WO2011118000A1 - ランキンサイクルシステム - Google Patents
ランキンサイクルシステム Download PDFInfo
- Publication number
- WO2011118000A1 WO2011118000A1 PCT/JP2010/055229 JP2010055229W WO2011118000A1 WO 2011118000 A1 WO2011118000 A1 WO 2011118000A1 JP 2010055229 W JP2010055229 W JP 2010055229W WO 2011118000 A1 WO2011118000 A1 WO 2011118000A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steam
- expander
- discharge passage
- rankine cycle
- cycle system
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/065—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K9/00—Plants characterised by condensers arranged or modified to co-operate with the engines
Definitions
- the present invention relates to a Rankine cycle system.
- a Rankine cycle that recovers waste heat associated with the operation of an internal combustion engine.
- the water cooling cooling system of the engine is used as a closed structure for boiling cooling, and the refrigerant evaporated by the waste heat in the engine, that is, an expander such as a steam turbine is driven by steam, There is one that recovers heat energy of the steam by converting it into electrical energy or the like.
- Patent Document 1 for example.
- the Rankine cycle system disclosed in this specification has an object to suppress deterioration and breakage of the expander due to generation of the liquefied refrigerant in the expander such as the steam turbine.
- the Rankine cycle system disclosed in this specification is driven by a superheater and steam that is a vaporized refrigerant supplied from the superheater, performs energy recovery, and discharges the steam.
- An expander having a discharge port and a second discharge port for discharging the liquefied refrigerant generated by the condensation of the steam therein; and connected to the first discharge port, the steam from the expander
- a second discharge passage for connecting the second discharge port and the condensed water tank and discharging the liquefied refrigerant from the expander.
- the expander can discharge the liquefied refrigerant produced by condensing inside the expander when the expander is in a cold state by providing the second discharge port. If the liquefied refrigerant can be discharged from the inside of the expander, the driving load of the expander can be reduced. As a result, deterioration and breakage of the expander can be suppressed.
- the second discharge port is provided at the lower part of the expander. This is intended to efficiently discharge the liquefied refrigerant in consideration of the internal shape of the expander and the like.
- a liquefied refrigerant can be flowed out by providing a 2nd discharge port in the lower part of an expander.
- the liquid level in the condensed water tank has a difference between the liquid level and the lowest liquid level in the second discharge passage as ⁇ h, and the vapor passes through the first discharge passage and the expander. It is desirable to satisfy the relationship of ⁇ h> ⁇ Pto / ⁇ g, where ⁇ Pto is the pressure loss when flowing into the condenser from ⁇ , ⁇ is the density of the liquefied refrigerant, and g is the acceleration of gravity.
- connection position of the second discharge passage to the condensed water tank can be higher than the lowest liquid level in the second discharge passage.
- the connection position of the second discharge passage to the condensed water tank can be higher than the lowest liquid level in the second discharge passage.
- the second discharge passage is formed by a U-shaped tube
- the lowest liquid level of the second discharge passage becomes a U-shaped portion of the U-shaped tube, and ⁇ h can be set large. If ⁇ h can be set large, the passage of steam through the second outlet can be effectively suppressed.
- the diameter of the second discharge port can be made smaller than the diameter of the first discharge port.
- the flow passage area of the second discharge passage is smaller than the flow passage area of the first discharge passage.
- the relationship represented by the above equation can be realized by setting the inner diameter of the pipe forming the second discharge passage to be smaller than the inner diameter of the pipe forming the first discharge passage.
- FIG. 1 is a schematic configuration diagram of a Rankine cycle system according to an embodiment.
- FIG. 2 is an explanatory view showing an A portion in FIG. 1 in an enlarged manner.
- FIG. 3 is an explanatory view showing another shape of the second discharge passage.
- FIG. 1 is a schematic configuration diagram of a Rankine cycle system 100.
- FIG. 2 is an explanatory view showing an A portion in FIG. 1 in an enlarged manner.
- the Rankine cycle system 100 includes an engine 1 that is cooled by boiling a refrigerant therein.
