WO2011117438A2 - Horno para la fusión de sales inorgánicas - Google Patents

Horno para la fusión de sales inorgánicas Download PDF

Info

Publication number
WO2011117438A2
WO2011117438A2 PCT/ES2011/000084 ES2011000084W WO2011117438A2 WO 2011117438 A2 WO2011117438 A2 WO 2011117438A2 ES 2011000084 W ES2011000084 W ES 2011000084W WO 2011117438 A2 WO2011117438 A2 WO 2011117438A2
Authority
WO
WIPO (PCT)
Prior art keywords
container
oven according
heat exchanger
salts
exchanger tube
Prior art date
Application number
PCT/ES2011/000084
Other languages
English (en)
French (fr)
Other versions
WO2011117438A3 (es
Inventor
Herminio LÓPEZ LLORCA
Alejandro LÓPEZ FANARRAGA
Original Assignee
Herlogas, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43754644&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011117438(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP11721795.0A priority Critical patent/EP2551625B1/en
Priority to ES11721795.0T priority patent/ES2492525T3/es
Priority to MA35313A priority patent/MA34161B1/fr
Priority to MX2012010848A priority patent/MX2012010848A/es
Priority to US13/634,436 priority patent/US9927176B2/en
Application filed by Herlogas, S.A. filed Critical Herlogas, S.A.
Priority to CN201180015368.XA priority patent/CN102869945B/zh
Priority to BR112012023899-0A priority patent/BR112012023899B1/pt
Publication of WO2011117438A2 publication Critical patent/WO2011117438A2/es
Publication of WO2011117438A3 publication Critical patent/WO2011117438A3/es
Priority to ZA2012/06700A priority patent/ZA201206700B/en
Priority to IL221938A priority patent/IL221938A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/04Arrangements of indicators or alarms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/04Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/0027Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D2020/0047Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material using molten salts or liquid metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0056Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for ovens or furnaces
    • F28D2021/0057Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for ovens or furnaces for melting materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/10Safety or protection arrangements; Arrangements for preventing malfunction for preventing overheating, e.g. heat shields
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to a furnace for the fusion of inorganic salts.
  • furnaces for the fusion of inorganic salts are known in the state of the art. All these furnaces are characterized by being formed by a vessel that is kept warm by means of heating elements, an inlet means for feeding the furnace of inorganic salts in solid state and an outlet means (for example an overflow) to extract the salts inorganic molten.
  • the inorganic salts melted by these ovens can subsequently be used for various uses.
  • the melting furnaces of inorganic salts usually comprise in their interior some means to remove the inorganic salts in fusion process and thus homogenize the temperature of the salts inside. Physical separation elements are also sometimes found between the solid salt inlet medium and the molten salt outlet medium, to prevent solid salts (of less apparent specific weight) from floating out over the molten ones by the outlet means.
  • inorganic salt melting furnace comprises a container of a relatively complex shape with burners that melt the upper area of the salts contained therein.
  • a recirculation unit removes the salts to facilitate the homogenization of them and their extraction through an exit zone.
  • Said furnace comprises a container of substantially vertical arrangement, heat exchange tubes, through which the flame of burners circulates, an inlet zone of solid salts and a unit of extraction of molten salts.
  • the oven comprises a circulation unit that creates a flow of molten salts inside the container. Said flow, the document affirms, creates two zones, one of solid salts and another of molten salts, being from this supposed second zone from which the extraction unit extracts molten salts.
  • the heat exchanger tubes of the furnace in question are close to the walls of the container, presenting a vertical coil shape, doubly descending and ascending, with gas outlet in its highest part to a collector in the upper part of the oven.
  • said vertical heat exchanger tubes can overheat due to lack of salt level in the oven. Therefore, the heating of this type of furnaces must be carried out at all times with the furnace completely filled with salts, to avoid deterioration of the tubes.
  • the volume of the salts when melted is reduced by approximately 50% leaving the heat exchange tubes constantly exposed.
  • the present invention aims to manufacture a melting furnace of inorganic salts that eliminates the aforementioned risks, thereby improving safety.
  • the furnace of the invention seeks to increase performance, as well as improve the working conditions of the operators.
  • the object of the invention is an inorganic salt melting furnace, comprising a vessel, at least one solid inorganic salts inlet zone and at least one molten inorganic salts outlet zone.
  • the oven according to the invention comprises at least one heat exchanger tube (also known as a coil) characterized by being provided with an inlet area connected to the outer side wall of the container, a spiral body substantially along the internal walls of the container, delimiting an interior space and a section of substantially vertical exit descending towards the base or ascending towards the upper part of the container.
  • the spiral body of the heat exchanger tube is arranged in a substantially horizontal plane.
  • a burner is connected to the inlet zone of the heat exchanger tube, not being relevant to the present invention.
  • the oven comprises several tubes heat exchangers of the type described, installed at different heights and defining different levels of heating. This allows, during the start-up of the furnace, that is, during the initial filling of the furnace, the solid salts can be heated in ascending order in height, starting with the heat exchanger tube located lower and reaching the top. This eliminates the risk of explosion of the furnace since the gases generated can evacuate freely by not having on them a layer of salts in solid state.
  • the heating of the salts will be carried out in the opposite direction, that is, the heating being started in descending order, starting with the highest heat exchanger tube, to continue, once the salts of its level are melted, by the second tube and so on until it reaches the last tube of the lower part.
  • the risk of explosion is avoided, since above the zone that is being heated there are no salts in solid state, allowing the evacuation of the gases that are generated during the heating through the molten salts as a bubble , finally evacuating a gas outlet.
  • Figure 1 shows a perspective of the preferred embodiment of the oven according to the invention.
  • Figure 2 shows an elevation of the oven of Figure 1.
  • Figure 3 shows a plan view of the oven of Figure 1.
  • Figure 4 shows a perspective of a heat exchanger tube according to the invention.
  • FIG. 5 shows an elevation of the heat exchanger tube of Figure 4.
