge (SOC: State Of Charge) of a secondary battery.
  • SOC State Of Charge
  • Patent Document 1 estimates the SOC from current integration during charging and discharging, and estimates the SOC by estimating open circuit voltage during standby.
  • Patent Document 1 uses an equivalent circuit of a battery to estimate an open circuit voltage, which requires an internal resistance value depending on temperature and SOC, and further considers deterioration of the battery. There was a problem that had to be done.
  • the above-mentioned patent document 2 estimates the open circuit voltage by measuring a total voltage of a battery and adding a predetermined value when the rate of change becomes a predetermined value or less after charging and discharging. Therefore, it can be estimated only by measuring the total voltage value without using the equivalent circuit constant. However, a significant difference occurs in the SOC only when the open circuit voltage of the cell differs by 1 mV, so that there is a problem that the voltage measurement accuracy must be high in order to obtain a stable value.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a state-of-charge estimation device that can suppress fluctuations in the estimated SOC value.
  • the present invention is a charge state estimation device that is connected to a power storage device in which a plurality of cell batteries are connected and estimates the charge state of the power storage device, Using the previous value of the state estimated value as the initial value, the current integrated value is calculated based on the current from the detector that detects the current flowing into and out of the power storage device from the power conversion unit, and is used as the first charge state estimated value.
  • a first calculation unit that outputs, a voltage detected at a connection point between the power conversion unit and the power storage device after charging and discharging of the power storage device, a previous value of the voltage, and the power storage device
  • a second arithmetic unit that estimates an open circuit voltage based on the gain that decreases with the lapse of time after the charging and discharging stop and outputs the second circuit state estimated value, and the first state of charge estimated value, Second charge state estimation Characterized by comprising a selection unit for selecting one of the.
  • the first SOC calculation unit for estimating the first charge state estimation value the second SOC calculation unit for estimating the second charge state estimation value, the variable gain, and the previous SOC value
  • the SOC sudden change prevention unit that suppresses the sudden change of the second state of charge estimation value based on the above, the SOC estimation even when the measurement accuracy of the battery voltage is low or when the ripple is seen in the measurement voltage There is an effect that fluctuation of the value can be suppressed.
  • FIG. 1 is a diagram showing a configuration of an electric vehicle to which a charging state estimation device of the present invention is applied.
  • FIG. 2 is a diagram illustrating a configuration of the power storage device of FIG. 1.
  • FIG. 3 is a diagram illustrating a configuration of the charging state estimation device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration of the first SOC calculation unit of FIG.
  • FIG. 5 is a diagram illustrating a configuration of the first flag generation unit in FIG. 3.
  • FIG. 6 is a diagram illustrating a configuration of the second flag generation unit in FIG. 3.
  • FIG. 7 is a diagram showing a configuration of the second SOC calculation unit of FIG.
  • FIG. 8 is a diagram showing the relationship between the cell open circuit voltage and the SOC.
  • FIG. 1 is a diagram showing a configuration of an electric vehicle to which a charging state estimation device of the present invention is applied.
  • FIG. 2 is a diagram illustrating a configuration of the power storage device of FIG.
  • FIG. 9 is a diagram illustrating an example of the gain K3 illustrated in FIG.
  • FIG. 10 is a diagram showing a configuration of the SOC sudden change prevention unit of FIG.
  • FIG. 11 is a diagram showing a configuration of the SOC selection unit of FIG.
  • FIG. 12 is a diagram illustrating an example of a circuit for setting an initial value of the unit delay unit illustrated in FIG.
  • FIG. 13 is a figure which shows the structure of the charge condition estimation apparatus concerning Embodiment 2 of this invention.
  • FIG. 14 is a diagram illustrating a configuration of a second SOC calculation unit according to the third embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of an electric vehicle to which a charging state estimation device 10 of the present invention is applied
  • FIG. 2 is a diagram showing a configuration of a power storage device 11 of FIG. 1
  • FIG. It is a figure which shows the structure of the charge condition estimation apparatus 10 concerning Embodiment 1 of invention.
  • a power converter (power converter) 12 shown in FIG. 1 is connected to a current collector 14 and a wheel 15 serving as a return circuit for a return current, and is connected to a substation (not shown) serving as a DC power source. It receives power from the overhead line 13.
  • the voltage detector 18 shown in FIG. 1 detects the voltage at the connection point between the power conversion device 12 and the power storage device 11.
  • the current detector 17 detects a current flowing into and out of the power storage device 11. Based on the current command Iall * from the power converter 12, the total voltage Vall detected by the voltage detector 18, and the total current Iall detected by the current detector 17, the charge state estimation device 10 estimates the SOC. Calculate and output the value.
  • the power storage device 11 includes battery modules 21-1 to 2nm.
  • the battery module 21-1 is obtained by connecting cell batteries 6-1 to 6-k in series.
  • the battery module 2n-1 is obtained by connecting cell batteries 7-1 to 7-k in series
  • the battery module 21-m is obtained by connecting cell batteries 4-1 to 4-k in series.
  • the battery module 2n-m is obtained by connecting cell batteries 5-1 to 5-k in series.
  • Each cell battery is a secondary battery that can be repeatedly charged and discharged, such as a lithium ion secondary battery, and the SOC of each cell battery can be observed by measuring an open circuit voltage value.
  • the power storage device 11 may be provided with a breaker, a battery monitoring device, or the like, but is omitted here.
  • the voltage between the terminals of the power storage device 11 is the total voltage Vall.
  • the charge / discharge current is the total current Iall, and the value of the total current Iall is positive for charging.
  • the parallel number of cells (modules) in the power storage device 11 is m, and the serial number is n.
  • n number of modules * number of cells in series in the module.
  • the voltage resulting from the resistance component of the conductor used for the connection between terminals and a cable during charging / discharging is added to the total voltage Vall.
  • the total voltage Vall and the total current Iall are measured using the voltage detector 18 and the current detector 17 installed between the power converter 12 and the power storage device 11.
  • the present invention is not limited to this. Instead, the total voltage Vall and the total current Iall measured on the charge / discharge circuit side (not shown) may be used. In these cases, since the resistance component of the cable up to the charging state estimation device 10 becomes larger, it is desirable to consider the attenuation due to this resistance component.
  • FIG. 3 is a diagram illustrating a configuration of the charging state estimation device 10 according to the first embodiment of the present invention.
  • the charge state estimation device 10 mainly includes a first flag generation unit 21, a second flag generation unit 22, a second SOC calculation unit 24, a first SOC calculation unit 20, and an SOC selection unit. 23, an SOC sudden change prevention unit (change amount limiting unit) 25, and a unit delay unit 26.
  • the first SOC calculation unit 20 includes the total current Iall, the first flag (FLG1) generated by the first flag generation unit 21, and the SOCz that is the SOC previous value from the unit delay unit 26 (hereinafter referred to as “previous time”).
  • First charge state estimated value (hereinafter, simply referred to as “first estimated value”) SOC1 is calculated and output.
  • the second SOC calculation unit 24 calculates the second charge state estimated value.
  • the SOC 20 is calculated and output.
  • the SOC sudden change prevention unit (hereinafter simply referred to as “sudden change prevention unit”) 25 includes a second charge state estimation value (hereinafter simply referred to as “second estimation value”) SOC 20 from the second SOC calculation unit 24, and a unit. Based on the previous value SOCz from the delay unit 26, a third charge state estimated value (hereinafter simply referred to as “third estimated value”) SOC2 is output.
  • the SOC selector 23 determines the first estimated value SOC1 from the first SOC calculator 20 and the third estimated value SOC2 from the sudden change prevention unit 25 according to the value of FLG2 from the second flag generator 22. Is output as the SOC.
  • the entire calculation cycle t1 sec of the charging state estimation device 10 is, for example, 0.1 sec.
  • the power storage device 11 is composed of a large number of cells as described above. In general, a battery connected in series is provided with a battery voltage equalizing means (not shown), and the series cells connected in parallel have substantially the same voltage. Therefore, it is considered that the SOC variation of the cell battery is not large. For this reason, SOC is handled as a single value.
  • (First SOC calculation unit 20) 4 is a diagram showing a configuration of the first SOC calculation unit of FIG. 3
  • FIG. 5 is a diagram showing a configuration of the first flag generation unit of FIG. 3
  • FIG. 6 is a diagram of FIG. It is a figure which shows the structure of 2 flag production
  • the first SOC calculation unit 20 includes a gain unit 41, a multiplier 42, an integrator 43, a gain unit 44, and a gain unit 45.
  • the gain unit 41 obtains the cell current average value Icell by multiplying the total current Iall by the gain 1 / m. That is, the average value of the cell current is obtained by dividing the total current Iall by the parallel number m of the cell batteries.
  • Multiplier 42 multiplies cell current average value Icell from gain unit 41 and FLG1 and outputs the result.
  • the multiplier 42 stops the integration when FLG1 is 0, and executes the integration when FLG1 is 1.
  • the integrator 43 integrates the output from the multiplier 42, and when FLG2 is 1, it is reset every time.
  • the gain unit 45 multiplies the previous value SOCz by the gain K2 and converts it into a current integrated initial value (initial value).
  • the current integration initial value when reset by FLG2 is obtained from the previous value SOCz.
  • the FLG 2 is generated by a second flag generation unit 22 described later.
  • the gain unit 44 multiplies the current integrated value from the integrator 43 by the gain K1 and converts it into the first estimated value SOC1.
  • K1 1 / battery capacity (Ah) / 3600 sec * 100 (%).
  • the first SOC calculation unit 20 is configured to stop the integration in order to prevent the error increase of the SOC value due to the influence of the current detection error.