- the engine 1 is an example of an internal combustion engine corresponding to a steam generator.
- the engine 1 includes a cylinder block 1a and a cylinder head 1b.
- a water jacket is formed in the cylinder block 1a and the cylinder head 1b, and the engine 1 is cooled by boiling the refrigerant in the water jacket. At this time, the engine 1 generates steam.
- the engine 1 further includes an exhaust pipe 2.
- One end of the steam passage 3 is connected to the cylinder head 1 b of the engine 1.
- a gas / liquid separator 4 is disposed in the steam passage 3.
- the refrigerant that has flowed into the gas-liquid separator 4 in the gas-liquid mixed state from the engine 1 side is separated into a gas phase (vapor) and a liquid phase (liquefied refrigerant) in the gas-liquid separator 4.
- One end of the refrigerant circulation path 5 is connected to the lower end of the gas-liquid separator 4.
- the other end of the refrigerant circulation path 5 is connected to the cylinder block 1a.
- a first water pump 6 that pumps the liquefied refrigerant into the engine 1 is disposed in the refrigerant circulation path 5.
- the first water pump 6 is a so-called mechanical type and uses a crankshaft provided in the engine 1 as a drive source.
- the first water pump 6 circulates the liquefied refrigerant between the engine 1 and the gas-liquid separator 4.
- a superheater 8 is provided in the steam passage 3.
- the superheater 8 includes an evaporation unit 8a on the lower side and a superheating unit 8b on the upper side.
- the exhaust pipe 2 is drawn into the superheater 8. Inside the exhaust pipe 2, exhaust gas generated by the engine 1 circulates. The exhaust pipe 2 penetrates the superheater 8 so that the exhaust gas passes through the superheater 8b and the evaporator 8a in this order.
- One end of the liquefied refrigerant passage 7 is connected to the evaporation unit 8a.
- the exhaust gas exchanges heat with the steam that has passed through the gas-liquid separator 4.
- the other end of the liquefied refrigerant passage 7 is connected to the lower end of the gas-liquid separator 4.
- the liquefied refrigerant passage 7 is provided with an on-off valve 7a.
- the supply state of the liquefied refrigerant from the gas-liquid separator 4 to the evaporation unit 8a is determined by the open / close state of the open / close valve 7a.
- the liquefied refrigerant supplied to the evaporation unit 8a can be vaporized by the heat of the exhaust gas after the vapor is superheated by the superheating unit 8b. Thereby, while generating amount of steam increases, the superheat degree of steam improves and waste heat recovery efficiency improves.
- a steam exhaust pipe 3a is provided at the upper end of the superheated part 8b.
- a nozzle 9 is provided at the tip of the steam discharge pipe 3a.
- An expander 10 is disposed on the downstream side of the superheater 8.
- the expander 10 is driven by vaporized refrigerant supplied from the superheater 8, that is, steam, and performs energy recovery.
- the expander 10 is a steam turbine including a case 10a and a turbine blade 10b provided in the case 10a.
- the nozzle 9 is attached to the case 10a so that the steam supplied through the steam passage 3 is injected toward the turbine blade 10b.
- the turbine blade 10 b is rotationally driven by the steam supplied through the steam passage 3.
- the rotational force of the turbine blade 10b assists the rotation of the crankshaft provided in the engine 1 or drives the generator. Thereby, recovery of waste heat is performed.
- the case 10a of the expander 10 includes a first discharge port 10a1 for discharging steam and a second discharge port 10a2 for discharging liquefied refrigerant generated by condensation of the vapor inside.
- the 2nd discharge port 10a2 is provided in the lower part of case 10a of the expander 10 so that the liquefied refrigerant
- the diameter D2 of the second outlet 10a2 is smaller than the diameter D1 of the first outlet 10a1. That is, a relationship of D2 ⁇ D1 is established.
- the first discharge passage 11 discharges the steam from the expander 10 and introduces the discharged steam into the condenser 12.
