WO2011115178A1 - 樹脂燃料タンク - Google Patents

樹脂燃料タンク Download PDF

Info

Publication number
WO2011115178A1
WO2011115178A1 PCT/JP2011/056249 JP2011056249W WO2011115178A1 WO 2011115178 A1 WO2011115178 A1 WO 2011115178A1 JP 2011056249 W JP2011056249 W JP 2011056249W WO 2011115178 A1 WO2011115178 A1 WO 2011115178A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel tank
resin fuel
support bracket
blow molding
upper collar
Prior art date
Application number
PCT/JP2011/056249
Other languages
English (en)
French (fr)
Inventor
崇 南雲
芳樹 中尾
立裕 永島
靖史 田中
Original Assignee
ダイハツ工業株式会社
坂本工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010079616A external-priority patent/JP5457910B2/ja
Application filed by ダイハツ工業株式会社, 坂本工業株式会社 filed Critical ダイハツ工業株式会社
Priority to CN201180014307.1A priority Critical patent/CN102802993B/zh
Publication of WO2011115178A1 publication Critical patent/WO2011115178A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0042Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor without using a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/03177Fuel tanks made of non-metallic material, e.g. plastics, or of a combination of non-metallic and metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7172Fuel tanks, jerry cans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03032Manufacturing of fuel tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03328Arrangements or special measures related to fuel tanks or fuel handling
    • B60K2015/03453Arrangements or special measures related to fuel tanks or fuel handling for fixing or mounting parts of the fuel tank together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1015Input shaft speed, e.g. turbine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/10Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with one or more one-way clutches as an essential feature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/46Gearings having only two central gears, connected by orbital gears
    • F16H3/48Gearings having only two central gears, connected by orbital gears with single orbital gears or pairs of rigidly-connected orbital gears
    • F16H3/52Gearings having only two central gears, connected by orbital gears with single orbital gears or pairs of rigidly-connected orbital gears comprising orbital spur gears
    • F16H3/54Gearings having only two central gears, connected by orbital gears with single orbital gears or pairs of rigidly-connected orbital gears comprising orbital spur gears one of the central gears being internally toothed and the other externally toothed

