WO2013042712A1 - 電池ブロックの充放電制御装置 - Google Patents

電池ブロックの充放電制御装置 Download PDF

Info

Publication number
WO2013042712A1
WO2013042712A1 PCT/JP2012/074023 JP2012074023W WO2013042712A1 WO 2013042712 A1 WO2013042712 A1 WO 2013042712A1 JP 2012074023 W JP2012074023 W JP 2012074023W WO 2013042712 A1 WO2013042712 A1 WO 2013042712A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacity
battery
charge
battery block
storage battery
Prior art date
Application number
PCT/JP2012/074023
Other languages
English (en)
French (fr)
Inventor
泰生 奥田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013042712A1 publication Critical patent/WO2013042712A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery block charge / discharge control device, and more particularly to a battery block charge / discharge control device configured by connecting a plurality of storage batteries in series.
  • a storage battery can be charged / discharged, but has a charge upper limit that cannot be charged any more and a discharge limit that cannot be discharged any more. In order to efficiently use the storage battery, it is preferable to look at the current remaining capacity of the storage battery, charge from the battery as close to the charge limit as possible, and discharge from the battery as close to the discharge limit as possible.
  • Patent Document 1 describes that as a method of charging and discharging a storage battery, a method of charging at a constant current according to a current setting value and switching to constant voltage charging when the battery voltage reaches the voltage setting value is used.
  • the battery voltage is detected for each unit cell or for each of a plurality of assembled batteries, and when any of the detected battery voltages reaches a predetermined upper limit value. It is disclosed that constant voltage charging is performed with the entire voltage value at that time.
  • Patent Document 2 discloses a battery remaining capacity detection method as a first method for detecting battery current and battery voltage and calculating the remaining battery capacity based on the integration of the detected battery current; It describes that there is a second method for calculating the remaining capacity of the battery based on the voltage. It is disclosed that the weighting of the second method is increased in the region where the battery capacity is high and the region where the battery capacity is low, and the weighting of the first method is increased in the other regions.
  • SOC State Of Charge
  • the capacity which is the amount of electricity stored in the storage battery, can be expressed by the power-time product of power x time, but the capacity at the charge limit minus the capacity at the discharge limit is the full charge capacity.
  • the SOC is obtained by dividing the capacity by the full charge capacity and indicating this as a percentage (%). Therefore, the charge / discharge control of the storage battery is performed in a range where the SOC is between 0% and 100%, preferably within that range.
  • the battery block in which a plurality of storage batteries are connected in series or in parallel has the same charge / discharge current flowing in each storage battery, so if each storage battery has exactly the same characteristics, the change in capacity of each storage battery due to charge / discharge is It will be the same. That is, the SOC of each storage battery is the same, and the SOC as the battery block has the same value. Actually, the characteristics of each battery unit battery are not completely the same, but even in that case, the change in capacity due to charging / discharging does not change greatly, so the SOC of the battery block is the average value of the SOC of each battery. It is used.
  • An object of the present invention is to charge a battery block that can provide a safe and efficient charge / discharge control device by grasping the characteristics of the entire battery block even if the characteristics of the storage batteries constituting the battery block vary.
  • a discharge control apparatus is provided.
  • a charge / discharge control device for a battery block is a charge / discharge control device for a battery block configured by connecting a plurality of storage batteries in series, and each of the storage batteries constituting the battery block has a capacity as a storage battery.
  • a characteristic storage unit that obtains and stores a capacity voltage characteristic that is a relationship with a voltage between terminals of the storage battery by a predetermined capacity voltage characteristic calculation procedure, and a battery block as a whole from a current state of each of the plurality of storage batteries. Based on the capacity-voltage characteristics of the other storage batteries, the capacity of the other storage batteries when any one of the plurality of storage batteries reaches the upper limit of charging, which is the limit at which charging cannot continue any longer, is continued under certain conditions.
  • a first capacity estimation unit that estimates and adds a capacity obtained for each of the plurality of storage batteries to a first capacity of the entire battery block; Others when any one of a plurality of storage batteries reaches the lower limit of discharge, which is the limit at which no further discharge can be continued from the current state of each storage battery under a predetermined condition as a whole of the battery block.
  • a second capacity estimating unit that estimates the capacity of the storage battery based on the capacity-voltage characteristics of the other storage batteries, and sets a value obtained by adding the capacity of each of the plurality of storage batteries as the second capacity of the entire battery block;
  • a full charge capacity estimation unit that estimates a value obtained by subtracting the second capacity from the first capacity as a full charge capacity of the battery block as a whole, and is charged and discharged using the estimated full charge capacity of the battery block. Take control.
  • the charging / discharging control device for a battery block according to the present invention, even if the characteristics of the storage batteries constituting the battery block vary, the charging / discharging control device is safe and efficient by grasping the characteristics of the entire battery block. It can be performed.
  • FIG. 1 It is a block diagram of the charging / discharging control system of the storage battery assembly containing the charging / discharging control apparatus of embodiment which concerns on this invention. It is a figure which shows the capacity voltage characteristic of the storage battery used by embodiment which concerns on this invention. It is a figure explaining average SOC used for charging / discharging control of the battery block in a prior art. In an embodiment concerning the present invention, it is a figure showing the 1st capacity, the 2nd capacity, and the present capacity. It is a figure which shows the example of the concrete capacity
  • FIG. 9 is a diagram in which FIG. 7 and FIG. 8 are superimposed.
  • FIG. 10 is a diagram for calculating the capacity voltage characteristics of the entire range for the arbitrary storage battery of FIG. 8 based on the result of FIG. 9. It is a figure which estimates the full charge capacity etc. of a battery block about the other example of the dispersion
  • a lithium ion battery and a nickel hydride battery are demonstrated as a storage battery
  • storage batteries other than this may be sufficient.
  • a secondary battery such as a nickel cadmium battery may be used.
  • a battery block in which five storage batteries are connected in series will be described, but this is an example for explanation, and the number of storage batteries connected in series may be a plurality other than five.
  • specific charge / discharge characteristics and capacity calculation will be described for a battery block in which two storage batteries are connected in series. This is also an example for explanation, and a battery block in which three or more storage batteries are connected in series
  • a plurality of battery blocks may be connected in parallel, for example, and charge / discharge control may be performed as one storage battery assembly. Even in that case, the following description is similarly applied to each battery block.
  • the capacity-voltage characteristics of the storage battery used to determine the full charge capacity, etc. will be described as a linear relationship between the capacity and the voltage between terminals, but this is for ease of explanation.
  • the relationship between the capacitance and the terminal voltage may be nonlinear.
  • FIG. 1 is a diagram showing a configuration of a charge / discharge control system 10 for a battery block.
  • the battery block charge / discharge control system 10 performs optimum charge / discharge control of the battery block 20 through power management between the battery block 20 in which a plurality of storage batteries 22 are combined, the power supply unit 12, and the load unit 14. It is.
  • the battery block 20 is obtained by appropriately estimating the full charge capacity and the like of the battery block 20 in which a plurality of storage batteries 22 are connected in series, and performing charge / discharge control using the estimated full charge capacity and the like. Even if the characteristics of the storage batteries 22 constituting the battery vary, each storage battery 22 has a function of performing charge / discharge control so as not to be overcharged or overdischarged.
  • the power supply unit 12 includes an external commercial power supply, a solar power generation system, and the like.
  • the external commercial power source is a single-phase or three-phase AC power source, and is supplied from, for example, an external power company.
  • the solar power generation system is a photoelectric conversion system that converts solar energy into DC power.
  • the load unit 14 is a factory load, and includes general lighting, general air conditioning, kitchen appliances, office equipment such as servers and PCs, factory air conditioning, and the like in addition to mechanical equipment.
  • the power converter 16 supplies the charging power from the power supply unit 12 to the battery block 20 or supplies the discharging power from the battery block 20 to the load unit 14 under the charge / discharge command of the charge / discharge control device 30. It has a function. Specifically, based on the charge / discharge command, the AC power of the power supply unit 12 is converted into the DC power of the storage battery 22, or the voltage of the DC power of the power supply unit 12 is converted into a voltage suitable for the storage battery 22, Alternatively, voltage conversion is performed to a voltage suitable for the voltage of the storage battery 22 and the load unit 14.
  • the power converter 16 is a converter such as a bidirectional AC / DC converter or a bidirectional DC / DC converter, and the type of converter to be used is selected according to the content of the conversion actually performed.
  • the battery block 20 is a storage battery control unit in which a predetermined number of storage batteries 22 are connected in series to obtain a predetermined output voltage and charge / discharge power.
  • a battery block 20 is configured by connecting five storage batteries 22 in series.
  • One storage battery 22 is composed of unit storage batteries called 300 cells.
  • Each unit storage battery is, for example, a lithium ion battery or a nickel metal hydride battery.
  • the structure of the battery block 20 is not restricted to the said description, For example, you may comprise the storage battery 22 with one unit storage battery. As long as there are two or more battery blocks 20, the number of storage batteries 22 may be any number.
  • the voltage between the terminals of the five storage batteries 22 constituting the battery block 20 is detected by a voltage detector (not shown).
  • V1, V2, V3, V4, and V5 are shown as the detected inter-terminal voltages.
  • a value obtained by summing V1 to V5 corresponds to the voltage across the terminals of the battery block 20.
  • the temperature of the storage battery 22 is detected as a storage battery temperature by a temperature detector (not shown).
  • the current flowing through each battery block 20 is detected as a battery block current by a current detector (not shown).
  • the charge / discharge control device 30 has a function of transmitting a specific charge / discharge control command to the power converter 16 based on a charge / discharge control command input from an external control device (not shown). At that time, charge / discharge control is performed while monitoring the SOC of the battery block 20 so that each storage battery 22 is not overcharged or overdischarged.
  • the charge / discharge control device 30 can be configured by a computer. Of course, it may be configured by combining individual control circuits.
  • the charge / discharge control device 30 includes a full charge capacity estimation unit 40 that estimates a full charge capacity as the battery block 20, a charge / discharge capacity estimation unit 42 that estimates a current chargeable / dischargeable capacity of the battery block 20, and a battery block.
  • An SOC estimation unit 44 that estimates 20 SOCs is included.
  • the charge / discharge control device 30 performs charge / discharge control based on the full charge capacity, chargeable / dischargeable capacity, and SOC of the battery block 20 estimated by these functions.
  • These functions can be realized by executing software. Specifically, these functions can be realized by executing a charge / discharge control program. Note that some of these functions may be realized by hardware.
  • the storage unit 32 connected to the charge / discharge control device 30 is a storage device having a function of storing programs and the like.
  • a storage battery having the same specifications as the storage battery 22 constituting the battery block 20 an initial state manufactured as a battery in advance and a plurality of time-varying states in which the time-dependent change in characteristics has progressed after repeated charging and discharging,