  • the current is small, the current detection error is affected during current integration. Therefore, when the FLG1 is 0, the first SOC calculation unit 20 stops the integration by the multiplier 42 so that the output value of the integrator 43 does not change, and the first estimated value SOC1 becomes a constant value. It is configured.
  • FIG. 5A is a diagram illustrating a configuration example of the first flag generation unit 21 illustrated in FIG. 3, and FIG. 5B illustrates the first flag generation unit 21 illustrated in FIG. It is a figure which shows the other structural example.
  • the first flag generator 21a shown in FIG. 5A compares the absolute value calculator 101a that calculates the absolute value of the total current Iall with the absolute value from the absolute value calculator 101a and the current threshold Iallmin. And a comparator 102a that outputs the comparison result as FLG1.
  • (A) of Iall is equal to or greater than the current threshold value Iallmin (B)
  • FLG1 1.
  • (A) of Iall is less than the current threshold value Iallmin (B)
  • FLG1 0.
  • the first calculated value 21b shown in FIG. 5B compares the absolute value calculator 101b that calculates the absolute value of the total current Iall with the absolute value from the absolute value calculator 101b and the current threshold value Iallmin.
  • a comparator 102b for outputting a comparison result; and a NOR gate 103 for inputting an output from the comparator 102b and a gate block GB from a charge / discharge circuit (not shown) and outputting the logical result as FLG1.
  • Configured. If it is configured to output FLG1 0 when the gate block GB from the charge / discharge circuit is detected, the value of FLG1 is changed more accurately than the first flag generator 21a shown in FIG. be able to.
  • FIG. 6 is a diagram showing a configuration of the second flag generation unit 22 of FIG.
  • t2 is, for example, 20 sec.
  • the second flag generator 22b shown in FIG. 6B includes a comparator 104b that outputs 1 when the current command Iall * is 0, an output from the comparator 104b, and a charge / discharge circuit (not shown).
  • the second flag generator shown in FIG. The value of FLG2 can be changed with higher accuracy than 22b.
  • the ON delay unit 105a of FIG. 6A and the ON delay unit 105b of FIG. 6B delay and change the value of FLG2 only when the value of FLG3 changes from 0 to 1, but the value of FLG3 is changed.
  • the value of FLG2 is changed without delay.
  • the SOC estimation is suspended during the period t2 (s) in which the Val after charge / discharge changes suddenly.
  • the transition to the second estimated value SOC20 of the second SOC calculation unit 24 is prevented during a period in which charging / discharging is continued due to constant voltage charging / discharging (for example, during the period t2).
  • (Second SOC calculation unit 24) 7 is a diagram showing a configuration of the second SOC calculation unit 24 in FIG. 3
  • FIG. 8 is a diagram showing a relationship between the cell open circuit voltage and the SOC
  • FIG. 9 is shown in FIG. It is a figure which shows an example of the gain K3.
  • the second SOC calculation unit 24 shown in FIG. 7 mainly includes a gain unit 51a, a gain unit 52, a limiter 53, a table 54a, a unit delay unit 55, a subtractor 58, and an adder 59. And is configured.
  • the second SOC calculation unit 24 operates when FLG3 in FIG. 6 is 1, and the calculation cycle is t3 sec.
  • t3 is, for example, 5 sec, and is, for example, 50 times the entire calculation cycle of the charging state estimation device 10.
  • the gain unit 51a obtains the cell voltage average value Vcell by multiplying the total voltage Vall by the gain 1 / n. That is, the average voltage value of the cell is obtained by dividing the total voltage Vall by the series number n of cell batteries.
  • the unit delay unit 55 delays the cell voltage average value Vcell from the gain unit 51a by one sample (t3) and outputs it. That is, the previous value of the cell voltage average value Vcell is output.
  • the subtractor 58 outputs the difference between the output from the unit delay unit 55 (previous value) and the output from the gain unit 51a (current value).
  • the gain unit 52 multiplies the difference from the subtractor 58 by a gain K3 and outputs the result.
  • the adder 59 adds the output (previous value) from the unit delay unit 55 to the output from the gain unit 52 to obtain an open circuit voltage estimated value (open circuit voltage) Vocell.
  • Vocell Vcell, but immediately after charging, Vocell ⁇ Vcell, and then the difference gradually decreases. Further, immediately after the discharge, Vocell> Vcell, and thereafter, the difference gradually decreases. Therefore, the second SOC calculation unit 24 obtains the open circuit voltage estimated value Vocell at the present (k) using the following equation.
  • Vocell (k) Vcell (k ⁇ 1) + K3 * (Vcell (k) ⁇ Vcell (k ⁇ 1)) (1)
  • the gain K3 is a variable gain.
  • the limiter 53 limits the value of the open circuit voltage estimated value Vocell from the adder 59 to a realistic value when referring to the table 54.
  • the open circuit voltage estimated value Vocell and the SOC are associated with the table 54a.
  • the correspondence between the open circuit voltage estimated value Vocell and the SOC can be obtained by a charge / discharge test of the battery cell.
  • the second SOC calculation unit 24 refers to the table 54 a and outputs the SOC value corresponding to the open circuit voltage estimated value Vocell limited by the limiter 53 as the second estimated value SOC20.
  • An approximate expression may be used instead of the table 54a.
  • the value of the gain K3 set in the gain unit 52 is set so as to become smaller as time passes and the final value becomes less than 1 as shown in FIG.
  • the second SOC calculation unit 24 performs calculation in increments of t3, for example, the gain for the t2 period (from 0 to 20 sec)
  • the value of K3 is about 6.
  • the reason why the value of the gain K3 is set in this way is as follows.
  • a scene when the power storage device 11 stops discharging during discharging will be described as an example.
  • the difference between Vcell (k ⁇ 1) and Vcell (k) ⁇ Vcell (k ⁇ 1) increases because it is immediately after the end of the discharge. If the value of the gain K3 in the vicinity of the t2 period is small, the change in the open circuit voltage estimated value Vocell is large, and accordingly, the second estimated value SOC20 varies greatly.
  • the SOC is estimated by current integration until immediately before the end of discharge, but the total voltage Vall is rapidly recovered (increased) in the vicinity of the period t2 immediately after the end of discharge.
  • the second SOC calculation unit 24 In order to estimate the stable SOC while suppressing the fluctuation of the second estimated value SOC20, the second SOC calculation unit 24 according to the present embodiment increases the value of the gain K3 in the vicinity of the t2 period immediately after the end of the discharge. It prevents the SOC from going too far. Note that excessive SOC means that the estimated SOC value based on the open circuit voltage estimation immediately after the end of discharging is lower than the estimated SOC value based on current integration immediately after the end of discharging.
  • the reason why the value of the gain K3 is set in this way is as follows.
  • the change of the cell voltage average value Vcell should be small because it has passed for a while since the end of the discharge. However, even if the discharge is stopped, the switching in the power converter 12 continues, so that the current detector 17 causes a ripple.
  • the cell voltage average value Vcell varies.
  • the second estimated value SOC20 also fluctuates accordingly.
  • the gain K3 at the time of charging is also a value that decreases with time in the same manner as at the time of discharging.
  • the value of the gain K3 is set to be large in the vicinity of the t2 period, and is set to gradually decrease after the t2 period has elapsed.
  • the magnitude relationship between the open circuit voltage estimated value Vocell and the voltage average value Vcell is opposite after discharging and after charging, but the absolute value of the rate of change of the voltage average value Vcell is both large and small after discharging and after charging. It is to become.
  • FIG. 10 is a diagram illustrating a configuration of the sudden change prevention unit 25 of FIG.
  • the sudden change prevention unit 25 includes a subtracter 63, a gain unit 61, a limiter 62, and a subtractor 64 as main components.
  • the subtracter 63 outputs the difference between the previous value SOCz and the second estimated value SOC20.
  • the gain unit 61 multiplies the difference from the subtractor 63 by K4, and the limiter 62 outputs the output from the gain unit 61 by limiting it to ⁇ 0.02 (%) per 0.1 sec.
  • the subtractor 64 adds the output from the limiter 62 to the previous value SOCz, and outputs the result as the third estimated value SOC2.
  • the third estimated value SOC2 (%) is calculated by the following equation.
  • Third estimated value SOC2 (%) SOCz ⁇ Limit (K4 (SOCz ⁇ SOC20)) (2)
  • K4 is, for example, 0.8
  • the setting of the limiter 62 is, for example, ⁇ 0.02 ( %).
  • the third estimated value SOC2 changes by 0.02 (%) at maximum in 0.1 sec.
  • the second estimated value SOC20 is 49.98 (%) after 0.1 sec.
  • the second estimated value SOC20 after 5 seconds from the input to the sudden change prevention unit 25 is 49.0 (%), which is decreased by 1 (%).
  • the value of the second estimated value SOC20 increases from 50%, the second estimated value SOC20 after 5 seconds is 51.0 (%).
  • the sudden change prevention unit 25 prevents the sudden change of the third estimated value SOC2 by limiting the change of the second estimated value SOC20 from the second SOC calculating unit 24 to 1% in 5 seconds.
  • the value of K4 mentioned above and the set value of the limiter 62 are examples, and are not limited to these.
  • FIG. 11 is a diagram showing a configuration of the SOC selection unit of FIG.
  • the switch 71 selects and outputs the first estimated value SOC1 from the first SOC calculation unit 20. That is, when
  • the third estimated value SOC2 is selected after the elapse of the period t2 until charging / discharging is resumed.
  • FIG. 12 is a diagram showing an example of a circuit for setting an initial value of the unit delay unit shown in FIG.
  • the initial value setting circuit 24a of FIG. 12 includes a gain unit 51b and a table 54b.
  • the gain unit 51b obtains the cell voltage average value Vcell by multiplying the total voltage Vall by the gain 1 / n.
  • the open circuit voltage estimated value Vocell and the SOC are associated with the table 54b.
  • the second SOC calculation unit 24 refers to the table 54b and outputs the SOC value corresponding to the cell voltage average value Vcell as an initial value.
  • An approximate expression may be used instead of the table 54b.
  • the initial value setting circuit 24a determines the SOC value (initial Value).
  • the first SOC calculation unit 20 and the sudden change prevention unit 25 shown in FIG. are used to calculate the first estimated value SOC1 and the second estimated value SOC20. If sufficient time has not elapsed since the previous charge / discharge, the second SOC calculation unit 24 in FIG. 7 updates the value to an appropriate SOC.