- the condenser 12 is condensed by cooling the vapor to generate a liquefied refrigerant.
- the condenser 12 receives the air blown by the fan 13 and can efficiently cool and condense the steam.
- a condensed water tank 14 for storing the liquefied refrigerant generated in the capacitor 12 is installed below the capacitor 12.
- One end of the second discharge passage 15 is connected to the second discharge port 10a2.
- the other end of the second discharge passage 15 is connected to the condensed water tank 14.
- Such a second discharge passage 15 discharges the liquefied refrigerant from the expander 10 to the condensed water tank 14.
- the liquefied refrigerant cooled by the condenser 12 is stored.
- the liquefied refrigerant condensed in the expander 10 is discharged into the condensed water tank 14 and mixed with the liquefied refrigerant cooled in the condenser 12 to lower the temperature.
- the flow passage area S2 of the second discharge passage 15 is smaller than the flow passage area S1 of the first discharge passage 11. That is, the relationship is S2 ⁇ S1.
- a refrigerant recovery path 16 for recirculating the liquefied refrigerant once stored in the condensed water tank 14 to the engine 1 side is provided on the downstream side of the condensed water tank 14.
- the refrigerant recovery path 16 is connected to the upstream side of the first water pump 6 in the refrigerant circulation path 5.
- a second water pump 17 is disposed in the refrigerant recovery path 16.
- the second water pump 17 is an electric vane pump.
- the liquefied refrigerant in the condensed water tank 14 is supplied to the refrigerant circulation path 5.
- a one-way valve 18 for avoiding the back flow of the refrigerant is disposed downstream of the second water pump 17.
- the Rankine cycle system 100 includes a path through which the refrigerant circulates.
- the diameter D1 of the first outlet 10a1 and the diameter D2 of the second outlet 10a2 provided in the Rankine cycle system 100 have a relationship of D2 ⁇ D1 as described above.
- the flow passage area S1 of the first discharge passage 11 and the flow passage area S2 of the second discharge passage 15 provided in the Rankine cycle system 100 have a relationship of S2 ⁇ S1 as described above. Maintaining these relationships is effective in suppressing the passage of steam through the second outlet 10a2.
- it is desirable that the steam supplied into the expander 10 is discharged from the first discharge port 10a1 as much as possible.
- the vapor which is a vaporized refrigerant that has not been condensed
- the vapor passes through the second discharge passage 15 and the condensed water tank 14 and flows into the condenser 12. That is, the steam flows from a direction different from the original inflow direction to the condenser 12.
- the function of the condenser 12 is impaired. That is, the condenser 12 cools and condenses the steam by heat exchange until the steam introduced from the upper side reaches the condensed water tank 14 to generate a liquefied refrigerant.
- the Rankine cycle system 100 satisfies the relationship of the following formula (1).
- ⁇ h> ⁇ Pto / ⁇ g Formula (1) ⁇ h: difference between the liquid level in the condensed water tank 14 and the lowest liquid level in the second discharge passage 15 ⁇ Pto: when steam flows from the expander 10 to the condenser 12 through the first discharge passage 11 Pressure loss ⁇ : Density of liquefied refrigerant g: Gravity acceleration
- ⁇ Pto in the present embodiment is a pressure loss in the range indicated by B in FIGS. 1 and 2.
- the second discharge passage 15 can be replaced with a second discharge passage 151 as shown in FIG.
- the connection position P ⁇ b> 1 of the second discharge passage 151 to the condensed water tank 14 is above the lowest liquid level 151 a in the second discharge passage 151.
- the lowest liquid level 151a is lowered.
- ⁇ h2 is secured.
- ⁇ h2 is larger than ⁇ h1 when the second discharge passage 15 is used.
- ⁇ h2 tends to satisfy the condition of Expression (1).