  • Each capacitor voltage characteristic is prepared in advance and stored as a calibration capacitor voltage characteristic group file 34.
  • the capacity-voltage characteristic of the storage battery 22 is a characteristic relationship between the capacity and the inter-terminal voltage of the storage battery 22 with the power-time product stored in the storage battery 22 as the capacity of the storage battery 22.
  • FIG. 2 is a diagram showing the capacity-voltage characteristic 60.
  • the capacity increases as it goes to the left side of the page, and the capacity decreases as it goes to the right side.
  • the capacitance-voltage characteristics have a linear relationship, but in reality, the capacitance-voltage characteristic may not necessarily be a linear relationship but a curved relationship.
  • the slope of the linear relationship, the initial value, the curve shape of the curved relationship, and the initial value vary depending on the type of the storage battery 22, the material configuration of the storage battery 22, the structure of the storage battery 22, the charge / discharge history, and the like.
  • Differences in the material configuration of the storage battery 22 include differences in positive electrode material, negative electrode material, electrolyte solution material, and the like.
  • the difference in charge / discharge history includes a difference in the number of charge / discharge cycles.
  • V CMAX is a charging upper limit voltage that is a voltage between terminals at the upper limit of charging, which is a limit that cannot be charged any more.
  • the capacity at that time is the charge upper limit capacity (Ah) MAX .
  • V DMIN is a discharge lower limit voltage that is a voltage between terminals at a lower limit of discharge, which is a limit at which no further discharge is possible.
  • the capacity at that time is the discharge lower limit capacity (Ah) MIN .
  • V CMAX and V DMIN are often defined by the open-circuit voltage (OCV) of the storage battery 22, but are not necessarily defined by the OCV, and may be other indexes.
  • OCV open-circuit voltage
  • V CMAX and V DMIN can be defined as inter-terminal voltages that define the current value.
  • the full charge capacity of the storage battery 22 is the difference between the charge upper limit capacity (Ah) MAX which is the capacity at V CMAX and the discharge lower limit capacity (Ah) MIN which is the capacity at V DMIN .
  • the current dischargeable capacity of the storage battery 22 is the difference between the current capacity and the discharge lower limit capacity (Ah) MIN .
  • the SOC is expressed as (dischargeable capacity / full charge capacity) ⁇ 100%. Therefore, the capacity and SOC of the storage battery 22 can be obtained based on the voltage between the terminals of the storage battery 22.
  • the capacity voltage characteristics of the storage batteries 22 are all the same.
  • the battery block 20 is composed of five storage batteries 22 having the same specifications and manufactured at the same time, the capacity-voltage characteristics are checked at the shipping stage. Therefore, in the initial state of the battery block 20, the capacity voltage characteristics of the storage batteries 22 are the same.
  • each storage battery 22 also repeats charging / discharging. The storage battery 22 is repeatedly charged and discharged to change its capacity-voltage characteristics. However, even if the battery block 20 repeats charging / discharging, since each storage battery 22 is connected in series, the charging / discharging current which flows through each storage battery 22 is the same.
  • the capacity voltage characteristics are different between the storage batteries 22 constituting the battery block 20
  • a part of the storage batteries 22 constituting the battery block 20 may be replaced.
  • the charge / discharge history of the storage battery 22 that has been replaced to form a new battery block 20 may differ from the other storage batteries 22.
  • the capacity voltage characteristics are different.
  • the capacity voltage characteristics are different among the storage batteries 22 constituting the battery block 20.
  • the capacity voltage characteristics may be different even with the same charge / discharge history.
  • the capacity voltage characteristics may be different between the storage batteries 22 constituting the battery block 20. This is a case where the deterioration characteristics are different from those of the other storage batteries 22.
  • the storage battery 22 reaches the end of its life due to repeated charge / discharge, the variation in the capacity-voltage characteristics increases. In this case also, the capacity-voltage characteristics differ among the storage batteries 22.
  • the capacity-voltage characteristics of the storage batteries 22 constituting the battery block 20 are uniform. Therefore, if the capacity of the initial state is uniform, the capacity of each storage battery 22 is the same even if the battery block 20 is repeatedly charged and discharged. It changes in the same way. Therefore, in such a case, the SOC that is the charged state of the battery block 20 as a whole is the same as the SOC of each storage battery 22. That is, the charge / discharge control of the battery block 20 can be performed based on the SOC of one storage battery 22 in each storage battery 22.
  • the capacity-voltage characteristics of the storage batteries 22 constituting the battery block 20 are the same, but even in that case, the capacity of each storage battery 22 at the present time is different due to a difference in the initial state of charge.
  • FIG. 3 illustrates how the inter-terminal voltage of each storage battery 22 changes when the battery block 20 performs charge / discharge when the current inter-terminal voltages of the plurality of storage batteries 22 are different.
  • FIG. Here, in order to simplify the explanation, an example in which the battery block 20 is composed of two storage batteries 52 and 54 connected in series, and the current capacities of the two storage batteries 52 and 54, that is, the voltage between terminals is different. It is shown.
  • the horizontal axis in FIG. 3 is the discharge time, and the time t 0 is the current time.
  • the vertical axis is the SOC corresponding to the inter-terminal voltage. Since the SOC indicates the state of charge of the storage batteries 52 and 54, charge / discharge control is performed between the empty charge state where the SOC is 0% and the full charge state where the SOC is 100%. In practice, an appropriate charge upper limit and discharge lower limit are determined when the SOC is between 0% and 100%, and charge / discharge control is performed within that range.
  • FIG. 1 shows a charge upper limit voltage V CMAX that is a voltage between terminals corresponding to a charge upper limit SOC, and a discharge lower limit voltage V DMIN that is a terminal voltage corresponding to a discharge lower limit SOC.
  • the storage battery 52 is a 65% SOC is at the time t 0 of the current, battery 54, SOC at time t 0 the current is 45%.
  • the storage battery 52 and the storage battery 54 have the same capacity-voltage characteristics, and have different terminal voltages corresponding to the current SOC. If the discharge is continued as the battery block 20 from the current time t 0 , the SOC of the storage battery 52 and the SOC of the storage battery 54 decrease as the discharge time proceeds as shown in FIG. 3 while maintaining the difference of 20%. To do. On the contrary, if the discharge is continued as the battery block 20 from the current time t 0 , the SOC of the storage battery 52 and the SOC of the storage battery 54 maintain the 20% difference, as shown in FIG. Decreases with progress.
  • the change in the SOC according to the charging / discharging of the battery block 20 is in a translational relationship. From this, it is conceivable to use the average value of each SOC of the plurality of storage batteries 22 as the SOC of the battery block 20 as a whole. Therefore, in the prior art, the entire SOC of the battery block 20 is set to the average value of each SOC of the plurality of storage batteries 22. In the example of FIG.
  • the average value of the SOC of each of the plurality of storage batteries 22 is used as the SOC of the battery block 20 as the SOC of the battery block 20, the following problems arise. That is, when the battery block 20 is charged under a certain condition, if the current inter-terminal voltage varies between the storage batteries 22, the storage battery 22 that reaches the charging upper limit earlier than the average among the storage batteries 22. There is also. In this case, if the charging is continued based on the average SOC, the storage battery 22 that has already reached the charging upper limit is overcharged. Conversely, as the battery block 20, when discharging is performed under a certain condition, if the current inter-terminal voltage varies between the storage batteries 22, the storage battery that reaches the lower discharge limit earlier than the average among the storage batteries 22. There are also 22. In this case, if the discharge is continued based on the average SOC, the storage battery 22 that has already reached the discharge lower limit is overdischarged. This is the problem to be solved by the present invention. Below, the solution method of the subject is demonstrated
  • the time required for the storage battery 52 to reach the charging upper limit voltage V CMAX is t 1 . If the battery block 20 is further charged, the storage battery 52 is overcharged, so this time t 1 is the charge limit time for the battery block 20.
  • the capacity state of the storage battery 52 at time t 1 is indicated as P1, and the capacity state of the storage battery 54 is indicated as P2.
  • the contents of P1 and P2 are determined by the inter-terminal voltage of the storage battery 52 at time t 1 and its capacity-voltage characteristics, the inter-terminal voltage of the storage battery 54, and its capacity-voltage characteristics. In this case, the capacity voltage characteristic of the storage battery 52 and the capacity voltage characteristic of the storage battery 54 are the same.
  • the discharging of the battery block 20 from the time t 0 of the current continues under certain conditions, the storage battery 54 terminal voltage is low at the time t 0 of the current is faster than the inter-terminal voltage is higher battery 52, the discharge lower limit To reach.
  • the time for the storage battery 54 to reach the discharge lower limit voltage V DMIN is t 2 . If the battery block 20 is further charged, the storage battery 54 is overdischarged, so this time t 2 is the discharge limit time for the battery block 20.
  • the state of the capacity of the storage battery 52 at this time t 2 P3, the state of the capacity of the storage battery 54 will be indicated as P4.
  • the contents of P3 and P4 are also determined by the inter-terminal voltage of the storage battery 52 at time t 2 and its capacity-voltage characteristics, the inter-terminal voltage of the storage battery 54, and its capacity-voltage characteristics.
  • the capacity state of the storage battery 52 at the current time t 0 is indicated as P5
  • the capacity state of the storage battery 54 is indicated as P6.
  • the contents of P5 and P6 are also determined by the inter-terminal voltage of the storage battery 52 at time t 0 and its capacity voltage characteristics, the inter-terminal voltage of the storage battery 54 and its capacity voltage characteristics.
  • FIG. 5 summarizes the actual capacity states for P1 to P6.
  • the capacity value shown in FIG. 5 is an example for explanation, and may differ depending on the specific charging / discharging state of the battery block 20.
  • the capacitance of P1 is the capacity of the storage battery 1 at the time when the highest voltage battery is in the V CMAX, 2.0 Ah It is.
  • “When the storage battery with the highest voltage is at V CMAX ” means “when the storage battery constituting the battery block 20 first reaches V CMAX ”.
  • the storage battery with the highest voltage is the time t It is the storage battery with the highest voltage in 1 .
  • “when the storage battery with the highest voltage is at V CMAX ” is “when the storage battery 52 is at V CMAX ”. Therefore, the capacity of P1 is the capacity of the storage battery 52 at time t 1 when the storage battery 52 is at V CMAX , and indicates that it is 2.0 Ah.
  • the capacity of P2 is the capacity of the storage battery 2 when the storage battery with the highest voltage is at V CMAX and is 1.6 Ah.
  • the capacity of the storage battery 54 at the time t 1 when the storage battery 52 is at V CMAX is 1.6 Ah.
  • the capacity of P3 is the capacity of the storage battery 1 when the storage battery with the lowest voltage is at V DMIN and is 0.4 Ah. “When the storage battery having the lowest voltage is at V DMIN ” means “when V DMIN is first reached among the storage batteries constituting the battery block 20”. The storage battery having the lowest voltage is the time t 2 is the battery with the lowest voltage. In the example of FIG. 4, “when the storage battery with the lowest voltage is at V DMIN ” is “when the storage battery 54 is at V DMIN ”. Therefore, the capacity of P3 is the capacity of the storage battery 52 at time t 2 when the storage battery 54 is in the V DMIN, indicating that it is 0.4Ah.
  • the capacity of P4 is the capacity of the storage battery 2 when the storage battery with the lowest voltage is at V DMIN and is 0.0 Ah.
  • the capacity of the storage battery 54 at time t 2 when the storage battery 54 is at V DMIN indicates that it is 0.0 Ah.
  • the capacity of P5 is the current capacity of the storage battery 1 and is 1.3 Ah. In the example of FIG. 4, the capacity when the storage battery 52 is at the time t 0 is 1.3 Ah. Further, the capacity of P6 is the current capacity of the storage battery 2 and is 0.9 Ah. In the example of FIG. 4, the capacity when the storage battery 54 is at time t 0 is 0.9 Ah.
  • the full charge capacity estimation unit 40 of the charge / discharge control device 30 estimates the full charge capacity of the battery block 20 as follows using the data of FIG. 5.
  • (P1 + P2) is calculated and set as the first capacity of the battery block 20.