  • the measured value of the total voltage Vall includes ripples and noise, for example, the total voltage Vall is input to a 100 Hz low-pass filter, and then the SOC is estimated using the filter output as the total voltage Vall. Also good.
  • the total voltage Vall is about 600 V, and the number of cell batteries in series at this time exceeds 160.
  • the relationship between the open circuit voltage and the SOC is that the value of the SOC / open circuit voltage increases as the open circuit voltage and the SOC increase, so that the voltage fluctuations as the SOC increases.
  • the effect of For example, when the open circuit voltage changes by 10 mV (the total voltage is 1.6 V in the case of 160 series), the SOC may change by 2 to 3%. Therefore, in consideration of the resolution and measurement accuracy of the voltage detector 18, it is difficult to suppress the change in the SOC to the 1% level.
  • the state of charge estimation device 10 of the present embodiment uses an SOC calculation based on current integration (first SOC calculation unit 20) and an SOC calculation based on open circuit voltage estimation (second SOC calculation unit 24) in combination. Thus, it is possible to achieve both the estimation accuracy during charging and discharging and during rest.
  • the open circuit voltage estimation does not require a battery equivalent circuit model, and uses only the measured value of the total voltage Vall to obtain a stable estimated value that avoids a large deviation from the actual SOC and excessive fluctuation of the estimated value. be able to. It is also less susceptible to noise.
  • the charge state estimation apparatus 10 concerning this Embodiment can respond
  • the charging state estimation device 10 calculates the current integrated value of the total current Iall detected by the current detector 17 using the previous value SOCz as an initial value, and calculates the current integrated value.
  • a first SOC calculation unit 20 that calculates the first estimated value SOC1 based on the cell voltage, the cell voltage average value Vcell of the total voltage Vall detected by the voltage detector 18 after charging and discharging of the power storage device 11, and the cell Second SOC calculation that outputs, as the second estimated value SOC20, the open circuit voltage estimated value Vocell calculated based on the previous value of the voltage average value Vcell and the gain K3 that changes with the lapse of time after stopping charging and discharging.
  • a change amount of the second estimated value SOC20 in the calculation cycle t3 of the second SOC calculating unit 24 is predetermined.
  • the abrupt change prevention unit 25 to limit (1%) or less. Thus comprises, it is possible to improve the accuracy of estimating the SOC during charge and discharge and during charging and discharging rest.
  • the second SOC calculation unit 24 can calculate the open circuit voltage estimated value Vocell using only the total voltage Vall, the open circuit voltage can be calculated without using an equivalent circuit model as in the prior art.
  • the SOC can be estimated from the estimated value Vocell.
  • the 2nd SOC calculating part 24 concerning this Embodiment calculates the open circuit voltage estimated value Vocell using the gain part 52, the open circuit voltage estimated value Vocell after completion
  • the SOC can be estimated even during a period (t2 period) in which the value Vocell cannot be estimated.
  • the cell batteries of the power storage device 11 are n series ⁇ m parallel, but it goes without saying that the values of n and m can be configured by any number of 1 or more.
  • the above-described calculation cycles t1 to t3 are examples, and are not limited to these values.
  • the value of the gain K3 shown in FIG. 9 is set to be constant during the t2 period (from 0 to 20 sec) and then gradually decreases. For example, the value of the gain K3 is charged / discharged. The same effect can be obtained even if it is configured to gradually change from the end point (0 sec).
  • FIG. FIG. 13 is a figure which shows the structure of the charge condition estimation apparatus 10 concerning Embodiment 2 of this invention.
  • the difference from the charging state estimation device 10 of FIG. 3 is that it has a table 9.
  • the secondary battery applied to the power storage device 11 deteriorates with use and decreases in capacity. It is important to accurately grasp the SOC of the secondary battery. For example, if the secondary battery is overcharged without accurately knowing the SOC of the secondary battery, long-term reliability such as the life of the secondary battery may be impaired. For this reason, it is necessary to accurately determine the SOC of the secondary battery being used and perform charge control.
  • the gain (K1 and K2) for converting the current integrated value from the integrator 43 into the first estimated value SOC1 is set in the first SOC calculation unit 20.
  • the charging state estimation device 10 does not use the gains K1 and K2 derived from a fixed value (battery capacity) such as a nominal value of the battery, but according to the degree of deterioration of the power storage device 11.
  • the estimated battery capacity (Ah) is used to reduce the estimation error of the first estimated value SOC1.
  • the battery capacity obtained from the charge / discharge time integrated value, the charge / discharge capacity integrated value, etc. that is, the battery capacity corrected according to the capacity decrease of the power storage device 11, and the gain K1 corresponding to the battery capacity K2 is associated.
  • the first SOC calculator 20 refers to the table 9 and calculates the first estimated value SOC1 using the gains K1 and K2 corresponding to the corrected battery capacity.
  • the charging state estimation device 10 calculates the first estimated value SOC1 using the gains K1 and K2 corresponding to the corrected battery capacity. In addition to the effect of the charging state estimation device 10 according to the first embodiment, it is possible to improve the calculation accuracy of the SOC by current integration.
  • FIG. 14 is a diagram illustrating a configuration of the second SOC calculation unit 24 according to the third embodiment of the present invention.
  • the same reference numerals are given to the same parts as those in the first embodiment, and the description thereof will be omitted, and only different parts will be described here.
  • the same blocks as those in FIG. 7 The difference from the second SOC calculation unit 24 in FIG. 7 is that a gain calculation unit 56 and a multiplier 57 are included.
  • the gain calculation unit 56 calculates the gain K3 that changes depending on the module temperature (battery temperature) T1 with the passage of time after the charging and discharging of the power storage device 11 is stopped.
  • the module temperature T1 is the temperature of the battery module obtained from the power storage device 11 of FIG.
  • the multiplier 57 multiplies the difference from the subtractor 58 and the gain K3 from the gain calculation unit 56, and the adder 59 adds the output from the unit delay unit 55 to the output from the multiplier 57 to estimate the open circuit voltage.
  • the value Vocell is determined.
  • the second SOC calculation unit 24 multiplies the output from the subtractor 58 (difference in voltage average value Vcell) by the gain K3 from the gain calculation unit 56, thereby satisfying. Even when the voltage change characteristic of the power storage device 11 after discharge changes depending on the module temperature T1, the estimation accuracy of the open circuit voltage estimated value Vocell can be improved.
  • the module temperature T1 is not limited to the module temperature itself, and may be a temperature at another location that reflects the battery temperature. Further, the second SOC calculation unit 24 according to the present embodiment may be combined with the first SOC calculation unit 20 according to the second embodiment. Furthermore, the information input to the gain calculation unit 56 for calculating the gain K3 is not limited to the module temperature T1, and uses information that changes according to the battery temperature, for example, values such as current, voltage, and SOC. May be.
  • the second SOC calculating unit 24 calculates the open circuit voltage estimated value Vocell based on the module temperature T1 and the total voltage Vall. In addition to the effect of the second SOC calculating unit 24, the open circuit voltage estimated value Vocell corresponding to the change of the module temperature T1 can be calculated, so that the estimation accuracy of the second estimated value SOC20 can be increased. is there.
  • the charge state estimation device 10 shown in the first and second embodiments is configured so that the first estimated value SOC1 from the first SOC calculating unit 20 and The third estimated value SOC2 from the SOC sudden change prevention unit 25 is selected.
  • the present invention is not limited to this.
  • the sudden change prevention unit 25 is eliminated and the second SOC is selected.
  • the aspect which inputs the 2nd estimated value SOC20 from the calculating part 24 directly to the SOC selection part 23 may be sufficient.
  • the SOC selection unit 23 selects either the first estimated value SOC1 or the second estimated value SOC20 according to the value of FLG2 from the second flag generation unit 22.
  • the second SOC calculation unit 24 suppresses the fluctuation of the open circuit voltage estimated value Vocell after the lapse of the period t2, so that the second estimated value SOC20 like the first and second embodiments changes suddenly. Although the effect of prevention cannot be expected, since the change in the open circuit voltage estimated value Vocell is suppressed as compared with the prior art, the estimation accuracy of the second estimated value SOC20 can be improved.
  • the 1st SOC calculating part 20 shown in Embodiment 1, 2 is comprised so that the cell part average value Icell may be calculated
  • a gain part instead of 41 the total current Iall may be integrated to obtain the first estimated value SOC1.
  • the second SOC calculation unit 24 shown in the first and second embodiments is configured to calculate the cell voltage average value Vcell by the gain unit 51a and calculate the open circuit voltage estimated value Vocell. It is not limited to. For example, without using the gain unit 51a, the difference between the total voltage Vall and the previous value of the total voltage Vall is multiplied by the gain unit 52, and the output from the gain unit 52 and the previous value of the total voltage Vall are added. The circuit voltage may be estimated.
  • Embodiments 1 to 3 show an example of the contents of the present invention, and can be combined with other known techniques. Of course, it is possible to change and configure such as omitting a part without departing from the scope.
  • the present invention can be applied to a device that performs SOC estimation of a secondary battery, and in particular, when the measurement accuracy of the battery voltage is low or when ripples are seen in the measurement voltage, fluctuations in the estimated SOC value It is useful as an invention capable of suppressing the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 セル電池4-1~7-kを複数接続した電力貯蔵装置11に接続され、電力貯蔵装置11の充電状態を推定する充電状態推定装置10であって、SOC前回値を初期値として、電力変換装置12からの電力貯蔵装置11に流出入する総電流Iallを検出する電流検出器17からの電流に基づいて電流積算値を演算し第1の充電状態推定値SOC1として出力する第1のSOC演算部20と、電力貯蔵装置11の放電停止後に、電力変換装置12と電力貯蔵装置11との接続箇所で検出された総電圧Vallと、総電圧Vallの前回値と、電力貯蔵装置11の放電停止後の時間の経過とともに低下するゲインK3と、に基づいて開回路電圧を推定し第2の充電状態推定値SOC20として出力する第2のSOC演算部24を備える。