Definitions

  • the present invention relates to a resin fuel tank formed by free blow molding or blow molding and having a hollow shape in which an upper collar portion and a lower collar portion are combined.
  • the present invention also includes a tank body capable of storing fuel therein and a support bracket that protrudes from the tank body and can be fastened to the vehicle body, and the tank body and the support bracket are integrated by blow molding.
  • the present invention relates to a synthetic resin fuel tank mounted on a vehicle.
  • the blow molded resin container described in Patent Document 1 is used as a gasoline tank for automobiles, and is formed in a rectangular box shape by blow molding using resin.
  • the fuel tank includes a tank body that can store fuel therein, and a plurality of support brackets that project outward from the outer surface of the tank body and can be fastened to the vehicle body side.
  • the tank body and the support brackets are integrally formed by blow molding.
  • the blow molding is generally performed as follows.
  • a split type both molds are used in which the surfaces passing through the protruding end edges of the respective support brackets are mating surfaces.
  • the cavity formed between the two molds includes a main cavity that forms the tank body and sub-cavities that form the support brackets. These sub-cavities are formed between the molds so as to communicate with the main cavity and to be adjacent to the mating surface at a plurality of locations along the mating surface.
  • a high-temperature soft and tube-shaped parison is formed by an extruder, and this parison is inserted between the two molds opened.
  • each other part except the main part in the circumferential direction of the parison is sandwiched between the inner surfaces of the subcavities of both molds approaching each other as described above, and adjacent to each other in the circumferential direction in each of the other parts.
  • the mating parts are bent so that they overlap each other. Then, the two stacked ones are pressed and integrated with each other by the inner surfaces of the sub-cavities.
  • corner portion In a container for storing this type of fuel, stress due to internal pressure tends to concentrate on the corner portion between tank formation surfaces (hereinafter referred to as “corner portion”).
  • corner portion In the blow molding resin container of patent document 1, it is a box-shaped corner
  • blow molding is performed so that the plate thickness of the corner portion is increased, the plate thickness of other portions (portions other than the corner portion) becomes thicker than necessary, and the amount of resin used increases. For this reason, the weight as a fuel tank becomes heavy and it becomes a factor of the cost increase as a product.
  • the support brackets are mutually connected in the circumferential direction in each of the other parts of the parison. It is formed by overlapping two adjacent portions.
  • the plate material thickness of each part of the support bracket is about twice the thickness of the tank body part in the vicinity of the base part of the support bracket. It tends to be. Therefore, even if it is attempted to increase the fastening strength of the support bracket to the vehicle body and to increase the plate thickness of the support bracket, this is difficult only by the conventional blow molding described above. Therefore, it is not easy to improve the support strength of the fuel tank on the vehicle body side.
  • an object of the present invention is to provide a resin fuel tank that can be reduced in weight without increasing costs.
  • An object of the present invention is a vehicle-mounted synthetic resin fuel tank comprising a tank body that can store fuel therein, and a support bracket that protrudes from the tank body and can be fastened to the vehicle body side,
  • the tank body and the support bracket are integrally formed by blow molding, it is possible to easily achieve improvement in the support strength of the fuel tank to the vehicle body side.
  • the resin fuel tank according to the first aspect of the present invention for achieving the above object is characterized in that a tubular parison is partitioned in a predetermined length in the axial direction into a hermetically sealed state, and air is introduced into the tubular parison using free blow molding.
  • the point is that the outer shape is the shape inflated by blowing.
  • the resin fuel tank can be formed by a simple method of inflating the tubular parison without using a mold (mold). Further, since the shape is not corrected by the molding die in the process of forming the resin fuel tank, the tubular parison can be uniformly inflated by the air pressure supplied into the tubular parison. For this reason, since a uniform thickness can be realized over the entire surface of the resin fuel tank, even when the fuel stored in the formed resin fuel tank volatilizes and the pressure becomes high, the height increases. The pressure can be evenly applied to the inner wall of the resin fuel tank, and stress is less likely to partially concentrate. Accordingly, the overall plate thickness can be reduced by that amount and the amount of resin used can be reduced, so that the cost and weight of the resin fuel tank can be reduced. Further, since no mold is used, the manufacturing cost can be reduced.
  • the resin fuel tank according to the second invention for achieving the above object is characterized in that a tubular parison is partitioned in a predetermined length in the axial direction so as to be sealed, and air is introduced into the tubular parison by free blow molding.
  • the mold is formed by blow molding in which air is blown and inflated into a tubular parison disposed in the mold using a mold having a shape in a state of being blown up.
  • the resin fuel tank having a shape in which the tubular parison is inflated using free blow molding can be formed using a mold (mold). Since the resin fuel tank having such a shape can achieve a uniform thickness over the entire surface of the resin fuel tank, the fuel stored in the formed resin fuel tank volatilizes and the pressure is increased. Even when the pressure increases, the increased pressure can be evenly applied to the inner wall of the resin fuel tank. For this reason, there is little concentration of stress partially. Accordingly, the overall plate thickness can be reduced by that amount and the amount of resin used can be reduced, so that the cost and weight of the resin fuel tank can be reduced.
  • a resin fuel tank characterized in that an attachment portion that enables attachment to a vehicle is provided, and the attachment portion is configured so that the resin fuel tank is disposed in a top view of the molded resin fuel tank. It is in the point formed in the surrounding virtual rectangle.
  • the mounting portion can be molded while maintaining the resin fuel tank in a bulging state with a uniform thickness. For this reason, since uneven thickness due to the mounting portion does not occur in the resin fuel tank, it is not necessary to increase the thickness of the resin fuel tank in order to form the mounting portion. Therefore, it is possible to form the attachment portion while realizing a reduction in cost and weight of the resin fuel tank.
  • a feature of the resin fuel tank according to the fourth invention for achieving the above object is a hollow shape formed by blow molding, in which an upper collar part and a lower collar part are combined.
  • the inner surface of the cross section in the second direction orthogonal to the first direction at the center of the lower collar part and the upper collar part in the first direction along the cylindrical central part of the lower collar part is the upper collar part and A pair of first arc portions connected to the connecting portion of the lower collar portion and extending to the center side of the upper collar portion and the lower collar portion and having a predetermined radius, and having a radius larger than the predetermined radius And a second arc portion connected across the pair of first arc portions, and in the first direction at the center of the upper collar portion and the lower collar portion in the second direction.
  • the inner surface of the cross section is connected to the connecting portion of the upper collar part and the lower collar part, and the upper collar part and A third arc portion of the pair to be extended toward the center of the lower bowl portion lies in that is formed with a, a connecting portion connected the pair of third over the arcuate portion.
  • the increased pressure can be uniformly applied to the inner wall of the resin fuel tank. Stress is less concentrated. For this reason, it is possible to reduce the overall plate thickness accordingly. Therefore, since the amount of resin used can be reduced, the cost and weight of the resin fuel tank can be reduced.
  • the feature of the resin fuel tank according to the fifth invention is that an opening having a depression around it is formed at the center of the upper collar.
  • the recess functions as a reinforcing rib for the upper collar, and the rigidity of the resin fuel tank can be further improved.
  • the sixth invention includes a tank body 1003 that can store fuel 1002 therein, and a support bracket 1006 that protrudes outward from the outer surface of the tank body 1003 and can be fastened to the vehicle body 1004 side.
  • the tank body 1003 and the support brackets 1006 are blow-molded by inserting the parison 1030 between the split molds 1025 and 1026 with the surface passing through the protruding edge of the support bracket 1006 as the mating surface 1024.
  • the integrally formed vehicle-mounted synthetic resin fuel tank as seen from the line of sight along the protruding direction of the support bracket 1006 (FIG.
  • the support bracket 1006 is formed in a mountain shape formed by bending a plate material, Alternatively, it is an inverted mountain shape, and a midway portion in the left-right direction of the support bracket 1006 is configured. While the plate material thickness Ta of the fastened portion 1009 fastened to the vehicle body 1004 side is larger than twice (2t) the thickness t of the portion 1003a of the tank body 1003 in the vicinity of the base portion of the support bracket 1006, A synthetic resin fuel tank mounted on a vehicle, characterized in that the plate material thickness Tb of each of the left and right side portions 1010 of the support bracket 1006 is smaller than twice (2t) the thickness t of the portion 1003a of the tank body 1003. It is.
  • the sixth invention includes a tank body capable of storing fuel therein, and a support bracket that protrudes outward from the outer surface of the tank body and can be fastened to the vehicle body side.
  • a tank body capable of storing fuel therein
  • a support bracket that protrudes outward from the outer surface of the tank body and can be fastened to the vehicle body side.
  • the thickness of the plate to be fastened to the vehicle body side is set to be larger than twice the thickness of the tank body portion in the vicinity of the base portion of the support bracket. That.
  • the support bracket is formed in a mountain shape or an inverted mountain shape that has a high overall rigidity.
  • the plate thickness of each part of the support bracket tends to be about twice that of the tank main body.
  • the support bracket is fastened to the vehicle body side.
  • the plate material thickness of the portion to be fastened is set to be greater than twice the thickness of the tank body portion. For this reason, the fastening strength of the support bracket to the vehicle body side can be improved, and therefore the improvement of the support strength of the fuel tank to the vehicle body side can be achieved.
  • the plate material thickness of the fastened portion is set to be larger than twice the thickness of the tank main body portion, while the plate material thickness of the left and right side portions of the support bracket is set to the tank main body portion. It is smaller than twice the thickness.
  • the plate thickness of each part of the support bracket is about twice the thickness of the tank body portion in normal blow molding, but as described above, the plate material of the fastened portion of the support bracket. Thickness> twice the plate thickness of the tank body portion> plate thickness of each side portion of the support bracket.
  • the part corresponding to each side part of the support bracket among the parisons sandwiched between the inner surfaces of the cavities between the molds corresponds to the fastened part. It is compressed more compared with the part to do.
  • the soft resin of the parison corresponding to each side part flows toward the part corresponding to the fastened part and is supplied to the fastened bracket of the support bracket having the large plate material thickness. Part is formed.
  • the plate material thickness of the fastened portion of the support bracket is increased while the plate material thickness of each side portion of the support bracket is decreased, so that the above-described fuel Improvement of the support strength of the tank can be achieved while avoiding an increase in the mass of the fuel tank.
  • the support bracket has a mountain shape or an inverted mountain shape, which has a shape that can increase overall rigidity, so that this support bracket has good support for supporting the fuel tank on the vehicle body side. Strength can be secured.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 2.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 2.
  • FIG. 3 is a cross-sectional view taken along line VI-VI in FIG. 2.
  • It is a top view of a pyramid part. It is an upper perspective view of a pyramid part. It is a figure shown about the tubular parison which concerns on 2nd embodiment. It is a figure shown about the resin fuel tank which concerns on 2nd embodiment.
  • FIG. 18 is an enlarged view taken along line II in FIG. 17. It is a perspective view of a fuel tank. It is a top view of a fuel tank.
  • FIG. 17 is a cross-sectional view taken along line IV-IV in FIG. 16.
  • FIG. 15 is a cross-sectional view taken along line VV in FIG. 14.
  • FIG. 15 is a cross-sectional view taken along line VI-VI in FIG. 14. It is a figure equivalent to FIG. 18, and is explanatory drawing of blow molding.
  • the resin fuel tank 100 is a container for storing fuel (for example, gasoline or light oil) supplied to an internal combustion engine of a vehicle.
  • the resin fuel tank 100 is generally provided at a position that is not visible to the passengers of the vehicle (for example, under the rear seat). Such a resin fuel tank 100 is shown in FIGS.
  • FIG. 1 is a top perspective view of the resin fuel tank 100.
  • 2 is a top view of the resin fuel tank 100
  • FIG. 3 is a bottom view of the resin fuel tank 100.
  • the resin fuel tank 100 has a hollow shape in which an upper flange portion 51 and a lower flange portion 52 are combined.
  • the upper collar portion 51 is a collar member on the side shown in FIG. 2, and the lower collar portion 52 is the collar member on the side shown in FIG.
  • the upper flange portion 51 and the lower flange portion 52 are formed in a hollow shape having a space inside with the respective hook-shaped edge portions as connection portions Z (see FIGS. 4 and 5).
  • the resin fuel tank 100 is formed in a horizontally long rectangular shape with a corner in plan view (see FIGS. 2 and 3). Of course, it is also possible to form it in the shape of a square with a rounded corner.
  • the resin fuel tank 100 including the upper collar portion 51 and the lower collar portion 52 is molded by blow molding using resin. It is preferable that the resin used for the resin fuel tank 100 has a high mechanical strength and does not react with the fuel stored in the resin fuel tank 100. Blow molding is one of thermoplastic resin molding methods, and air pressure is used in the processing.
  • Blow molding involves melting a raw material called a parison into a pipe and then extruding it into a divided mold. After closing the mold, air is blown into the parison through an injection nozzle. The parison is inflated by air pressure, pressed against the outer mold, cooled, and solidified into a hollow shape, so that the mold can be opened and the resin fuel tank 100 can be taken out.
  • the upper collar portion 51 and the lower collar portion 52 described above are integrally formed so as not to be separated. Therefore, the above-described connection portion Z is a name for convenience of explanation, and does not indicate a portion in which the upper collar portion 51 and the lower collar portion 52 are separately formed and connected.
  • the central portion 79 is a central portion having a predetermined width as shown in FIG. 1 when the upper collar portion 51 and the lower collar portion 52 are viewed as a long cylindrical shape.
  • the direction along the central portion 79 corresponds to the direction A shown in FIG. Therefore, in the following description, the first direction will be described with reference A. Further, a second direction to be described later will be described with reference B.
  • the inner surface of the cross section in the second direction B perpendicular to the first direction A at the center of the upper collar portion 51 and the lower collar portion 52 in the first direction A is connected to the connection portion Z of the upper collar portion 51 and the lower collar portion 52.
  • the pair of first arc portions 71 extending to the center side of the upper collar portion 51 and the lower collar portion 52 and having a predetermined radius r1, and the pair of first arcs having a radius R1 larger than the predetermined radius r1.