  • FIG. 6 shows a plan view of the heat exchanger tube of Figure 4.
  • Figure 7 shows a sectional view of the oven according to the sectional plane AA of Figure 2.
  • Figure 8 shows a sectional view of the furnace according to section plane BB of Figure 2.
  • FIG 1 shows a perspective of the preferred embodiment of the oven according to the invention.
  • the oven comprises a container (1), which in the present embodiment has a cylindrical shape.
  • the oven comprises an inlet zone (2) of solid inorganic salts, where the crushed and mixed solid inorganic salts are introduced.
  • the oven comprises an outlet zone (3) of molten inorganic salts, which in the present embodiment has the form of overflow.
  • Figures 2 and 3 show, respectively, an elevation and a plan view of the furnace of Figure 1.
  • the furnace comprises a series of heat exchange tubes or internal coils, which conduct combustion gases at a very high temperature inside, causing heating and melting of inorganic salts.
  • the heat of the heat exchanger tubes is generated by burners (4) located outside the container, one for each heat exchanger tube (5). These burners can be seen in Figures 1, 2, 3 and 7.
  • FIGS. 4 to 6 show three views of one of the heat exchange tubes (5) according to the invention.
  • Each heat exchanger tube (5) comprises an inlet section (5a), a spiral section (5b) and an outlet section (5c).
  • the inlet section (5a) is connected to the outer side wall of the container (1), the corresponding burner (4) being mounted externally. In said inlet section (5a) combustion begins, the same acting as home.
  • the spiral section (5b) extends substantially along the inner side walls of the container (1) delimiting an interior space (6), and is arranged on a substantially horizontal plane.
  • the spiral shape is very relevant since it allows dilation in all directions, preventing the heat exchanger tube (5) from supporting mechanical stresses and deformations as a result of the aforementioned dilations, increasing the life of the heat exchange tubes (5 ) in the absence of mechanical fatigue.
  • the exit section (5c), in the present embodiment descends substantially vertically towards the base of the container (1), in this case reaching said base.
  • exit section (5c) may be directed towards the upper part of the container (1) (for example towards an upper cover (14) covering it).
  • the exit section (5c) preferably extends to the base or the upper part of the container (1), although different alternatives are not ruled out. Especially advantageously, as shown in Figures 7 and
  • the furnace comprises several heat exchange tubes (5), in this case a total of eight, arranged at different heights, defining different levels of heating of the container (1) and being able to arrange or not each level of a system of independent temperature control. This allows the salts to be melted by levels, when the fusion begins, significantly improving safety.
  • the start-up procedure is as follows: - First, solid salts are provided to cover the first heating level of the container (1) (which corresponds to the lower heat exchanger tube (5)). The corresponding burner (4) is ignited, the heat exchanger tube being heated and the salts melted in contact with it, until a molten salt bed is formed in the lower part of the container (1). This heating process is not possible in an oven with vertical heat exchanger tubes, since most of these would remain in the air, out of contact with the salts, and with the consequent risk of overheating. - Subsequently, solid salts continue to be added until a second level of heating of the container (1), corresponding to the second heat exchanger tube (5), in an upward direction.
  • this second level of salts melts. - This process is repeated with the successive heating levels of the container (1). Once all the burners (4) are lit and the temperature necessary to melt and pump the salts (approximately 150 ° C higher than the melting temperature of these) has been achieved, salts continue to be added up to the level of the outlet zone (3). That is when the oven is able to supply molten salts. From that moment on, with the addition of new solid salts, molten salts are exited through the outlet zone (3) or overflow, to a post-fusion tank, not shown in the figures.
  • a stirring system for example mechanical or induction
  • a mechanical rotary stirrer (8) having been represented in this case to achieve uniform temperatures at all levels of the container (1) and increase heat transmission between heat exchange tubes (5) and molten salts.
  • the stirring system causes the spinning of the molten salts to countercurrent, that is, in the opposite direction to the rotation of the combustion gases inside the spiral section (5b) of the heat exchanger tubes (5). This allows to increase the performance and heat transmission of the heat exchange tubes (5), achieving a higher production of molten salts with lower energy consumption.
  • the oven being in these conditions, by providing solid salts on top of the molten salts, the former melts instantly, being dragged by the rotation of the downward vertical cyclone generated by the stirring system to the bottom of the container (1), returning perimetrically to the surface with upward rotation between the radiant heat exchanger tubes (5), which overheat them again at the temperatures set by the control and safety systems of each zone if they are installed. Said overheating allows to melt the new solid salts that are continuously added at the top.
  • the furnace according to the invention preferably comprises a gas collection cavity (9) located in the lower part or in the upper part of the container (1), depending on where the outflow sections (5c) of the heat exchanger tubes are displaced. heat (5).
  • the outlet sections (5c) of each heat exchanger tube (5) expel or evacuate their combustion gases into said cavity (9).
  • the figures show a cavity (9) located in the lower part of the container (1).
  • the cavity (9) provides the residual heat of combustion to the container (1).
  • the cavity (9) preferably communicates with an underground duct (10) underground, which is used as an outlet for the flue gases, as shown in Figures 1 and 2.
  • Said lower duct ( 10) continue in a chimney (1 1) separated from the oven. This improves the safety and working conditions of the furnace operators, by moving the chimney away from the work area.
  • the cavity (9) is located in the upper part of the container (1), similarly the gases can be extracted from said cavity (9) outwards by a duct that ends in a chimney.
  • the oven can also comprise at least one safety overflow (12), which is used in case of additional need. It can also comprise an internal dividing element (13) to separate the solid salts that are introduced through the inlet zone (2) and which float on the molten salts, thus preventing the exit of solid salts from the outlet zone (3) and cushioning the possible level differences generated by the agitation system.
  • the heat exchanger tubes (5), the container (1) (including an upper lid (14) covering the same) and / or the gas collecting cavity (9) are partly made of stainless steel and partly of steel to carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Furnace Details (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