Description

充電状態推定装置
 本発明は、二次電池の充電状態(SOC:State Of Charge)推定を行う装置に関するものである。
 一般的に、鉄道システムにおいて、運行時のエネルギーを供給したり減速停止時の回生エネルギーを回収したりするために電池を使用する場合、扱う電力量が大きいことから多数のセル電池を直並列に接続して使用する。このとき、車両の運行および電池の充放電制御にはSOCの把握が必要である。
 従来から、充放電電流積算を用いる方式と、平衡状態にある二次電池の開回路電圧とSOCとの関係を用いる方式と、を併用して電池のSOCを推定する方法が知られている(例えば、下記特許文献1)。特許文献1に示される方法は、充放電時には電流積算からSOCを推定し、待機時には開回路電圧を推定することでSOCを推定するというものである。
 また、開回路電圧推定方法に関しては、充放電後の電圧変化を用いて開回路電圧を推定する例などがある(例えば、下記特許文献2)。
特開2008-199723号公報 特開2007-333474号公報
 しかしながら、上記特許文献1の方法は、開回路電圧の推定に電池の等価回路を用いており、これには温度やSOCに依存した内部抵抗値が必要であり、さらに電池の劣化も考慮しなければならないという問題があった。
 他方、多数の電池からなる電力貯蔵装置のSOC推定を行う場合、電力貯蔵装置を構成する電池全体に対して、電池電圧および電池電流を測定することが望ましいわけであるが、電池電圧および電池電流を測定するセンサの分解能や精度は高くはなく、測定値にはリプルがみられることが多い。上記特許文献2は、電池の総電圧を測定して充放電後にその変化率が所定値以下となったときに所定値を加算することで開回路電圧を推定する。したがって、等価回路定数を用いずに総電圧値を測定するだけで推定できる。ただし、セルの開回路電圧が1mV異なるだけでSOCに有意な差が発生するため、安定した値を得るには電圧測定精度が高くなければならないという問題がある。
 本発明は、上記に鑑みてなされたものであって、SOC推定値の変動を抑制することができる充電状態推定装置を得ることを目的としている。
 上述した課題を解決し、目的を達成するために、本発明は、セル電池を複数接続した電力貯蔵装置に接続され、前記電力貯蔵装置の充電状態を推定する充電状態推定装置であって、充電状態推定値の前回値を初期値として、電力変換部からの前記電力貯蔵装置に流出入する電流を検出する検出器からの電流に基づいて電流積算値を演算し第1の充電状態推定値として出力する第1の演算部と、前記電力貯蔵装置の充放電停止後に、前記電力変換部と前記電力貯蔵装置との接続箇所で検出された電圧と、前記電圧の前回値と、前記電力貯蔵装置の充放電停止後の時間の経過とともに低下するゲインと、に基づいて開回路電圧を推定し第2の充電状態推定値として出力する第2の演算部と、前記第1の充電状態推定値と前記第2の充電状態推定値との何れかを選択する選択部と、を備えたことを特徴とする。
 この発明によれば、第1の充電状態推定値を推定する第1のSOC演算部と、第2の充電状態推定値を推定する第2のSOC演算部と、可変ゲインと前回のSOCの値とに基づいて第2の充電状態推定値の急変を抑制するSOC急変防止部と、を備えるようにしたので、電池電圧の測定精度が低い場合や測定電圧にリプルが見られる場合にもSOC推定値の変動を抑制することができるという効果を奏する。
図1は、本発明の充電状態推定装置が適用される電気車の構成を示す図である。 図2は、図1の電力貯蔵装置の構成を示す図である。 図3は、本発明の実施の形態1にかかる充電状態推定装置の構成を示す図である。 図4は、図3の第1のSOC演算部の構成を示す図である。 図5は、図3の第1のフラグ生成部の構成を示す図である。 図6は、図3の第2のフラグ生成部の構成を示す図である。 図7は、図3の第2のSOC演算部の構成を示す図である。 図8は、セル開回路電圧とSOCとの関係を示す図である。 図9は、図7に示されるゲインK3の一例を示す図である。 図10は、図3のSOC急変防止部の構成を示す図である。 図11は、図3のSOC選択部の構成を示す図である。 図12は、図3に示される単位遅延部の初期値を設定する回路の一例を示す図である。 図13は、本発明の実施の形態2にかかる充電状態推定装置の構成を示す図である。 図14は、本発明の実施の形態3にかかる第2のSOC演算部の構成を示す図である。
 以下に、本発明にかかる充電状態推定装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の充電状態推定装置10が適用される電気車の構成を示す図であり、図2は、図1の電力貯蔵装置11の構成を示す図であり、図3は、本発明の実施の形態1にかかる充電状態推定装置10の構成を示す図である。
 図1に示される電力変換装置(電力変換部)12は、集電装置14とリターン電流の戻り回路となる車輪15とに接続され、直流電源となる変電所(図示せず)に接続された架線13からの電力を受電する。図1に示される電圧検出器18は、電力変換装置12と電力貯蔵装置11との接続箇所における電圧を検出する。電流検出器17は、電力貯蔵装置11に流出入される電流を検出する。充電状態推定装置10は、電力変換装置12からの電流指令Iall*と、電圧検出器18で検出された総電圧Vallと、電流検出器17で検出された総電流Iallとに基づいて、SOC推定値を演算して出力する。
 図2において、電力貯蔵装置11は、電池モジュール21-1から2n-mを有して構成されている。電池モジュール21-1は、セル電池6-1から6-kを直列接続したものである。同様に、電池モジュール2n-1は、セル電池7-1から7-kを直列接続したものであり、電池モジュール21-mは、セル電池4-1から4-kを直列接続したものであり、電池モジュール2n-mは、セル電池5-1から5-kを直列接続したものである。各セル電池は、リチウムイオン二次電池のような繰り返し充放電が可能な二次電池であり、各セル電池のSOCは、開回路電圧値を測定することにより観測可能である。なお、電力貯蔵装置11には、ブレーカや電池監視装置等が設けられることがあるが、ここでは省略する。
 電力貯蔵装置11の端子間の電圧を総電圧Vallとする。充放電電流を総電流Iallとし、総電流Iallの値は、充電を正とする。また、電力貯蔵装置11内のセル(モジュール)の並列数をmとし、直列数をnとする。ただし、n=モジュール数*モジュール内のセル直列数である。なお、電力貯蔵装置11を構成するセル数が多いため、充放電中は端子間の接続に用いられる導体やケーブルの抵抗成分に起因する電圧が総電圧Vallに加算される。
 図1では、総電圧Vallおよび総電流Iallを、電力変換装置12と電力貯蔵装置11との間に設置された電圧検出器18および電流検出器17を用いて測定しているが、これに限定されるものではなく、図示しない充放電回路側で測定された総電圧Vallおよび総電流Iallを用いてもよい。これらの場合、充電状態推定装置10までのケーブルの抵抗成分がより大きくなるので、この抵抗成分による減衰量を考慮することが望ましい。
(充電状態推定装置10)
 図3は、本発明の実施の形態1にかかる充電状態推定装置10の構成を示す図である。充電状態推定装置10は、主たる構成として、第1のフラグ生成部21と、第2のフラグ生成部22と、第2のSOC演算部24と、第1のSOC演算部20と、SOC選択部23と、SOC急変防止部(変化量制限部)25と、単位遅延部26とを有して構成されている。
 第1のSOC演算部20は、総電流Iallと、第1のフラグ生成部21で生成された第1のフラグ(FLG1)と、単位遅延部26からのSOC前回値であるSOCz(以下「前回値SOCz」と称する)とに基づいて、第1の充電状態推定値(以下単に「第1推定値」と称する)SOC1を演算して出力する。
 第2のSOC演算部24は、総電圧Vallと、第2のフラグ生成部22からの第2のフラグ(FLG2)および第3のフラグ(FLG3)とに基づいて、第2の充電状態推定値SOC20を演算して出力する。
 SOC急変防止部(以下単に「急変防止部」と称する)25は、第2のSOC演算部24からの第2の充電状態推定値(以下単に「第2推定値」と称する)SOC20と、単位遅延部26からの前回値SOCzとに基づいて、第3の充電状態推定値(以下単に「第3推定値」と称する)SOC2を出力する。
 SOC選択部23は、第2のフラグ生成部22からのFLG2の値に応じて、第1のSOC演算部20からの第1推定値SOC1と、急変防止部25からの第3推定値SOC2との何れかをSOCとして出力する。
 充電状態推定装置10の全体の演算周期t1secは、例えば0.1secである。電力貯蔵装置11は、上述したように多数のセルからなるが、一般に、直列接続された電池には図示しない電池電圧均等化手段が設けられており、並列接続された直列セル同士がほぼ同じ電圧値となるため、セル電池のSOCばらつきは大きくないと考えられる。このため、SOCは単一の値として扱う。
 以下、充電状態推定装置10の構成を詳説する。
(第1のSOC演算部20)
 図4は、図3の第1のSOC演算部の構成を示す図であり、図5は、図3の第1のフラグ生成部の構成を示す図であり、図6は、図3の第2のフラグ生成部の構成を示す図である。
 図4において、第1のSOC演算部20は、ゲイン部41と、乗算器42と、積分器43と、ゲイン部44と、ゲイン部45とを有して構成されている。
 ゲイン部41は、総電流Iallにゲイン1/mを乗じてセル電流平均値Icellを求める。すなわち、総電流Iallをセル電池の並列数mで割ることでセル電流の平均値を得ている。
 乗算器42は、ゲイン部41からのセル電流平均値IcellとFLG1と乗じて出力する。この乗算器42は、FLG1が0の場合には積算を停止し、FLG1が1の場合には積算を実行する。なお、FLG1は、後述する第1のフラグ生成部21で生成され、FLG1=1の場合、積算実行を示し、FLG1=0の場合、積算停止を示す。
 積分器43は、乗算器42からの出力を積分し、FLG2が1の場合、毎回リセットがかけられる。
 ゲイン部45は、前回値SOCzにゲインK2を乗じて電流積算初期値(初期値)に変換する。このように、FLG2でリセットされたときの電流積算初期値は、前回値SOCzから求める。ゲイン部45のゲインK2は、K2=電池容量(Ah)*3600sec/100(%)である。なお、FLG2は、後述する第2のフラグ生成部22で生成される。
 ゲイン部44は、積分器43からの電流積算値にゲインK1を乗じて第1推定値SOC1に変換する。ただし、K1=1/電池容量(Ah)/3600sec*100(%)である。
 第1のSOC演算部20は、FLG1が0の場合、電流検出誤差の影響によるSOC値の誤差拡大を防ぐため、積算を停止するように構成されている。このことを説明すると、|Iall|<Iallminとなるケースは、第1には電流指令Iall*=0となって充放電が停止され、リプル電流だけが流れている状態である。第2には電流指令Iall*=0ではないが、定電圧充電でIallminより小さい電流値で充電または放電が継続している状態である。電流が小さいときは電流積算時に電流検出誤差の影響をうけることになる。そのため、第1のSOC演算部20は、FLG1が0の場合、乗算器42が積算を停止することで積分器43の出力値が変化しなくなり、第1推定値SOC1が一定値となるように構成されている。
 図5(a)は、図3に示した第1のフラグ生成部21の一の構成例を示す図であり、図5(b)は、図3に示した第1のフラグ生成部21の他の構成例を示す図である。
 図5(a)に示される第1のフラグ生成部21aは、総電流Iallの絶対値を演算する絶対値演算器101aと、絶対値演算器101aからの絶対値と電流閾値Iallminとを比較し、比較結果をFLG1として出力する比較器102aと、を有して構成されている。Iallの絶対値|Iall|(A)が電流閾値Iallmin(B)以上のとき、FLG1=1となる。Iallの絶対値|Iall|(A)が電流閾値Iallmin(B)未満のとき、FLG1=0となる。
 図5(b)に示される第1の演算値21bは、総電流Iallの絶対値を演算する絶対値演算器101bと、絶対値演算器101bからの絶対値と電流閾値Iallminとを比較し、比較結果を出力する比較器102bと、比較器102bからの出力と充放電回路(図示せず)からのゲートブロックGBとを入力しそれらの論理結果をFLG1として出力するNORゲート103と、を有して構成されている。充放電回路からのゲートブロックGBを検知したときにFLG1=0を出力するように構成すれば、図5(a)に示した第1のフラグ生成部21aよりも精度よくFLG1の値を変化させることができる。
 図6は、図3の第2のフラグ生成部22の構成を示す図である。