  • a second arc portion 72 connected across the arc portion 71.
  • the second direction B is a direction orthogonal to the first direction A as shown in FIG.
  • the cross section in the second direction B is a cross section in the central portion 79 of the upper collar portion 51 and the lower collar portion 52.
  • a cross section in the second direction B of the upper collar portion 51 and the lower collar portion 52 is shown in FIG.
  • the cross section shown in FIG. 4 corresponds to the cross section taken along the line IV-IV in FIG.
  • the inner surface of the cross section is a surface along the inner wall in the cross-sectional view of the resin fuel tank 100.
  • a supply port 31, a pump attachment port 32, and a bottom portion 33 are formed in the upper collar portion 51 and the lower collar portion 52.
  • a cross section at a position deviated from the pump attachment port 32 along the first direction A from the IV-IV line in FIG. 2 is as shown by a one-dot chain line as shown in FIG. If the radius of the first arc portion 71 is r1, the radius of the second arc portion 72 is formed with a radius R1 larger than r1.
  • the resin fuel tank 100 is formed in a hot water tampo type (rugby ball type) cross-sectional shape in a cross-sectional view as shown in FIG.
  • the first arc portion 71 and the second arc portion 72 have ⁇ > ⁇ It is formed to become. In particular, it is preferable to form ⁇ so that it is about 1 ⁇ 2 (about half) of ⁇ . Of course, it is naturally possible to form the first arc portion 71 and the second arc portion 72 so that ⁇ ⁇ . Further, the portion denoted by the symbol ⁇ corresponding to the inner surface of the connecting portion Z (the portion connecting the first arc portion 71 of the upper collar portion 51 and the first arc portion 72 of the lower collar portion 52) is the first arc portion.
  • the length of the portion indicated by ⁇ is formed such that ⁇ > ⁇ in the relationship with ⁇ described above.
  • is about 1 ⁇ 2 (about half) of ⁇ .
  • the inner surface of the cross section in the first direction A at the center of the upper collar part 51 and the lower collar part 52 in the second direction B is connected to the connection portion Z of the upper collar part 51 and the lower collar part 52 to connect the upper collar part 51 and A pair of third arc portions 82 extending toward the center side of the lower collar portion 52 and a connection portion 81 connected across the pair of third arc portions 82 are formed.
  • a cross section in the first direction A is shown in FIG.
  • the cross section shown in FIG. 5 corresponds to the cross section taken along the line VV in FIG.
  • the inner surface of the cross section of the upper collar portion 51 and the lower collar portion 52 in the first direction A has a pair extending from the connecting portion Z of the upper collar portion 51 and the lower collar portion 52 to the center side.
  • the third arc portion 82 is formed.
  • the third arc portion 82 is preferably formed with the same radius r1 as the first arc portion 71.
  • a connection portion 81 is formed between the pair of third arc portions 82.
  • the inner surface of the cross section is a shape along the inner wall in the cross sectional view of the resin fuel tank 100 as described above. As described above, the supply port 31, the pump mounting port 32, and the bottom 33 formed in the upper collar portion 51 and the lower collar portion 52 are shown in FIG.
  • a cross section at a position deviated from the pump attachment port 32 along the second direction B from the VV line in FIG. 2 is as shown by a one-dot chain line as shown in FIG.
  • the resin fuel tank 100 is formed in a flat and thin shape in a side view as shown in FIG.
  • the resin fuel tank 100 has an inner surface with a central cross section as described above. Therefore, even when the fuel in the resin fuel tank 100 is volatilized and the pressure becomes high, the pressure can be uniformly received, so that deformation and breakage of the resin fuel tank 100 can be prevented.
  • the first arc portion 71 and the third arc portion 82 are both formed with a radius of r1. If it is set as such a structure, each applicable site
  • a fuel supply port 31 stored in the resin fuel tank 100 is formed on the upper surface of the resin fuel tank 100.
  • the supply port 31 is illustrated as being formed at a position deviated from the center of the upper collar 51, but is not limited to this position.
  • the supply port 31 can be formed at another position by routing an oil supply pipe (not shown) connected to an oil supply port (not shown) of the vehicle.
  • the supply port 31 is formed with a round hole, and an oil supply pipe is connected thereto.
  • An opening 32 having a recess 41 around is formed in the central portion 79 of the upper collar 51.
  • the opening 32 corresponds to a pump attachment port to which a pump (not shown) for sucking out fuel stored in the resin fuel tank 100 is attached. Therefore, in the following description, the opening 32 will be described as the pump attachment port 32.
  • the pump attachment port 32 By providing the depression 41 around the pump attachment port 32, the strength of the portion where the pump attachment port 32 is formed can be increased.
  • the pump mounting port 32 is not limited to the illustrated position.
  • the pump attachment port 32 is formed by a round hole.
  • a bottom portion 33 having a flat surface is formed on the lower surface of the resin fuel tank 100, that is, the connecting portion 81 of the lower collar portion 52 so that the arrangement posture can be maintained when the resin fuel tank 100 is arranged in a vehicle.
  • the resin fuel tank 100 is provided with a plurality of mounting portions 21.
  • FIG. 6 is an enlarged view (sectional view) of the mounting portion 21.
  • a through hole 22 is formed in the approximate center of the attachment portion 21.
  • the resin fuel tank 100 can be fixed by fixing the through hole 22 and a vehicle holding unit (not shown) with a bolt.
  • the position of the knob part 23 is a predetermined jig (not shown) so that the plate thickness in the vicinity of the attachment part 21 of the upper collar part 51 and the lower collar part 52 is not thinned.
  • the upper hook part 51 and the lower hook part 52 are formed so that the vicinity of the attachment part 21 is not pulled outward together with the attachment part 21.
  • board thickness of the vicinity part of the attaching part 21 of the upper collar part 51 and the lower collar part 52 is ensured.
  • At least a part of the inner and outer surfaces of the upper collar portion 51 and the lower collar portion 52 of the resin fuel tank 100 are formed by connecting a plurality of pyramidal portions 77 each having a plurality of pyramidal surfaces 78.
  • the pyramid portion 77 corresponds to a pyramid
  • the pyramid surface 78 corresponds to a surface composed of a plurality of triangles included in the pyramid. Therefore, the pyramid portion 77 is formed in a diamond shape or a pyramid shape.
  • the pyramid portion 77 is formed so as to protrude inward with respect to the resin fuel tank 100.
  • a top view of such a pyramid portion 77 is shown in FIG. 7, and an upper perspective view of the pyramid portion 77 is shown in FIG.
  • the pyramid portion 77 shown in FIG. 8 is exaggerated in the height direction (vertical direction) for easy understanding of the description, and is not limited to that shown in FIG.
  • At least one of the plurality of pyramid surfaces 78 made of a triangle is an isosceles triangle.
  • the pyramid portion 77 is described as a quadrangular pyramid having four isosceles triangles as the pyramid surface 78. Therefore, the plurality of pyramid surfaces 78 correspond to the four pyramid surfaces 78 constituting the quadrangular pyramid.
  • the upper collar part 51 and the lower collar part 52 are at least partially formed with the pyramid surface 78 as an inner surface and an outer surface thereof.
  • One of the lines connecting each vertex 76 of the bottom surface of the pyramid portion 77 and the top 80 of the pyramid portion 77 is the first direction A along the cylindrical central portion 79 of the upper collar portion 51 and the lower collar portion 52 or It is formed along a second direction B orthogonal to the first direction A.
  • the cylindrical central portion 79 is formed with a predetermined width along the first direction A as shown in FIG. 1 when the upper collar portion 51 and the lower collar portion 52 are cylindrical. The part corresponds.
  • the bottom surface of the pyramid portion 77 corresponds to a quadrangular surface formed by connecting four vertices 76.
  • the top 80 of the pyramid portion 77 corresponds to the tip of a quadrangular pyramid.
  • One line (for example, a line 77A) connecting each vertex 76 of the bottom surface of the pyramid portion 77 and the top portion 80 of the pyramid portion 77 is formed along the first direction A.
  • the pyramid portion 77 is configured to include the pyramid surface 78 including four isosceles triangles. Therefore, when the line 77A is formed along the first direction A, the line 78B is formed along the second direction B.
  • the pyramid portion 77 is formed over substantially the entire circumference in the second direction B of the upper collar part 51 and the lower collar part 52, and It is preferable to form the central portion 79 in the first direction A.
  • the pyramid portion 77 is not formed in the pump attachment port 32, its periphery, or the bottom 33, but can be formed as necessary.
  • the substantially entire circumference is substantially the entire circumference because the pyramid portion 77 is not formed in the connection portion Z connecting the upper collar portion 51 and the lower collar portion 52.
  • At least a part of the inner surface and the outer surface of the upper collar portion 51 and the lower collar portion 52 are formed by connecting a plurality of pyramidal portions 77 each having a plurality of pyramidal surfaces 78. That is, as shown in FIGS. 4 and 5, at least a part of the inner surface and the outer surface of the upper collar part 51 and the lower collar part 52 are formed to have irregularities.
  • the fuel evaporates in the resin fuel tank 100 and the internal pressure increases.
  • the environmental temperature becomes low, the internal pressure becomes lower than when the environmental temperature is high.
  • the pressure in the resin fuel tank 100 also varies due to the variation in the environmental temperature.
  • the pyramid portion 77 has a function of absorbing such fluctuations in internal pressure. That is, when the internal pressure of the resin fuel tank 100 is increased, the irregularities of the pyramid portion 77 are widened to increase the volume. Therefore, the internal pressure of the resin fuel tank 100 is prevented from becoming too high. On the other hand, when the internal pressure of the resin fuel tank 100 becomes low, the unevenness of the pyramid portion 77 narrows and returns to the original volume. Therefore, the internal pressure of the resin fuel tank 100 is prevented from becoming too low. As described above, the pyramid portion 77 repeats elongation and restoration as appropriate, so that the resin fuel tank 100 can be hardly cracked.
  • the pyramid portion 77 also has a function of maintaining the pressure in the resin fuel tank 100 substantially constant.
  • the pyramidal portion 77 is preferably formed on the basis of the case where the internal pressure of the resin fuel tank 100 becomes high.
  • the resin fuel tank 100 according to the above-described first embodiment has been described as being molded by blow molding.
  • the resin fuel tank 100 according to the present embodiment is different from the resin fuel tank 100 according to the first embodiment described above in that it is formed by free blow molding. Below, the resin fuel tank 100 shape
  • the resin fuel tank 100 according to the present embodiment is molded using free blow molding.
  • a tubular parison made of a raw material resin is used.
  • the tubular parison corresponds to the pipe-shaped parison used in the first embodiment.
  • FIG. 9 shows a perspective view of such a tubular parison.
  • the tubular parison is in a molten state and is sealed in a state of being partitioned by a predetermined length in the axial direction.
  • the molten state does not indicate a state where the resin is completely melted, but can be partitioned as described later, and melted to such an extent that a part that becomes a sealed state can be formed by partitioning. Indicates the state.
  • the axial direction is the axial direction of a tubular parison. Partitioning with a predetermined length in the axial direction means that the tubular parison is partitioned at two locations separated by a predetermined interval so as to have a predetermined length in the axial direction. In the present embodiment, as shown in FIG.
  • the tubular parison is picked and partitioned by the picking jig T at the picking positions T1 and T2 (two places) that are separated by a predetermined distance in the axial direction.
  • Such an interval between the picking position T1 and the picking position T2 corresponds to the “predetermined length” in the present invention.
  • the tubular parison is partitioned in two places as described above, so that the partitioned portion is sealed.
  • the resin fuel tank 100 is formed with an outer shape formed by blowing air into a tubular parison.
  • the resin fuel tank 100 formed by free blow molding is formed by combining the upper flange portion 51 and the lower flange portion 52 in the same manner as the resin fuel tank 100 according to the first embodiment described above.
  • the inner surface of the cross section in the second direction B perpendicular to the first direction A at the center of the upper collar part 51 and the lower collar part 52 in the first direction A is the upper collar part 51 and the lower collar part 52.
  • a pair of first arc portions 71 having a predetermined radius r1 and extending to the center side of the upper flange portion 51 and the lower flange portion 52, and a radius R1 larger than the predetermined radius r1.
  • a second arc portion 72 connected across the pair of first arc portions 71.
  • the inner surface of the cross section in the first direction A at the center of the upper collar part 51 and the lower collar part 52 in the second direction B is connected to the connection portion Z of the upper collar part 51 and the lower collar part 52 and the upper collar part 51 and a pair of third arc portions 82 extending to the center side of the lower collar portion 52, and a connection portion 81 connected across the pair of third arc portions 82.
  • the resin fuel tank 100 according to the present embodiment can be formed by a simple method of inflating a tubular parison without using a mold. Further, since the shape is not corrected by the mold in the process of forming the resin fuel tank 100, the tubular parison can be uniformly inflated by the air pressure supplied into the tubular parison. For this reason, since a uniform thickness can be realized over the entire surface of the resin fuel tank 100, even when the fuel stored in the resin fuel tank 100 after molding evaporates and the pressure becomes high, The increased pressure can be evenly applied to the inner wall of the resin fuel tank 100, and the stress is less likely to partially concentrate. Accordingly, the overall plate thickness can be reduced by that amount, and the amount of resin used can be reduced.
  • the cost and weight of the resin fuel tank 100 can be reduced. Further, since no mold is used, the manufacturing cost can be reduced.
  • the attaching part 21, the supply port 31, and the pump attachment port 32 are abbreviate
  • the resin fuel tank 100 according to the first embodiment described above has been described as being molded by blow molding using a mold. Similarly to the first embodiment, the resin fuel tank 100 according to this embodiment is also formed by blow molding using a mold. In the present embodiment, the shape molded using the mold is a shape inflated by free blow molding. Hereinafter, the resin fuel tank 100 having such a shape will be described.
  • the resin fuel tank 100 according to the present embodiment is molded using blow molding. Since blow molding has been described in the first embodiment, the description thereof is omitted here.
  • the mold K used in the blow molding according to the present embodiment one having the shape of the outer surface of the resin fuel tank 100 formed by free blow molding is used. Such a mold K is shown in FIG.
  • the mold K corresponds to a “molding die” according to the present invention.
  • the free blow molding is a molding method in which a tubular parison is partitioned by a predetermined length in the axial direction to be in a sealed state, and air is blown into the tubular parison to inflate it. is there.
  • the mold K used in the blow molding according to this embodiment has a shape in which the material (in the present embodiment, a tubular parison) disposed in the mold is inflated with a free blow molding. Form along.
  • the mold K is composed of a pair of a first mold K1 and a second mold K2.
  • the first mold K1 and the second mold K2 are used by clamping with a predetermined pressure.
  • a cavity KV is formed between the first mold K1 and the second mold K2 thus clamped.
  • a tubular parison is disposed in the cavity KV. Air is blown into the tubular parison disposed in the cavity KV and inflated in accordance with the air pressure. Therefore, the tubular parison is formed along the shape formed in the mold K.