Horno para la fusión de sales inorgánicas, dotado de un recipiente (1), al menos una zona de entrada (2) de sales inorgánicas sólidas, al menos una zona de salida (3) de sales inorgánicas fundidas y al menos un tubo intercambiador de calor (5) o serpentín. Cada tubo intercambiador de calor (5) comprende un tramo de entrada (5a) conectado a la pared lateral exterior del recipiente (1), un tramo en espiral (5b) sustancialmente a lo largo de las paredes laterales internas del recipiente (1) delimitando un espacio interior (6), estando dispuesto dicho tramo en espiral (5b) sobre un plano sustancialmente horizontal, y un tramo de salida (5c) sustancialmente vertical descendente o ascendente, hacia la base o hacia la parte superior del recipiente (1 ). Dicho horno ofrece una mayor seguridad y rendimiento que los hornos hasta ahora conocidos.

Description

HORNO PARA LA FUSIÓN DE SALES INORGÁNICAS
DESCRIPCIÓN Sector de la técnica
La invención se refiere a un horno para la fusión de sales inorgánicas. Estado de la técnica
En el estado de la técnica se conocen diversos tipos de hornos para la fusión de sales inorgánicas. Todos estos hornos se caracterizan por estar formados por un recipiente que se mantiene caliente por medio de elementos calentadores, un medio de entrada para alimentar el horno de sales inorgánicas en estado sólido y un medio de salida (por ejemplo un rebosadero) para extraer las sales inorgánicas fundidas.
Las sales inorgánicas fundidas por estos hornos pueden ser utilizadas posteriormente para diversos usos. Por ejemplo, se conoce el uso de sales inorgánicas fundidas para transferir o mantener calientes sistemas en procesos industriales, tratamientos térmicos, acumulación de energía térmica, en centrales termosolares, etc.
Los hornos de fusión de sales inorgánicas suelen comprender en su interior algún medio para remover las sales inorgánicas en proceso de fusión y así homogeneizar la temperatura de las sales en su interior. También se encuentran en ocasiones elementos físicos de separación entre el medio de entrada de sales sólidas y el medio de salida de sales fundidas, para evitar que las sales sólidas (de menor peso específico aparente) salgan flotando sobre las fundidas por el medio de salida.
Un ejemplo de horno de fusión de sales inorgánicas puede verse en el documento US20050005646, el cual comprende un recipiente de una forma relativamente compleja con unos quemadores que funden la zona superior de las sales contenidas en el mismo. Una unidad de recirculación remueve las sales para facilitar la homogeneización de las mismas y su extracción por una zona de salida.
Otro ejemplo de horno de fusión de sales está descrito en la patente US4042318. En este horno, el recipiente está dividido en un elevado número de particiones. Una vez fundidas las sales sólidas introducidas por una zona de entrada, deben recorrer todas las particiones hasta salir por un rebosadero.
Otro ejemplo de horno de fusión de sales inorgánicas puede encontrarse en el documento US20080233527A 1. Dicho horno comprende un recipiente de disposición sustancialmente vertical, unos tubos intercambiadores de calor, por el interior de los cuales circula la llama de unos quemadores, una zona de entrada de sales sólidas y una unidad de extracción de sales fundidas. Además, el horno comprende una unidad de circulación que crea un flujo de sales fundidas en el interior del recipiente. Dicho flujo, afirma el documento, crea dos zonas, una de sales sólidas y otra de sales fundidas, siendo de esta supuesta segunda zona de donde la unidad de extracción extrae las sales fundidas. Los tubos intercambiadores de calor del horno en cuestión están cercanos a las paredes del recipiente, presentando una forma de serpentín vertical, doblemente descendente y ascendente, con salida de gases en su parte más alta a un colector en la parte superior del horno.
El uso de tubos intercambiadores de calor verticales presenta dos riesgos importantes.
Por un lado, dichos tubos intercambiadores de calor verticales pueden sobrecalentarse por falta de nivel de sales en el horno. Por ello, el calentamiento de este tipo de hornos ha de realizarse en todo momento con el horno completamente lleno de sales, para evitar el deterioro de los tubos. Sin embargo, en la práctica existe una gran dificultad en crear un lecho fundido con tubos intercambiadores de calor verticales ya que el volumen de las sales al fundirse se reduce en un 50% aproximadamente dejando los tubos intercambiadores de calor al descubierto constantemente.
Por otro lado, ha de tenerse en cuenta que el calentamiento de las sales genera gases y vapores. Si estando el horno en producción y por lo tanto lleno de sales, sufriera una parada imprevista (bien por avería, bien por falta de suministro eléctrico o bien por falta de combustible) y por lo tanto se quedara sin aportación calorífica, las sales fundidas se ¡rían enfriando, iniciándose la solidificación de las mismas en la parte superior o superficie por ser la zona con más pérdidas de calor y más comunicada con el exterior. En estas condiciones, reiniciar el calentamiento supondría un grave riesgo, con peligro de explosión, ya que las sales solidificadas en la superficie impedirían la salida de los gases generados por el nuevo calentamiento de las mismas, haciendo de tapón. Los tubos intercambiadores de calor verticales no permiten fundir las sales de la parte superior, sin calentar el resto, para eliminar el riesgo de explosión.
La presente invención tiene como objetivo fabricar un horno de fusión de sales inorgánicas que elimine los riesgos citados, mejorando así la seguridad. Además, el horno de la invención busca aumentar el rendimiento, así como mejorar las condiciones de trabajo de los operarios.
Descripción breve de la invención