  • the first capacity is a constant condition determined as a whole of the battery block 20 from the current time t 0 of each of the plurality of storage batteries 22 constituting the battery block 20.
  • the capacity of the other storage battery 22 when any one of the plurality of storage batteries 22 reaches the charge upper limit V CMAX , which is the limit that cannot be charged any more, is represented by the capacity-voltage characteristics of the other storage batteries 22. Is an estimated value obtained by adding the capacity for each of the plurality of storage batteries 22.
  • (P3 + P4) is calculated and set as the second capacity of the battery block 20.
  • the second capacity is a constant condition determined in advance as a whole of the battery block 20 from the current time t 0 of each of the plurality of storage batteries 22 constituting the battery block 20.
  • the SOC estimation unit 44 of the charge / discharge control device 30 divides the dischargeable capacity of the battery block 20 estimated as described above by the estimated full charge capacity of the battery block 20 to charge the battery block.
  • the SOC that is the state index value is estimated.
  • the full charge capacity, dischargeable capacity, and SOC of the battery block 20 configured by connecting a plurality of storage batteries 22 having different capacities at the current time t 0 in series are estimated.
  • These estimated values are the sum of the capacities of the respective storage batteries 22 when one of the plurality of storage batteries 22 has reached the upper limit of charge, and the respective storage batteries when one of the plurality of storage batteries 22 has reached the lower limit of discharge. It is calculated based on the total capacity of 22 and the total capacity of each storage battery 22 at the present time. Therefore, since it can be predicted in advance how much remaining one of the plurality of storage batteries 22 will reach the upper charging limit, charging is controlled so as not to reach the upper charging limit, or charging is performed before the upper charging limit is reached.
  • FIG. 6 is a diagram comparing the full charge capacity, the dischargeable capacity, and the SOC in the charge / discharge control executed in the prior art of FIG. 3 and the charge / discharge control described in FIG.
  • the rated voltage is used as the voltage.
  • the full charge capacity and the dischargeable capacity in the battery block 20 are values per storage battery so that they can be compared with the values of the storage battery 52 and the storage battery 54.
  • the charge capacity and dischargeable capacity in the structure of FIG. There are few eyes. By doing in this way, it can prevent that each storage battery 22 which comprises the battery block 20 becomes overcharge and overdischarge.
  • the capacity voltage characteristics of the storage batteries 22 constituting the battery block 20 are required. As the storage battery 22 is repeatedly charged and discharged, the characteristics change with time, and the capacity-voltage characteristics change. Once the battery block 20 is configured by connecting a plurality of storage batteries 22 in series, it is not so easy to detect the change in the capacity-voltage characteristics of each storage battery 22 from the charge upper limit to the discharge lower limit. Therefore, in the battery block 20, a partial range of capacity-voltage characteristics is acquired for a range where charge / discharge is actually performed under a charge / discharge command, and an overall capacity-voltage characteristic over the upper limit of charge and the lower limit of discharge is obtained therefrom.
  • the estimated capacity voltage characteristic calculation procedure will be described with reference to FIGS.
  • a calibration capacity voltage characteristic group for a storage battery having the same specifications as the storage battery 22 constituting the battery block 20 is prepared.
  • the prepared calibration capacitance-voltage characteristic group is stored in the storage unit 32 described with reference to FIG. 1 (calibration characteristic storage step).
  • the calibration capacity-voltage characteristic group is a collection of capacity-voltage characteristics for an initial state manufactured as a storage battery and a plurality of time-lapse states after repeated charging and discharging.
  • typical data is prepared in advance by a storage battery manufacturer or the like for each type of storage battery 22, so that these can be used. If typical data is insufficient, data estimated from typical data can be used. In some cases, the capacity voltage characteristics of the storage battery 22 may actually be obtained experimentally for each of the initial state and the time-lapse state.
  • FIG. 7 is a diagram illustrating an example of a calibration capacitance-voltage characteristic group.
  • the horizontal axis is the discharge time, and the vertical axis is the voltage between terminals.
  • the charging / discharging of the storage battery 22 is constant power charging / discharging
  • the discharge time on the horizontal axis is the current-time product and indicates the capacity. did.
  • six capacitance voltage characteristics 70, 71, 72, 73, 74, and 75 are shown.
  • the capacity-voltage characteristic 70 is a characteristic line in the initial state of the storage battery corresponding to the storage battery 22, and the capacity-voltage characteristics 71, 72, 73, 74, and 75 have N1, N2, and N3 charge / discharge counts from the initial state, respectively.
  • N4, N5 are characteristic lines of the aging state.
  • the number of charge / discharge cycles is from N1 to N5 from the smallest to the largest.
  • the charge and discharge times increases, the greater the gradient of the capacitance-voltage characteristic, and the upper limit charge capacity is the capacity of the V CMAX, Mitsuru is the difference between the discharge limit capacity is the capacity of V DMIN Charge capacity decreases.
  • the capacitance-voltage characteristic is linear, and the slope increases as the number of times of charging / discharging increases.
  • the relationship between the capacitance and the voltage between terminals is not necessarily a linear relationship. is not.
  • the calibration capacity voltage characteristic group may be acquired by either charging or discharging.
  • the voltage is acquired after a sufficient time interval before and after charging, or after a sufficient time interval before and after discharging. You may acquire based on.
  • two sets of calibration capacity voltage characteristic groups are acquired in advance for the charge side and the discharge side.
  • FIG. 8 shows the capacitance-voltage characteristic 80 acquired for the partial range.
  • a charge / discharge command is given at the current terminal voltage V 0 of the storage battery 22, and a change in the terminal voltage in the range given by the power-time product of the charge / discharge command is a partial range of capacity-voltage characteristics 80.
  • Capacitance-voltage characteristic 80 may be acquired at the time of a charge command or at the time of a discharge command.
  • the capacity-voltage characteristics 70 constituting the calibration capacity-voltage characteristic group stored in the storage unit 32 Compare with 71, 72, 73, 74, and 75, respectively. Then, based on the capacitance voltage characteristic closest to the partial range capacitance voltage characteristic 80, the capacitance voltage characteristic in the range of V CMAX to V DMIN is calculated (full range characteristic calculation step). At this time, if both the charge side and the discharge side are prepared for the calibration capacity voltage characteristic group, select either one according to whether the acquisition of the partial range of the capacity voltage characteristic 80 is due to charging or discharging. To do.
  • FIGS. 9 and 10 are diagrams showing this state.
  • FIG. 9 is a diagram in which FIGS. 7 and 8 are superimposed.
  • the slope of the capacitive voltage characteristic 80 in the partial range is closest to the capacitive voltage line 75 of the calibration capacitive voltage characteristic group. Therefore, by using the slope of the capacitance-voltage characteristic 75, as shown in FIG. 10, the partial-range capacitance-voltage characteristic 80 is passed through the current state point indicated by the current terminal voltage V 0 and the discharge time. Extending to the V CMAX side and the V DMIN side, a capacitance voltage characteristic 82 in the entire range is obtained.
  • the capacity voltage characteristic 80 of the partial range is in the middle of the two capacity voltage characteristics for calibration, the capacity voltage characteristic of the entire range from the charge upper limit to the discharge lower limit is calculated using an interpolation method or the like. To do. Further, instead of the gradient of the partial range, the capacitance-voltage characteristic may be selected based on the closeness of the curve shape of the characteristic change in a certain wide range.
  • the partial range of capacity-voltage characteristics may be acquired for each number of times of charging / discharging in which the storage battery 22 varies with time. You may determine beforehand the time which acquires the capacitance-voltage characteristic of a partial range. It is preferable that the capacity voltage characteristics of the entire range calculated from the capacity voltage characteristics of the partial range are stored for each storage battery 22 and updated each time the capacity voltage characteristics of the new entire range are calculated. In addition to the number of charge / discharge cycles, the capacity-voltage characteristics vary depending on the battery temperature, the charge / discharge rate, the degree of battery degradation calculated based on a predetermined standard, etc. For each battery deterioration degree, it is preferable to arrange a calibration capacity-voltage characteristic group in advance. In the above description, the capacity voltage characteristics are stored in a map format, but may be stored in an approximate expression or the like.
  • FIGS. 3 and 4 the capacity voltage characteristics of the respective storage batteries 22 are assumed to be the same. This is true in a normal case, but the actual capacity-voltage characteristics differ depending on the battery temperature, the rate of change of charge / discharge power per unit time, the degree of battery deterioration, and the like. Therefore, depending on the characteristics of the storage batteries 22 constituting the battery block 20, cases as shown in FIGS. For example, at the end of the life of the storage battery 22, the variation in capacity-voltage characteristics becomes large, and the cases shown in FIGS. 11 and 12 are likely to occur.
  • FIG. 11 shows a case where the gradient of the capacity-to-terminal voltage in the capacity-voltage characteristics of the storage battery 90 and the storage battery 92 constituting the battery block 20 is considerably different.
  • FIG. 12 shows a case where the capacity voltage characteristics of the storage batteries 22 of the storage battery 94 and the storage battery 96 constituting the battery block 20 intersect each other between V CMAX and V DMIN .
  • the capacity-voltage characteristic is obtained in advance for each of the storage batteries 22 constituting the battery block 20, and the battery block as a whole is in a certain condition from the current state.
  • the capacity of the other storage battery is estimated based on the capacity-voltage characteristics, and the capacity of each storage battery is added as the first capacity, and when one storage battery reaches the lower limit of discharge.
  • Estimate the capacity of the other storage battery based on the capacity-voltage characteristics, add the capacity of each storage battery as the second capacity, and subtract the second capacity from the first capacity as the entire battery block Estimated as full charge capacity.
  • the full charge capacity of the battery block estimated in this way is the sum of the capacity of each storage battery 22 when one of the plurality of storage batteries 22 reaches the upper limit of charge, and one of the plurality of storage batteries 22 It is calculated based on the sum of the capacities of the storage batteries 22 when the discharge lower limit is reached and the sum of the capacities of the storage batteries 22 at the present time. Therefore, since it can be predicted in advance how much remaining one of the plurality of storage batteries 22 will reach the upper charging limit, charging is controlled so as not to reach the upper charging limit, or charging is performed before the upper charging limit is reached. Can be stopped, so overcharge can be prevented.
  • the discharge is controlled so as not to reach the discharge lower limit, or before the discharge lower limit is reached. Therefore, overdischarge can be prevented. Since the battery block 20 charge / discharge control is performed using the estimated full charge capacity of the battery block and the like as described above, any storage battery 22 is overcharged or overdischarged even if the capacity of each storage battery 22 varies. There is no.
  • the battery block charge / discharge control device can be used for charge / discharge control of a storage battery assembly.
  • charge / discharge control system 10 charge / discharge control system, 12 power supply unit, 14 load unit, 16 power converter, 20 battery block, 22, 52, 54, 90, 92, 94, 96 storage battery, 30 charge / discharge control device, 32 storage unit, 34 calibration Capacity voltage characteristics group file, 40 full charge capacity estimation section, 42 chargeable / dischargeable capacity estimation section, 44 SOC estimation section, 60, 70, 71, 72, 73, 74, 75 capacity voltage characteristics, 80, 82 (partial Capacitance voltage characteristics (in range).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 充放電制御装置(30)は、電池ブロック(20)を構成する蓄電池(22)のそれぞれについて、容量電圧特性を予め求めておき、現時点の状態から電池ブロックの全体として一定条件の下で充放電を継続する。充電上限に1つの蓄電池が到達したときにおける他の蓄電池の容量を容量電圧特性に基づいて推定し、各蓄電池の容量を加算して第1容量とし、放電下限に1つの蓄電池が到達したときにおける他の蓄電池の容量を容量電圧特性に基づいて推定し、各蓄電池の容量を加算して得られる値を第2容量とし、第1容量から第2容量を差し引いた値を、電池ブロックの全体としての満充電容量として推定する。