  • the shape formed in such a mold K is a shape formed by free blow molding, it is formed by free blow molding if the molding conditions (tubular parison, molten state, etc.) are the same. Similar to the shape to be formed, the resin fuel tank 100 in which the tubular parison swells uniformly is formed.
  • a resin fuel tank 100 having a uniform thickness over the entire surface can be realized. For this reason, even when the fuel stored in the molded resin fuel tank 100 is volatilized and the pressure is increased, the increased pressure can be evenly applied to the inner wall of the resin fuel tank 100, so that the partial pressure is increased. Stress is less concentrated on For this reason, since the overall plate thickness can be reduced by that amount and the amount of resin used can be reduced, the cost and weight of the resin fuel tank 100 can be reduced.
  • a mounting portion 21 is formed in the resin fuel tank 100.
  • the attachment portion 21 enables the resin fuel tank 100 to be attached to the vehicle. That is, when the resin fuel tank 100 is attached to the vehicle, it is attached via the attachment portion 21.
  • Such an attaching portion 21 can be integrally performed when the shape of the resin fuel tank 100 is formed using the mold K described above. In such a case, the shape of the attachment portion 21 is formed in the mold K.
  • FIG. 12 shows a top view of the molded resin fuel tank (molded resin fuel tank) 100.
  • a virtual quadrilateral IS that virtually surrounds the resin fuel tank 100 is indicated by a broken line.
  • the mounting portion 21 is formed so as to fit within the virtual quadrilateral IS in a top view of the resin fuel tank 100 after molding.
  • the attachment part 21 can be shape
  • the resin fuel tank 100 does not have uneven thickness due to the attachment portion 21, so that it is not necessary to increase the thickness of the resin fuel tank 100 in order to form the attachment portion 21. Therefore, it is possible to form the attachment portion 21 while realizing a reduction in cost and weight of the resin fuel tank 100.
  • the resin fuel tank 100 also has a hollow shape in which the upper collar portion 51 and the lower collar portion 52 are combined, and the upper collar portion 51 and the lower collar portion in the first direction A.
  • the inner surface of the cross section in the second direction B orthogonal to the first direction A at the center of 52 is connected to the connecting portion Z of the upper collar part 51 and the lower collar part 52 to be the center of the upper collar part 51 and the lower collar part 52
  • the inner surface of the cross section in the first direction A at the center of the upper collar part 51 and the lower collar part 52 in the second direction B is connected to the connection portion Z of the upper collar part 51 and the lower collar part 52 and the upper collar part 51 and a pair of third arc portions 82 extending to the center side of the lower collar portion 52, and a connection portion 81 connected across the pair of third arc portions 82.
  • the four pyramid surfaces 78 constituting the pyramid portion 77 are formed as isosceles triangles.
  • the lines 77A and 77B are formed along the first direction A and the second direction B, respectively.
  • One of the lines connecting each vertex 76 of the bottom surface of the pyramid portion 77 and the top 80 of the pyramid portion 77 is the first direction A along the cylindrical central portion 79 of the upper collar portion 51 and the lower collar portion 52 or Needless to say, it may be formed along the second direction B orthogonal to the first direction A. That is, it is naturally possible to form in either one of the first direction A and the second direction B. By adopting such a configuration, it is naturally possible to absorb the load from the side orthogonal to one of the lines connecting each vertex 76 and the top 80.
  • the pyramid portion 77 is formed over substantially the entire circumference in the second direction B of the upper collar part 51 and the lower collar part 52, and at least in the first direction A of the upper collar part 51 and the lower collar part 52. It has been described as being formed in the central portion 79. However, the scope of application of the present invention is not limited to this.
  • the pyramid portion 77 is formed over substantially the entire circumference of the upper collar portion 51 and the lower collar portion 52 in the first direction A, and is formed at least in the central portion 79 of the upper collar portion 51 and the lower collar portion 52 in the second direction B. Of course it is also possible to do. Even when the pyramid portion 77 is formed in this way, it is naturally possible to obtain the above-described effect.
  • the pyramid portion 77 has been described as a portion made of a quadrangular pyramid.
  • the scope of application of the present invention is not limited to this.
  • FIG. 13 shows a series of such pyramid portions 77 made of triangular pyramids.
  • the bottom surface formed by connecting the three vertices 76 is an equilateral triangle.
  • one line 77B connecting the apex 76 and the top 80 is formed along the second direction B. It is natural that the pyramid portion 77 can suitably absorb the load received from the first direction A by forming in this way.
  • the pyramidal surfaces 77 do not have to be all formed of isosceles triangles, but only the hatched triangles shown in FIG. 13 (that is, the pyramid surface not including the line 77B in the three sides constituting the isosceles triangles). 78) need only be formed of isosceles triangles.
  • the line 77B can be formed along the second direction B. In such a case, the pyramid portion 77 can suitably absorb the load received from the second direction B.
  • the pyramid portion 77 is formed in a form protruding inside the resin fuel tank 100.
  • the scope of application of the present invention is not limited to this.
  • the pyramidal portion 77 may be formed so as to protrude to the outside of the resin fuel tank 100.
  • the vehicle-mounted synthetic resin fuel tank of the present invention relates to a vehicle-mounted synthetic resin fuel tank that can store fuel therein, and a support that protrudes from the tank body and can be fastened to the vehicle body side.
  • the form for carrying out the present invention is as follows.
  • the vehicle-mounted synthetic resin fuel tank includes a tank body that can store fuel therein, and a support bracket that protrudes outward from the outer surface of the tank body and can be fastened to the vehicle body.
  • a tank body that can store fuel therein
  • a support bracket that protrudes outward from the outer surface of the tank body and can be fastened to the vehicle body.
  • the support bracket When viewed from the line of sight along the protruding direction of the support bracket, the support bracket has a mountain shape formed by bending a plate material or an inverted mountain shape.
  • the plate material thickness of the fastened portion that is configured in the left-right direction of the support bracket and fastened to the vehicle body side is greater than twice the thickness of the tank body portion in the vicinity of the base portion of the support bracket. Is done.
  • the plate material thickness on the left and right sides of the support bracket is made smaller than twice the thickness of the tank body portion.
  • reference numeral 1001 denotes a fuel tank mounted on a vehicle such as an automobile.
  • the fuel tank 1001 can store the fuel 1002 of the engine for driving the vehicle.
  • the fuel tank 1001 can store fuel 1002 therein, and has a tank body 1003 in which the thickness of each part is substantially equal to each other (3 to 4.5 mm), and outward from the outer surface of the tank body 1003. And a plurality of (four) support brackets 1006 that are integrally projected toward the vehicle body 1004 and fastened by a fastener 1005 on the vehicle body 1004 side.
  • the support bracket 1006 has a mountain shape formed by bending a plate material. Specifically, the support bracket 1006 constitutes a midway portion (central portion) in the left-right direction of the support bracket 1006, extends substantially horizontally, and is fastened to the vehicle body 1004 by a fastener 1005. And a pair of left and right side portions 1010 and 1010 that sandwich the fastened portion 1009 integrally from the left and right sides and extend in the vertical direction. The base portions of the fastened portion 1009 and the side portions 1010 of the support bracket 1006 are integrally coupled to the outer side surface of the tank body 1003.
  • a bolt hole 1013 in which the shaft center 1012 extends substantially in the vertical direction is formed in the fastened portion 1009 of the support bracket 1006 by a rotary tool.
  • the fastener 1005 includes a nut 1015 fixed to the vehicle body 1004 by welding on the shaft 1012, and a bolt 1016 that passes through the bolt hole 1013 from below and is then twisted by the nut 1015. It has.
  • the bolt 1016 is twisted from below the support bracket 1006 by using a twisting tool 1018 such as an impact wrench.
  • the plate material thickness Ta of the fastened portion 1009 of the support bracket 1006 is made larger than twice (2t) the thickness t of the portion 1003a of the tank body 1003 in the vicinity of the base of the support bracket 1006.
  • the plate material thickness Tb of the left and right side portions 1010 of the support bracket 1006 is set to be smaller than twice (2t) the thickness t of the portion 1003a of the tank main body 1003.
  • Ta> 2t> Tb there is a relationship of Ta> 2t> Tb, for example, Ta is 8 to 10 mm, and Tb is 5 to 7 mm.
  • the fuel tank 1001 is made of a resin such as polyethylene, and is integrally formed by blow molding using a molding fitting 1023.
  • the molded metal fitting 1023 includes split molds 1025 and 1026 in which a surface passing through the outermost end edge of the tank body 1003 and the protruding end edge of each support bracket 1006 is a mating surface 1024.
  • a cavity 1027 is formed between the molds 1025 and 1026 in a portion surrounded by the mating surface 1024.
  • the tank body 1003 and the support brackets 1006 are integrally formed by the cavity 1027.
  • the cavity 1027 includes a main cavity 1027a that forms the tank body 1003 and a sub-cavity 1027b that forms the support brackets 1006, respectively.
  • Each of the sub-cavities 1027b communicates with the main cavity 1027a and is adjacent to the mating surface 1024 at a plurality of locations (four locations) along the mating surface 1024. Formed between.
  • a portion where the mating surface 1024 is formed is a pinch-off portion 1028.
  • Each of the molds 1025 and 1026 has a chamfered portion 1029 at each corner from the mating surface 1024 to the inner surface of the cavity 1027.
  • a high-temperature soft and tube-shaped parison 1030 is continuously formed by an extruder (not shown).
  • the parison 1030 is inserted between the opened molds 1025 and 1026.
  • the two molds 1025 and 1026 are spaced apart from each other in the horizontal direction so that the space between the molds 1025 and 1026 is opened.
  • the parison 1030 is extruded from the head of the extruder so as to hang downward.
  • each other portion 1030b excluding the main portion 1030a in the circumferential direction of the parison 1030 is sandwiched between the inner surfaces of the sub cavities 1027b of the molds 1025 and 1026 that approach each other as described above, and the other portions 1030b In each case, the portions adjacent to each other in the circumferential direction are bent so as to overlap each other.
  • the two stacked ones are pressurized and integrated with each other by the inner surfaces of the sub-cavities 1027b.
  • bent portion which is the outer edge portion of the two-layered portion, is cut by the push-off by the pinch-off portion 1028 (the chamfered portion 1029) of the molds 1025 and 1026 that are close to each other as described above. What has been removed is removed as burrs 1032.
  • compressed air 1034 is injected into the main portion 1030a of the parison 1030 accommodated in the main cavity 1027a, and the main portion 1030a of the parison 1030 is expanded. Then, the main portion 1030a of the parison 1030 expanded by the injection of the compressed air 1034 is abutted against the inner surface of the main cavity 1027a, and thereby the shape is defined, whereby the tank body 1003 is formed.
  • the two overlapped and integrated portions in each sub-cavity 1027b serve as a support bracket 1006 that projects integrally from the tank body 1003 formed as described above. In this way, the formation of the fuel tank 1001 by blow molding is completed.
  • a party formed by a V-shaped groove between the double-sided chamfered portions 1029 and 1029 of the molds 1025 and 1026 is formed on the outer surface of the tank main body 1003 and the protruding edge of each of the support brackets 1006.
  • a gland 1036 is integrally formed. This parting line 1036 serves as a reinforcing material for the tank body 1003.
  • the molds 1025 and 1026 are separated from each other, the molds 1025 and 1026 are removed from the fuel tank 1001, and the fuel tank 1001 is taken out from the molding fitting 1023. And finish processing.
  • the support bracket 1006 may have an inverted mountain shape by reversing the vertical relationship. Further, the plate material of each side portion 1010 of the support bracket 1006 may be formed to extend in the vertical direction as long as it can be removed from the molds 1025 and 1026.
  • the parting line 1036 may be formed to have a smaller cross-sectional shape, or may be formed to be an outward flange over the entire outer surface of the tank body 1003.
  • the support bracket 1006 when viewed from the line of sight along the protruding direction of the support bracket 1006 (FIG. 14), the support bracket 1006 has a mountain shape formed by bending a plate material or an inverted mountain shape.
  • the plate material thickness Ta of the fastened portion 1009 that forms a midway portion in the left-right direction and is fastened to the vehicle body 1004 side is twice the thickness t of the portion 1003a of the tank main body 1003 in the vicinity of the base portion of the support bracket 1006. It is larger than (2t).
  • the support bracket 1006 is formed in a mountain shape or an inverted mountain shape that can be made highly rigid overall. Further, according to normal blow molding, the plate material thickness of each part of the support bracket 1006 tends to be about twice that of the part 1003a of the tank body 1003. As described above, of the support bracket 1006, The plate material thickness Ta of the fastened portion 1009 fastened to the vehicle body 1004 side is set to be larger than twice (2t) the thickness t of the portion 1003a of the tank main body 1003. For this reason, the fastening strength of the support bracket 1006 to the vehicle body 1004 side can be improved, and hence the support strength of the fuel tank 1001 to the vehicle body 1004 side can be improved.
  • the plate material thickness Ta of the fastened portion 1009 is set to be larger than twice (2t) the thickness t of the portion 1003a of the tank body 1003, while the left and right side portions 1010 of the support bracket 1006 are
  • the plate material thickness Tb is made smaller than twice (2t) the thickness t of the portion 1003a of the tank body 1003.
  • the plate material thickness of each part of the support bracket 1006 is about twice (2t) the thickness t of the portion 1003a of the tank main body 1003 in normal blow molding.
  • the support bracket 1006 of the other portion 1030b of the parison 1030 sandwiched between the inner surfaces of the subcavity 1027b in the cavity 1027 between the molds 1025 and 1026 is formed.
  • the portion corresponding to each side portion 1010 is compressed more greatly than the portion corresponding to the fastened portion 1009.
  • the soft resin of the parison 1030 corresponding to each of the side portions 1010 flows A toward the portion corresponding to the fastened portion 1009 and is supplied thereto, whereby the plate material thickness Ta is large.
  • a fastened portion 1009 of the support bracket 1006 is formed.
  • the plate material thickness of the fastened portion 1009 of the support bracket 1006 is increased, while the plate material thickness of each side portion 1010 of the support bracket 1006 is decreased. Therefore, the improvement in the support strength of the fuel tank 1001 can be achieved while avoiding an increase in the mass of the fuel tank 1001.
  • each side portion 1010 of the support bracket 1006 is smaller than twice the plate material thickness of the portion 1003a of the tank main body 1003, each side portion 1010 of the support bracket 1006.
  • the support bracket 1006 since the support bracket 1006 has a mountain shape or an inverted mountain shape, which has a shape that can increase overall rigidity, the fuel tank 1001 is attached to the vehicle body in the support bracket 1006. Good support strength can be ensured when supporting the lens 1004 side.
  • the outer surface portion 1003b of the tank body 1003 surrounded by the fastened portion 1009 constituting the support bracket 1006 and the left and right side portions 1010 and 1010 is in an external relationship with the molds 1025 and 1026. It is not a circular arc convex shape that bulges in the direction, but a flat shape with a slight draft.
  • the present invention can be used for a resin fuel tank formed by blow molding or the like and having a hollow shape in which an upper collar part and a lower collar part are combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