Es objeto de la invención un horno para fusión de sales inorgánicas, que comprende un recipiente, al menos una zona de entrada de sales inorgánicas sólidas y al menos una zona de salida de sales inorgánicas fundidas. El horno según la invención comprende al menos un tubo intercambiador de calor (también conocido como serpentín) caracterizado por estar provisto de una zona de entrada conectada a la pared lateral exterior del recipiente, un cuerpo en espiral sustancialmente a lo largo de las paredes internas del recipiente, delimitando un espacio interior y un tramo de salida sustancialmente vertical descendente hacia la base o ascendente hacia la parte superior del recipiente. El cuerpo en espiral del tubo intercambiador de calor está dispuesto en un plano sustancialmente horizontal. A la zona de entrada del tubo intercambiador de calor se conecta, por fuera del recipiente, un quemador, no siendo éste relevante para la presente invención.
De forma especialmente ventajosa, el horno comprende varios tubos intercambiadores de calor del tipo descrito, instalados a diferentes alturas y definiendo diferentes niveles de calentamiento. Ello permite que, durante la puesta en marcha del horno, es decir, durante el llenado inicial del mismo, se puedan calentar las sales sólidas en orden ascendente en altura, empezando por el tubo intercambiador de calor situado más abajo y hasta llegar al superior. De este modo se elimina el riesgo de explosión del horno ya que los gases generados pueden evacuar libremente al no tener sobre ellos una capa de sales en estado sólido. Por otro lado, si estando el horno en producción lleno de sales fundidas se queda frío, el calentamiento de las sales se realizara en sentido inverso, es decir, iniciándose el calentamiento en orden descendente, empezando por el tubo intercambiador de calor situado más alto, para continuar, una vez fundidas las sales de su nivel, por el segundo tubo y así hasta llegar al último tubo de la parte inferior. De esta forma se evita el riesgo de explosión, ya que por encima de la zona que se está calentando no existen sales en estado sólido, permitiendo la evacuación de los gases que se generan durante el calentamiento a través de las sales fundidas a modo de burbujeo, evacuando finalmente por una salida de gases.
Descripción breve de las figuras
Los detalles de la invención se aprecian en las figuras que se acompañan, no pretendiendo éstas ser limitativas del alcance de la invención:
La Figura 1 muestra una perspectiva del modo de realización preferente del horno según la invención.
La Figura 2 muestra un alzado del horno de la Figura 1.
La Figura 3 muestra una vista en planta del horno de la Figura 1 .
La Figura 4 muestra una perspectiva de un tubo intercambiador de calor de acuerdo con la invención.
- La Figura 5 muestra un alzado del tubo intercambiador de calor de la Figura 4.
- La Figura 6 muestra una vista en planta del tubo intercambiador de calor de la Figura 4.
La Figura 7 muestra una vista en sección del horno de acuerdo con el plano de sección A-A de la Figura 2. La Figura 8 muestra una vista en sección del horno de acuerdo con el plano de sección B-B de la Figura 2.
Descripción detallada de la invención
La Figura 1 muestra una perspectiva del modo de realización preferente del horno según la invención. El horno comprende un recipiente (1 ), que en el presente modo de realización tiene una forma cilindrica. En la zona superior del recipiente ( 1 ) se observa una zona de entrada (2) de sales inorgánicas sólidas, por donde se introducen las sales inorgánicas sólidas trituradas y mezcladas. Además, el horno comprende una zona de salida (3) de sales inorgánicas fundidas, que en el presente modo de realización presenta la forma de rebosadero. Las Figuras 2 y 3 muestran, respectivamente, un alzado y una vista en planta del horno de la Figura 1. El horno comprende una serie de tubos intercambiadores de calor o serpentines internos, que conducen gases de combustión a muy elevada temperatura por su interior, provocando el calentamiento y la fusión de las sales inorgánicas. El calor de los tubos intercambiadores de calor lo generan unos quemadores (4) situados en el exterior del recipiente, uno por cada tubo intercambiador de calor (5). Dichos quemadores pueden observarse en las Figuras 1 , 2, 3 y 7.
Las Figuras 4 a 6 muestran tres vistas de uno de los tubos intercambiadores de calor (5) de acuerdo con la invención. Cada tubo ¡ntercambiador de calor (5) comprende un tramo de entrada (5a), un tramo en espiral (5b) y un tramo de salida (5c). El tramo de entrada (5a) está conectado a la pared lateral exterior del recipiente (1 ), montándose exteriormente el quemador (4) correspondiente. En dicho tramo de entrada (5a) se inicia la combustión, actuando el mismo de hogar. El tramo en espiral (5b) se extiende sustancialmente a lo largo de las paredes laterales internas del recipiente (1 ) delimitando un espacio interior (6), y está dispuesto sobre un plano sustancialmente horizontal. La forma en espiral es muy relevante ya que permite la dilatación en todos los sentidos, evitando que el tubo intercambiador de calor (5) soporte esfuerzos mecánicos y deformaciones como consecuencia de las citadas dilataciones, aumentando la vida de los tubos intercambiadores de calor (5) al no existir fatiga mecánica. El tramo de salida (5c), en el presente modo de realización, desciende de forma sustancialmente vertical hacia la base del recipiente ( 1 ), alcanzando en este caso dicha base.
Ha de hacerse notar que en otros modos de realización el tramo de salida (5c) podrá estar dirigido hacia la parte superior del recipiente (1) (por ejemplo hacia una tapa superior ( 14) que cubre el mismo). Además, el tramo de salida (5c) preferentemente se extiende hasta la base o la parte superior del recipiente (1 ), aunque no se descartan alternativas diferentes. De forma especialmente ventajosa, como se muestra en las Figuras 7 y