Description

電池ブロックの充放電制御装置
 本発明は、電池ブロックの充放電制御装置に係り、特に、複数の蓄電池を直列接続して構成される電池ブロックの充放電制御装置に関する。
 蓄電池は充放電可能であるが、これ以上充電できない限度である充電上限と、これ以上放電できない限度である放電限界がある。蓄電池を効率よく利用するには、蓄電池の現在の残容量を見て、そこからできるだけ充電限界に近いところまで充電し、またそこからできるだけ放電限界に近いところまで放電することが好ましい。
 例えば、特許文献1には、蓄電池の充放電方法として、電流設定値に従って定電流充電し、電池電圧が電圧設定値に到達した時点で、定電圧充電に切替える方法が用いられることを述べている。ここでは、多直列状態の蓄電池を充電中に、単電池毎、あるいは複数個の組電池毎に、電池電圧を検出し、検出した各電池電圧のいずれかが所定の上限値に到達した時点で、その時点の全体電圧値で定電圧充電することが開示されている。
 また、特許文献2には、電池の残容量検出方法としては、電池電流および電池電圧を検出し、検出された電池電流の積算に基づいて電池の残容量を演算する第1の方法と、電池電圧に基づいて電池の残容量を演算する第2の方法とがあることを述べている。そして、電池容量が高くなる領域と低くなる領域では、第2の方法の重みづけを大きくし、それ以外の領域では第1の方法の重みづけを大きくすることを開示している。
特開2002-152984号公報 特開2006-112786号公報
 蓄電池に対する充電が充電限界を超すと過充電となり、放電限界を超すと過放電となり、いずれも蓄電池に損傷を与えることがある。したがって、蓄電池の充放電は、現在の充電状態を把握して、そこからの充放電が充電限界と放電限界を超えないように制御が行われる。蓄電池の現在の充電状態を示す指標として、SOC(State Of Charge)が用いられる。蓄電池の蓄電している量である容量は、電力×時間の電力時間積で示すことができるが、充電限界のときの容量から放電限界のときの容量を差し引いたものを満充電容量とし、現在の容量を満充電容量で除し、これを百分率(%)で示したものがSOCである。したがって、蓄電池の充放電制御は、SOCが0%から100%の間、好ましくは、その中で余裕を持った範囲で行われる。
 ところで、蓄電池として、高電圧、大電流を必要とする場合は、複数の蓄電池を直列または並列接続した電池ブロックの形態で用いられる。電池ブロックの充放電制御も、電池ブロックとしてのSOCを用いて行われる。複数の蓄電池を直列接続した電池ブロックは、そこに流れる充放電電流は、各蓄電池で同じであるので、各蓄電池が全く同じ特性を有していれば、充放電による各蓄電池の容量の変化は同一となる。すなわち、各蓄電池のSOCが同じとなり、電池ブロックとしてのSOCも同じ値となる。実際には各蓄電池単位電池の特性は完全に同一ではないが、その場合でも、充放電に伴う容量の変化は大きくは変わらないので、電池ブロックのSOCとしては、各蓄電池のSOCの平均値を用いることが行われる。
 ここで、各蓄電池の間のSOCのばらつきが大きいと、充放電によるSOCの変化が同じでも、SOCの値がより高い蓄電池は、より早く充電限界に達するし、SOCの値がより低い蓄電池は、より早く放電限界に達する。したがって、電池ブロックの充放電制御を各蓄電池のSOCの平均値に基づいて実行すると、電池ブロックを構成する蓄電池の中で過充電または過放電となることが生じ、予期せぬ警報が出力されることになる。
 本発明の目的は、電池ブロックを構成する各蓄電池の特性がばらついても、電池ブロック全体の特性を把握することにより、安全で、効率的な充放電制御装置を行うことができる電池ブロックの充放電制御装置を提供することである。
 本発明に係る電池ブロックの充放電制御装置は、複数の蓄電池を直列接続して構成される電池ブロックの充放電制御装置であって、電池ブロックを構成する蓄電池のそれぞれについて、蓄電池としての容量と蓄電池の端子間電圧との関係である容量電圧特性を予め定めた容量電圧特性算出手順によって求めて記憶する特性記憶部と、複数の蓄電池のそれぞれの現時点の状態から、電池ブロックの全体として予め定めた一定条件の下で充電を継続し、これ以上充電できない限度である充電上限に複数の蓄電池のいずれか1つが到達したときにおける他の蓄電池の容量を、他の蓄電池の容量電圧特性に基づいて推定し、複数の蓄電池のそれぞれについての容量を加算して得られる値を電池ブロック全体の第1容量とする第1容量推定部と、複数の蓄電池のそれぞれの現時点の状態から、電池ブロックの全体として予め定めた一定条件の下で放電を継続し、これ以上放電できない限度である放電下限に複数の蓄電池のいずれか1つが到達したときにおける他の蓄電池の容量を、他の蓄電池の容量電圧特性に基づいて推定し、複数の蓄電池のそれぞれについての容量を加算して得られる値を電池ブロック全体の第2容量とする第2容量推定部と、第1容量から第2容量を差し引いた値を、電池ブロックの全体としての満充電容量として推定する満充電容量推定部と、を備え、推定された電池ブロックの満充電容量を用いて充放電制御を行う。
 本発明に係る電池ブロックの充放電制御装置によれば、電池ブロックを構成する各蓄電池の特性がばらついても、電池ブロック全体の特性を把握することにより、安全で、効率的な充放電制御装置を行うことができる。
本発明に係る実施形態の充放電制御装置を含む蓄電池集合体の充放電制御システムの構成図である。 本発明に係る実施の形態で用いられる蓄電池の容量電圧特性を示す図である。 従来技術における電池ブロックの充放電制御に用いられる平均SOCを説明する図である。 本発明に係る実施の形態において、第1容量、第2容量、現時点容量を示す図である。 図4における具体的な容量の例を示す図である。 本発明に係る実施の形態の図4と従来技術の図2とにおける満充電容量と放電可能容量を比較する図である。 本発明に係る実施の形態の充放電制御装置で用いられる容量電圧特性を求める手順のうち、較正用蓄電池の容量電圧特性群を説明する図である。 本発明に係る実施の形態の充放電制御装置で用いられる容量電圧特性を求める手順のうち、電池ブロックを構成する複数の蓄電池の中の任意の蓄電池について、部分的範囲について取得される容量電圧特性を示す図である。 図7と図8を重ね合わせた図である。 図9の結果に基づいて、図8の任意の蓄電池について、全範囲の容量電圧特性を算出する図である。 電池ブロックを構成する蓄電池の特性のばらつきの他の例について、電池ブロックの満充電容量等を推定する図である。 図11とは別の例について、電池ブロックの満充電容量等を推定する図である。
 以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下では、蓄電池としてリチウムイオン電池、ニッケル水素電池を説明するが、これ以外の蓄電池であってもよい。例えば、ニッケルカドミウム電池等の二次電池であってもよい。以下では、電池ブロックとして、5つの蓄電池を直列接続したものを述べるが、これは説明のための例示であって、直列接続される蓄電池の数は5以外の複数であっても構わない。また、2つの蓄電池が直列に接続された電池ブロックについて具体的な充放電特性や容量算出を述べるが、これも説明のための例示であって、3以上の蓄電池が直列に接続された電池ブロックについても、以下の説明が同様に適用される。なお、複数の電池ブロックを、例えば並列に接続して、1つの蓄電池集合体として、その充放電制御を行うものとしてもよい。その場合でも、各電池ブロックについて、以下の説明が同様に適用される。
 また、以下では、満充電容量等を求めるために用いられる蓄電池の容量電圧特性について、容量と端子間電圧の間の関係を直線関係として述べるが、これは説明を簡単にするためのものであって、容量と端子間電圧の間の関係が非線形であってもよい。
 以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。
 図1は、電池ブロックの充放電制御システム10の構成を示す図である。電池ブロックの充放電制御システム10は、複数の蓄電池22を組み合わせた電池ブロック20と、電源部12と、負荷部14との間の電力管理を通して、電池ブロック20の最適な充放電制御を行うシステムである。ここでは、特に、複数の蓄電池22を直列に接続した電池ブロック20の満充電容量等を適切に推定し、その推定された満充電容量等を用いて充放電制御を行うことで、電池ブロック20を構成する蓄電池22の特性がばらついても、各蓄電池22が過充電または過放電にならないように充放電制御を行う機能を有する。
 電源部12は、外部商用電源、太陽光発電システム等を含む。外部商用電源は、単相または三相の交流電力源であり、例えば外部の電力会社から供給される。太陽光発電システムは、太陽光エネルギを直流電力に変換する光電変換システムである。負荷部14は、工場の負荷であり、機械設備の他、一般照明、一般空調、厨房器具、サーバやPC等の事務機器、工場内空調等を含む。
 電力変換器16は、充放電制御装置30の充放電指令の下で、電源部12からの充電電力を電池ブロック20へ供給し、あるいは、電池ブロック20からの放電電力を負荷部14へ供給する機能を有する。具体的には、充放電指令に基づいて、電源部12の交流電力を蓄電池22の直流電力へ電力変換し、または電源部12の直流電力の電圧を蓄電池22に適した電圧へ電圧変換し、あるいは蓄電池22の電圧と負荷部14に適した電圧へ電圧変換を行う。電力変換器16は、双方向AC/DCコンバータ、双方向DC/DCコンバータ等のコンバータで、実際に行われる変換の内容に応じて、用いられるコンバータの種類が選択される。
 電池ブロック20は、所定の出力電圧と充放電電力を得るために、予め定められた個数の蓄電池22を直列接続して蓄電池制御単位としたものである。図1の例では、5つの蓄電池22を直列接続して電池ブロック20が構成されている。なお、1つの蓄電池22は、300のセルと呼ばれる単位蓄電池から構成される。各単位蓄電池は、例えば、リチウムイオン電池、ニッケル水素電池である。なお、電池ブロック20の構成は上記説明に限らず、例えば、蓄電池22を1つの単位蓄電池で構成してもよい。電池ブロック20は2つ以上であれば、蓄電池22の数はいくつでもよい。
 電池ブロック20を構成する5つの蓄電池22のそれぞれの端子間電圧は、図示されていない電圧検出器によって検出される。図1では、検出された端子間電圧として、V1,V2,V3,V4,V5が示されている。なお、V1からV5を合計した値が、電池ブロック20の端子間電圧に相当する。また、蓄電池22の温度は、蓄電池温度として、図示されていない温度検出器によって検出される。また、各電池ブロック20に流れる電流は、電池ブロック電流として、図示されていない電流検出器によって検出される。これらのデータは、充放電制御装置30に伝送される。