 本発明の目的の一つは、コストアップすることなく軽量化が可能な樹脂製燃料タンクを提供することである。 樹脂燃料タンク100は、上椀部51及び下椀部52の筒状の中央部79に沿った第1方向Aにおける上椀部51及び下椀部52の中央の第1方向Aと直交する第2方向Bでの断面の内面が、上椀部51及び下椀部52の接続部分に接続されて上椀部51及び下椀部52の中央側に延出されると共に所定の半径からなる一対の第1円弧部と、所定の半径より大きい半径からなると共に一対の第1円弧部に亘って接続される第2円弧部と、を有して形成され、第2方向Bにおける上椀部51及び下椀部52の中央の第1方向Aでの断面の内面が、上椀部51及び下椀部52の接続部分に接続されて上椀部51及び下椀部52の中央側に延出される一対の第3円弧部と、一対の第3円弧部に亘って接続される接続部と、を有して形成される。

Description

樹脂燃料タンク
 本発明は、フリーブロー成形又はブロー成形にて成形される、上椀部と下椀部とが組み合わされた中空形状からなる樹脂燃料タンクに関する。
 また、本発明は、内部に燃料を貯留可能とするタンク本体と、このタンク本体から突出して車体側に締結可能とされる支持ブラケットとを備え、これらタンク本体と支持ブラケットとがブロー成形により一体的に形成される車両搭載の合成樹脂製燃料タンクに関するものである。
 近年、車両の低燃費化を目的として車両の軽量化が行われている。このような軽量化の方法の一つとして、燃料タンクが金属製のものから樹脂製のものに変更されてきた。このような樹脂製の燃料タンクの一例として、下記に出典を示す特許文献1に記載のものがある。
 特許文献1に記載のブロー成形樹脂容器は自動車用のガソリンタンクとして用いられ、樹脂を用いてブロー成形により四角形の箱形状で形成される。
 また、車両搭載の合成樹脂製燃料タンクには、特許文献2に示されるものがある。この公報のものによれば、燃料タンクは、内部に燃料を貯留可能とするタンク本体と、このタンク本体の外側面から外側方に向かって突出し、車体側に締結可能とされる複数の支持ブラケットとを備え、上記タンク本体と各支持ブラケットとはブロー成形により一体的に形成されている。
 上記ブロー成形は、一般に、次のように行われる。
 即ち、上記ブロー成形には、上記各支持ブラケットの突出端縁を通る面を合い面とする分割式の両金型が用いられる。上記両金型間に形成されるキャビティは、上記タンク本体を形成する主キャビティと、上記各支持ブラケットをそれぞれ形成する副キャビティとを備える。これら各副キャビティは、上記合い面に沿った方向の複数ヵ所で、上記主キャビティと互いに連通し、かつ、上記合い面に隣接するよう上記両金型間に形成される。
 そして、まず、押出成形機により高温軟質でチューブ形状のパリソンが形成され、このパリソンは開かれた上記両金型間に挿入される。
 次に、上記両金型が互いに接近し、この際、上記パリソンの周方向の大部分である主体部分が上記主キャビティ内に収容される。一方、上記パリソンの周方向の上記主体部分を除く各他部分は、上記したように互いに接近する両金型の各副キャビティ内面に挟まれ、上記各他部分のそれぞれにおいて上記周方向で互いに隣り合う部分同士が2枚重ねとなるよう屈曲させられる。そして、この2枚重ねにされたものが上記各副キャビティ内面によりそれぞれ互いに加圧されて一体化される。
 次に、前記主キャビティに収容されたパリソンの主体部分の内部に圧縮空気が注入されて、このパリソンの主体部分が膨張させられる。そして、この圧縮空気の注入により膨張させられたパリソンの主体部分は上記主キャビティの内面に当接して形状が定められ、これにより、上記タンク本体が形成される。一方、上記したように各副キャビティ内で2枚重ねとされて一体化された部分は、上記のように形成されたタンク本体から一体的に突出する支持ブラケットとされる。このようにして、ブロー成形による燃料タンクの形成が終了する
日本国実開昭57-159614号公報 日本国特開2007-168455号公報 日本国実開平6-39546号公報
 一般的に、この種の燃料を貯留する容器においては、タンク形成面どうしの角の部分(以下「角部分」という)に内圧による応力が集中し易い。また、特許文献1に記載のブロー成形樹脂容器にあっても同様である。このため、応力が集中し易い部位(特許文献1に記載のブロー成形樹脂容器にあっては箱形状の角部分)の強度を確保するために、当該部位の板厚を厚くしておく必要がある。しかしながら、角部分の板厚が厚くなるようにブロー成形を行うと、他の部位(角部分以外の部位)の板厚が必要以上に厚くなってしまい、樹脂の使用量が多くなってしまう。このため、燃料タンクとしての重量が重くなり、また製品としてのコストアップの要因となってしまう。
 また、上記したようにタンク本体と、このタンク本体から突出する支持ブラケットとをブロー成形により一体的に形成した場合、上記各支持ブラケットは、上記パリソンの各他部分のそれぞれにおいて上記周方向で互いに隣り合う部分同士が2枚重ねされることにより形成される。
 このため、上記したように燃料タンクを単にブロー成形により形成した場合には、上記支持ブラケットの各部の板材厚さは、この支持ブラケットの基部近傍における上記タンク本体の部分の厚さの2倍程度になりがちである。このことから、上記車体側への支持ブラケットの締結強度を向上させようとして、この支持ブラケットの板材厚さを大きくさせようとしても、これは、上記した従来の単なるブロー成形によるだけでは困難であり、よって、車体側への燃料タンクの支持強度を向上させることは容易でない。
 本発明の目的は、上記問題に鑑み、コストアップすることなく軽量化が可能な樹脂燃料タンクを提供することにある。
 また、本発明の目的は、車両搭載の合成樹脂製燃料タンクが、内部に燃料を貯留可能とするタンク本体と、このタンク本体から突出して車体側に締結可能とされる支持ブラケットとを備え、これらタンク本体と支持ブラケットとがブロー成形により一体的に形成される場合において、車体側への燃料タンクの支持強度を向上させることが容易に達成できるようにすることである。
 上記目的を達成するための第1発明に係る樹脂燃料タンクの特徴は、管状のパリソンを軸方向に所定の長さで仕切って密閉状態とし、フリーブロー成形を用いて前記管状のパリソン内に空気を吹き込んで膨らませた形状を外形とする点にある。
 上記第1発明の特徴によれば、成形型(金型)を用いることなく、管状のパリソンを膨らませるだけの簡易な方法で樹脂燃料タンクを形成することができる。また、樹脂燃料タンクの形成過程において成形型で形状を矯正しないので、管状のパリソン内に供給される空気圧により当該管状のパリソンを均一に膨らませることができる。このため、樹脂燃料タンクの全面に亘って均一な肉厚を実現することができるので、形成後の樹脂燃料タンク内に貯留される燃料が揮発して圧力が高くなった場合でも、当該高くなった圧力を樹脂燃料タンクの内壁に均等に与えることができ、部分的に応力が集中することが少ない。したがって、その分だけ全体的な板厚を薄くして樹脂の使用量を減らすことができるので、樹脂燃料タンクの低コスト化及び軽量化を実現することが可能となる。また、成形型を使用しないので、製造コストも安くすることができる。
 また、上記目的を達成するための第2発明に係る樹脂燃料タンクの特徴は、管状のパリソンを軸方向に所定の長さで仕切って密閉状態とし、フリーブロー成形により前記管状のパリソン内に空気を吹き込んで膨らませた状態での形状を有する成形型を用い、当該成形型内に配置された管状のパリソン内に空気を吹き込んで膨らませるブロー成形により成形される点にある。
 上記第2発明の特徴によれば、フリーブロー成形を用いて管状のパリソンを膨らませた状態の形状からなる樹脂燃料タンクを、成形型(金型)を用いて形成することができる。このような形状を有する樹脂燃料タンクは、当該樹脂燃料タンクの全面に亘って均一な肉厚を実現することができるので、形成後の樹脂燃料タンク内に貯留される燃料が揮発して圧力が高くなった場合でも、当該高くなった圧力を樹脂燃料タンクの内壁に均等に与えることができる。このため、部分的に応力が集中することが少ない。したがって、その分だけ全体的な板厚を薄くして樹脂の使用量を減らすことができるので、樹脂燃料タンクの低コスト化及び軽量化を実現することが可能となる。
 また、第3発明に係る樹脂燃料タンクの特徴は、車両との取り付けを可能にする取付部が備えられ、前記取付部が、前記成形された樹脂燃料タンクの上面視において、当該樹脂燃料タンクを囲む仮想四角形内に形成されている点にある。
 上記第3発明の構成によれば、均一な肉厚で膨らんだ状態の樹脂燃料タンクを維持しつつ、取付部を成形することができる。このため、樹脂燃料タンクには、取付部に起因した偏肉が生じないので、取付部を形成するために樹脂燃料タンクの板厚を厚くする必要がない。したがって、樹脂燃料タンクの低コスト化及び軽量化を実現しつつ、取付部を形成することが可能となる。
 上記目的を達成するための第4発明に係る樹脂燃料タンクの特徴は、ブロー成形にて成形される、上椀部と下椀部とが組み合わされた中空形状からなり、記上椀部及び前記下椀部の筒状の中央部に沿った第1方向における前記上椀部及び前記下椀部の中央の前記第1方向と直交する第2方向での断面の内面が、前記上椀部及び前記下椀部の接続部分に接続されて前記上椀部及び前記下椀部の中央側に延出されると共に所定の半径からなる一対の第1円弧部と、前記所定の半径より大きい半径からなると共に前記一対の第1円弧部に亘って接続される第2円弧部と、を有して形成され、前記第2方向における前記上椀部及び前記下椀部の中央の前記第1方向での断面の内面が、前記上椀部及び前記下椀部の接続部分に接続されて前記上椀部及び前記下椀部の中央側に延出される一対の第3円弧部と、前記一対の第3円弧部に亘って接続される接続部と、を有して形成されてある点にある。
 上記第4発明の構成によれば、樹脂燃料タンク内に貯留される燃料が揮発して圧力が高くなった場合、当該高くなった圧力を樹脂燃料タンクの内壁に均等に与えることができるので部分的に応力が集中することが少ない。このため、その分だけ全体的な板厚を薄くすることが可能となる。したがって、樹脂の使用量を減らすことができるので樹脂燃料タンクの低コスト且つ軽量化が実現可能である。
 第5発明に係る樹脂燃料タンクの特徴は、周囲に窪みを有する開口部が前記上椀部の中央部に形成されてある点にある。
 上記第5発明の構成によれば、窪みが上椀部の補強リブとして機能することになり、樹脂燃料タンクの剛性を更に向上することが可能である。
 第6の発明は、内部に燃料1002を貯留可能とするタンク本体1003と、このタンク本体1003の外側面から外側方に向かって突出し、車体1004側に締結可能とされる支持ブラケット1006とを備え、この支持ブラケット1006の突出端縁を通る面を合い面1024とする分割式の両金型1025,1026間へのパリソン1030の挿入により、上記タンク本体1003と各支持ブラケット1006とがブロー成形により一体的に形成される車両搭載の合成樹脂製燃料タンクにおいて、上記支持ブラケット1006の突出方向に沿った視線で見て(図14)、この支持ブラケット1006を板材の屈曲により形成される山形状、もしくは倒立山形状とし、この支持ブラケット1006の左右方向における中途部を構成して上記車体1004側に締結される被締結部1009の板材厚さTaを、上記支持ブラケット1006の基部近傍における上記タンク本体1003の部分1003aの厚さtの2倍(2t)よりも大きくする一方、上記支持ブラケット1006の左右各側部1010の板材厚さTbを上記タンク本体1003の部分1003aの厚さtの2倍(2t)よりも小さくしたことを特徴とする車両搭載の合成樹脂製燃料タンクである。
 上記第6の発明は、内部に燃料を貯留可能とするタンク本体と、このタンク本体の外側面から外側方に向かって突出し、車体側に締結可能とされる支持ブラケットとを備え、この支持ブラケットの突出端縁を通る面を合い面とする分割式の両金型間へのパリソンの挿入により、上記タンク本体と各支持ブラケットとがブロー成形により一体的に形成される車両搭載の合成樹脂製燃料タンクにおいて、上記支持ブラケットの突出方向に沿った視線で見て、この支持ブラケットを板材の屈曲により形成される山形状、もしくは倒立山形状とし、この支持ブラケットの左右方向における中途部を構成して上記車体側に締結される被締結部の板材厚さを、上記支持ブラケットの基部近傍における上記タンク本体の部分の厚さの2倍よりも大きくしている。
 即ち、上記支持ブラケットを山形状、もしくは倒立山形状という全体的に剛性の高くできる形状にしている。また、通常のブロー成形によれば、上記支持ブラケットの各部の板材厚さは上記タンク本体の部分の2倍程度になりがちであるが、上記したように、支持ブラケットのうち、車体側に締結される被締結部の板材厚さを上記タンク本体の部分の厚さの2倍よりも大きくしている。このため、車体側への支持ブラケットの締結強度を向上させることができ、よって、車体側への燃料タンクの支持強度の向上が達成可能とされる。
 また、上記の場合、被締結部の板材厚さを上記タンク本体の部分の厚さの2倍よりも大きくする一方、上記支持ブラケットの左右各側部の板材厚さを上記タンク本体の部分の厚さの2倍よりも小さくしている。
 即ち、上記したように、支持ブラケットの各部の板材厚さは通常のブロー成形では上記タンク本体の部分の厚さの2倍程度になるが、上記したように、支持ブラケットの被締結部の板材厚さ>タンク本体の部分の板材厚さの2倍>支持ブラケットの各側部の板材厚さ、としている。
 このため、上記燃料タンクをブロー成形する際に、上記両金型間のキャビティの内面で挟み付けられたパリソンのうち、上記支持ブラケットの各側部に対応する部分は、上記被締結部に対応する部分に比べてより大きく圧縮される。
 よって、上記各側部に対応する部分のパリソンの軟質樹脂は上記被締結部に対応する部分に向かって流動し、ここに供給されることにより、上記した板材厚さの大きい支持ブラケットの被締結部が形成される。つまり、上記した燃料タンクのブロー成形の工夫によって、上記車体側への支持ブラケットの締結強度を向上させることが達成できるのであり、上記支持ブラケットに別途の補強材を設けないでも足りることから、車体側への燃料タンクの支持強度の向上が容易に達成可能となる。
 また、上記したように、燃料タンクの支持強度の向上のために支持ブラケットの被締結部の板材厚さを大きくする一方、この支持ブラケットの各側部の板材厚さを小さくしたため、上記した燃料タンクの支持強度の向上は、燃料タンクの質量の増加を回避しつつ達成できる。
 なお、上記したように、支持ブラケットの各側部の板材厚さを上記タンク本体の部分の板材厚さの2倍よりも小さくしたことから、上記支持ブラケットの各側部には強度低下のおそれがあるが、前記したように、支持ブラケットを山形状、もしくは倒立山形状という全体的に剛性の高くできる形状にしたため、この支持ブラケットには、燃料タンクを車体側に支持させる上で良好な支持強度を確保させることができる。
 なお、この項において、上記各用語に付記した符号や図面番号は、本発明の技術的範囲を後述の「実施例」の項や図面の内容に限定解釈するものではない。
第一の実施形態に係る樹脂燃料タンクの上方斜視図である。 第一の実施形態に係る樹脂燃料タンクの上面図である。 第一の実施形態に係る樹脂燃料タンクの下面図である。 図2のIV-IV線断面を示す図である。 図2のV-V線断面を示す図である。 図2のVI-VI線断面を示す図である。 角錐部分の上面図である。 角錐部分の上方斜視図である。 第二の実施形態に係る管状のパリソンについて示す図である。 第二実施形態に係る樹脂燃料タンクについて示す図である。 第三の実施形態に係る樹脂燃料タンクの成形に用いられる成形型について示す図である。 第三の実施形態に係る樹脂燃料タンクについて示す図である。 その他の実施形態に係る角錐部分を示す図である 図17のI-I線矢視拡大図である。 燃料タンクの斜視図である。 燃料タンクの平面図である。 図16のIV-IV線矢視断面図である。 図14のV-V線矢視断面図である。 図14のVI-VI線矢視断面図である。 図18に相当する図で、ブロー成形の説明図である。
〔第一の実施形態〕
 以下、本発明の実施形態について説明する。本発明に係る樹脂燃料タンク100は、車両の内燃機関に供給される燃料(例えばガソリンや軽油等)を貯留しておく容器である。この樹脂燃料タンク100は、一般的には車両の乗員の目につかない位置(例えば後部座席下等)に備えられる。このような樹脂燃料タンク100が図1-図5に示される。
 図1は樹脂燃料タンク100の上方斜視図である。また、図2は樹脂燃料タンク100の上面図であり、図3は樹脂燃料タンク100の下面図である。図2のIV-IV線断面が図4に示され、図2のV-V線断面が図5に示される。図1-図5に示されるように、樹脂燃料タンク100は上椀部51と下椀部52とが組み合わされた中空形状からなる。上椀部51とは図2に示される側の椀状部材であり、下椀部52とは図3に示される側の椀状部材である。樹脂燃料タンク100は、このような上椀部51及び下椀部52が夫々の椀状縁部を接続部分Z(図4及び図5参照)として内部に空間を有する中空形状で構成される。また、本樹脂燃料タンク100は平面視において、角のとれた横長の長方形状で形成される(図2及び図3参照)。もちろん、角のとれた正方形状で形成することも当然に可能である。
 上椀部51及び下椀部52からなる樹脂燃料タンク100は、樹脂を用いてブロー成形により成形される。樹脂燃料タンク100に用いられる樹脂は機械的強度が強く、樹脂燃料タンク100内に貯留される燃料と反応しない特性を有するものを用いると好適である。ブロー成形とは熱可塑性樹脂の成形加工法の一つであり、その加工において空気圧が利用される。
 ブロー成形はパリソンと呼ばれる原料を溶融させパイプ状にしたものを分割した金型内に押し出し、金型を閉じてからパリソン内に注入ノズルを通じて空気を吹き込み成形する。パリソンは空気圧により膨らみ、外側の金型に押しつけられ、冷却されて中空状に固化するのでその後金型を開いて樹脂燃料タンク100を取り出すことが可能である。本樹脂燃料タンク100は、上述の上椀部51及び下椀部52が分離不能に一体成形される。したがって、上述の接続部分Zとは説明の便宜上の呼称であり、上椀部51と下椀部52とを別体で形成して接続する部分を示すものではない。
 ここで、上椀部51及び下椀部52の筒状の中央部79に沿った方向を第1方向とする。中央部79とは上椀部51及び下椀部52を長筒状と見た場合において図1に示されるように所定の幅を有してなる中央部分である。中央部79に沿った方向とは、図1に示されるAの方向が相当する。したがって、以下の説明では第1方向を符号Aを付して説明する。また、後述する第2方向を符号Bを付して説明する。