 図6(a)に示される第2のフラグ生成部22aは、電流指令Iall*が0のときにFLG3を出力する比較器104aと、FLG3=1となってからの所定時間t2sec経過後にFLG2の値を1に変化させて出力するON遅延部105aと、を有して構成されている。例えば、電流指令Iall*が0になったとき、比較器104aの出力であるFLG3の値は1となる。このように、FLG3の値は、電流指令Iall*=0の場合、1となり、それ以外の場合、0となる。また、FLG2の値は、FLG3の値が1となってから所定時間t2sec経過後に1になる。t2は、例えば20secである。
 図6(b)に示される第2のフラグ生成部22bは、電流指令Iall*が0のときに1を出力する比較器104bと、比較器104bからの出力と充放電回路(図示せず)からのゲートブロックGBとの何れかをFLG3として出力するORゲート106と、FLG3=1となってから所定時間t2sec経過後にFLG2の値を1に変化させて出力するON遅延部105bと、を有して構成されている。このように、充放電回路からのゲートブロックGBを検知してから所定時間t2sec経過後にFLG2の値を1に変化させるように構成すれば、図6(a)に示した第2のフラグ生成部22bよりも精度よくFLG2の値を変化させることができる。
 なお、FLG2の値は、FLG2=0の場合、第1のSOC演算部20で第1推定値SOC1を算出することを示し、FLG2=1の場合、第2のSOC演算部24で第2推定値SOC20を算出することを示す。
 図6(a)のON遅延部105aおよび図6(b)のON遅延部105bは、FLG3の値が0→1に変化したときのみFLG2の値を遅延させて変化させるが、FLG3の値が1→0に変化したときにはFLG2の値を遅延させることなく変化させる。これにより,充放電後のVallが急変する期間t2(s)はSOC推定を休止することにしている。
 また、図6(a)の第2のフラグ生成部22a、または図6(b)の第2のフラグ生成部22bは、電流指令Iall*を用いてFLG2を求めているため、|Iall|<Iallminを満たすが、定電圧充放電などで充放電が継続している期間中(例えばt2期間中)に、第2のSOC演算部24の第2推定値SOC20に移行することを防いでいる。
(第2のSOC演算部24)
 図7は、図3の第2のSOC演算部24の構成を示す図であり、図8は、セル開回路電圧とSOCとの関係を示す図であり、図9は、図7に示されるゲインK3の一例を示す図である。
 図7に示される第2のSOC演算部24は、主たる構成として、ゲイン部51aと、ゲイン部52と、リミッタ53と、テーブル54aと、単位遅延部55と、減算器58と、加算器59とを有して構成されている。
 第2のSOC演算部24は、図6のFLG3が1のときに動作し、演算周期がt3secである。t3は、例えば5secであって、充電状態推定装置10の全体の演算周期の例えば50倍である。
 ゲイン部51aは、総電圧Vallにゲイン1/nを乗じてセル電圧平均値Vcellを求める。すなわち、総電圧Vallをセル電池の直列数nで割ることでセルの平均電圧値を得ている。
 単位遅延部55は、ゲイン部51aからのセル電圧平均値Vcellを、1サンプル(t3)分遅延させて出力する。すなわち、セル電圧平均値Vcellの前回値を出力する。
 減算器58は、単位遅延部55からの出力(前回値)とゲイン部51aからの出力(現在値)との差分を出力する。ゲイン部52は、減算器58からの差分をゲインK3倍して出力する。加算器59は、ゲイン部52からの出力に単位遅延部55からの出力(前回値)を加算し、開回路電圧推定値(開回路電圧)Vocellを求める。
 充放電後、十分な時間が経過するとVocell=Vcellとなるが、充電直後ではVocell<Vcellとなり、その後、その差が徐々に減少していく。また、放電直後ではVocell>Vcellとなり、その後、その差が徐々に減少していく。そこで、第2のSOC演算部24は、次式を用いて現在(k)における開回路電圧推定値Vocellを求める。
 Vocell(k)=Vcell(k-1)+K3*(Vcell(k)-Vcell(k-1))・・・(1)
 すなわち、t3前のセル電圧平均値Vcell(k-1)に、k-1からkまでのセル電圧平均値Vcell変化量をK3倍したものを加算している。これより、ゲインK3=1のときは開回路電圧推定値Vocellが現在のセル電圧平均値Vcellと等しく、K3<1では開回路電圧推定値Vocellに与えるセル電圧平均値Vcellの変化の影響を低減することになる。ここでゲインK3は可変ゲインである。
 リミッタ53は、テーブル54を参照する際に、加算器59からの開回路電圧推定値Vocellの値を現実的な値にリミットするものである。
 テーブル54aには、図8に示すように開回路電圧推定値VocellとSOCとが対応付けられている。開回路電圧推定値VocellとSOCの対応関係は、電池セルの充放電試験で求めることができる。第2のSOC演算部24は、テーブル54aを参照し、リミッタ53でリミットされた開回路電圧推定値Vocellに対応するSOCの値を、第2推定値SOC20として出力する。なお、テーブル54aの代わりに近似式を用いてもよい。
 ゲイン部52に設定されるゲインK3の値は、図9に示されるように時間の経過とともに小さくなり、最終値が1未満となるように設定されている。図9には、一例として、t2を20sec、t3=5secとした場合におけるゲインK3の値が示されている。FLG3=1を検出した第2のSOC演算部24が動作開始したときを0secとしており、第2のSOC演算部24が例えばt3刻みで演算を行う場合、t2期間(0~20secまで)のゲインK3の値は約6である。
 ゲインK3の値がこのように設定されている理由は以下の通りである。以下、一例として、電力貯蔵装置11が放電中に放電停止したときの場面を例にして説明する。
 t2期間付近では、放電終了直後であるため、Vcell(k-1)とVcell(k)-Vcell(k-1)との差が大きくなる。もし、t2期間付近のゲインK3の値が小さい場合、開回路電圧推定値Vocellの変化が大きいため、それに伴って第2推定値SOC20も大きく変動することになる。放電終了直前までは電流積算によってSOCを推定しているわけであるが、放電終了直後のt2期間付近では総電圧Vallが急峻に回復(上昇)する。第2推定値SOC20の変動を抑制して安定したSOCを推定するため、本実施の形態にかかる第2のSOC演算部24は、放電終了直後のt2期間付近ではゲインK3の値を大きくしてSOCの行き過ぎを防いでいる。なお、SOCの行き過ぎとは、放電終了直後の開回路電圧推定によるSOC推定値が、放電終了直後の電流積算によるSOC推定値より下回ってしまうことを意味する。
 ゲインK3の値は、t2期間を経過した後、徐々に減少し、約50sec経過した時点でK3=0.5となるように設定されている。ゲインK3の値がこのように設定されている理由は以下の通りである。放電終了から暫く経過しているためセル電圧平均値Vcellの変化は本来小さいはずであるが、放電を停止していても、電力変換装置12におけるスイッチングが継続しているため電流検出器17でリプル電流が検出される場合や、電圧検出器18の電圧検出誤差などがあるため、セル電圧平均値Vcellが変動する。この変動分に応じて開回路電圧推定値Vocellが変化すると、それに伴って第2推定値SOC20も変動することになる。このような第2推定値SOC20の変動を抑制するため、本実施の形態にかかる第2のSOC演算部24は、t2期間経過後ではゲインK3の値を徐々に減少させて約50sec経過した時点でK3=0.5とすることで、開回路電圧推定値Vocellの変化を抑制している。
 なお、充電時におけるゲインK3も放電時と同様に時間と共に低下する値とする。例えば、ゲインK3の値は、t2期間付近では大きく設定し、t2期間を経過した後では徐々に減少するように設定する。放電後と充電後では開回路電圧推定値Vocellと電圧平均値Vcellとの大小関係が反対となるが、電圧平均値Vcellの変化率の絶対値は、放電後および充電後では共に大から小となるためである。
(SOC急変防止部25)
 図10は、図3の急変防止部25の構成を示す図である。急変防止部25は、主たる構成として、減算器63と、ゲイン部61と、リミッタ62と、減算器64とを有して構成されている。
 減算器63は、前回値SOCzと第2推定値SOC20の差分を出力する。ゲイン部61は、減算器63からの差分をK4倍し、リミッタ62は、ゲイン部61からの出力を、0.1secあたり±0.02(%)に制限して出力する。減算器64は、リミッタ62からの出力を前回値SOCzに加算し、第3推定値SOC2として出力する。
 具体例で説明する。まず、第3推定値SOC2(%)は、次式で演算される。
 第3推定値SOC2(%)=SOCz-Limit(K4(SOCz-SOC20))・・・(2)ただし、K4の値は例えば0.8であり、リミッタ62の設定は例えば±0.02(%)である。
 ここで、急変防止部25の演算周期は0.1secであるので、第3推定値SOC2は、0.1secで最大0.02(%)変化する。さらに、図7に示される第2のSOC演算部24の演算周期t3は5secである。従って、第2のSOC演算部24からの第2推定値SOC20は、急変防止部25の演算が50回実行されたときに1回更新される。すなわち、第2推定値SOC20は、5sec毎に最大で0.02*50=1(%)変化する。具体例を示すと、急変防止部25に入力された第2推定値SOC20の値が例えば、50%から減少する場合、第2推定値SOC20は、0.1sec後には49.98(%)、さらに0.1sec後には49.96(%)となる。すなわち、急変防止部25に入力されてから5sec後の第2推定値SOC20は、1(%)減少した49.0(%)となる。同様に、第2推定値SOC20の値が50%から増加する場合、5sec後の第2推定値SOC20は、51.0(%)となる。
 このように、急変防止部25は、第2のSOC演算部24からの第2推定値SOC20の変化を5secで1%に制限することで、第3推定値SOC2の急変を防止している。なお、リミッタ(Limit)62が無い場合には、急変防止部25は、第2推定値SOC20と前回値SOCzの差分をK4倍した値を第3推定値SOC2として出力し、例えば、K4=1ならば、第2推定値SOC20と前回値SOCzの差分が第3推定値SOC2に直接反映されることになる。また、上述したK4の値やリミッタ62の設定値は、一例であり、これらに限定されるものではない。
 図11は、図3のSOC選択部の構成を示す図である。SOC選択部23は、第1のSOC演算部20で推定された第1推定値SOC1と、第2のSOC演算部24で推定され急変防止部25によって急変が制限された第3推定値SOC2と、の何れかをFLG2の値に応じて動作するスイッチ71で選択し、最終的なSOC推定値であるSOCとして出力する。例えば、FLG2=0のとき第1推定値SOC1が選択され、FLG2=1のとき第3推定値SOC2が選択される。
 具体的には、充放電中と、充放電が停止してから約20sec経過するまでの期間(t2期間)とではFLG2=0である。従って、スイッチ71は、第1のSOC演算部20からの第1推定値SOC1を選択して出力する。すなわち、|Iall|<Iallminの場合、第1のSOC演算部20における電流積算が停止されるため、SOC選択部23に入力されるSOC1は、一定値である。従って、充放電中および充放電後後のt2期間中はSOCの更新が行われない。
 一方、t2期間経過後から充放電が再開されるまでの間では、第3推定値SOC2が選択される。
 なお、制御電源投入時には、前回値SOCzを出力する単位遅延部26の初期値を0としておくと適切なSOCが得られないため、以下、初期値の設定方法を示す。
 図12は、図3に示される単位遅延部の初期値を設定する回路の一例を示す図である。図12の初期値設定回路24aは、ゲイン部51bとテーブル54bとを有して構成されている。ゲイン部51bは、総電圧Vallにゲイン1/nを乗じてセル電圧平均値Vcellを求める。テーブル54bには、図7のテーブル54aと同様に、開回路電圧推定値VocellとSOCとが対応付けられている。第2のSOC演算部24は、テーブル54bを参照し、セル電圧平均値Vcellに対応するSOCの値を初期値として出力する。なお、テーブル54bの代わりに近似式を用いてもよい。
 前回の充放電から十分な時間が経過している場合、電圧検出器18から得られる電力貯蔵装置11の開回路電圧は一定とみなすことができため、初期値設定回路24aでSOCの値(初期値)を求めることが可能である。例えば、充放電終了後にシステムが起動するときには開回路電圧が概ね一定であると考えたれるため、図3に示される第1のSOC演算部20および急変防止部25は、初期値設定回路24aからの初期値を用いて、第1推定値SOC1および第2推定値SOC20の演算を実行する。なお、前回の充放電から十分な時間が経過していない場合、図7の第2のSOC演算部24によって、妥当なSOCへと更新する。