 充放電制御装置30は、図示されていない外部の制御装置等から入力される充放電制御指令に基づいて、電力変換器16に具体的な充放電制御指令を送信する機能を有する。その際に、各蓄電池22が過充電、過放電とならないように、電池ブロック20のSOCを監視しながら、充放電制御を行う。充放電制御装置30は、コンピュータで構成することができる。もちろん、個別の制御回路を組み合わせて構成してもよい。
 充放電制御装置30は、電池ブロック20としての満充電容量を推定する満充電容量推定部40と、電池ブロック20の現在の充放電可能容量を推定する充放電可能容量推定部42と、電池ブロック20のSOCを推定するSOC推定部44を含んで構成される。充放電制御装置30は、これらの機能によって推定された電池ブロック20の満充電容量、充放電可能容量、SOCに基づいて、充放電制御を行うことになる。これらの機能は、ソフトウェアを実行することで実現できる。具体的には、充放電制御プログラムを実行することで、これらの機能を実現できる。なお、これらの機能の一部をハードウェアで実現するものとしてもよい。
 充放電制御装置30に接続される記憶部32は、プログラム等を格納する機能を有する記憶装置である。ここでは特に、電池ブロック20を構成する蓄電池22と同じ仕様の蓄電池について、予め、電池として製造された初期状態と、その後充放電を繰り返し特性の経時変化が進んだ複数の経時変化状態とについて、それぞれの容量電圧特性を予め用意して較正用容量電圧特性群ファイル34として記憶する機能を有する。ここで、蓄電池22の容量電圧特性とは、蓄電池22に蓄電されている電力時間積を蓄電池22としての容量として、容量と蓄電池22の端子間電圧との間の特性関係である。
 上記構成の作用を、図2から図6を用いて詳細に説明する。電池ブロック20が過充電、過放電にならないように充放電制御を行うには、電池ブロック20を構成する各蓄電池22の充電状態を知る必要がある。蓄電池22の充電状態は、蓄電池22に蓄電されている電力時間積で示すことができるので、充電状態を示す1つの方法は、蓄電池22に出入りする電力量を時々刻々追跡して、蓄電池22における電力時間積を逐次計算することである。また、蓄電池22における電力時間積は、蓄電池22の容量を示すが、蓄電池22の端子間電圧と容量との間には相関関係があるので、その相関関係を用いることもできる。容量と端子間電圧の間の関係は、容量電圧特性であるので、この容量電圧特性を用いて、蓄電池22の端子間電圧で蓄電池22の充電状態を示すことができる。
 図2は、容量電圧特性60を示す図である。図2の横軸は、容量=電力時間積である。図2において、紙面の左側に行くほど容量が大きく、右側に行くほど容量が小さい。縦軸は、蓄電池22の端子間電圧である。電力=電圧×電流であるので、電流が一定でも電圧が変化すると電力が変化するが、リチウムイオン電池、ニッケル水素電池の場合、SOCの変化に対して、電圧変化は非常に小さいので、電圧に定格電圧を用いるとして、電力時間積は、電流時間積(Ah)で置き換えることができる。図2では、容量電圧特性を直線関係としたが、実際には必ずしも直線関係ではなく曲線関係となることがある。その直線関係の傾き、初期値や、曲線関係の曲線形状、初期値は、蓄電池22の種類、蓄電池22の材料構成、蓄電池22の構造、充放電履歴等によって異なってくる。蓄電池22の材料構成の相違としては、正極材料、負極材料、電解液材料等の相違がある。また、充放電履歴の相違としては、充放電サイクル数の相違がある。
 ここで、VCMAXは、これ以上充電できない限度である充電上限における端子間電圧である充電上限電圧である。そのときの容量が充電上限容量(Ah)MAXである。また、VDMINは、これ以上放電できない限度である放電下限における端子間電圧である放電下限電圧である。そのときの容量が放電下限容量(Ah)MINである。なお、VCMAXとVDMINは、蓄電池22の開放端電圧(OCV)で規定されることが多いが、必ずしもOCVで規定する必要はなく、他の指標によっても構わない。例えば、電流値を規定した端子間電圧としてVCMAXとVDMINを定義することができる。
 ここで、蓄電池22の満充電容量は、VCMAXにおける容量である充電上限容量(Ah)MAXと、VDMINにおける容量である放電下限容量(Ah)MINとの差である。また、蓄電池22の現在の放電可能容量は、現在の容量と、放電下限容量(Ah)MINとの差である。なお、SOCは、(放電可能容量/満充電容量)×100%で示される。したがって、蓄電池22の容量およびSOCは、その蓄電池22の端子間電圧に基づいて求めることができる。
 図1で説明したように、電池ブロック20を構成する各蓄電池22の端子間電圧V1,V2,V3.V4,V5は、充放電制御装置30に伝送されてくるので、この端子間電圧V1,V2,V3,V4,V5から各蓄電池22の容量を求めることができる。電池ブロック20は、5つの蓄電池22が直列接続されているので、各蓄電池22に出入りする電流は同じである。したがって、電池ブロック20を構成する各蓄電池22にはすべて同じ充放電電流が流れるので、電池ブロック20を構成する各蓄電池22の容量は、同じように変化することになる。
 同じように変化するというのは、各蓄電池22の容量電圧特性がすべて同じである場合である。電池ブロック20が、同じ仕様で、同じ時期に製造された5つの蓄電池22で構成されるときは、出荷段階で容量電圧特性がチェックされる。したがって、電池ブロック20の初期状態においては、各蓄電池22の容量電圧特性は同じである。電池ブロック20が充放電を繰り返すと、各蓄電池22も充放電を繰り返す。蓄電池22は充放電を繰り返すことによって、容量電圧特性が変化する。しかし、電池ブロック20が充放電を繰り返しても、各蓄電池22は直列に接続されているので、各蓄電池22に流れる充放電電流は同じである。このことから、電池ブロック20が充放電を繰り返しても、各蓄電池22の間で、容量電圧特性の変化は、ほぼ同じように生じる。したがって、通常の場合は、電池ブロック20を構成する各蓄電池22の容量電圧特性は揃っていることになる。
 電池ブロック20を構成する各蓄電池22の間で容量電圧特性が異なる場合としては、電池ブロック20を構成する蓄電池22の一部を交換した場合がある。このときは、交換して新しく電池ブロック20を構成することになった蓄電池22の充放電履歴が他の蓄電池22と相違することがある。充放電履歴が相違すると、容量電圧特性が相違するので、その場合には、電池ブロック20を構成する各蓄電池22の間で容量電圧特性が異なることになる。また、各蓄電池22の間の個性によって、同じ充放電履歴であっても、容量電圧特性が異なってくることもある。電池ブロック20を構成する各蓄電池22の間で容量電圧特性が異なってくることがある。これは、劣化特性が他の蓄電池22と異なっている場合である。また、充放電が多く繰り返されて蓄電池22が寿命末期になると、容量電圧特性のばらつきが大きくなるので、この場合にも、各蓄電池22の間で容量電圧特性が異なってくる。
 このように、通常の場合は、電池ブロック20を構成する各蓄電池22の容量電圧特性は揃っているので、以下では、この通常の場合を主に説明し、その後に、電池ブロック20を構成する各蓄電池22の容量電圧特性が異なる場合について説明することにする。
 通常の場合、電池ブロック20を構成する各蓄電池22の容量電圧特性は揃っているので、初期状態の容量が揃っていれば、電池ブロック20が充放電を繰り返しても、各蓄電池22の容量は同じように変化する。したがって、このような場合には、電池ブロック20の全体としての充電状態であるSOCは、各蓄電池22のSOCと同じである。つまり、電池ブロック20の充放電制御は、各蓄電池22の中の1つの蓄電池22のSOCに基づいて行うことが可能である。
 通常の場合、電池ブロック20を構成する各蓄電池22の容量電圧特性は揃っているが、その場合でも、初期状態の充電状態が相違する等の理由で、現時点での各蓄電池22の容量が相違することがある。例えば、ある蓄電池22の初期状態の容量を示す端子間電圧が、他の蓄電池22の初期状態の端子間電圧よりも小さい場合、電池ブロック20が充放電を行うと、この端子間電圧の差を維持したまま、各蓄電池22の端子間電圧が変化する。このようなときには、電池ブロック20の充放電制御は、各蓄電池22の中の1つの蓄電池22のSOCのみに基づいて行うことができない。
 図3は、複数の蓄電池22の現時点での端子間電圧が相違しているときに、電池ブロック20が充放電を行うと、どのように各蓄電池22の端子間電圧が変化するかを説明する図である。ここでは、説明を簡単にするために、電池ブロック20が直列に接続される2つの蓄電池52,54で構成され、この2つの蓄電池52,54の現時点の容量、すなわち端子間電圧が相違する例が示されている。
 図3の横軸は放電時間で、時間t0が現時点である。縦軸は、端子間電圧に対応するSOCである。SOCは、蓄電池52,54の充電状態を示すものであるので、SOCが0%の空充電状態から100%の満充電状態の間で充放電制御が行われる。実際には、SOCが0%から100%の間で適当な充電上限と放電下限を定め、その範囲で充放電制御が行われる。図1では、充電上限のSOCに相当する端子間電圧である充電上限電圧VCMAXと、放電下限のSOCに相当する端子間電圧である放電下限電圧VDMINが示されている。
 図3の場合、蓄電池52は、現時点の時間t0におけるSOCが65%で、蓄電池54は、現時点の時間t0におけるSOCが45%である。蓄電池52と蓄電池54とは、容量電圧特性が同じで、現時点のSOCに対応する端子間電圧が相違する。この現時点の時間t0から、電池ブロック20として放電を継続すると、蓄電池52のSOCと蓄電池54のSOCは、20%の差を維持したまま、図3に示すように、放電時間が進むにつれて低下する。逆に、この現時点の時間t0から、電池ブロック20として放電を継続すると、蓄電池52のSOCと蓄電池54のSOCは、20%の差を維持したまま、図3に示すように、放電時間が進むにつれて低下する。
 このように、蓄電池52と蓄電池54のSOCに対応する端子間電圧が相違しても、電池ブロック20の充放電に従うSOCの変化は、互いに平行移動の関係にある。このことから、電池ブロック20の全体としてのSOCとして、複数の蓄電池22の各SOCの平均値を用いることが考えられる。そこで、従来技術において、電池ブロック20の全体のSOCを、複数の蓄電池22の各SOCの平均値とすることが行われる。図3の例では、現時点の時間t0において、蓄電池52のSOC=65%と、蓄電池54のSOC=45%の平均値であるSOC=55%が、電池ブロック20の現時点の時間t0におけるSOCとされる。そして、図3の例の場合、従来技術では、電池ブロック20の現時点の時間t0のSOC=55%として、電池ブロック20の充放電制御が行われる。