- the liquefied refrigerant generated in the expander 10 can be efficiently discharged. As a result, it is possible to suppress deterioration and breakage of the expander due to the generation of the liquefied refrigerant in the expander 10. At this time, a special control device for discharging the liquefied refrigerant from the expander 10 is unnecessary, which is advantageous in terms of cost.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
Δh>ΔPto/ρg 式(1)
Δh:凝縮水タンク14内の液面高さと第2の排出通路15内の最低液面との差
ΔPto:蒸気が第1の排出通路11を通って膨張器10からコンデンサ12へ流入するときの圧力損失
ρ:液化冷媒の密度
g:重力加速度
ここで、本実施例におけるΔhは、図1及び図2に示すように、Δh=Δh1である。また、本実施例におけるΔPtoは、図1及び図2においてBで示した範囲の圧力損失としている。
2…排気管
3…蒸気通路
3a1…蒸気排出管
4…気液分離器
5…冷媒循環路
6…第1ウォータポンプ(W/P)
7…液化冷媒通路
8…過熱器
8a…蒸発部
8b…過熱部
9…ノズル
10…膨張器
10a…タービンケース
10b…タービン翼
11…第1の排出通路
12…コンデンサ
13…ファン
14…凝縮水タンク
15、151…第2の排出通路
16…冷媒回収路
17…第2ウォータポンプ(W/P)
18…一方弁
100…ランキンサイクルシステム
Claims (6)
- 過熱器と、
前記過熱器から供給された気化冷媒である蒸気によって駆動されてエネルギ回収を行い、蒸気を排出する第1の排出口と、内部で前記蒸気が凝縮して生成された液化冷媒を排出する第2の排出口とを備えた膨張器と、
前記第1の排出口に接続され、前記膨張器から前記蒸気を排出する第1の排出通路と、
前記第1の排出通路を通じて前記蒸気が導入され、前記蒸気を凝縮して液化冷媒とするコンデンサと、
前記コンデンサにおいて生成された液化冷媒を貯留する凝縮水タンクと、
前記第2の排出口と前記凝縮水タンクとを接続し、前記膨張器から前記液化冷媒を排出する第2の排出通路と、
を、備えたことを特徴としたランキンサイクルシステム。 - 前記第2の排出口は、前記膨張器の下部に設けられたことを特徴とする請求項1記載のランキンサイクルシステム。
- 前記凝縮水タンク内の液面高さは、当該液面高さと前記第2の排出通路内の最低液面との差をΔhとし、前記蒸気が前記第1の排出通路を通って前記膨張器から前記コンデンサへ流入するときの圧力損失をΔPto、前記液化冷媒の密度をρ、重力加速度をgとしたときに、
Δh>ΔPto/ρg
の関係を満足することを特徴とする請求項1又は2記載のランキンサイクルシステム。 - 前記第2の排出通路の前記凝縮水タンクへの接続位置は、前記第2の排出通路内の最低液面よりも上側であることを特徴とした請求項1乃至3のいずれか一項記載のランキンサイクルシステム。
- 前記第2の排出口の口径は、前記第1の排出口の口径よりも小径としたことを特徴とする請求項1乃至4のいずれか一項記載のランキンサイクルシステム。
- 前記第2の排出通路の流路面積は前記第1の排出通路の流路面積よりも小さいことを特徴とする請求項1乃至5のいずれか一項記載のランキンサイクルシステム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080065724.4A CN102812211B (zh) | 2010-03-25 | 2010-03-25 | 朗肯循环系统 |
PCT/JP2010/055229 WO2011118000A1 (ja) | 2010-03-25 | 2010-03-25 | ランキンサイクルシステム |
DE112010005419.3T DE112010005419B4 (de) | 2010-03-25 | 2010-03-25 | Rankine-Kreisprozess-System |
JP2012506719A JP5376046B2 (ja) | 2010-03-25 | 2010-03-25 | ランキンサイクルシステム |
US13/636,246 US20130008165A1 (en) | 2010-03-25 | 2010-03-25 | Rankine cycle system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/055229 WO2011118000A1 (ja) | 2010-03-25 | 2010-03-25 | ランキンサイクルシステム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011118000A1 true WO2011118000A1 (ja) | 2011-09-29 |
Family
ID=44672591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/055229 WO2011118000A1 (ja) | 2010-03-25 | 2010-03-25 | ランキンサイクルシステム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130008165A1 (ja) |
JP (1) | JP5376046B2 (ja) |
CN (1) | CN102812211B (ja) |
DE (1) | DE112010005419B4 (ja) |
WO (1) | WO2011118000A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3015673A1 (en) * | 2014-10-27 | 2016-05-04 | Toyota Jidosha Kabushiki Kaisha | Ebullient cooling device |