 なお、総電圧Vallの測定値には、リプルやノイズが含まれるため、たとえば100Hzのローパスフィルタに総電圧Vallを入力した後に、そのフィルタ出力を総電圧VallとしてSOCを推定するように構成してもよい。
 鉄道システムにおいて、総電圧Vallは、600V程度になり、このときのセル電池直列数は160を超す。一方、図8に示したテーブル54aより、開回路電圧とSOCとの関係は、開回路電圧とSOCとが上昇するにつれてSOC/開回路電圧の値が大きくなるため、SOCが高くなるにつれて電圧変動の影響が大きくなる。例えば、開回路電圧が10mV(160直列の場合には総電圧が1.6V)変化したときにSOCは2~3%変化することも考えられる。したがって、電圧検出器18の分解能や測定精度を考慮するとSOCの変化を1%レベルに抑えるのは困難である。さらに、電力変換装置12に内蔵され電力貯蔵装置11に対する充放電を実行するDC-DCコンバータ(図示せず)を、電流指令0で動作させている場合には、リプル電流に起因する電圧リプルが発生することも考えられる。このような条件において、SOC推定値に多少の誤差を含むことは許容し、かつ、実際のSOCとの大きなずれや推定値の過剰な変動を起こさない推定方法が必要である。加えて、鉄道システムにおいては、電池の利用率向上および電池保護のために、充放電時は、定電流動作だけでなく定電圧動作も多用されることが想定される。
 本実施の形態の充電状態推定装置10は、電流積算によるSOC演算(第1のSOC演算部20)と、開回路電圧推定によるSOC演算(第2のSOC演算部24)と、を併用することで充放電時と休止時の推定精度を両立させることができる。
 また、開回路電圧推定には、電池等価回路モデルが不要であり、総電圧Vallの測定値のみを用い実際のSOCとの大きなずれや推定値の過剰な変動を回避する安定した推定値を得ることができる。また、ノイズの影響も受けにくい。
 さらには、電流積算による推定では誤差の影響が大きくなると考えられる低電流での充放電が続く場合にも、推定値の更新はできないものの充放電が継続しているにもかかわらず誤って開回路電圧推定を行うことがない。このため、本実施の形態にかかる充電状態推定装置10は、定電流充放電だけでなく定電圧充放電にも対応可能である。
 以上に説明したように、本実施の形態にかかる充電状態推定装置10は、前回値SOCzを初期値として、電流検出器17で検出された総電流Iallの電流積算値を演算し、電流積算値に基づいて第1推定値SOC1を演算する第1のSOC演算部20と、電力貯蔵装置11の充放電停止後に、電圧検出器18で検出された総電圧Vallのセル電圧平均値Vcellと、セル電圧平均値Vcellの前回値と、充放電停止後の時間の経過とともに変化するゲインK3と、に基づいて演算された開回路電圧推定値Vocellを第2推定値SOC20として出力する第2のSOC演算部24と、前回値SOCzと第2推定値SOC20とに基づいて、第2のSOC演算部24の演算周期t3における第2推定値SOC20の変化量を所定値(1%)以下に制限する急変防止部25と、を備えるようにしたので、充放電時および充放電休止時のSOCの推定精度を向上させることが可能である。
 また、本実施の形態にかかる第2のSOC演算部24は、総電圧Vallのみで開回路電圧推定値Vocellを演算できるため、従来技術のように等価回路モデルを使用することなく、開回路電圧推定値VocellからのSOCを推定可能である。
 また、本実施の形態にかかる第2のSOC演算部24は、ゲイン部52を用いて開回路電圧推定値Vocellを演算するようにしているため、充放電終了後における開回路電圧推定値Vocellの変動が抑制され安定したSOC推定値(第2推定値SOC20)を得ることができる。
 また、本実施の形態にかかる第1のSOC演算部20は、FLG1=0の場合、第1推定値SOC1が一定値になるように制御するので、定電圧充放電が継続され開回路電圧推定値Vocellが推定できない期間(t2期間)でもSOCの推定が可能である。
 なお、上記説明では、電力貯蔵装置11のセル電池をn直列×m並列としたが、nおよびmの値は、各々1以上の任意の数で構成できるのは言うまでもない。また、上述した演算周期t1~t3は一例であり、これらの値に限定されるものではない。また、図9に示されるゲインK3の値は、一例として、t2期間(0~20secまで)では一定として、その後徐々に低下するように設定されているが、例えば、ゲインK3の値を充放電終了時点(0sec)から徐々に変化させるように構成しても同様の効果を得ることができる。
実施の形態2.
 図13は、本発明の実施の形態2にかかる充電状態推定装置10の構成を示す図である。以下、第1の実施の形態と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。図3の充電状態推定装置10と異なる部分は、テーブル9を有している点である。電力貯蔵装置11に適用される二次電池は、使用するにつれて劣化し容量が減少する。その二次電池のSOCを正確に把握することが重要である。例えば、二次電池のSOCを正確に把握できずに、二次電池が過充電されると、二次電池の寿命などの長期信頼性が損なわれることがある。そのため、使用している二次電池のSOCを精度よく判定し、充電制御を行うことが必要となる。
 上述したように、第1のSOC演算部20には、積分器43からの電流積算値を第1推定値SOC1に変換するためのゲイン(K1およびK2)が設定されている。具体的には、ゲイン部44にはゲインK1が設定され、K1=1/電池容量(Ah)/3600sec*100(%)で得られる。また、ゲイン部45にはゲインK2が設定され、K2=電池容量(Ah)*3600sec/100(%)で得られる。ゲインK1およびK2は、電池容量(Ah)の値に応じて変化するため、電池容量(Ah)の値が実際の電池容量と異なる場合、推定されるSOCに誤差が生じることになる。
 そこで、本実施の形態にかかる充電状態推定装置10は、電池の公称値などの固定値(電池容量)から導かれるゲインK1およびK2を用いるのではなく、電力貯蔵装置11の劣化度合いに応じて補正された電池容量(Ah)を用いて第1推定値SOC1の推定誤差を低減するように構成されている。
 テーブル9には、充放電時間積算値や充放電容量積算値などから得た電池容量、すなわち電力貯蔵装置11の容量低下に応じて補正された電池容量と、この電池容量に対応するゲインK1、K2と、が対応付けられている。第1のSOC演算部20は、テーブル9を参照し、補正された電池容量に対応するゲインK1、K2を用いて第1推定値SOC1を演算する。
 以上に説明したように、本実施の形態にかかる充電状態推定装置10は、補正された電池容量に対応するゲインK1、K2を用いて第1推定値SOC1を演算するようにしたので、実施の形態1にかかる充電状態推定装置10の効果に加えて、電流積算によるSOCの演算精度を高めることが可能である。
実施の形態3.
 図14は、本発明の実施の形態3にかかる第2のSOC演算部24の構成を示す図である。以下、第1の実施の形態と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。図7と同じブロックには同じ番号を付している。図7の第2のSOC演算部24と異なる部分は、ゲイン算出部56と乗算器57とを有している点である。
 ゲイン算出部56は、電力貯蔵装置11の充放電停止後の時間の経過とともにモジュール温度(電池温度)T1に依存して変化するゲインK3を算出する。モジュール温度T1は、図1の電力貯蔵装置11から得られる電池モジュールの温度である。乗算器57は、減算器58からの差分とゲイン算出部56からのゲインK3と乗算し、加算器59は、乗算器57からの出力に単位遅延部55からの出力を加算し開回路電圧推定値Vocellを求める。このように、本実施の形態にかかる第2のSOC演算部24は、ゲイン算出部56からのゲインK3を、減算器58からの出力(電圧平均値Vcellの差分)に乗算することによって、充放電後の電力貯蔵装置11の電圧変化特性がモジュール温度T1に依存して変化する場合でも、開回路電圧推定値Vocellの推定精度を向上させることができる。
 なお、モジュール温度T1は、モジュール温度自体に限らず、電池の温度を反映する別の箇所の温度でもよい。また、本実施の形態にかかる第2のSOC演算部24は、実施の形態2にかかる第1のSOC演算部20を組合せてもよい。さらに、ゲインK3を算出するためにゲイン算出部56に入力される情報は、モジュール温度T1に限定されず、電池の温度に応じて変化する情報、例えば、電流、電圧、SOCなどの値を使用してもよい。
 以上に説明したように、本実施の形態にかかる第2のSOC演算部24は、モジュール温度T1および総電圧Vallに基づき開回路電圧推定値Vocellを演算するようにしたので、実施の形態1にかかる第2のSOC演算部24の効果に加えて、モジュール温度T1の変化に応じた開回路電圧推定値Vocellを演算することができるため、第2推定値SOC20の推定精度を高めることが可能である。
 なお、実施の形態1、2に示した充電状態推定装置10は、電力貯蔵装置11の充放電停止後の時間の経過に応じて、第1のSOC演算部20からの第1推定値SOC1と、SOC急変防止部25からの第3推定値SOC2と、の何れかを選択するように構成したが、これに限定されるものではなく、例えば、急変防止部25を無くして、第2のSOC演算部24からの第2推定値SOC20を直接SOC選択部23に入力する態様であってもよい。この場合、SOC選択部23は、第2のフラグ生成部22からのFLG2の値に応じて、第1推定値SOC1と第2推定値SOC20との何れかを選択する。このよう構成しても、第2のSOC演算部24によってt2期間経過後の開回路電圧推定値Vocellの変動が抑制されるため、実施の形態1、2のような第2推定値SOC20の急変防止という効果は望めないものの、従来技術に比して開回路電圧推定値Vocellの変化が抑制されるため、第2推定値SOC20の推定精度を向上させることができる。
 なお、実施の形態1、2に示した第1のSOC演算部20は、ゲイン部41でセル電流平均値Icellを求めて第1推定値SOC1を演算するように構成しているが、ゲイン部41を用いずに総電流Iallを積算して第1推定値SOC1を求めるように構成でもよい。また、実施の形態1、2に示した第2のSOC演算部24は、ゲイン部51aでセル電圧平均値Vcellを求めて開回路電圧推定値Vocellを演算するように構成しているが、これに限定されるものではない。例えば、ゲイン部51aを用いずに、総電圧Vallと総電圧Vallの前回値との差分にゲイン部52を乗じて、ゲイン部52からの出力と総電圧Vallの前回値とを加算して開回路電圧を推定してもよい。
 なお、実施の形態1~3に示した充電状態推定装置は、本発明の内容の一例を示すものであり、更なる別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは無論である。
 以上のように、本発明は、二次電池のSOC推定を行う装置に適用可能であり、特に、電池電圧の測定精度が低い場合や測定電圧にリプルが見られる場合にもSOC推定値の変動を抑制することができる発明として有用である。
 21-1,2n-1,21-m,2n-m 電池モジュール
 4-1,4-k,5-1,5-k,6-1,6-k,7-1,7-k セル電池
 9,54a,54b テーブル
 10 充電状態推定装置
 11 電力貯蔵装置
 12 電力変換装置
 13 架線
 14 集電装置
 15 車輪
 17 電流検出器
 18 電圧検出器
 20 第1のSOC演算部
 21,21a,21b 第1のフラグ生成部
 22,22a,22b 第2のフラグ生成部
 23 SOC選択部
 24 第2のSOC演算部
 24a 初期値設定回路
 25 SOC急変防止部(変化量制限部)
 26,55 単位遅延部
 41,44,45,51,51a,51b,52,61 ゲイン部
 42,57 乗算器
 43 積分器
 53,62 リミッタ
 56 ゲイン算出部
 58,63,64 減算器
 59 加算器
 71 スイッチ
 101a,101b 絶対値演算器
 102a,102b,104a,104b 比較器
 103 NORゲート
 105a,105b ON遅延部
 106 ORゲート
 FLG1 第1のフラグ
 FLG2 第2のフラグ
 FLG3 第3のフラグ
 GB ゲートブロック
 Iall 総電流
 Iall* 電流指令
 Icell セル電流平均値
 Iallmin 電流閾値
 K1,K2,K3 ゲイン
 SOC1 第1の充電状態推定値
 SOC20 第2の充電状態推定値
 SOC2 第3の充電状態推定値
 SOCz SOC前回値
 T1 モジュール温度
 t1 電力貯蔵装置全体の演算周期
 t2 充放電後のVallが急変する期間
 t3 第2のSOC演算部の演算周期
 Vall 総電圧
 Vcell セル電圧平均値(電圧平均値)
 Vocell 開回路電圧推定値(開回路電圧)