8, el horno comprende varios tubos intercamb ¡adores de calor (5), en este caso un total de ocho, dispuestos a diferentes alturas, definiendo diferentes niveles de calentamiento del recipiente (1 ) y pudiendo disponer o no cada nivel de un sistema de control de temperatura independiente. Ello permite ir fundiendo las sales por niveles, cuando se inicia la fusión, mejorando notablemente la seguridad.
El procedimiento de puesta en marcha es el siguiente: - En primer lugar se aportan sales sólidas hasta cubrir el primer nivel de calentamiento del recipiente ( 1 ) (que se corresponde con el tubo intercambiador de calor (5) inferior). Se procede a encender el quemador (4) correspondiente, calentándose el tubo intercambiador de calor y fundiéndose las sales en contacto con él, hasta formar un lecho fundido de sales en la parte inferior del recipiente (1 ). Este proceso de calentamiento no es posible en un horno con tubos ¡ntercambiadores de calor verticales, ya que la mayor parte de estos quedaría al aire, fuera del contacto con las sales, y con el consiguiente riesgo de sobrecalentamiento. - Posteriormente, se siguen añadiendo sales sólidas hasta un segundo nivel de calentamiento del recipiente (1), que corresponde al segundo tubo intercambiador de calor (5), en sentido ascendente. Una vez encendido el quemador (4) correspondiente, se produce la fusión de este segundo nivel de sales. - Este proceso se repite con los sucesivos niveles de calentamiento del recipiente (1 ). Una vez encendidos todos los quemadores (4) y conseguida la temperatura necesaria para fundir y bombear las sales (aproximadamente 150°C superior a la temperatura de fusión de éstas) se continúa añadiendo sales hasta el nivel de la zona de salida (3). Es entonces cuando el horno está en condiciones de suministrar sales fundidas. A partir de ese instante, con la adición de nuevas sales sólidas se provoca la salida de sales fundidas por la zona de salida (3) o rebosadero, a un tanque de post-fusión, no representado en las figuras.
- En todo momento, los gases y vapores generados por la fusión de las sales son expulsados por una salida (7) destinada a tal fin y situada en la zona superior del recipiente ( 1 ). Dicha salida (7) puede observarse en las Figuras 1 y 2.
Estando el horno el las condiciones descritas, se pone en marcha un sistema de agitación (por ejemplo mecánico o por inducción, habiéndose representado en este caso un agitador (8) giratorio mecánico) para conseguir temperaturas uniformes en todos los niveles del recipiente (1 ) y aumentar la transmisión de calor entre los tubos intercambiadores de calor (5) y las sales fundidas. Preferentemente, el sistema de agitación provoca el giro de las sales fundidas a contracorriente, es decir, en sentido contrario al giro de los gases de combustión en el interior del tramo en espiral (5b) de los tubos intercambiadores de calor (5). Ello permite aumentar el rendimiento y la transmisión de calor de los tubos intercambiadores de calor (5), consiguiendo una mayor producción de sales fundidas con un menor consumo energético.
Estando el horno en estas condiciones, al aportar sales sólidas sobre la parte superior de las sales fundidas, las primeras se funden instantáneamente, siendo arrastradas por el giro del ciclón vertical descendente que genera el sistema de agitación hasta el fondo del recipiente (1), retornando perimetral mente a la superficie con giro ascendente entre los tubos intercambiadores de calor (5) radiantes, que las sobrecalientan nuevamente a las temperaturas prefijadas por los sistemas de control y seguridad de cada zona en caso de estar instalados. Dicho sobrecalentamiento permite fundir las nuevas sales sólidas que de forma continua se añaden en la parte superior.
El horno según la invención comprende, preferentemente, una cavidad (9) colectora de gases situada en la parte inferior o en la parte superior del recipiente (1), en función de dónde desalojen los tramos de salida (5c) de los tubos intercambiadores de calor (5). Los tramos de salida (5c) de cada tubo intercambiador de calor (5) expulsan o evacúan sus gases de combustión dentro de dicha cavidad (9). Las figuras muestra una cavidad (9) situada en la parte inferior del recipiente (1 ). En este caso la cavidad (9) aporta el calor residual de combustión al recipiente (1 ). Además, como puede observarse en la figura, la cavidad (9) comunica preferentemente con un conducto inferior (10) soterrado, que se utiliza como salida de los gases de combustión, según se muestra en las Figuras 1 y 2. Dicho conducto inferior (10) continúa en una chimenea (1 1 ) separada del horno. Con ello se mejora la seguridad y las condiciones de trabajo de los operarios del horno, al alejar la chimenea de la zona de trabajo.
En caso de estar la cavidad (9) localizada en la parte superior del recipiente ( 1), análogamente los gases pueden ser extraídos de dicha cavidad (9) hacia el exterior por un conducto que termina en una chimenea.
En la Figura 8 se observa que el horno puede comprender además al menos un rebosadero de seguridad (12), que se utiliza en caso de necesidad supletoria. También puede comprender un elemento divisor interior (13) para separar las sales sólidas que se introducen por la zona de entrada (2) y que flotan sobre las sales fundidas, evitando así la salida de sales sólidas por la zona de salida (3) y amortiguando las posibles diferencias de nivel generadas por el sistema de agitación.
Preferentemente, los tubos intercambiadores de calor (5), el recipiente ( 1 ) (incluyendo una tapa superior ( 14) que cubre el mismo) y/o la cavidad (9) colectora de gases se fabrican parcialmente de acero inoxidable y parcialmente de acero al carbono.