WO2020189425A1 (ja) * | 2019-03-18 | 2020-09-24 | いすゞ自動車株式会社 | ランキンサイクルシステム及びその制御方法 |
CN114017954A (zh) * | 2021-10-14 | 2022-02-08 | 华中科技大学 | 一种利用放电加速制冷剂液化的冷凝器及方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5929981B2 (ja) * | 2014-08-04 | 2016-06-08 | トヨタ自動車株式会社 | ランキンサイクルシステム |
JP6083420B2 (ja) * | 2014-08-05 | 2017-02-22 | トヨタ自動車株式会社 | 内燃機関の冷却装置 |
JP6432498B2 (ja) * | 2015-12-16 | 2018-12-05 | トヨタ自動車株式会社 | 車両用ランキンサイクルシステム |
JP6350507B2 (ja) | 2015-12-16 | 2018-07-04 | トヨタ自動車株式会社 | 車両用ランキンサイクルシステム |
CN108868916B (zh) * | 2018-06-29 | 2020-11-20 | 东方电气集团东方汽轮机有限公司 | 一种疏水装置 |
CN110374700B (zh) * | 2019-07-18 | 2024-05-03 | 中国电力工程顾问集团西南电力设计院有限公司 | 一种燃气-蒸汽联合循环机组疏水回收系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54147339A (en) * | 1978-05-09 | 1979-11-17 | Bbc Brown Boveri & Cie | Method of and apparatus for compensating for fluctuation in load of feeder net |
JPS5560407U (ja) * | 1978-10-23 | 1980-04-24 | ||
JPS57179509A (en) * | 1981-04-28 | 1982-11-05 | Tokyo Shibaura Electric Co | Method of controlling temperature of superheated steam of boiler |
JPS643005U (ja) * | 1987-06-24 | 1989-01-10 | ||
JPH04224209A (ja) * | 1990-12-21 | 1992-08-13 | Mitsubishi Heavy Ind Ltd | 蒸気タービンのドレン回収装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1360748A (en) * | 1915-07-09 | 1920-11-30 | Nicolai H Hiller | Condenser and method of condensation |
US3685292A (en) * | 1971-03-19 | 1972-08-22 | Westinghouse Electric Corp | System and method for determining whether drain conduits for draining condensate from the turbine casing are clogged and clearing the conduits if they are |
US4471621A (en) | 1980-12-16 | 1984-09-18 | Ormat Turbines, Ltd. | Method and apparatus for draining liquid working fluid from turbine cannister of a closed cycle power plant |
US5494405A (en) * | 1995-03-20 | 1996-02-27 | Westinghouse Electric Corporation | Method of modifying a steam turbine |
JP3754527B2 (ja) * | 1997-03-31 | 2006-03-15 | 東芝プラントシステム株式会社 | ドレン管システム |
US7600526B2 (en) * | 2006-07-20 | 2009-10-13 | General Electric Company | Methods and apparatus for operating steam turbines |
CN100434665C (zh) * | 2007-02-12 | 2008-11-19 | 西安交通大学 | 基于开式朗肯循环的液化天然气双动力汽车循环系统 |
JP2009103060A (ja) | 2007-10-24 | 2009-05-14 | Toyota Motor Corp | エンジン廃熱回収システム |
-
2010
- 2010-03-25 US US13/636,246 patent/US20130008165A1/en not_active Abandoned
- 2010-03-25 JP JP2012506719A patent/JP5376046B2/ja not_active Expired - Fee Related
- 2010-03-25 DE DE112010005419.3T patent/DE112010005419B4/de not_active Expired - Fee Related
- 2010-03-25 WO PCT/JP2010/055229 patent/WO2011118000A1/ja active Application Filing