 第1方向Aにおける上椀部51及び下椀部52の中央の第1方向Aと直交する第2方向Bでの断面の内面が、上椀部51及び下椀部52の接続部分Zに接続されて上椀部51及び下椀部52の中央側に延出されると共に所定の半径r1からなる一対の第1円弧部71と、当該所定の半径r1より大きい半径R1からなると共に一対の第1円弧部71に亘って接続される第2円弧部72と、を有して形成される。第2方向Bは図1に示されるように第1方向Aと直交する方向である。第2方向Bでの断面とは、上椀部51及び下椀部52の中央部79における断面である。このような上椀部51及び下椀部52の第2方向Bでの断面が図4に示される。図4に示される断面は、図2におけるIV-IV線断面に相当する。
 断面の内面とは、樹脂燃料タンク100の断面図における内壁に沿った面である。図4に示されるように、上椀部51及び下椀部52には供給口31、ポンプ取付口32、底部33が形成される。また、図2におけるIV-IV線から第1方向Aに沿ってポンプ取付口32から外れた位置の断面は、図4に示されるような一点鎖線のようになる。また、第1円弧部71の半径をr1とすると、第2円弧部72の半径はr1よりも大きい半径R1で形成される。このように、樹脂燃料タンク100は図4に示されるような断面視において、湯タンポ型(ラグビーボール型)の断面形状で形成される。
 ここで、第1円弧部71の内面に沿った長さをβ、第2円弧部72の内面に沿った長さをαとすると、第1円弧部71及び第2円弧部72はα>βとなるように形成される。特にβがαの1/2程度(半分程度)となるように形成すると好適である。もちろん、α<βとなるように第1円弧部71及び第2円弧部72を形成することも当然に可能である。また、接続部分Zの内面に相当する符号γが付された部分(上椀部51の第1円弧部71と下椀部52の第1円弧部72とを繋ぐ部分)は、第1円弧部71の半径r1よりも小さい半径で形成すると好適である。また、このようなγで示される部分の長さは、上述のβとの関係において、β>γとなるように形成すると好適である。特にγがβの1/2程度(半分程度)となるように形成すると好適である。もちろん、γの部分を形成せずに長さβを有する2つの第1円弧部71を直接接続して形成することも当然に可能である。
 第2方向Bにおける上椀部51及び下椀部52の中央の第1方向Aでの断面の内面が、上椀部51及び下椀部52の接続部分Zに接続されて上椀部51及び下椀部52の中央側に延出される一対の第3円弧部82と、当該一対の第3円弧部82に亘って接続される接続部81と、を有して形成される。第1方向Aでの断面が図5に示される。図5に示される断面は、図2におけるV-V線断面に相当する。
 図5に示されるように、上椀部51及び下椀部52の第1方向Aでの断面の内面は、上椀部51及び下椀部52の接続部分Zから中央側に延出する一対の第3円弧部82が形成される。第3円弧部82は、第1円弧部71と同じ半径r1により形成すると好適である。また、一対の第3円弧部82の間には、接続部81が形成される。断面の内面とは、上述のように樹脂燃料タンク100の断面図における内壁に沿った形状である。上述のように、上椀部51及び下椀部52に形成される供給口31、ポンプ取付口32、底部33が図5に示されている。また、図2におけるV-V線から第2方向Bに沿ってポンプ取付口32から外れた位置の断面は、図5に示されるような一点鎖線のようになる。このように、樹脂燃料タンク100は図5に示されるような側面視において、偏平な薄型形状で形成される。
 本樹脂燃料タンク100は、上述のように中央断面の内面が形成される。したがって、樹脂燃料タンク100内の燃料が揮発して圧力が高くなった場合でも均一に圧力を受けることが可能となるので、樹脂燃料タンク100の変形及び破損を防止できる。
 ここで、上述のように第1円弧部71及び第3円弧部82は、共に半径がr1で形成すると好適である。このような構成とすると、上椀部51及び下椀部52の夫々の該当する部位は、半径をr1とする球体表面の一部と同様に形成される。これにより、樹脂燃料タンク100内で燃料が揮発して圧力が高まった場合でも均一に圧力を受けるので変形及び破損を防止効果を高めることができる。このように本樹脂燃料タンク100は、その全体形状が湯タンポ形状で形成される。
 樹脂燃料タンク100の上面には、当該樹脂燃料タンク100に貯留する燃料の供給口31が形成される。本実施形態では、この供給口31は上椀部51の中央から外れた位置に形成されるように図示しているが、この位置に限定されるものではない。この供給口31は、車両の給油口(図示せず)に接続される給油管(図示せず)の取り回しにより他の位置に形成することも当然に可能である。供給口31は丸穴で形成され、給油管が接続される。
 周囲に窪み41を有する開口部32が上椀部51の中央部79に形成される。この開口部32は、樹脂燃料タンク100内に貯留される燃料を吸い出すポンプ(図示せず)が取り付けられるポンプ取付口に相当する。したがって、以下の説明においては開口部32はポンプ取付口32として説明する。ポンプ取付口32の周囲に窪み41を設けることにより当該ポンプ取付口32を形成した部位の強度を高めることができる。なお、上述の供給口31と同様に、ポンプ取付口32も図示された位置に限定されるわけではない。ポンプ取付口32は丸穴で形成される。
 樹脂燃料タンク100の下面、即ち下椀部52の接続部81には、当該樹脂燃料タンク100を車両に配設した場合に配設姿勢を維持可能なように平坦面を有する底部33が形成される。このような底部33を車両が有する平坦な面に当接することにより樹脂燃料タンク100を所期の姿勢で維持することが可能となる。
 樹脂燃料タンク100は複数の取付部21が設けられる。図6は取付部21の拡大図(断面図)である。図6に示されるように、取付部21の略中央には貫通孔22が形成される。この貫通孔22と図示しない車両の保持部とをボルトで固定することにより樹脂燃料タンク100を固定することが可能となる。なお、この取付部21を形成する際、上椀部51及び下椀部52の取付部21の近傍部分の板厚が薄くならないように、つまみ部23の位置を所定の冶具(図示せず)で摘むことにより、上椀部51及び下椀部52の取付部21の近傍部分が取付部21と共に外方向に引っ張り出されないように形成される。これにより上椀部51及び下椀部52の取付部21の近傍部分の板厚を確保している。
 樹脂燃料タンク100の上椀部51及び下椀部52の少なくとも一部の内面及び外面は、複数の角錐面78を備えた角錐部分77を複数連ねて形成される。角錐部分77とは角錐体に相当し、角錐面78とは当該角錐体が有する複数の三角形からなる面が相当する。したがって、角錐部分77はダイヤモンド型やピラミッド型の形状で形成される。なお、本実施形態においては、角錐部分77は樹脂燃料タンク100に対して内側に突出する形態で形成される。このような角錐部分77の上面図が図7に示され、角錐部分77の上方斜視図が図8に示される。なお、図8に示される角錐部分77は、説明を分かり易くするために高さ方向(上下方向)を誇張して記載したものであり、図8に示されるものに限定されるものではない。
 図7及び図8に示されるように、三角形からなる複数の角錐面78の少なくとも1つは二等辺三角形で構成される。特に、本実施形態においては角錐部分77が4つの二等辺三角形を角錐面78とする四角錐であるとして説明する。したがって、複数の角錐面78とは、四角錐を構成する4つの角錐面78が相当する。上椀部51及び下椀部52は、このような角錐面78をその内面及び外面として、少なくとも一部が形成される。
 角錐部分77の底面の各頂点76と角錐部分77の頭頂部80とを結ぶ線の1つが、上椀部51及び下椀部52の筒状の中央部79に沿った第1方向A又は当該第1方向Aに直交する第2方向Bに沿って形成される。筒状の中央部79とは、上椀部51及び下椀部52を筒状とした場合に、図1に示されるように第1方向Aに沿って所定の幅を有して形成される部分が相当する。
 角錐部分77の底面とは4つの頂点76を結んで形成される四角形の面が相当する。角錐部分77の頭頂部80とは四角錐の先端が相当する。角錐部分77の底面の各頂点76と角錐部分77の頭頂部80とを結ぶ線の1つ(例えば線77A)が、第1方向Aに沿って形成される。ここで、上述のように本実施形態では角錐部分77は4つの二等辺三角形からなる角錐面78を備えて構成される。したがって、線77Aが第1方向Aに沿って形成された場合には、線78Bが第2方向Bに沿って形成されることとなる。このように角錐部分77を構成することにより、樹脂燃料タンク100が外部から荷重を受けた場合に、角錐部分77が荷重を吸収し、樹脂燃料タンク100が破損して燃料が漏れるのを防止することが可能となる。
 図1-図3に示されるように、角錐部分77は、上椀部51及び下椀部52の第2方向Bの略全周に亘って形成され、上椀部51及び下椀部52の第1方向Aの中央部79に形成すると好適である。特に角錐部分77は、ポンプ取付口32やその周囲、及び底部33には形成されていないが、必要に応じて形成することは可能である。なお、略全周とは、上椀部51と下椀部52とを接続する接続部分Zにおいては角錐部分77を形成していないので略全周となる。しかしながら、上椀部51と下椀部52との接続部分Zにおいても、角錐部分77を形成することは当然に可能であるし、本発明の権利範囲である。
 上述したように上椀部51及び下椀部52の少なくとも一部の内面及び外面が、複数の角錐面78を備えた角錐部分77を複数連ねて形成される。即ち、図4及び図5に示されるように上椀部51及び下椀部52の少なくとも一部の内面及び外面が凹凸を有するように形成される。
 例えば樹脂燃料タンク100が備えられる環境温度が高くなると、燃料が樹脂燃料タンク100内で揮発し内圧が高くなる。一方、環境温度が低くなると環境温度が高い場合に比べて内圧は低くなる。このように環境温度の変動により、樹脂燃料タンク100内の圧力も変動する。
 角錐部分77はこのような内圧の変動を吸収する機能を備えている。即ち、樹脂燃料タンク100の内圧が高くなった場合には角錐部分77の凹凸が広がり、その容積を大きくする。したがって、樹脂燃料タンク100の内圧が高くなりすぎることを防止する。一方、樹脂燃料タンク100の内圧が低くなった場合には角錐部分77の凹凸が狭まり、元の容積に戻る。したがって、樹脂燃料タンク100の内圧が低くなりすぎることを防止する。このように角錐部分77は、適宜、伸びと復帰とを繰り返すので樹脂燃料タンク100の割れを生じ難くすることができる。
 このようにして角錐部分77は、樹脂燃料タンク100内の圧力を略一定に維持する機能も備えている。なお、角錐部分77は、樹脂燃料タンク100の内圧が高くなった場合を基準に形成すると好適である。
〔第二の実施形態〕
 上述の第一の実施形態に係る樹脂燃料タンク100は、ブロー成形により成形されるとして説明した。本実施形態に係る樹脂燃料タンク100は、フリーブロー成形に成形される点で上述の第一の実施形態に係る樹脂燃料タンク100と異なる。以下では、このようなフリーブロー成形により成形された樹脂燃料タンク100について説明する。
 本実施形態に係る樹脂燃料タンク100は、フリーブロー成形を用いて成形される。フリーブロー成形では、原料となる樹脂からなる管状のパリソンが用いられる。管状のパリソンとは、第一の実施形態において用いられたパイプ状のパリソンに相当するものである。図9には、このような管状のパリソンの斜視図が示される。
 管状のパリソンは溶融状態とされると共に、軸方向に所定の長さで仕切って密閉状態とされる。溶融状態とは、完全に樹脂が溶けている状態を示すものではなく、後述するように仕切ることが可能で、且つ、仕切ることにより密閉状態となる部分を構成することが可能な程度に溶けている状態を示す。また、軸方向とは、管状のパリソンの軸方向である。軸方向に所定の長さで仕切るとは、管状のパリソンを軸方向に所定の長さを有するように、所定間隔離れた2箇所で仕切ることである。本実施形態では、管状のパリソンは、図9に示されるように軸方向に所定間隔離れた摘み位置T1、T2(2箇所)で摘み治具Tで摘んで仕切られる。このような摘み位置T1及び摘み位置T2の間の間隔が、本発明における「所定の長さ」に相当する。管状のパリソンは、このように2箇所で仕切られることにより、当該仕切られている部分が密閉状態とされる。
 このように密閉状態とされた管状のパリソンには注入ノズルが挿入され、当該注入ノズルを介して管状のパリソン内に空気が吹き込まれる。管状のパリソンは当該空気に応じた空気圧により均一に膨らむ。膨らんだ管状のパリソンは、その後、摘み位置T1、T2で切断される。このように切断されたものが本実施形態における樹脂燃料タンク100に相当し、図10に示される。本実施形態に係る樹脂燃料タンク100は、このように管状のパリソンに空気を吹き込んで膨らませた形状を外形として成形される。
 なお、図示はしないが、フリーブロー成形により形成された樹脂燃料タンク100は、上述の第一の実施形態に係る樹脂燃料タンク100と同様に、上椀部51と下椀部52とが組み合わされた中空形状からなり、第1方向Aにおける上椀部51及び下椀部52の中央の第1方向Aと直交する第2方向Bでの断面の内面が、上椀部51及び下椀部52の接続部分Zに接続されて上椀部51及び下椀部52の中央側に延出されると共に所定の半径r1からなる一対の第1円弧部71と、所定の半径r1より大きい半径R1からなると共に一対の第1円弧部71に亘って接続される第2円弧部72と、を有して形成される。また、第2方向Bにおける上椀部51及び下椀部52の中央の第1方向Aでの断面の内面は、上椀部51及び下椀部52の接続部分Zに接続されて上椀部51及び下椀部52の中央側に延出される一対の第3円弧部82と、当該一対の第3円弧部82に亘って接続される接続部81と、を有して形成される。
 このように本実施形態に係る樹脂燃料タンク100は、成形型を用いることなく、管状のパリソンを膨らませるだけの簡易な方法で形成することができる。また、樹脂燃料タンク100の形成過程において成形型で形状を矯正しないので、管状のパリソン内に供給される空気圧により当該管状のパリソンを均一に膨らませることができる。このため、樹脂燃料タンク100の全面に亘って均一な肉厚を実現することができるので、成形後の樹脂燃料タンク100内に貯留される燃料が揮発して圧力が高くなった場合でも、当該高くなった圧力を樹脂燃料タンク100の内壁に均等に与えることができ、部分的に応力が集中することが少ない。したがって、その分だけ全体的な板厚を薄くして樹脂の使用量を減らすことができるので、樹脂燃料タンク100の低コスト化及び軽量化を実現することが可能となる。また、成形型を使用しないので、製造コストも安くすることができる。なお、図10においては、取付部21や供給口31やポンプ取付口32は省略しているが、上述のフリーブロー成形後に別工程で形成することが可能である。
〔第三の実施形態〕
 上述の第一の実施形態に係る樹脂燃料タンク100は、金型を用いてブロー成形により成形されるとして説明した。本実施形態に係る樹脂燃料タンク100も、第一の実施形態と同様に、金型を用いてブロー成形に成形される。本実施形態では、金型を用いて成形される形状は、フリーブロー成形により膨らませた状態の形状である。以下、このような形状を有する樹脂燃料タンク100について説明する。
 本実施形態に係る樹脂燃料タンク100は、ブロー成形を用いて成形される。ブロー成形については、第一の実施形態において説明したので、ここでは説明は省略する。本実施形態に係るブロー成形で用いられる金型Kは、フリーブロー成形により形成された樹脂燃料タンク100の外面の形状を有するものが用いられる。このような金型Kが図11に示される。なお、金型Kは、本発明に係る「成形型」に相当する。フリーブロー成形とは、第二の実施形態で説明したように、管状のパリソンを軸方向に所定の長さで仕切って密閉状態とし、当該管状のパリソン内に空気を吹き込んで膨らませる成形方法である。本実施形態に係るブロー成形で用いる金型Kは、当該金型内に配置される材料(本実施形態においては管状のパリソン)を、フリーブロー成形で管状のパリソンを膨らませた状態での形状に沿うように形成する。
 金型Kは、第一金型K1及び第二金型K2の一対で構成される。樹脂燃料タンク100の形成過程において、これらの第一金型K1及び第二金型K2は所定の圧力で型締めして用いられる。このように型締めされた第一金型K1と第二金型K2との間には、キャビティKVが形成される。このキャビティKVに管状のパリソンが配置される。キャビティKVに配置された管状のパリソン内には空気が吹き込まれ、空気圧に応じて膨らまされる。したがって、管状のパリソンは金型Kに形成されている形状に沿って成形される。このような金型Kに形成されている形状は、フリーブロー成形で形成された状態の形状であるので、成形条件(管状のパリソンや溶融状態等)が同一であれば、フリーブロー成形で形成される形状と同様に、管状のパリソンが均一に膨らんだ状態の樹脂燃料タンク100が成形される。
 したがって、全面に亘って均一な肉厚からなる樹脂燃料タンク100を実現することができる。このため、成形後の樹脂燃料タンク100内に貯留される燃料が揮発して圧力が高くなった場合でも、当該高くなった圧力を樹脂燃料タンク100の内壁に均等に与えることができるので部分的に応力が集中することが少ない。このため、その分だけ全体的な板厚を薄くして樹脂の使用量を減らすことができるので、樹脂燃料タンク100の低コスト化且つ軽量化を実現することが可能となる。
 また、樹脂燃料タンク100には、取付部21が形成される。この取付部21は、本樹脂燃料タンク100を車両との取り付けを可能とする。すなわち、樹脂燃料タンク100を車両に取り付ける際、取付部21を介して取り付けられる。このような取付部21は、上述の金型Kを用いて樹脂燃料タンク100の形状を成形する際に一体的に行うことができる。係る場合には、取付部21の形状が金型Kに形成されている。ここで、図12には、成形された樹脂燃料タンク(成形後の樹脂燃料タンク)100の上面視が示されている。また、図12には、樹脂燃料タンク100を仮想的に囲む仮想四角形ISが破線で示される。取付部21は、成形後の樹脂燃料タンク100の上面視において、仮想四角形IS内に収まるように形成される。これにより、均一な肉厚で膨らんだ状態の樹脂燃料タンク100を維持しつつ、取付部21を成形することができる。このため、樹脂燃料タンク100には、取付部21に起因した偏肉が生じないので、取付部21を形成するために樹脂燃料タンク100の板厚を厚くする必要がない。したがって、樹脂燃料タンク100の低コスト化且つ軽量化を実現しつつ、取付部21を形成することが可能となる。