Claims

REIVINDICACIONES
1. Horno para la fusión de sales inorgánicas, que comprende un recipiente (1 ), al menos una zona de entrada (2) de sales inorgánicas sólidas, al menos una zona de salida (3) de sales inorgánicas fundidas, que se caracteriza por que comprende al menos un tubo intercambiador de calor (5) o serpentín, por el cual circulan gases de combustión, donde dicho tubo intercambiador de calor (5) comprende un tramo de entrada (5a) conectado a una pared lateral exterior del recipiente (1), un tramo en espiral (5b) sustancialmente a lo largo de las paredes laterales internas del recipiente (1 ) delimitando un espacio interior (6), estando dispuesto dicho tramo en espiral (5b) sobre un plano sustancialmente horizontal, y un tramo de salida (5c) sustancialmente vertical descendente hacia la base o ascendente hacia la parte superior del recipiente (1).
2. Horno, según la reivindicación 1 , que se caracteriza por que comprende varios tubos intercambiadores de calor (5), dispuestos a diferentes alturas, definiendo diferentes niveles de calentamiento del recipiente ( 1 ).
3. Horno, según la reivindicación 1 , que se caracteriza por que la zona de salida (3) comprende un rebosadero.
4. Horno, según la reivindicación 1 , que se caracteriza por que el tramo de salida (5c) de cada tubo intercambiador de calor (5) se extiende hasta la parte superior del recipiente (1 ).
5. Horno, según la reivindicación 1 , que se caracteriza por que el tramo de salida (5c) de cada tubo intercambiador de calor (5) se extiende hasta la base del recipiente (1 ).
6. Horno, según la reivindicación 5, que se caracteriza por que comprende una cavidad (9) colectora de gases, a la que se expulsan los gases desde el tramo de salida (5c) de cada tubo intercambiador de calor (5).
7. Horno, según la reivindicación 6, que se caracteriza por que la cavidad (9) está ubicada en la parte superior del recipiente (1).
8. Horno, según la reivindicación 7, que se caracteriza por que los gases son extraídos de dicha cavidad (9) hacia el exterior por un conducto que termina en una chimenea.
9. Horno, según la reivindicación 6, que se caracteriza por que la cavidad (9) está ubicada en la parte inferior del recipiente (1 ).
10. Horno, según la reivindicación 9, que se caracteriza por que los gases son extraídos de dicha cavidad (9) hacia el exterior por un conducto inferior ( 10) soterrado, que termina en una chimenea (1 1 ) separada del horno.
1 1 . Horno, según la reivindicación 1 , que se caracteriza por que el tubo intercambiador de calor (5), el recipiente (1 ), una tapa superior ( 14) que cubre el recipiente (1 ) y/o la cavidad (9) colectora de gases están fabricados parcialmente de acero inoxidable, y parcialmente de acero al carbono.
12. Horno, según la reivindicación 1 , que comprende un sistema de agitación para homogeneizar las sales fundidas.
13. Horno, según la reivindicación 12, que se caracteriza por que el sistema de agitación hace girar las sales fundidas en sentido contrario al sentido de avance de los gases de combustión por el interior del tramo en espiral (5b) del tubo intercambiador de calor (5).
14. Horno, según la reivindicación 1 , que se caracteriza por que comprende al menos un elemento divisor interior ( 13) entre la zona de entrada (2) y la zona de salida (3).
15. Horno, según la reivindicación 1 , que se caracteriza por que comprende un rebosadero de seguridad (12).
16. Horno, según la reivindicación 1 , que se caracteriza por que comprende una salida (7) destinada a evacuar los gases y vapores generados por la fusión de las sales.
PCT/ES2011/000084 2010-03-24 2011-03-21 Horno para la fusión de sales inorgánicas WO2011117438A2 (es)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112012023899-0A BR112012023899B1 (pt) 2010-03-24 2011-03-21 forno para a fusão de sais inorgânicos
ES11721795.0T ES2492525T3 (es) 2010-03-24 2011-03-21 Horno para la fusión de sales inorgánicas
MA35313A MA34161B1 (fr) 2010-03-24 2011-03-21 Four pour la fusion de sels inorganiques
MX2012010848A MX2012010848A (es) 2010-03-24 2011-03-21 Horno para la fusion de sales inorganicas.
US13/634,436 US9927176B2 (en) 2010-03-24 2011-03-21 Furnace for melting inorganic salts
EP11721795.0A EP2551625B1 (en) 2010-03-24 2011-03-21 Furnace for melting inorganic salts
CN201180015368.XA CN102869945B (zh) 2010-03-24 2011-03-21 用于熔化无机盐的熔炉
ZA2012/06700A ZA201206700B (en) 2010-03-24 2012-09-07 Furnace for melting inorganic salts
IL221938A IL221938A (en) 2010-03-24 2012-09-13 Inorganic salt smelting furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201000389A ES2355911B1 (es) 2010-03-24 2010-03-24 Horno para la fusión de sales inorg�?nicas.
ESP201000389 2010-03-24