Claims (6)

  1.  セル電池を複数接続した電力貯蔵装置に接続され、前記電力貯蔵装置の充電状態を推定する充電状態推定装置であって、
     充電状態推定値の前回値を初期値として、電力変換部からの前記電力貯蔵装置に流出入する電流を検出する検出器からの電流に基づいて電流積算値を演算し第1の充電状態推定値として出力する第1の演算部と、
     前記電力貯蔵装置の充放電停止後に、前記電力変換部と前記電力貯蔵装置との接続箇所で検出された電圧と、前記電圧の前回値と、前記電力貯蔵装置の充放電停止後の時間の経過とともに低下するゲインと、に基づいて開回路電圧を推定し第2の充電状態推定値として出力する第2の演算部と、
     前記第1の充電状態推定値と前記第2の充電状態推定値との何れかを選択する選択部と、
     を備えたことを特徴とする充電状態推定装置。
  2.  セル電池を複数接続した電力貯蔵装置に接続され、前記電力貯蔵装置の充電状態を推定する充電状態推定装置であって、
     充電状態推定値の前回値を初期値として、電力変換部からの前記電力貯蔵装置に流出入する電流を検出する検出器からの電流に基づいて電流積算値を演算し第1の充電状態推定値として出力する第1の演算部と、
     前記電力貯蔵装置の充放電停止後に、前記電力変換部と前記電力貯蔵装置との接続箇所で検出された電圧と、前記電圧の前回値と、前記電力貯蔵装置の充放電停止後の時間の経過とともに低下するゲインと、に基づいて開回路電圧を推定し第2の充電状態推定値として出力する第2の演算部と、
     充電状態推定値の前回値と前記第2の演算部からの第2の充電状態推定値とに基づいて、前記第2の演算部の演算周期における第2の充電状態推定値の変化量を所定値以下に制限する変化量制限部と、
     前記第1の充電状態推定値と前記変化量制限部からの出力との何れかを選択する選択部と、
     を備えたことを特徴とする充電状態推定装置。
  3.  前記第2の演算部は、
     前記電圧平均値と前記電圧平均値の前回値との差分に前記ゲインを乗じた値に、前記電圧平均値の前回値を加算して、開回路電圧を推定することを特徴とする請求項1または2に記載の充電状態推定装置。
  4.  前記第2の演算部は、
     前記電力変換部と前記電力貯蔵装置との接続箇所で検出された電圧のセル電池電圧平均値を求め、前記セル電池電圧平均値と前記セル電池電圧平均値の前回値との差分に前記ゲインを乗じた値に、前記セル電池電圧平均値の前回値を加算して、セル電池の開回路電圧を推定することを特徴とする請求項1または2に記載の充電状態推定装置。
  5.  前記電力貯蔵装置の容量低下に応じて補正された電池容量と、前記電流積算値を第1の充電状態推定値に変換するゲインと、を対応付けて格納するテーブルを備え、
     前記第1の演算部は、
     前記テーブルを参照し、前記電池容量に対応する第1の充電状態推定値を演算することを特徴とする請求項1または2に記載の充電状態推定装置。
  6.  前記電力貯蔵装置の充放電停止後の時間の経過とともに低下し、かつ、電池温度に依存して変化するゲインを算出するゲイン算出部を備え、
     第2の演算部は、
     前記電圧平均値と、前記電圧平均値の前回値と、前記ゲイン算出部からのゲインと、に基づいて開回路電圧を演算することを特徴とする請求項1または2に記載の充電状態推定装置。
PCT/JP2010/055457 2010-03-26 2010-03-26 充電状態推定装置 WO2011118039A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112012023275A BR112012023275A2 (pt) 2010-03-26 2010-03-26 aparelho de estimativa de estado de carga
AU2010349140A AU2010349140B2 (en) 2010-03-26 2010-03-26 Charge state estimation apparatus
PCT/JP2010/055457 WO2011118039A1 (ja) 2010-03-26 2010-03-26 充電状態推定装置
EP10848432.0A EP2551686B1 (en) 2010-03-26 2010-03-26 Charge state estimation apparatus
JP2010549366A JP4818468B1 (ja) 2010-03-26 2010-03-26 充電状態推定装置
US13/580,625 US9013151B2 (en) 2010-03-26 2010-03-26 State-of-charge estimation apparatus
CN201080065769.1A CN102822690B (zh) 2010-03-26 2010-03-26 充电状态估计装置
KR1020127024518A KR101315654B1 (ko) 2010-03-26 2010-03-26 충전 상태 추정 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/055457 WO2011118039A1 (ja) 2010-03-26 2010-03-26 充電状態推定装置

Publications (1)

Publication Number Publication Date
WO2011118039A1 true WO2011118039A1 (ja) 2011-09-29

Family

ID=44672628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055457 WO2011118039A1 (ja) 2010-03-26 2010-03-26 充電状態推定装置

Country Status (8)