 なお、図示はしないが、本実施形態に係る樹脂燃料タンク100も、上椀部51と下椀部52とが組み合わされた中空形状からなり、第1方向Aにおける上椀部51及び下椀部52の中央の第1方向Aと直交する第2方向Bでの断面の内面が、上椀部51及び下椀部52の接続部分Zに接続されて上椀部51及び下椀部52の中央側に延出されると共に所定の半径r1からなる一対の第1円弧部71と、所定の半径r1より大きい半径R1からなると共に一対の第1円弧部71に亘って接続される第2円弧部72と、を有して形成される。また、第2方向Bにおける上椀部51及び下椀部52の中央の第1方向Aでの断面の内面は、上椀部51及び下椀部52の接続部分Zに接続されて上椀部51及び下椀部52の中央側に延出される一対の第3円弧部82と、当該一対の第3円弧部82に亘って接続される接続部81と、を有して形成される。
 また、図12に示されるように、樹脂燃料タンク100の上椀部51及び下椀部52の少なくとも一部の内面及び外面に、角錐部分77を複数連ねて形成することも可能である。更に、供給口31やポンプ取付口32を、ブロー成形と同時に形成することも可能である。もちろん、取付部21の略中央に貫通孔22を形成することも当然に可能である。
〔その他の実施形態〕
 上記実施形態では、上椀部51の中央部79に周囲に窪み41を有する開口部(ポンプ取付口32)が形成されるとして説明した。しかしながら、本発明の適用範囲はこれに限定されるものではない。下椀部52の中央部79に、周囲に窪み41を有する開口部(ポンプ取付口32)を形成することも当然に可能である。
 上記実施形態では、角錐部分77を構成する4つの角錐面78が二等辺三角形で形成し、係る場合には、線77A及び線77Bが、夫々第1方向A及び第2方向Bに沿って形成されるとして説明した。しかしながら、本発明の適用範囲はこれに限定されるものではない。角錐部分77の底面の各頂点76と角錐部分77の頭頂部80とを結ぶ線の1つが、上椀部51及び下椀部52の筒状の中央部79に沿った第1方向A又は当該第1方向Aに直交する第2方向Bに沿って形成することも当然に可能である。即ち、第1方向A及び第2方向Bのいずれか一方に形成することも当然に可能である。このような構成とすることにより、各頂点76と頭頂部80とを結ぶ前記線の1つに直交する側からの荷重を吸収することは当然に可能である。
 上記実施形態では、角錐部分77は、上椀部51及び下椀部52の第2方向Bの略全周に亘って形成され、上椀部51及び下椀部52の第1方向Aの少なくとも中央部79に形成されるとして説明した。しかしながら、本発明の適用範囲はこれに限定されるものではない。角錐部分77は、上椀部51及び下椀部52の第1方向Aの略全周に亘って形成し、上椀部51及び下椀部52の第2方向Bの少なくとも中央部79に形成することも当然に可能である。このように角錐部分77を形成した場合であっても、上述した効果を得ることは当然に可能である。
 上記実施形態では、角錐部分77は四角錐からなる部分であるとして説明した。しかしながら、本発明の適用範囲はこれに限定されるものではない。例えば、角錐部分77を三角錐から構成することも当然に可能である。このような三角錐からなる角錐部分77を連ねたものが図13に示される。係る場合には、3つの頂点76を結んで形成された底面が正三角形で構成すると好適である。この頂点76と頭頂部80とを結ぶ線の1つ77Bが、第2方向Bに沿って形成すると好適である。このように形成することにより、第1方向Aから受ける荷重を角錐部分77が好適に吸収することが可能であるのは当然である。なお、角錐面77は全てが二等辺三角形で形成される必要はなく、図13に示されるハッチングを付した三角形のみ(即ち、線77Bを二等辺三角形を構成する3つの辺に含まない角錐面78)を二等辺三角形で形成するだけで良い。また、線77Bが第2方向Bに沿って形成することも当然に可能である。係る場合には、第2方向Bから受ける荷重を角錐部分77が好適に吸収することが可能となる。
 上記実施形態では、上椀部51及び下椀部52の少なくとも一部の内面及び外面が、複数の角錐面78を備えた角錐部分77を複数連ねて形成されるとして説明した。しかしながら、本発明の適用範囲はこれに限定されるものではない。上椀部51及び下椀部52の内面及び外面の全てに亘って複数の角錐面78を備えた角錐部分77を複数連ねて形成することも当然に可能である。
 上記実施形態では、角錐部分77は樹脂燃料タンク100の内側に突出する形態で形成されるとして説明した。しかしながら、本発明の適用範囲はこれに限定されるものではない。角錐部分77が樹脂燃料タンク100の外側に突出する形態で形成することも当然に可能である。
[第4の実施形態]
 本発明の車両搭載の合成樹脂製燃料タンクに関し、車両搭載の合成樹脂製燃料タンクが、内部に燃料を貯留可能とするタンク本体と、このタンク本体から突出して車体側に締結可能とされる支持ブラケットとを備え、これらタンク本体と支持ブラケットとがブロー成形により一体的に形成される場合において、車体側への燃料タンクの支持強度を向上させることが容易に達成できるようにする、という目的を実現するため、本発明を実施するための形態は、次の如くである。
 即ち、車両搭載の合成樹脂製燃料タンクは、内部に燃料を貯留可能とするタンク本体と、このタンク本体の外側面から外側方に向かって突出し、車体側に締結可能とされる支持ブラケットとを備える。この各支持ブラケットの突出端縁を通る面を合い面とする分割式の両金型間へのパリソンの挿入により、上記タンク本体と各支持ブラケットとがブロー成形により一体的に形成されるようになっている。
 上記支持ブラケットの突出方向に沿った視線で見て、この支持ブラケットは板材の屈曲により形成される山形状、もしくは倒立山形状とされる。この支持ブラケットの左右方向における中途部を構成して上記車体側に締結される被締結部の板材厚さは、上記支持ブラケットの基部近傍における上記タンク本体の部分の厚さの2倍よりも大きくされる。一方、上記支持ブラケットの左右各側部の板材厚さは上記タンク本体の部分の厚さの2倍よりも小さくされる。
 本発明をより詳細に説明するために、その実施例を添付の図に従って説明する。
 図15~17において、符号1001は、自動車などの車両に搭載される燃料タンクであり、この燃料タンク1001は車両走行駆動用のエンジンの燃料1002を貯留可能とする。
 上記燃料タンク1001は、内部に燃料1002を貯留可能とし、各部の厚さが互いにほぼ均等(3~4.5mm)とされるタンク本体1003と、このタンク本体1003の外側面からそれぞれ外側方に向かって一体的に突出し、車体1004側に締結具1005により締結される複数(4つ)の支持ブラケット1006とを備えている。
 上記支持ブラケット1006の突出方向に沿った視線で見て(図14)、この支持ブラケット1006は、板材の屈曲により形成された山形状とされている。具体的には、上記支持ブラケット1006は、この支持ブラケット1006の左右方向における中途部(中央部)を構成し、ほぼ水平に延びて上記車体1004側に締結具1005により締結される被締結部1009と、この被締結部1009を左右から一体的に挟み、それぞれ上下方向に延びる左右一対の側部1010,1010とを備えている。
 上記支持ブラケット1006の被締結部1009と各側部1010との各基部は、いずれも上記タンク本体1003の外側面に一体的に結合されている。
 上記支持ブラケット1006の被締結部1009には、軸心1012がほぼ鉛直方向に延びるボルト孔1013が回転工具により穿設されている。上記締結具1005は、上記軸心1012上で上記車体1004側に溶接により固着されるナット1015と、上記ボルト孔1013をその下側から貫通した後、上記ナット1015に捻回されるボルト1016とを備えている。このボルト1016の捻回は、上記支持ブラケット1006の下方域からインパクトレンチなどの捻回工具1018を用いて行われる。
 上記の場合、支持ブラケット1006の被締結部1009の板材厚さTaは、上記支持ブラケット1006の基部近傍における上記タンク本体1003の部分1003aの厚さtの2倍(2t)よりも大きくされる一方、上記支持ブラケット1006の左右各側部1010の板材厚さTbは、それぞれ上記タンク本体1003の部分1003aの厚さtの2倍(2t)よりも小さくされている。
 つまり、Ta>2t>Tbの関係があり、例えば、Taは8~10mm、Tbは5~7mmとされる。
 上記燃料タンク1001は、ポリエチレンなどの樹脂製であって、成形金具1023を用いたブロー成形により一体的に形成される。この成形金具1023は、上記タンク本体1003の最外側端縁と上記各支持ブラケット1006の突出端縁とを通る面を合い面1024とする分割式の両金型1025,1026を備えている。これら両金型1025,1026間で、上記合い面1024に囲まれた部分にキャビティ1027が形成される。このキャビティ1027により、上記タンク本体1003と各支持ブラケット1006とが一体的に形成される。
 より具体的には、上記キャビティ1027は、上記タンク本体1003を形成する主キャビティ1027aと、上記各支持ブラケット1006をそれぞれ形成する副キャビティ1027bとを備えている。これら各副キャビティ1027bは、上記合い面1024に沿った方向の複数ヵ所(4ヵ所)で、上記主キャビティ1027aと互いに連通し、かつ、上記合い面1024に隣接するよう上記両金型1025,1026間に形成される。
 また、上記両金型1025,1026において、上記合い面1024が形成された部分がピンチオフ部1028とされる。また、上記各金型1025,1026には、その合い面1024からキャビティ1027の内面に至る角部にそれぞれ面取り部1029が形成されている。
 上記成形金具1023を用いた燃料タンク1001のブロー成形につき、説明する。
 図20において、まず、不図示の押出機により高温軟質でチューブ形状のパリソン1030が連続的に形成される。そして、このパリソン1030が、開かれた上記両金型1025,1026間に挿入される。この場合、詳図しないが、上記両金型1025,1026は、水平方向で互いに離反して、これら両金型1025,1026の間が開かれるようになっている。また、上記パリソン1030は、上記押出機のヘッドから下方に向かって垂れ下がるように押し出される。
 図14,18,19において、次に、上記両金型1025,1026が互いに接近し、この際、上記パリソン1030の周方向の大部分である主体部分1030aは、上記主キャビティ1027a内に収容される。一方、上記パリソン1030の周方向の上記主体部分1030aを除く各他部分1030bは、上記したように互いに接近する両金型1025,1026の各副キャビティ1027b内面に挟まれ、上記各他部分1030bのそれぞれにおいて上記周方向で互いに隣り合う部分同士が2枚重ねとなるよう屈曲させられる。そして、この2枚重ねにされたものが上記各副キャビティ1027b内面によりそれぞれ互いに加圧されて一体化される。また、この2枚重ねとされた部分の外縁部である屈曲部は、上記したように互いに接近する両金型1025,1026の上記ピンチオフ部1028(面取り部1029)による押し切りにより切断され、この切断されたものはバリ1032として除去される。
 次に、前記主キャビティ1027aに収容されたパリソン1030の主体部分1030aの内部に圧縮空気1034が注入されて、このパリソン1030の主体部分1030aが膨張させられる。そして、この圧縮空気1034の注入により膨張させられたパリソン1030の主体部分1030aは上記主キャビティ1027aの内面に当接して形状が定められ、これにより、上記タンク本体1003が形成される。一方、上記したように各副キャビティ1027b内で2枚重ねとされて一体化された部分は、上記のように形成されたタンク本体1003から一体的に突出する支持ブラケット1006とされる。このようにして、ブロー成形による燃料タンク1001の形成が終了する。
 また、上記の場合、タンク本体1003の外側面と上記各支持ブラケット1006の突出端縁とには、上記両金型1025,1026の両面取り部1029,1029間のV字溝により形成されたパーティングライン1036が一体的に形成される。このパーティングライン1036は、上記タンク本体1003の補強材として働く。
 上記燃料タンク1001のブロー成形後には、上記両金型1025,1026を互いに離反させて、これら金型1025,1026を上記燃料タンク1001から型抜きし、この燃料タンク1001を上記成形金具1023から取り出して、仕上げ加工をすればよい。
 なお、以上は図示の例によるが、上記支持ブラケット1006は上下関係を逆にして、倒立山形状としてもよい。また、上記支持ブラケット1006の各側部1010の板材は、金型1025,1026との型抜きが可能な範囲で、より鉛直方向に延びるよう形成してもよい。また、上記パーティングライン1036は、その断面形状がより小さくなるよう形成してもよく、タンク本体1003の外側面の全体にわたり外向きフランジとなるよう形成してもよい。
 上記構成によれば、支持ブラケット1006の突出方向に沿った視線で見て(図14)、この支持ブラケット1006を板材の屈曲により形成される山形状、もしくは倒立山形状とし、この支持ブラケット1006の左右方向における中途部を構成して上記車体1004側に締結される被締結部1009の板材厚さTaを、上記支持ブラケット1006の基部近傍における上記タンク本体1003の部分1003aの厚さtの2倍(2t)よりも大きくしている。
 即ち、上記支持ブラケット1006を山形状、もしくは倒立山形状という全体的に剛性の高くできる形状にしている。また、通常のブロー成形によれば、上記支持ブラケット1006の各部の板材厚さは上記タンク本体1003の部分1003aの2倍程度になりがちであるが、上記したように、支持ブラケット1006のうち、車体1004側に締結される被締結部1009の板材厚さTaを、上記タンク本体1003の部分1003aの厚さtの2倍(2t)よりも大きくしている。このため、車体1004側への支持ブラケット1006の締結強度を向上させることができ、よって、車体1004側への燃料タンク1001の支持強度の向上が達成可能とされる。
 また、上記の場合、被締結部1009の板材厚さTaを上記タンク本体1003の部分1003aの厚さtの2倍(2t)よりも大きくする一方、上記支持ブラケット1006の左右各側部1010の板材厚さTbを上記タンク本体1003の部分1003aの厚さtの2倍(2t)よりも小さくしている。
 即ち、上記したように、支持ブラケット1006の各部の板材厚さは通常のブロー成形では上記タンク本体1003の部分1003aの厚さtの2倍(2t)程度になるが、上記したように、支持ブラケット1006の被締結部1009の板材厚さTa>2t>支持ブラケット1006の各側部1010の板材厚さTb、としている。
 このため、上記燃料タンク1001をブロー成形する際に、上記両金型1025,1026間のキャビティ1027における副キャビティ1027bの内面で挟み付けられたパリソン1030の他部分1030bのうち、上記支持ブラケット1006の各側部1010に対応する部分は、上記被締結部1009に対応する部分に比べてより大きく圧縮される。
 よって、上記各側部1010に対応する部分のパリソン1030の軟質樹脂は上記被締結部1009に対応する部分に向かって流動Aし、ここに供給されることにより、上記した板材厚さTaの大きい支持ブラケット1006の被締結部1009が形成される。つまり、上記した燃料タンク1001のブロー成形の工夫によって、車体1004側への支持ブラケット1006の締結強度を向上させることが達成できるのであり、上記支持ブラケット1006に別途の補強材を設けないでも足りることから、車体1004側への燃料タンク1001の支持強度の向上が容易に達成可能となる。
 また、上記したように、燃料タンク1001の支持強度の向上のために支持ブラケット1006の被締結部1009の板材厚さを大きくする一方、この支持ブラケット1006の各側部1010の板材厚さを小さくしたため、上記した燃料タンク1001の支持強度の向上は、燃料タンク1001の質量の増加を回避しつつ達成できる。
 なお、上記したように、支持ブラケット1006の各側部1010の板材厚さを上記タンク本体1003の部分1003aの板材厚さの2倍よりも小さくしたことから、上記支持ブラケット1006の各側部1010には強度低下のおそれがあるが、前記したように、支持ブラケット1006を山形状、もしくは倒立山形状という全体的に剛性の高くできる形状にしたため、この支持ブラケット1006には、燃料タンク1001を車体1004側に支持させる上で良好な支持強度を確保させることができる。
 また、上記支持ブラケット1006を構成する被締結部1009と左右各側部1010,1010とで囲まれた上記タンク本体1003の外面部分1003bは、金型1025,1026との型抜きの関係で、外方に膨出する円弧凸形状ではなく、わずかな抜き勾配のある平坦形状とされる。
 よって、上記タンク本体1003の外面部分1003bが平坦形状である分、上記支持ブラケット1006の被締結部1009と左右各側部1010,1010とで囲まれた空間が広くなる。このため、上記支持ブラケット1006の被締結部1009を車体1004側に締結する際の締結具1005への工具1018による操作空間が広くなることから、上記車体1004側への支持ブラケット1006の被締結部1009の締結作業がより容易にできる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年3月30日出願の日本特許出願・出願番号2010-079616、2010年3月17日出願の日本特許出願・出願番号2010-060767に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、ブロー成形等にて成形される、上椀部と下椀部とが組み合わされた中空形状からなる樹脂燃料タンクに利用可能である。
31 供給口
32 ポンプ取付口
51 上椀部
52 下椀部
79 中央部
100 樹脂燃料タンク
A 第1方向
B 第2方向
1001 燃料タンク
1002 燃料
1003 タンク本体
1003a 部分
1003b 外面部分
1004 車体
1005 締結具
1006 支持ブラケット
1009 被締結部
1010 側部
1012 軸心
1013 ボルト孔
1015 ナット
1016 ボルト
1018 工具
1023 成形金具
1024 合い面
1025 金型
1026 金型
1027 キャビティ
1027a 主キャビティ
1027b 副キャビティ
1028 ピンチオフ部
1029 面取り部
1030 パリソン
1030a 主体部分
1030b 他部分
1032 バリ
1034 圧縮空気
1036 パーティングライン
A 流動
Ta 板材厚さ
Tb 板材厚さ
t 厚さ