Publications (2)

Publication Number Publication Date
WO2011117438A2 true WO2011117438A2 (es) 2011-09-29
WO2011117438A3 WO2011117438A3 (es) 2012-01-12

Family

ID=43754644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/000084 WO2011117438A2 (es) 2010-03-24 2011-03-21 Horno para la fusión de sales inorgánicas

Country Status (13)

Country Link
US (1) US9927176B2 (es)
EP (1) EP2551625B1 (es)
CN (1) CN102869945B (es)
BR (1) BR112012023899B1 (es)
CL (1) CL2012002515A1 (es)
CY (1) CY1115466T1 (es)
ES (2) ES2355911B1 (es)
IL (1) IL221938A (es)
MA (1) MA34161B1 (es)
MX (1) MX2012010848A (es)
PT (1) PT2551625E (es)
WO (1) WO2011117438A2 (es)
ZA (1) ZA201206700B (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878684A (zh) * 2012-09-27 2013-01-16 镇江力帆防爆电器有限公司 溶盐防爆电加热器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012010311A1 (de) * 2012-05-24 2013-11-28 Linde Aktiengesellschaft Verfahren zum Betreiben eines Solarthermiekraftwerks
CN105004180A (zh) * 2015-07-01 2015-10-28 江苏中储能源装备有限公司 一种相变储热介质熔化炉用固液分离挡板
CN105066695A (zh) * 2015-07-16 2015-11-18 江苏中储能源装备有限公司 一种高效相变储热介质熔化炉
CN105606438A (zh) * 2016-03-10 2016-05-25 济南海能仪器股份有限公司 用于纤维测定仪的溶剂预热系统
KR101722755B1 (ko) * 2016-12-09 2017-04-03 (주)이가 직화 용융 방식을 이용한 고순도 소금 제조장치
CN109425108A (zh) * 2017-09-05 2019-03-05 甘肃光热发电有限公司 一种电加热冷盐罐
EP3505225A1 (de) * 2017-12-27 2019-07-03 Oschatz Energy and Environment GmbH Vorrichtung und verfahren mit einem ablauf zum abzug von flüssigem salz
FI129619B (en) * 2019-01-22 2022-05-31 Varo Teollisuuspalvelut Oy FIREPLACE BOTTOM PROTECTION IN SODY BOILERS
CN110665386A (zh) * 2019-10-28 2020-01-10 徐州丰禾智能科技有限公司 一种能根据温度均匀搅拌的物料混合设备
CN113237043A (zh) * 2021-05-18 2021-08-10 中煤科工集团重庆研究院有限公司 利用熔盐储能进行火电站改造的装置
CN113251663A (zh) * 2021-05-19 2021-08-13 中国电建集团江西装备有限公司 一种高温熔盐储罐预热与加热装置及方法
CN114210963B (zh) * 2021-11-30 2023-02-24 贵州华星冶金有限公司 锑锭生产系统及其锑金属熔炼高炉
CN115264995B (zh) * 2022-06-23 2024-02-06 中电投东北能源科技有限公司 一种具有储热功能的分布式多联供系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042318A (en) 1974-07-31 1977-08-16 Vvb Haushalts- Und Verpackungsglas Apparatus for the continuous melting of salts used for modifying the properties of articles of glass or similar materials
US20050005646A1 (en) 2001-10-02 2005-01-13 Michael Leister Device and method for melting a substance with the occurrence of a low level of contamination
US20080233527A1 (en) 2007-03-24 2008-09-25 Durferrit Gmbh Method for continuous mixing and melting inorganic salts and furnace installation for realizing the method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB112827A (en) * 1917-01-31 1918-01-31 Isaiah Hall Improvements in and relating to Furnaces and the like.
US1912288A (en) * 1932-10-26 1933-05-30 Cons Gas Company Heating pot
US2137693A (en) * 1938-02-11 1938-11-22 American Radiator Co Heating furnace
US2569824A (en) * 1948-02-12 1951-10-02 Patent & Licensing Corp Heating device for molten materials
GB964704A (en) * 1960-11-05 1964-07-22 Flugzeugwerke Dresden Veb Internally heated saltpetre tank furnace
GB962837A (en) 1962-03-17 1964-07-08 Ames Crosta Mills & Company Lt Improvements in or relating to heat-exchangers
US3573887A (en) * 1968-02-27 1971-04-06 Dow Chemical Co Method of making glass from reacted and shaped batch materials
GB1331618A (en) * 1971-10-14 1973-09-26 Heatstat Ltd Immersion heater
US4403645A (en) * 1978-07-12 1983-09-13 Calmac Manufacturing Corporation Compact storage of seat and coolness by phase change materials while preventing stratification
DE3208838C2 (de) 1982-03-11 1984-06-20 Wieland-Werke Ag, 7900 Ulm Wärmeübertrager
JPS6173819A (ja) * 1984-09-17 1986-04-16 Ito Seitetsushiyo:Kk 冷鋼片、熱鋼片の均熱処理装置
AT406300B (de) 1993-11-24 2000-03-27 Bremstaller Ges M B H & Co Kg Vorrichtung zum erwärmen von brauchwasser
US5423378A (en) * 1994-03-07 1995-06-13 Dunham-Bush Heat exchanger element and heat exchanger using same
US5743728A (en) * 1995-08-15 1998-04-28 Usg Corporation Method and system for multi-stage calcining of gypsum to produce an anhydrite product
FR2817332B1 (fr) * 2000-11-30 2006-02-17 Guillot Ind Sa Serpentin tubulaire a deux etages d'enroulements en spirale, echangeur de chaleur mettant en oeuvre un tel serpentin et procede de fabrication du serpentin
US20080289793A1 (en) * 2007-05-22 2008-11-27 Gerald Geiken Thermal energy storage systems and methods
CN101625155A (zh) * 2008-07-07 2010-01-13 常州能源设备总厂有限公司 发生炉煤气熔盐炉