 このように、電池ブロック20のSOCとして、複数の蓄電池22のそれぞれのSOCの平均値を用いることは便利であるが、以下のような課題が生じる。すなわち、電池ブロック20として、一定条件で充電を行ったとき、現時点での端子間電圧が各蓄電池22の間でばらついていると、各蓄電池22の中で平均よりも早く充電上限に達する蓄電池22もある。この場合に平均SOCに基づいて充電を継続すると、既に充電上限に達した蓄電池22は過充電となる。逆に、電池ブロック20として、一定条件で放電を行ったとき、現時点での端子間電圧が各蓄電池22の間でばらついていると、各蓄電池22の中で平均よりも早く放電下限に達する蓄電池22もある。この場合に平均SOCに基づいて放電を継続すると、既に放電下限に達した蓄電池22は過放電となる。これが本発明が解決しようとする課題である。以下に、その課題の解決方法を説明する。
 図4は、図3と同じように、現時点の時間t0における端子間電圧異なる蓄電池52と蓄電池54が直列に接続された電池ブロック20について、一定の条件で充放電を継続したときの端子間電圧と時間の関係を示す詳細図である。図4の横軸は放電時間であるが、縦軸には端子間電圧が取られている。ここでは、電池ブロック20の充放電の一定条件として、充放電時間の経過と共に端子間電圧が直線的に変化する定電力充放電が取られている。なお、電力を構成する電圧として定格電圧を用いれば、定電流充放電である。また、定電力充放電でないときは、充放電時間の経過に従って、曲線的に端子間電圧が変化することになる。
 現時点の時間t0から電池ブロック20の充電が一定条件の下で継続すると、現時点の時間t0において端子間電圧が高い蓄電池52は、端子間電圧が低い蓄電池54よりも早く、充電上限に達する。図4では、蓄電池52が充電上限電圧VCMAXに達する時間をt1としてある。これ以上電池ブロック20の充電を継続すると、蓄電池52は過充電となるので、この時間t1が電池ブロック20としての充電限界時間である。この時間t1における蓄電池52の容量の状態をP1、蓄電池54の容量の状態をP2として示すことにする。P1,P2の内容は、時間t1における蓄電池52の端子間電圧と、その容量電圧特性、蓄電池54の端子間電圧と、その容量電圧特性で定められる。今の場合、蓄電池52の容量電圧特性と蓄電池54の容量電圧特性は同じである。
 また、現時点の時間t0から電池ブロック20の放電が一定条件の下で継続すると、現時点の時間t0において端子間電圧が低い蓄電池54は、端子間電圧が高い蓄電池52よりも早く、放電下限に達する。図4では、蓄電池54が放電下限電圧VDMINに達する時間をt2としてある。これ以上電池ブロック20の充電を継続すると、蓄電池54は過放電となるので、この時間t2が電池ブロック20としての放電限界時間である。この時間t2における蓄電池52の容量の状態をP3、蓄電池54の容量の状態をP4として示すことにする。P3,P4の内容も、時間t2における蓄電池52の端子間電圧と、その容量電圧特性、蓄電池54の端子間電圧と、その容量電圧特性で定められる。
 図4では、現時点の時間t0における蓄電池52の容量の状態をP5、蓄電池54の容量の状態をP6として示される。P5,P6の内容も、時間t0における蓄電池52の端子間電圧と、その容量電圧特性、蓄電池54の端子間電圧と、その容量電圧特性で定められる。
 図5は、P1からP6について、実際の容量状態をまとめたものである。勿論、図5で示す容量の値は、説明のための例示であり、電池ブロック20の具体的な充放電状況によって、これと異なることがある。
 図5の例では、電池ブロック20を構成する2つの蓄電池をそれぞれ蓄電池1、蓄電池2として、P1の容量は、最も電圧の高い蓄電池がVCMAXにあるときの蓄電池1の容量で、2.0Ahである。「最も電圧の高い蓄電池がVCMAXにあるとき」とは、「電池ブロック20を構成する蓄電池の中で最初にVCMAXに達したとき」の意味で、最も電圧の高い蓄電池とは、時間t1において最も電圧の高い蓄電池のことである。図4の例では、「最も電圧の高い蓄電池がVCMAXにあるとき」は、「蓄電池52がVCMAXにあるとき」である。したがって、P1の容量は、蓄電池52がVCMAXにある時間t1における蓄電池52の容量で、それが2.0Ahであることを示す。
 同様に、P2の容量は、最も電圧の高い蓄電池がVCMAXにあるときの蓄電池2の容量で、1.6Ahである。図4の例では、蓄電池52がVCMAXにある時間t1における蓄電池54の容量で、それが1.6Ahであることを示す。
 P3の容量は、最も電圧の低い蓄電池がVDMINにあるときの蓄電池1の容量で、0.4Ahである。「最も電圧の低い蓄電池がVDMINにあるとき」とは、「電池ブロック20を構成する蓄電池の中で最初にVDMINに達したとき」の意味で、最も電圧の低い蓄電池とは、時間t2において最も電圧の低い蓄電池のことである。図4の例では、「最も電圧の低い蓄電池がVDMINにあるとき」は、「蓄電池54がVDMINにあるとき」である。したがって、P3の容量は、蓄電池54がVDMINにある時間t2における蓄電池52の容量で、それが0.4Ahであることを示す。
 同様に、P4の容量は、最も電圧の低い蓄電池がVDMINにあるときの蓄電池2の容量で、0.0Ahである。図4の例では、蓄電池54がVDMINにある時間t2における蓄電池54の容量で、それが0.0Ahであることを示す。
 なお、P5の容量は、現在の蓄電池1の容量で、1.3Ahである。図4の例では、蓄電池52が時間t0にあるときの容量で、それが1.3Ahであることを示す。また、P6の容量は、現在の蓄電池2の容量で、0.9Ahである。図4の例では、蓄電池54が時間t0にあるときの容量で、それが0.9Ahであることを示す。
 図1に戻り、充放電制御装置30の満充電容量推定部40は、図5のデータを用いて、以下のように、電池ブロック20の満充電容量を推定する。まず、図5において、(P1+P2)を計算して、これを電池ブロック20の第1容量とする。具体的には、第1容量=(P1+P2)=(2.0+1.6)Ah=3.6Ahである。これを図1の構成で説明すると、第1容量とは、電池ブロック20を構成する複数の蓄電池22のそれぞれの現時点の時間t0の状態から、電池ブロック20の全体として予め定めた一定条件の下で充電を継続し、これ以上充電できない限度である充電上限であるVCMAXに複数の蓄電池22のいずれか1つが到達したときにおける他の蓄電池22の容量を、他の蓄電池22の容量電圧特性に基づいて推定し、複数の蓄電池22のそれぞれについての容量を加算して得られる推定値である。
 次に、図5において、(P3+P4)を計算して、これを電池ブロック20の第2容量とする。具体的には、第2容量=(P3+P4)=(0.4+0.0)Ah=0.4Ahである。これを図1の構成で説明すると、第2容量とは、電池ブロック20を構成する複数の蓄電池22のそれぞれの現時点の時間t0の状態から、電池ブロック20の全体として予め定めた一定条件の下で放電を継続し、これ以上放電できない限度である放電下限であるVDMINに複数の蓄電池22のいずれか1つが到達したときにおける他の蓄電池22の容量を、他の蓄電池22の容量電圧特性に基づいて推定し、複数の蓄電池22のそれぞれについての容量を加算して得られる推定値である。
 そして、第1容量から第2容量を差し引いた値を、電池ブロック20の全体としての満充電容量として推定する。具体的には、図4の場合、満充電容量=第1容量-第2容量=(P1+P2)-(P3+P4)=(2.0+1.6)Ah-(0.4+0.0)Ah=3.2Ahである。これから、1つの蓄電池当たりの満充電容量=3.2Ah/2=1.6Ahとなる。
 また、充放電制御装置30の充放電可能容量推定部42は、図5のデータを用いて、以下のように、電池ブロック20の充放電可能容量を推定する。まず、図5において、(P5+P6)を計算して、これを電池ブロック20の現時点容量とする。具体的には、現時点容量=(P5+P6)=(1.3+0.9)Ah=2.2Ahである。これを図1の構成で説明すると、現時点容量とは、電池ブロック20を構成する複数の蓄電池22のそれぞれについて現時点の時間t0の容量を加算して得られる推定値である。
 そして、現時点容量から第2容量を差し引いた値を、電池ブロック20の全体としての放電可能容量として推定する。具体的には、図4の場合、放電可能容量=現時点容量-第2容量=(P5+P6)-(P3+P4)=(1.3+0.9)Ah-(0.4+0.0)Ah=1.8Ahである。これから、1つの蓄電池当たりの放電可能容量=1.8Ah/2=0.9Ahである。
 また、充放電制御装置30のSOC推定部44は、上記のようにして推定された電池ブロック20の放電可能容量を、電池ブロック20の推定された満充電容量で除して、電池ブロックの充電状態指標値であるSOCを推定する。このように、SOC推定部44は、充電状態推定部である。具体的には、図4の場合で、SOC(%)={(放電可能容量)/(満充電容量)}×100(%)=1.8Ah/3.2Ah=56%である。
 このようにして、現時点の時間t0における容量に相違がある複数の蓄電池22を直列接続して構成される電池ブロック20の満充電容量、放電可能容量、SOCが推定される。これらの推定値は、複数の蓄電池22の中の1つが充電上限に達したときの各蓄電池22の容量の合計と、複数の蓄電池22の中の1つが放電下限限に達したときの各蓄電池22の容量の合計と、現時点における各蓄電池22の容量の合計に基づいて算出される。したがって、予め、あとどれだけ充電すれば、複数の蓄電池22の中の1つが充電上限に達するのかを予測できるので、充電上限に達しないように充電を制御し、あるいは充電上限に達する前に充電を止めることができるので、過充電を防止できる。また、予め、あとどれだけ放電すれば、複数の蓄電池22の中の1つが放電下限に達するのかを予測できるので、放電下限に達しないように放電を制御し、あるいは放電下限に達する前に放電を止めることができるので、過放電を防止できる。
 図6は、図3の従来技術で実行される充放電制御と、図4で説明した充放電制御とにおける満充電容量と放電可能容量とSOCを比較した図である。ここでは、電圧として定格電圧を用いるものとしてある。また、電池ブロック20における満充電容量、放電可能容量は、蓄電池52、蓄電池54の値と比較できるように、1つの蓄電池当たりの値としてある。図6から分かるように、電池ブロック20を構成する複数の蓄電池22の容量のばらつきを考慮すると、図3の平均SOCを用いる場合に比較し、図4の構成における充電容量、放電可能容量は、少な目となる。このようにすることで、電池ブロック20を構成する各蓄電池22が過充電、過放電となることを防止することができる。