- 2010-03-25 CN CN201080065724.4A patent/CN102812211B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54147339A (en) * | 1978-05-09 | 1979-11-17 | Bbc Brown Boveri & Cie | Method of and apparatus for compensating for fluctuation in load of feeder net |
JPS5560407U (ja) * | 1978-10-23 | 1980-04-24 | ||
JPS57179509A (en) * | 1981-04-28 | 1982-11-05 | Tokyo Shibaura Electric Co | Method of controlling temperature of superheated steam of boiler |
JPS643005U (ja) * | 1987-06-24 | 1989-01-10 | ||
JPH04224209A (ja) * | 1990-12-21 | 1992-08-13 | Mitsubishi Heavy Ind Ltd | 蒸気タービンのドレン回収装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3015673A1 (en) * | 2014-10-27 | 2016-05-04 | Toyota Jidosha Kabushiki Kaisha | Ebullient cooling device |
WO2020189425A1 (ja) * | 2019-03-18 | 2020-09-24 | いすゞ自動車株式会社 | ランキンサイクルシステム及びその制御方法 |
JP2020153236A (ja) * | 2019-03-18 | 2020-09-24 | いすゞ自動車株式会社 | ランキンサイクルシステム及びその制御方法 |
JP7147641B2 (ja) | 2019-03-18 | 2022-10-05 | いすゞ自動車株式会社 | ランキンサイクルシステム及びその制御方法 |
CN114017954A (zh) * | 2021-10-14 | 2022-02-08 | 华中科技大学 | 一种利用放电加速制冷剂液化的冷凝器及方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011118000A1 (ja) | 2013-07-04 |
DE112010005419T5 (de) | 2013-01-10 |
JP5376046B2 (ja) | 2013-12-25 |
US20130008165A1 (en) | 2013-01-10 |
DE112010005419B4 (de) | 2020-07-02 |
CN102812211B (zh) | 2015-01-07 |
CN102812211A (zh) | 2012-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5376046B2 (ja) | ランキンサイクルシステム | |
JP5494426B2 (ja) | ランキンサイクルシステム | |
JP4848968B2 (ja) | 廃熱回収装置 | |
JP2007333293A (ja) | ループ式ヒートパイプ | |
US9726432B2 (en) | Air cooling unit | |
JP6423614B2 (ja) | 熱エネルギー回収装置 | |
JP6237354B2 (ja) | 熱回収発電システム | |
JP5310622B2 (ja) | ランキンサイクルシステム | |
JP2010255604A (ja) | 廃熱回収装置 | |
JP2008169760A (ja) | 廃熱回収装置 | |
JP2002115506A (ja) | ランキンサイクル装置 | |
JP2009250139A (ja) | エンジン廃熱回収システム | |
JP2008196379A (ja) | 廃熱回収装置及びエンジン | |
JP5494502B2 (ja) | タービン装置および廃熱回収システム | |
JP2008240614A (ja) | エンジン廃熱回収システム | |
JP5609707B2 (ja) | ランキンサイクルシステムの制御装置 | |
JP6170487B2 (ja) | 熱エネルギー回収装置 | |
JP5494515B2 (ja) | 制御装置 | |
JP2015094271A (ja) | ランキンサイクルシステム | |
JP6020242B2 (ja) | 内燃機関の廃熱利用装置 | |
JP2011132922A (ja) | 廃熱回収装置 | |
JP2016017487A (ja) | ランキンサイクルシステム | |
JP2012102646A (ja) | ランキンサイクルシステム | |
JP2009203951A (ja) | 廃熱回収システム | |
JP4803103B2 (ja) | 廃熱回収装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080065724.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10848393 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012506719 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13636246 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120100054193 Country of ref document: DE Ref document number: 112010005419 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10848393 Country of ref document: EP Kind code of ref document: A1 |