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042318A (en) 1974-07-31 1977-08-16 Vvb Haushalts- Und Verpackungsglas Apparatus for the continuous melting of salts used for modifying the properties of articles of glass or similar materials
US20050005646A1 (en) 2001-10-02 2005-01-13 Michael Leister Device and method for melting a substance with the occurrence of a low level of contamination
US20080233527A1 (en) 2007-03-24 2008-09-25 Durferrit Gmbh Method for continuous mixing and melting inorganic salts and furnace installation for realizing the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878684A (zh) * 2012-09-27 2013-01-16 镇江力帆防爆电器有限公司 溶盐防爆电加热器

Also Published As

Publication number Publication date
BR112012023899A2 (pt) 2016-08-02
CL2012002515A1 (es) 2013-06-07
ES2492525T3 (es) 2014-09-09
ES2355911A1 (es) 2011-04-01
PT2551625E (pt) 2014-08-29
WO2011117438A3 (es) 2012-01-12
CY1115466T1 (el) 2017-01-04
US20130065190A1 (en) 2013-03-14
IL221938A0 (en) 2012-12-02
EP2551625B1 (en) 2014-05-14
MA34161B1 (fr) 2013-04-03
US9927176B2 (en) 2018-03-27
IL221938A (en) 2015-05-31
ZA201206700B (en) 2013-05-29
BR112012023899B1 (pt) 2020-10-27
EP2551625A2 (en) 2013-01-30
MX2012010848A (es) 2013-01-29
CN102869945A (zh) 2013-01-09
CN102869945B (zh) 2014-12-24
ES2355911B1 (es) 2012-02-08

Similar Documents

Publication Publication Date Title
WO2011117438A2 (es) Horno para la fusión de sales inorgánicas
WO2015004292A1 (es) Intercambiador para calderas de calefacción
EP3631338A1 (en) Heat-storing apparatus with solid filling material
CN104803581A (zh) 用于玻璃熔池的蓄热室
US20120061481A1 (en) Device for providing reverse heating and method of reverse heating
ES2318505T3 (es) Procedimiento y aparato para la proteccion de un intercambiador termico y una caldera de vapor con un aparato de proteccion de intercambiador termico.
KR101712017B1 (ko) 난방 온수 겸용 보일러
CN102644939B (zh) 集成灶
KR101313533B1 (ko) 하입식 우드 펠렛 보일러 연소장치
ES2638120T3 (es) Caldera con tubos de humos
ES2826174T3 (es) Planta para la recuperación de calor de un horno de cocción
KR20100117468A (ko) 스파이럴 구조의 열교환실을 가진 온수보일러
CN104523144B (zh) 具有烟气余热回收功能的整体式豆浆炉
ES2908378B2 (es) Caldera de combustion
KR200405040Y1 (ko) 보일러 및 열교환기의 성능향상을 위한 유체의 가온장치
KR101094142B1 (ko) 열효율을 향상시킨 온수보일러
CN2898707Y (zh) 一种卧式燃气燃油真空加热炉
ES2360315B1 (es) M�?quina para el calentamiento de un fluido mediante la combustión de un material combustible sólido.
KR20200041048A (ko) 열풍기
KR20120106527A (ko) 전기 히팅 유닛 및 이를 이용한 전기 난방 장치
TWM445683U (zh) 具有冷凝熱交換器的熱水器
CN203949359U (zh) 全程天然气锅炉
KR20100129599A (ko) 고효율의 저 전력을 이용한 보일러의 열교환기
RU90174U1 (ru) Водогрейный котел
CN2699187Y (zh) 导热介质炉蒸柜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015368.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11721795

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2110/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011721795

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012002515

Country of ref document: CL

WWE Wipo information: entry into national phase

Ref document number: 221938

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/010848

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13634436

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012023899

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012023899

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120921