 上記のように、電池ブロック20としての満充電容量、充放電可能容量、SOCを推定するには、電池ブロック20を構成する各蓄電池22のそれぞれの容量電圧特性が必要である。蓄電池22は、充放電を繰り返すうちに、特性の経時変化が生じ、容量電圧特性が変化する。一旦、複数の蓄電池22を直列接続して電池ブロック20を構成すると、それぞれの蓄電池22の容量電圧特性の変化を充電上限から放電下限までに渡って検出することはそう簡単ではない。そこで、電池ブロック20において、充放電指令の下で実際に充放電が行われる範囲について、部分的範囲の容量電圧特性を取得して、そこから充電上限と放電下限に渡る全体的容量電圧特性を推定する容量電圧特性算出手順について、図7から図10を用いて説明する。
 容量電圧特性算出手順の最初は、電池ブロック20を構成する蓄電池22と同じ仕様の蓄電池についての較正用容量電圧特性群を用意する。用意された較正用容量電圧特性群は、図1で説明した記憶部32に記憶される(較正用特性記憶工程)。較正用容量電圧特性群とは、蓄電池として製造された初期状態と、その後充放電を繰り返した複数の経時状態とについて、それぞれの容量電圧特性を集めたものである。較正用容量電圧特性群は、蓄電池22の種類ごとに、予め典型的なデータが蓄電池メーカ等において用意されているので、これらを利用することができる。典型的データでは不十分な場合には、典型的データから推定したデータを用いることができる。また、場合によっては、実際に蓄電池22の容量電圧特性を初期状態と、経時状態のそれぞれについて、実験的に求めるものとしてもよい。
 図7は、較正用容量電圧特性群の例を示す図である。横軸は放電時間、縦軸は端子間電圧である。ここでは、蓄電池22の充放電を定電力充放電とし、電力=電圧×電流の電圧を定格電圧とし、これによって、横軸の放電時時間が、電流時間積となって、容量を示すものとした。図7では、6本の容量電圧特性70,71,72,73,74,75が示されている。容量電圧特性70は、蓄電池22に相当する蓄電池の初期状態における特性線で、容量電圧特性71,72,73,74,75は、それぞれ、初期状態からの充放電回数NがN1,N2,N3,N4,N5となったときの経時状態の特性線である。ここで、充放電回数が小さい方から大きい方に、N1からN5の順である。図7に示されるように、充放電回数が増加すると、容量電圧特性の勾配が大きくなり、VCMAXにおける容量である充電上限容量と、VDMINにおける容量である放電下限容量との差である満充電容量が減少する。
 図7では、容量電圧特性を直線的とし、充放電回数の増加と共に、その傾きが大きくなるものとして示したが、実際の容量電圧特性は、容量と端子間電圧との関係は、必ずしも直線関係ではない。また、蓄電池22の特性として、充電側の容量電圧特性と放電側の容量電圧特性に差がないときは、較正用容量電圧特性群は、充電中、放電中のいずれによって取得してもよい。あるいは、充放電終了後の安定化作用の影響を排除するために、充電前と充電後に十分な時間間隔をあけてから、あるいは放電前と放電後に十分な時間間隔をあけてから取得した電圧に基づいて取得してもよい。容量電圧特性が充電側と放電側とで差がある場合には、較正用容量電圧特性群を、予め充電側と放電側と2組取得するようにする。
 次に、電池ブロック20を構成する蓄電池22の中の任意の蓄電池22について、電池ブロック20を一定条件の充放電電力で任意の充放電時間範囲で充放電したときの端子間電圧の変化を取得する。実際には、電池ブロック20を充放電指令で充放電するときに、その充放電電力と、図1で説明したV1,V2,V3,V4,V5の対応関係を求める。これによって、充放電指令の充放電範囲における容量電圧特性を取得できる。充放電指令は、VCMAXとVDMINの間の全範囲に渡ることはほとんどないので、ここで取得される容量電圧特性は、部分的範囲のものである(部分的範囲特性取得工程)。
 図8に、部分的範囲について取得された容量電圧特性80が示されている。ここでは、蓄電池22の現時点における端子間電圧V0において、充放電指令が与えられ、充放電指令の電力時間積で与えられた範囲の端子間電圧の変化が、部分的範囲の容量電圧特性80をして示されている。容量電圧特性80を取得するのは、充電指令のときでも、放電指令のときでも構わない。
 このように、電池ブロック20を構成する蓄電池22についての部分的範囲の容量電圧特性80が取得されると、記憶部32に記憶されている較正用容量電圧特性群を構成する容量電圧特性70,71,72,73,74,75のそれぞれと比較する。そして、部分的範囲の容量電圧特性80に最も近い容量電圧特性に基づいて、VCMAXからVDMINの範囲の容量電圧特性を算出する(全範囲特性算出工程)。このとき、較正用容量電圧特性群について充電側と放電側の双方が用意されている場合は、部分的範囲の容量電圧特性80の取得が充電によるか放電によるかに応じて、いずれかを選択する。
 図9と図10はその様子を示す図である。図9は、図7と図8を重ね合わせた図である。この例では、部分的範囲の容量電圧特性80の傾きが較正用容量電圧特性群の容量電圧線75に最も近い。したがって、容量電圧特性75の傾きを用いて、図10に示すように、現時点の端子間電圧V0と放電時間で示される現時点の状態点を通るように、部分的範囲の容量電圧特性80をVCMAX側とVDMIN側に延ばして、全範囲の容量電圧特性82を得る。仮に、部分的範囲の容量電圧特性80が、2つの較正用の容量電圧特性の中間にある場合は、内挿法等を用いて、充電上限から放電下限までの全範囲の容量電圧特性を算出する。また、部分的範囲の傾きに代えて、ある程度広い範囲での特性変化の曲線形状の近似性などにより、容量電圧特性を選択してもよい。
 このようにして、電池ブロック20を構成する任意の蓄電池22について、VCMAXからVDMINまでの全範囲に渡る容量電圧特性82が得られると、これを、電池ブロック20を構成する全部の蓄電池22について繰り返す。電池ブロック20を構成する複数の蓄電池22の全部について容量電圧特性が得られると、図4で説明した内容で、電池ブロック20の全体についての満充電容量、放電可能容量、SOCが推定される。推定されたSOC等に従って、電池ブロック20の充放電制御が行われる。
 部分的範囲の容量電圧特性を取得するのは、蓄電池22の経時変化に差が生じる充放電回数ごとに行えばよい。予め、部分的範囲の容量電圧特性を取得する時期を定めておいてもよい。部分的範囲の容量電圧特性から算出された全範囲の容量電圧特性は、蓄電池22ごとに、記憶しておき、新しい全範囲の容量電圧特性の算出ごとに、更新するものとすることが好ましい。また、容量電圧特性は、充放電回数の他に、電池温度、充放電レート、予め定めた基準で算出される電池劣化度等によっても異なってくるので、電池温度ごとに、充放電レートごとに、電池劣化度ごとに、予め較正用容量電圧特性群を揃えておくことが好ましい。なお、上記では、容量電圧特性をマップ形式で記憶するものとしたが、これを近似式等で記憶するものとしてもよい。
 図3、図4では、各蓄電池22の容量電圧特性が同じものとして説明した。これは、通常の場合に当てはまるが、実際の容量電圧特性は、電池温度、単位時間当たりの充放電電力変化率、電池劣化度等により異なる。そこで、電池ブロック20を構成する各蓄電池22の特性によっては、図11、図12のような場合が生じる。例えば、蓄電池22の寿命の末期には、容量電圧特性のばらつきが大きくなるので、図11、図12のような場合が生じやすい。
 図11は、電池ブロック20を構成する蓄電池90と蓄電池92の容量電圧特性の容量対端子間電圧の勾配が、かなり異なる場合である。図12は、電池ブロック20を構成する蓄電池94と蓄電池96の各蓄電池22の容量電圧特性が、VCMAXとVDMINの間で互いに交差する場合である。これらの場合でも、電池ブロック20としての推定満充電容量は、図4で説明した手順で推定することができる。すなわち、図11、図12の場合でも、満充電容量=(P1の容量+P2の容量)-(P3の容量+P4の容量)で求められる。また、放電可能容量=(P5の容量+P6の容量)-(P3の容量+P4の容量)で求められる。
 以上説明した本発明に係る電池ブロックの充放電制御装置によれば、電池ブロック20を構成する蓄電池22のそれぞれについて、容量電圧特性を予め求めておき、現時点の状態から電池ブロックの全体として一定条件の下で充放電を継続する。充電上限に1つの蓄電池が到達したときにおける他の蓄電池の容量を容量電圧特性に基づいて推定し、各蓄電池の容量を加算して第1容量とし、放電下限に1つの蓄電池が到達したときにおける他の蓄電池の容量を容量電圧特性に基づいて推定し、各蓄電池の容量を加算して得られる値を第2容量とし、第1容量から第2容量を差し引いた値を、電池ブロックの全体としての満充電容量として推定する。
 このようにして推定された電池ブロックの満充電容量等は、複数の蓄電池22の中の1つが充電上限に達したときの各蓄電池22の容量の合計と、複数の蓄電池22の中の1つが放電下限限に達したときの各蓄電池22の容量の合計と、現時点における各蓄電池22の容量の合計に基づいて算出される。したがって、予め、あとどれだけ充電すれば、複数の蓄電池22の中の1つが充電上限に達するのかを予測できるので、充電上限に達しないように充電を制御し、あるいは充電上限に達する前に充電を止めることができるので、過充電を防止できる。また、予め、あとどれだけ放電すれば、複数の蓄電池22の中の1つが放電下限に達するのかを予測できるので、放電下限に達しないように放電を制御し、あるいは放電下限に達する前に放電を止めることができるので、過放電を防止できる。このようにして推定された電池ブロックの満充電容量等を用いて電池ブロック20充放電制御を行うので、各蓄電池22の容量がばらついても、いずれの蓄電池22も過充電、過放電になることがない。
 本発明に係る電池ブロックの充放電制御装置は、蓄電池集合体の充放電制御に利用できる。
 10 充放電制御システム、12 電源部、14 負荷部、16 電力変換器、20 電池ブロック、22,52,54,90,92,94,96 蓄電池、30 充放電制御装置、32 記憶部、34 較正用容量電圧特性群ファイル、40 満充電容量推定部、42 充放電可能容量推定部、44 SOC推定部、60,70,71,72,73,74,75 容量電圧特性、80,82 (部分的範囲の)容量電圧特性。