Country Link
US (1) US9013151B2 (ja)
EP (1) EP2551686B1 (ja)
JP (1) JP4818468B1 (ja)
KR (1) KR101315654B1 (ja)
CN (1) CN102822690B (ja)
AU (1) AU2010349140B2 (ja)
BR (1) BR112012023275A2 (ja)
WO (1) WO2011118039A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083496A (ja) * 2011-10-07 2013-05-09 Calsonic Kansei Corp 充電率推定装置およびその方法
CN104620462A (zh) * 2012-09-17 2015-05-13 波音公司 用于电池管理的虚拟单元方法
WO2017221899A1 (ja) * 2016-06-22 2017-12-28 株式会社豊田自動織機 蓄電装置及び蓄電装置の制御方法
JP2022534831A (ja) * 2019-10-31 2022-08-04 エルジー エナジー ソリューション リミテッド バッテリー充電状態推定方法およびこれを適用したバッテリー管理システム

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202738A (ja) * 2011-03-24 2012-10-22 Toyota Motor Corp 電圧測定装置、電圧測定システム、電圧測定方法
US9368991B2 (en) * 2012-10-30 2016-06-14 The Board Of Trustees Of The University Of Alabama Distributed battery power electronics architecture and control
US9267995B2 (en) * 2012-12-18 2016-02-23 GM Global Technology Operations LLC Methods and systems for determining whether a voltage measurement is usable for a state of charge estimation
US9841464B2 (en) * 2012-12-26 2017-12-12 Mitsubishi Electric Corporation Life prediction apparatus for electrical storage device and life prediction method for electrical storage device
JP6300000B2 (ja) * 2013-02-20 2018-03-28 株式会社Gsユアサ 充電状態推定装置、充電状態推定方法
US10505375B2 (en) 2013-06-20 2019-12-10 Volvo Truck Corporation Method for controlling an energy storage system
US9612288B2 (en) * 2014-01-31 2017-04-04 Analog Devices Global Voltage-based fuel gauge on battery capacity
US9547045B2 (en) * 2014-02-04 2017-01-17 Gm Global Technology Operations, Llc Methods and systems for determining a characteristic of a vehicle energy source
US20160018468A1 (en) * 2014-07-21 2016-01-21 Richtek Technology Corporation Method of estimating the state of charge of a battery and system thereof
US9987942B2 (en) * 2014-09-03 2018-06-05 Ford Global Technologies, Llc Method of operating vehicle powertrain based on prediction of how different chemical type batteries connected in parallel will operate to output demanded current
JP6354700B2 (ja) * 2015-08-07 2018-07-11 株式会社デンソー 電池の充電状態推定装置
JP6830318B2 (ja) * 2016-01-15 2021-02-17 株式会社Gsユアサ 蓄電素子管理装置、蓄電素子モジュール、車両および蓄電素子管理方法
JP6769046B2 (ja) * 2016-03-01 2020-10-14 株式会社Gsユアサ 蓄電素子の監視装置、蓄電素子モジュール、socの推定方法
CN106125008A (zh) * 2016-08-31 2016-11-16 河南森源电气股份有限公司 一种soc在线参数自修正的精确计算方法及装置
EP3565731B1 (en) 2017-01-09 2022-10-19 Volvo Truck Corporation A method and arrangement for determining the state of charge of a battery pack
JP6776904B2 (ja) * 2017-01-13 2020-10-28 株式会社デンソー 電池パック及び電源システム
KR20180085165A (ko) * 2017-01-18 2018-07-26 삼성전자주식회사 배터리 관리 방법 및 장치
CN109696635B (zh) * 2018-12-20 2021-01-29 合肥协力仪表控制技术股份有限公司 一种基于车联网应用的电池充电状态判断方法及管理系统
DE102019002309A1 (de) * 2019-03-29 2019-11-14 Daimler Ag Verfahren zum Bestimmen einer elektrlschen Zellspannung elner Batteriezelle einer Traktionsbatterie eines Fahrzeugs sowie Vorrichtung
CN110376529B (zh) * 2019-07-31 2022-09-27 浙江磊铭新能源科技有限公司 储能式多功能锂电池检测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829505A (ja) * 1994-07-15 1996-02-02 Toshiba Corp 蓄電池の残存容量推定方法
JP2005345254A (ja) * 2004-06-02 2005-12-15 Fuji Heavy Ind Ltd 蓄電デバイスの残存容量演算装置
JP2006105821A (ja) * 2004-10-06 2006-04-20 Toyota Motor Corp 二次電池の充電容量推定装置およびその方法
JP2007024687A (ja) * 2005-07-15 2007-02-01 Fuji Heavy Ind Ltd バッテリ管理システム
JP2007333474A (ja) 2006-06-13 2007-12-27 Nissan Motor Co Ltd 開放電圧検出装置および開放電圧検出方法
JP2008199723A (ja) 2007-02-09 2008-08-28 Railway Technical Res Inst バッテリーの残容量推定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07123514A (ja) 1993-10-19 1995-05-12 Hitachi Ltd 電気車および電気車の走行制御方法
JP4597501B2 (ja) * 2003-10-01 2010-12-15 プライムアースEvエナジー株式会社 二次電池の残存容量推定方法および装置
KR100846710B1 (ko) * 2006-09-07 2008-07-16 삼성에스디아이 주식회사 배터리 관리 시스템 및 그의 구동 방법
KR100839382B1 (ko) * 2006-10-16 2008-06-20 삼성에스디아이 주식회사 배터리 관리 시스템 및 그의 구동 방법
JP4375458B2 (ja) * 2007-08-01 2009-12-02 株式会社デンソー 2次電池の充電状態推定装置及び充電制御システム
CN101349738B (zh) * 2008-08-27 2011-05-18 福建师范大学 一种串联式蓄电池组电压实时监测的方法与装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829505A (ja) * 1994-07-15 1996-02-02 Toshiba Corp 蓄電池の残存容量推定方法
JP2005345254A (ja) * 2004-06-02 2005-12-15 Fuji Heavy Ind Ltd 蓄電デバイスの残存容量演算装置
JP2006105821A (ja) * 2004-10-06 2006-04-20 Toyota Motor Corp 二次電池の充電容量推定装置およびその方法
JP2007024687A (ja) * 2005-07-15 2007-02-01 Fuji Heavy Ind Ltd バッテリ管理システム
JP2007333474A (ja) 2006-06-13 2007-12-27 Nissan Motor Co Ltd 開放電圧検出装置および開放電圧検出方法
JP2008199723A (ja) 2007-02-09 2008-08-28 Railway Technical Res Inst バッテリーの残容量推定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2551686A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083496A (ja) * 2011-10-07 2013-05-09 Calsonic Kansei Corp 充電率推定装置およびその方法
CN104620462A (zh) * 2012-09-17 2015-05-13 波音公司 用于电池管理的虚拟单元方法
US9991723B2 (en) 2012-09-17 2018-06-05 The Boeing Company Virtual cell method for battery management
CN104620462B (zh) * 2012-09-17 2019-10-08 波音公司 用于电池管理的虚拟单元方法
WO2017221899A1 (ja) * 2016-06-22 2017-12-28 株式会社豊田自動織機 蓄電装置及び蓄電装置の制御方法
JPWO2017221899A1 (ja) * 2016-06-22 2018-11-29 株式会社豊田自動織機 蓄電装置及び蓄電装置の制御方法
US10436850B2 (en) 2016-06-22 2019-10-08 Kabushiki Kaisha Toyota Jidoshokki Power storage apparatus and controlling method for the same
JP2022534831A (ja) * 2019-10-31 2022-08-04 エルジー エナジー ソリューション リミテッド バッテリー充電状態推定方法およびこれを適用したバッテリー管理システム
JP7244189B2 (ja) 2019-10-31 2023-03-22 エルジー エナジー ソリューション リミテッド バッテリー充電状態推定方法およびこれを適用したバッテリー管理システム
US12085619B2 (en) 2019-10-31 2024-09-10 Lg Energy Solution, Ltd. Method for estimating battery state of charge and battery management system applying the same

Also Published As

Publication number Publication date
KR20120135259A (ko) 2012-12-12
EP2551686A1 (en) 2013-01-30
JP4818468B1 (ja) 2011-11-16
JPWO2011118039A1 (ja) 2013-07-04
BR112012023275A2 (pt) 2016-05-17
AU2010349140B2 (en) 2014-03-06
KR101315654B1 (ko) 2013-10-08
EP2551686A4 (en) 2013-05-29
EP2551686B1 (en) 2014-05-07
US20120326726A1 (en) 2012-12-27
CN102822690A (zh) 2012-12-12
CN102822690B (zh) 2015-07-22
AU2010349140A1 (en) 2012-09-27
US9013151B2 (en) 2015-04-21

Similar Documents

Publication Publication Date Title
JP4818468B1 (ja) 充電状態推定装置
US8738311B2 (en) State-of-charge estimation method and battery control unit
US9529051B2 (en) Battery system, electric vehicle, movable body, power storage device, and power supply device
US11422190B2 (en) Storage battery system charging control device, storage battery system, and storage battery charging control method
US20160049821A1 (en) Electrical storage system, and full charge capacity estimation method for electrical storage device
US10031185B2 (en) Method for determining a state of charge and remaining operation life of a battery
US20120176095A1 (en) Electric power management system
EP2530478A2 (en) Electric storage device, condition determination device, electrically chargeable device, and method of determining electric storage device condition
US10811889B2 (en) Management device and power storage system
JP2008241358A (ja) 電池の満充電容量検出方法
JP7149543B2 (ja) 管理装置、蓄電システム
JP4531113B2 (ja) 電力変換装置
WO2010140233A1 (ja) 電池充電率算出装置
WO2014161325A1 (zh) 一种检测电池电量的方法、装置及终端
JP2010019595A (ja) 蓄電デバイスの残存容量演算装置
US11158888B2 (en) Management device and power storage system
JP2019092335A (ja) 電源制御システムおよび方法
JP2011221012A (ja) バッテリモジュール状態検出装置、バッテリモジュール状態制御装置、バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置
WO2016178308A1 (ja) 二次電池の充電率算出装置、及び蓄電池システム
JP4920306B2 (ja) 蓄電池状態監視装置、蓄電池状態監視方法、蓄電池状態監視プログラム
JP2011059001A (ja) 二次電池システム
JP7097741B2 (ja) 電流検出システム、蓄電システム
JP2015008561A (ja) 低損失電力変換装置及びその制御方法
JP7563286B2 (ja) 電池監視装置
WO2013042712A1 (ja) 電池ブロックの充放電制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065769.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010549366

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848432

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13580625

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010349140

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20127024518

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010848432

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010349140

Country of ref document: AU

Date of ref document: 20100326

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 8760/CHENP/2012

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012023275

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012023275

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120914