Claims (6)

  1.  管状のパリソンを軸方向に所定の長さで仕切って密閉状態とし、フリーブロー成形を用いて前記管状のパリソン内に空気を吹き込んで膨らませた形状を外形とする樹脂燃料タンク。
  2.  ブロー成形にて成形される樹脂燃料タンクにおいて、
     管状のパリソンを軸方向に所定の長さで仕切って密閉状態とし、フリーブロー成形により前記管状のパリソン内に空気を吹き込んで膨らませた状態での形状を有する成形型を用い、当該成形型内に配置された管状のパリソン内に空気を吹き込んで膨らませるブロー成形により成形された樹脂燃料タンク。
  3.  車両との取り付けを可能にする取付部が備えられ、
     前記取付部が、前記成形された樹脂燃料タンクの上面視において、当該樹脂燃料タンクを囲む仮想四角形内に形成されている請求項2に記載の樹脂燃料タンク。
  4.  ブロー成形にて成形される、上椀部と下椀部とが組み合わされた中空形状からなる樹脂燃料タンクにおいて、
     前記上椀部及び前記下椀部の筒状の中央部に沿った第1方向における前記上椀部及び前記下椀部の中央の前記第1方向と直交する第2方向での断面の内面が、前記上椀部及び前記下椀部の接続部分に接続されて前記上椀部及び前記下椀部の中央側に延出されると共に所定の半径からなる一対の第1円弧部と、前記所定の半径より大きい半径からなると共に前記一対の第1円弧部に亘って接続される第2円弧部と、を有して形成され、
     前記第2方向における前記上椀部及び前記下椀部の中央の前記第1方向での断面の内面が、前記上椀部及び前記下椀部の接続部分に接続されて前記上椀部及び前記下椀部の中央側に延出される一対の第3円弧部と、前記一対の第3円弧部に亘って接続される接続部と、を有して形成されてある樹脂燃料タンク。
  5.  周囲に窪みを有する開口部が前記上椀部の中央部に形成されてある請求項4に記載の樹脂燃料タンク。
  6.  内部に燃料を貯留可能とするタンク本体と、このタンク本体の外側面から外側方に向かって突出し、車体側に締結可能とされる支持ブラケットとを備え、この支持ブラケットの突出端縁を通る面を合い面とする分割式の両金型間へのパリソンの挿入により、上記タンク本体と各支持ブラケットとがブロー成形により一体的に形成される車両搭載の合成樹脂製燃料タンクにおいて、
     上記支持ブラケットの突出方向に沿った視線で見て、この支持ブラケットを板材の屈曲により形成される山形状、もしくは倒立山形状とし、この支持ブラケットの左右方向における中途部を構成して上記車体側に締結される被締結部の板材厚さを、上記支持ブラケットの基部近傍における上記タンク本体の部分の厚さの2倍よりも大きくする一方、上記支持ブラケットの左右各側部の板材厚さを上記タンク本体の部分の厚さの2倍よりも小さくしたことを特徴とする車両搭載の合成樹脂製燃料タンク。
PCT/JP2011/056249 2010-03-17 2011-03-16 樹脂燃料タンク WO2011115178A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180014307.1A CN102802993B (zh) 2010-03-17 2011-03-16 树脂燃料箱

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010060767A JP5464745B2 (ja) 2010-03-17 2010-03-17 車両搭載の合成樹脂製燃料タンク
JP2010-060767 2010-03-17
JP2010079616A JP5457910B2 (ja) 2009-10-27 2010-03-30 樹脂燃料タンク
JP2010-079616 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011115178A1 true WO2011115178A1 (ja) 2011-09-22

Family

ID=44649261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056249 WO2011115178A1 (ja) 2010-03-17 2011-03-16 樹脂燃料タンク

Country Status (4)

Country Link
JP (1) JP5464745B2 (ja)
CN (1) CN102802993B (ja)
MY (1) MY161294A (ja)
WO (1) WO2011115178A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102434503A (zh) * 2011-12-14 2012-05-02 江西洪都航空工业集团有限责任公司 异形液压油箱
FR2997033A1 (fr) * 2012-10-22 2014-04-25 Sidel Participations "procede de formage d'un recipient par etirage-soufflage dans lequel une partie de paroi du recipient n'est pas moulee"

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5703319B2 (ja) * 2013-01-31 2015-04-15 株式会社ウエスト・アップ 仮設トイレ用便槽
DE102016219539A1 (de) 2016-10-07 2018-04-12 Kautex Textron Gmbh & Co. Kg Versteifungselement für einen flüssigkeitsbehälter für ein kraftfahrzeug und flüssigkeitsbehälter für ein kraftfahrzeug mit einem versteifungselement
JP6658562B2 (ja) * 2017-01-16 2020-03-04 トヨタ自動車株式会社 樹脂製燃料タンク及びこれを成形するブロー成形型
JP7015718B2 (ja) * 2018-03-29 2022-02-03 ダイハツ工業株式会社 燃料タンクの取付構造
JP6681113B2 (ja) * 2018-03-29 2020-04-15 ダイハツ工業株式会社 燃料タンクの取付構造
JP7169732B2 (ja) * 2019-03-08 2022-11-11 株式会社Fts 燃料タンクの取付構造

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112363A (ja) * 2002-09-27 2003-04-15 Nissan Motor Co Ltd ブロー成形方法及び同方法に使用する金型
JP2005254704A (ja) * 2004-03-15 2005-09-22 Frontier:Kk プラスチック容器のブロー成形方法
JP2005254757A (ja) * 2004-03-15 2005-09-22 Teijin Chem Ltd ポリエチレンナフタレート系樹脂からなる燃料タンク用容器
JP2007168455A (ja) * 2005-12-19 2007-07-05 Yachiyo Industry Co Ltd バリア材層を有する容器の取り付け構造

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702786A (en) * 1996-04-22 1997-12-30 Greif Bros. Corporation Process for preparing thermoplastic polyolefin resin articles of reduced hydrocarbon permeability
CN1310804C (zh) * 2004-04-13 2007-04-18 珠海中富实业股份有限公司 宽口容器瓶的制造方法
US7789987B2 (en) * 2004-06-03 2010-09-07 Mitsui Chemicals, Inc Method of manufacturing resin hollow body using a blow molding die assembly
EP2141000B1 (en) * 2008-06-30 2014-02-26 TI Automotive Technology Center GmbH Method of manufacturing an article and apparatus therefore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112363A (ja) * 2002-09-27 2003-04-15 Nissan Motor Co Ltd ブロー成形方法及び同方法に使用する金型
JP2005254704A (ja) * 2004-03-15 2005-09-22 Frontier:Kk プラスチック容器のブロー成形方法
JP2005254757A (ja) * 2004-03-15 2005-09-22 Teijin Chem Ltd ポリエチレンナフタレート系樹脂からなる燃料タンク用容器
JP2007168455A (ja) * 2005-12-19 2007-07-05 Yachiyo Industry Co Ltd バリア材層を有する容器の取り付け構造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102434503A (zh) * 2011-12-14 2012-05-02 江西洪都航空工业集团有限责任公司 异形液压油箱
CN102434503B (zh) * 2011-12-14 2015-06-24 江西洪都航空工业集团有限责任公司 异形液压油箱
FR2997033A1 (fr) * 2012-10-22 2014-04-25 Sidel Participations "procede de formage d'un recipient par etirage-soufflage dans lequel une partie de paroi du recipient n'est pas moulee"
WO2014064041A1 (fr) * 2012-10-22 2014-05-01 Sidel Participations Procédé de formage d'un récipient par étirage-soufflage dans lequel une partie de paroi du récipient n'est pas moulée
CN104736320A (zh) * 2012-10-22 2015-06-24 西德尔合作公司 容器壁部一部分未被模塑的容器的拉伸-吹制成型方法

Also Published As

Publication number Publication date
JP5464745B2 (ja) 2014-04-09
CN102802993B (zh) 2015-07-22
MY161294A (en) 2017-04-14
CN102802993A (zh) 2012-11-28
JP2011194916A (ja) 2011-10-06

Similar Documents

Publication Publication Date Title
WO2011115178A1 (ja) 樹脂燃料タンク
CN102596549B (zh) 穿孔修补套件
JP5270911B2 (ja) 自動車用燃料タンク
JP2010168022A (ja) 自動車用燃料タンク
JP5877577B2 (ja) 自動車用燃料タンク
JP4345239B2 (ja) 燃料タンク
JP2006161978A (ja) 圧力容器の製造方法及び圧力容器
JP2018114794A (ja) 自動車用燃料タンクの支柱部品
JP5457910B2 (ja) 樹脂燃料タンク
JP5493224B2 (ja) 樹脂燃料タンク
JP2018127123A (ja) 自動車用燃料タンクの支柱部品
ES2308189T3 (es) Tubo de llenado de plastico, moldeado por extrusion y soplado.
CN211764909U (zh) 一种设置有功能槽的支撑杆
US9046122B2 (en) Assembly of thermoplastic extrusion blow molded component and fastening element
CA2611218A1 (en) Bracketless windshield washer tank mounting
JP4176598B2 (ja) 合成樹脂製連結容器の製造方法
JP2009115108A (ja) 防振連結ロッド
CN218787274U (zh) 一种具备轻量化结构的橡胶衬套
JPH04179528A (ja) 樹脂製燃料タンク
JP5060194B2 (ja) 燃料タンク
JP2019098762A (ja) 自動車用の燃料タンクの取付部構造
JP6593888B2 (ja) 燃料タンクのパイプ取付構造
CN211223331U (zh) 下蒙皮总成、保险杠总成及包含其的汽车
CN211280507U (zh) 一种快速组装的内胎
CN211222093U (zh) 一种汽车座椅衬套加工用的定位套架

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014307.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756362

Country of ref document: EP

Kind code of ref document: A1