Claims (5)

  1.  複数の蓄電池を直列接続して構成される電池ブロックの充放電制御装置であって、
     前記電池ブロックを構成する前記蓄電池のそれぞれについて、前記蓄電池としての容量と前記蓄電池の端子間電圧との関係である容量電圧特性を予め定めた容量電圧特性算出手順によって求めて記憶する特性記憶部と、
     前記複数の蓄電池のそれぞれの現時点の状態から、前記電池ブロックの全体として予め定めた一定条件の下で充電を継続し、これ以上充電できない限度である充電上限に前記複数の蓄電池のいずれか1つが到達したときにおける他の蓄電池の前記容量を、前記他の蓄電池の前記容量電圧特性に基づいて推定し、前記複数の蓄電池のそれぞれについての前記容量を加算して得られる値を電池ブロック全体の第1容量とする第1容量推定部と、
     前記複数の蓄電池のそれぞれの現時点の状態から、前記電池ブロックの全体として予め定めた一定条件の下で放電を継続し、これ以上放電できない限度である放電下限に前記複数の蓄電池のいずれか1つが到達したときにおける他の蓄電池の前記容量を、前記他の蓄電池の前記容量電圧特性に基づいて推定し、前記複数の蓄電池のそれぞれについての前記容量を加算して得られる値を電池ブロック全体の第2容量とする第2容量推定部と、
     前記第1容量から前記第2容量を差し引いた値を、前記電池ブロックの全体としての満充電容量として推定する満充電容量推定部と、
     を備え、推定された前記電池ブロックの前記満充電容量を用いて充放電制御を行う電池ブロックの充放電制御装置。
  2.  請求項1に記載の電池ブロックの充放電制御装置において、
     前記複数の蓄電池のそれぞれについて現時点の前記容量を加算して得られる値を電池ブロック全体の現時点容量として、前記現時点容量から前記第2容量を差し引いた値を、前記電池ブロックの全体としての放電可能容量として推定する放電可能容量推定部を備え、推定された前記放電可能容量を用いて充放電制御を行うことを特徴とする電池ブロックの充放電制御装置。
  3.  請求項2に記載の電池ブロックの充放電制御装置において、
     前記電池ブロックの前記放電可能容量を前記電池ブロックの前記満充電容量で除して、前記電池ブロックの充電状態指標値と推定する充電状態推定部を備え、推定された前記電池ブロックの前記充電状態指標値を用いて前記充放電制御を行うことを特徴とする電池ブロックの充放電制御装置。
  4.  請求項1に記載の電池ブロックの充放電制御装置において、
     前記容量電圧特性算出手順は、
     前記電池ブロックを構成する前記蓄電池と同じ仕様の蓄電池について、電池として製造された初期状態と、その後充放電を繰り返した複数の経時状態とについて、それぞれの前記容量電圧特性を較正用容量電圧特性群として予め用意し、
     前記電池ブロックを構成する前記複数の蓄電池の中の任意の前記蓄電池について、前記一定条件の下で任意の充放電時間範囲で充放電したときの前記容量電圧特性である部分的範囲の前記容量電圧特性を求め、
     求めた前記部分的範囲の前記容量電圧特性を、前記較正用容量電圧特性群を構成する前記容量電圧特性のそれぞれと比較して、最も近い前記容量電圧特性に基づいて前記任意の蓄電池の前記充電上限から前記放電下限までの全範囲における前記容量電圧特性を算出することを特徴とする電池ブロックの充放電制御装置。
  5.  請求項4に記載の電池ブロックの充放電制御装置において、
     前記容量電圧特性算出手順は、
     単位時間当たりの充放電電力変化率、または電池温度、または予め定めた基準による電池劣化度のいずれか1をパラメータとして、前記較正用容量電圧特性群を用意することを特徴とする電池ブロックの充放電制御装置。
PCT/JP2012/074023 2011-09-21 2012-09-20 電池ブロックの充放電制御装置 WO2013042712A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-205545 2011-09-21
JP2011205545 2011-09-21

Publications (1)

Publication Number Publication Date
WO2013042712A1 true WO2013042712A1 (ja) 2013-03-28

Family

ID=47914474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074023 WO2013042712A1 (ja) 2011-09-21 2012-09-20 電池ブロックの充放電制御装置

Country Status (1)

Country Link
WO (1) WO2013042712A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176175A (ja) * 2013-03-08 2014-09-22 Hitachi Ltd 蓄電池システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07255134A (ja) * 1994-03-11 1995-10-03 Nissan Motor Co Ltd 2次電池の直列接続回路
JP2000184611A (ja) * 1998-12-17 2000-06-30 Hitachi Ltd 蓄電装置及びその制御装置
JP2001332310A (ja) * 2000-05-22 2001-11-30 Nippon Telegr & Teleph Corp <Ntt> リチウムイオン電池の容量推定方法および劣化判定装置ならびにリチウムイオン電池パック
JP2002010504A (ja) * 2000-06-27 2002-01-11 Sanyo Electric Co Ltd 電気自動車の電源装置
JP2003116226A (ja) * 2001-10-10 2003-04-18 Matsushita Electric Ind Co Ltd 電動車両および電動車両用バッテリーユニットの充電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07255134A (ja) * 1994-03-11 1995-10-03 Nissan Motor Co Ltd 2次電池の直列接続回路
JP2000184611A (ja) * 1998-12-17 2000-06-30 Hitachi Ltd 蓄電装置及びその制御装置
JP2001332310A (ja) * 2000-05-22 2001-11-30 Nippon Telegr & Teleph Corp <Ntt> リチウムイオン電池の容量推定方法および劣化判定装置ならびにリチウムイオン電池パック
JP2002010504A (ja) * 2000-06-27 2002-01-11 Sanyo Electric Co Ltd 電気自動車の電源装置
JP2003116226A (ja) * 2001-10-10 2003-04-18 Matsushita Electric Ind Co Ltd 電動車両および電動車両用バッテリーユニットの充電装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176175A (ja) * 2013-03-08 2014-09-22 Hitachi Ltd 蓄電池システム

Similar Documents

Publication Publication Date Title
KR102415122B1 (ko) 배터리 시스템
US9118191B2 (en) Cell balancing method, cell balancing device, and energy storage system including the cell balancing device
US10291037B2 (en) Electrical energy storage device including individually controlled energy cell slots
US9401616B2 (en) Battery pack, energy storage system including battery pack, and method of charging battery pack
US20130187465A1 (en) Power management system
US9088164B2 (en) Battery system, controlling method of the same, and power storage system including the battery pack
US20150194707A1 (en) Battery pack, energy storage system including the battery pack, and method of operating the battery pack
EP2846395A2 (en) Battery pack, apparatus including battery pack, and method of managing battery pack
US20130187466A1 (en) Power management system
EP2884575A2 (en) Battery system and method of connecting battery module to a battery rack
KR20140128468A (ko) 배터리 밸런싱 장치 및 방법
JP6439866B2 (ja) 蓄電装置及び接続制御方法
JP5314626B2 (ja) 電源システム、放電制御方法および放電制御プログラム
JP2013042598A (ja) 充放電制御装置
CN111937269A (zh) 蓄电系统以及充电控制方法
KR101689017B1 (ko) 마이크로그리드 내 다수 bess의 퍼지 드룹 제어 시스템 및 방법
CN113169577A (zh) 蓄电系统以及充电控制方法
KR102151652B1 (ko) 척컨버터 토폴로지를 이용한 리튬이온 전지 셀밸런싱 장치
Brivio et al. Analysis of lithium-ion cells performance, through novel test protocol for stationary applications
WO2013042712A1 (ja) 電池ブロックの充放電制御装置
CN104852413A (zh) 更新堆栈电池芯充满电量的方法及电池管理系统
Siddeshkumar et al. Advanced Optimized Active Cell Balancing with Efficient Power Electronics Algorithms for Superior Battery Performance in Electric Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP