WO2011114669A1 - 生体音検査装置 - Google Patents

生体音検査装置 Download PDF

Info

Publication number
WO2011114669A1
WO2011114669A1 PCT/JP2011/001408 JP2011001408W WO2011114669A1 WO 2011114669 A1 WO2011114669 A1 WO 2011114669A1 JP 2011001408 W JP2011001408 W JP 2011001408W WO 2011114669 A1 WO2011114669 A1 WO 2011114669A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
sound
unit
measurement
biological
Prior art date
Application number
PCT/JP2011/001408
Other languages
English (en)
French (fr)
Inventor
堀井 則彰
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012505489A priority Critical patent/JP5508517B2/ja
Priority to EP11755862.7A priority patent/EP2548504B1/en
Priority to US13/319,861 priority patent/US8702628B2/en
Publication of WO2011114669A1 publication Critical patent/WO2011114669A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/003Detecting lung or respiration noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/026Stethoscopes comprising more than one sound collector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs

Definitions

  • the present invention relates to a biological sound inspection apparatus that estimates a biological state by acquiring a biological sound and performing signal processing.
  • diagnosis is performed by listening to body sounds such as heart sounds and lung sounds using a stethoscope.
  • body sounds such as heart sounds and lung sounds using a stethoscope.
  • diagnosis by auscultation is based on the subjective evaluation of a doctor, skillfulness is required for accurate diagnosis.
  • Lung sounds are all sounds that occur with respiratory motion in the lungs and thorax, except for sounds that use the cardiovascular system as a sound source, regardless of normal or abnormal.
  • lung sounds are a breathing sound that is a physiological sound with the flow of air generated in the respiratory tract as a sound source, and a side noise that is an abnormal sound generated in a pathological state, such as wheezing or pleural friction sound. are categorized. Note that the sound source of the breathing sound is considered to be in a relatively thick airway.
  • Pneumothorax is one of the lung diseases. Pneumothorax is a formation of an air space between the lung and the chest wall, which appears as a decrease in respiratory sounds in the physical findings. Therefore, in order to detect the state of pneumothorax, a method of performing signal processing by radiating sound waves from the speaker into the mouth and trachea, the radiated sound waves propagate through the patient, and measuring the propagated sound waves on the chest wall has been proposed (see Patent Document 1).
  • the transfer function is calculated using the radiated sound wave and the sound wave measured on the chest wall, the energy ratio between the low frequency band and the high frequency band is calculated using the transfer function, and the pneumothorax state is detected. ing.
  • Patent Document 1 proposes a method of analyzing lung sounds measured on the chest wall as a method that does not use means for emitting sound waves from a speaker.
  • frequency conversion is performed using a lung sound signal measured on the chest wall, an energy ratio between a low frequency band and a high frequency band is calculated, and a respiratory state is detected.
  • This device integrates the output value of the acceleration sensor to calculate the movement distance of the sensor and automatically detects the measurement position of the lung sound.
  • a person other than the doctor applies a microphone to a predetermined part of the patient to measure the body sound, and the body sound is transmitted to the doctor by wire and wirelessly and auscultated. There is a case.
  • a weighted sum is calculated using acoustic signals from a plurality of microphones, and an acoustic signal in a place where the microphones are not applied is created in a pseudo manner to support diagnosis at a remote location.
  • the auscultation position of lung sounds and heart sounds should be auscultated on the chest wall, avoiding bones such as the collarbone and ribs. Even if a sensor is placed on the chest wall, it is difficult to find out how far away from the center line of the body the appropriate auscultation position is.
  • the auscultation position is very important when the attenuation of respiratory sounds due to physical findings is detected by signal processing.
  • Patent Document 3 Even if the method disclosed in Patent Document 3 is used, there are organs, bones, muscles, fats, and the like in the body, and various reflections or interferences occur during the propagation of the body sound in the body. It is difficult to accurately analyze a body sound with an acoustic signal created by a weighted sum of signals from.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a biological sound inspection apparatus that can accurately determine the suitability of a measurement position of a biological sound.
  • a biological sound inspection apparatus includes a biological sound measuring unit that measures a biological sound based on vibration propagating through a living body of a measurement subject, and the biological sound measuring unit.
  • the power of the first body sound which is one of two different body sounds
  • the power of the second body sound which is the other of the two kinds of body sounds, measured during the same period Comparing the power calculation unit to calculate, the first power that is the power of the first biological sound calculated by the power calculation unit and the second power that is the power of the second biological sound, and the first power and the power
  • a power comparison unit that calculates a comparison result indicating a ratio or difference with the second power, the comparison result calculated by the power comparison unit, and a threshold value are compared, whereby a biological sound measurement by the biological sound measurement unit is performed.
  • a judgment unit for judging whether or not the measurement position is appropriate; Provided.
  • the suitability of the measurement position of the body sound is determined based on the power ratio or difference between the two kinds of body sounds. That is, by using the difference in physical quantity between the two types of measured body sounds, it is possible to accurately determine whether the position where at least one of the two types of body sounds is measured is appropriate.
  • the biological sound measuring unit includes a first measuring unit that measures the first biological sound by measuring the biological sound at the first part of the biological body. And a second measurement unit that measures the second body sound by measuring a body sound at a second part different from the first part of the living body, and the power comparison unit has a predetermined frequency.
  • the comparison result indicating a power ratio that is a ratio between the first power and the second power in a band is calculated, and the determination unit is (a) a result obtained by subtracting a predetermined reference power ratio from the power ratio.
  • the suitability of the measurement position of any one of the body sounds is accurately determined based on the power ratio between the body sounds measured at two locations.
  • the first measurement unit measures the first biological sound by measuring the biological sound at the position of the sternum notch that is the first part.
  • the second measurement unit may measure the second body sound by measuring the body sound at a position on the chest wall that is the second part.
  • the biological sound inspection apparatus can more accurately determine whether or not the measurement position of the biological sound is in the range on the chest wall that is an appropriate range as the measurement position of the lung sound.
  • the biological sound inspection apparatus may further be configured for the person to be measured or the measurer when the determination unit determines that the measurement position of the second biological sound is inappropriate.
  • a display unit that displays an instruction to change the measurement position, and the display unit displays the measurement position when the determination result by the determination unit indicates that the difference value is equal to or greater than the first threshold value;
  • the measurement position is closer to the position of the living body.
  • An instruction for changing may be displayed.
  • the biological sound inspection apparatus can accurately instruct the measurer in the direction of changing the measurement position, thereby realizing effective measurement support. Is done.
  • the display unit includes at least one light emitting unit, and the measurement position of the second biological sound is not determined by the determination unit.
  • the instruction may be displayed by emitting light.
  • the measurer when the measurement position is inappropriate, for example, the measurer can visually understand the change direction of the measurement position. That is, it is possible to make the measurer easily recognize the change direction instruction.
  • the biological sound inspection apparatus further includes a direction detection unit that detects a predetermined direction, and the direction detection unit has an inappropriate measurement position of the second biological sound by the determination unit. If it is determined that there is a direction from the upper body to the lower body of the living body that is the predetermined direction, the display unit includes a plurality of light emitting units including the at least one light emitting unit, and the determination unit When the determination result by indicates that the difference value is equal to or greater than the first threshold, the axis passes through the second measurement unit among the plurality of light emitting units and is parallel to the detected predetermined direction.
  • the axis of the plurality of light emitting units On the opposite side of the first light emitter It may emit second light emitting portion for location.
  • the measurer when the measurement position is inappropriate, the measurer can visually understand whether the measurement position should be shifted to the left or right. That is, the measurement person can easily understand the change direction of the measurement position.
  • the determination unit includes a first body type index value that is a body type index value of the measured person at the time when the reference power ratio is set, and the first body type index value. You may correct
  • the reference power ratio is appropriately corrected according to the change in the body shape of the measurer. Therefore, for example, even if the reference power ratio is not frequently updated, the suitability of the measurement position of the body sound is accurately determined according to the change in the body shape.
  • the correction formula is a value obtained by integrating a body type difference value that is a difference between the first body type index value and the second body type index value, and a predetermined coefficient. May be added to the reference power ratio before correction.
  • the correction formula is a formula for adding a correction difference value to the reference power ratio
  • the correction difference value is a first prediction power ratio and a second prediction. It is a value indicating a difference with the power ratio
  • the first predicted power ratio is a value predicted from the first body type index value based on a prediction formula for predicting the power ratio from the body type index value
  • the second predicted power ratio may be a value predicted from the second body type index value based on the prediction formula.
  • the first body type index value and the second body type index value may be any one of height, age, weight, body surface area, and body mass index. There may be.
  • the biological sound inspection apparatus may further include an amplifying unit that amplifies the second biological sound using a value obtained by inverting the sign of the difference value.
  • a body sound measured at an inappropriate measurement position can be approximated to a signal power of the body sound measured at an appropriate measurement position.
  • the power calculation unit calculates the power of the measured biological sound in the first frequency band, which is the first biological sound. Calculating the first power, and (f) calculating the power of the measured body sound in the second frequency band different from the first frequency band, which is the second body sound, The second power is calculated, and the power comparison unit detects at least one set of a first maximum value which is a maximum value in the time series data of the first power and a first time interval including the first maximum value.
  • an extreme value detection unit for detecting at least one set of a second maximum value that is a maximum value in the time series data of the second power and a second time interval including the second maximum value, and at least one Said first time interval and at least one before
  • a common time interval detecting unit that detects a common time interval that is a common time interval with the second time interval, and the common time interval is a difference between the first power and the second power. The comparison result indicating a difference between the first maximum value and the second maximum value included is calculated, and when the difference indicated by the comparison result is equal to or less than the threshold value, the measurement position of the biological sound May be determined to be inappropriate.
  • the power (first power and second power) of each of two types of biological sounds in different frequency bands obtained from the biological sound measured at a certain position is calculated.
  • a common time interval in which the first power and the second power have the maximum value at the same timing is detected. Furthermore, when the difference between the maximum value of the first power and the maximum value of the second power in the common time interval is equal to or smaller than the threshold value, it is determined that the measurement position of the biological sound is inappropriate.
  • the maximum value of the first power and the maximum value of the second power in the common time interval are close, for example, the maximum value of the first power is greatly influenced by the second power. To be judged.
  • the biological sound inspection apparatus of this aspect when measuring biological sound using a certain organ as a sound source, whether the measured biological sound is greatly influenced by sounds from other organs. Based on whether or not, it is possible to accurately determine whether or not the measurement position of the body sound is appropriate.
  • the biological sound inspection apparatus further includes a noise interval detection unit that detects a low noise interval in which power included in the third frequency band of the biological sound is equal to or less than a predetermined value, and the determination unit
  • the common time interval detection unit may determine that the measurement position is appropriate when the common time interval is not detected within the low noise interval.
  • the biological sound inspection apparatus may further change the measurement position with respect to the measurement subject or the measurement person when the measurement unit determines that the measurement position is inappropriate.
  • a display unit for displaying the instruction may be provided.
  • the biological sound inspection apparatus can instruct the measurement subject or the measurement person to change the measurement position, thereby realizing effective measurement support.
  • the biological sound is a sound to be measured at a predetermined position in the vicinity of a predetermined bone
  • the display unit is not determined by the determination unit. If determined to be appropriate, an instruction to change the measurement position in a direction away from the predetermined bone may be displayed.
  • the display unit includes at least one light emitting unit, and the determination unit determines that the measurement position is inappropriate by the at least one light emitting unit. If so, the instruction may be displayed by emitting light.
  • the measurer can visually understand the change direction of the measurement position. That is, it is possible to make the measurer easily recognize the change direction instruction.
  • the biological sound inspection apparatus further includes a direction detection unit that detects a predetermined direction, and the direction detection unit, when the determination unit determines that the measurement position is inappropriate, A direction from the upper body to the lower body of the living body, which is the predetermined direction, is detected, and the display unit includes a plurality of light emitting units including the at least one light emitting unit, and the measurement position is inappropriate by the determination unit If it is determined that the light emitting unit arranged closest to the predetermined direction among the plurality of light emitting units, the light emitting unit may emit light.
  • the measurer can visually understand the direction in which the measurement position is changed, and can quickly find an appropriate position.
  • the first frequency band may include a frequency component lower than the second frequency band.
  • the third frequency band may be a band including a frequency component of lung sound of 1 kHz or less.
  • the present invention can also be realized as a biological sound inspection method including a characteristic process executed by the biological sound inspection apparatus according to any one of the above aspects.
  • it can be realized as a program for causing a computer to execute each process included in the biological sound inspection method, and as a recording medium on which the program is recorded.
  • the program can be distributed via a transmission medium such as the Internet or a recording medium such as a DVD.
  • the present invention can also be realized as an integrated circuit including a part or all of the configuration of the biological sound inspection apparatus according to any one of the above aspects.
  • the biological sound inspection apparatus specifies whether or not the measurement position of the biological sound is an inappropriate position that is too close to a bone such as the clavicle or the rib, and the distance from the body center line. It can be determined whether or not the position is inappropriate on the chest wall, which is different from the measured distance.
  • FIG. 1 is a block diagram showing a basic configuration of the biological sound inspection apparatus in the first embodiment.
  • FIG. 2 is a diagram showing a configuration outline of the body sound measurement unit in the first embodiment.
  • FIG. 3 is a block diagram illustrating a basic configuration of the signal processing unit according to the first embodiment.
  • FIG. 4 is a flowchart illustrating an example of a basic processing flow of the biological sound inspection apparatus according to the first embodiment.
  • FIG. 5 is a flowchart illustrating an example of a flow of processing for determining whether or not the measurement position by the biological sound measurement unit is appropriate in the signal processing unit.
  • FIG. 6 is a diagram illustrating an example of frequency characteristics of heart sounds.
  • FIG. 1 is a block diagram showing a basic configuration of the biological sound inspection apparatus in the first embodiment.
  • FIG. 2 is a diagram showing a configuration outline of the body sound measurement unit in the first embodiment.
  • FIG. 3 is a block diagram illustrating a basic configuration of the signal processing unit according to the first embodiment.
  • FIG. 7A is a diagram showing time-series data of power in a frequency band of 20 Hz or more and 80 Hz or less of a biological sound signal measured near the clavicle.
  • FIG. 7B is a diagram showing time-series data when the heart sound low-frequency maximum value and its time interval are detected from the data shown in FIG. 7A and the values of the other time intervals are masked with zero.
  • FIG. 8A is a diagram showing time-series data of power in a frequency band of 300 Hz or more and 400 Hz or less of a biological sound signal measured near the clavicle.
  • FIG. 8B is a diagram showing time-series data in the case where the heart sound treble maximum value and its time interval are detected from the data shown in FIG.
  • FIG. 9A is a diagram illustrating a common time interval detected using the time-series data of FIG. 7B and FIG. 8B.
  • FIG. 9B is a diagram illustrating an example of a portion that is not detected as a common time interval in power time-series data of a low frequency band and a high frequency band.
  • FIG. 9C is a diagram illustrating an example of a portion detected as a common time interval in power time-series data of a low frequency band and a high frequency band.
  • FIG. 10A is a diagram illustrating an example of time-series data of low-frequency power and high-frequency power of body sound measured on the chest wall.
  • FIG. 10B is a diagram showing a common time interval detected from the data shown in FIG. 10A.
  • FIG. 11 is a block diagram illustrating a basic configuration of the signal processing unit according to the second embodiment.
  • FIG. 12 is a flowchart illustrating an example of a flow of processing related to detection of a common time interval in the biological sound inspection apparatus according to the second embodiment.
  • FIG. 13 is a diagram illustrating an example of frequency characteristics of lung sounds measured on the chest wall.
  • FIG. 14 is a diagram illustrating a configuration outline of a body sound measurement unit according to the third embodiment.
  • FIG. 15 is a flowchart illustrating an example of a flow of processing for turning on the warning light of the biological sound measurement unit when it is determined that the measurement position of the biological sound is inappropriate.
  • FIG. 11 is a block diagram illustrating a basic configuration of the signal processing unit according to the second embodiment.
  • FIG. 12 is a flowchart illustrating an example of a flow of processing related to detection of a common time interval in the
  • FIG. 16 is a block diagram illustrating a basic configuration of the biological sound inspection apparatus according to the fourth embodiment.
  • FIG. 17 is a diagram illustrating a configuration example of the signal processing unit in the fourth embodiment.
  • FIG. 18 is a flowchart illustrating an example of a flow of processing for determining whether or not the measurement position of the biological sound measurement unit is an appropriate measurement position on the chest wall in the signal processing unit.
  • FIG. 19 is a diagram showing a comparison result of the power ratio of lung sounds between two groups of healthy subjects and asthma patients.
  • FIG. 20 is a correlation diagram illustrating an example of the correlation between height and power ratio of lung sounds.
  • FIG. 21A is a diagram showing an example of different measurement positions under the right clavicle in the same individual.
  • FIG. 21A is a diagram showing an example of different measurement positions under the right clavicle in the same individual.
  • FIG. 21B is a diagram illustrating measurement results of power ratios of lung sounds corresponding to the measurement positions illustrated in FIG. 21A.
  • FIG. 22 is a flowchart illustrating an example of the flow of warning display processing when the measurement position is determined to be inappropriate by the biological sound inspection apparatus according to the fifth embodiment.
  • FIG. 23 is a diagram illustrating an example of a measurement position when the warning lamp is turned on.
  • FIG. 24 is a diagram illustrating an example of a processing flow of the biological sound inspection apparatus according to the sixth embodiment.
  • FIG. 25 is a correlation diagram showing an example of the correlation between age and power ratio.
  • FIG. 26 is a correlation diagram showing an example of the correlation between the body surface area and the power ratio of lung sounds.
  • FIG. 1 is a block diagram showing a basic configuration of biological sound inspection apparatus 100 in the first embodiment.
  • the biological sound inspection apparatus 100 includes a biological sound measurement unit 101 that measures a biological sound, an amplification unit 102 that amplifies the biological sound signal measured by the biological sound measurement unit 101, and digitally outputs the biological sound signal amplified by the amplification unit 102.
  • An A / D processing unit 103 that converts data
  • a signal processing unit 104 that analyzes a biological sound signal converted into digital data by the A / D processing unit 103
  • a control unit that controls processing in the biological sound inspection apparatus 100 105
  • a recording unit 106 that records information used in the signal processing unit 104 and the analysis result of the body sound signal
  • a display unit 107 that displays the analysis result of the body sound signal, a warning, and the like to the measurer.
  • FIG. 2 is a diagram showing a schematic configuration of the body sound measurement unit 101 in the first embodiment.
  • the body sound measurement unit 101 propagates the body part sound that is converted into air vibration by the diaphragm part 201, and the diaphragm part 201 that converts the vibration of the body sound that propagates in the body into the air vibration.
  • the filling unit 205 is filled with a damping material such as a rubber material or gel so that vibration due to environmental noise from the outside does not propagate to the space 202.
  • FIG. 3 is a block diagram illustrating a basic configuration of the signal processing unit 104 according to the first embodiment.
  • the signal processing unit 104 includes a power calculation unit 2301 that calculates the power of each of the first and second biological sounds, which are two different types of sounds, and the calculated power of the two types of biological sounds (the first power and the second biological sound).
  • a power comparison unit 2300 that compares the second power
  • a determination unit 2304 that determines the suitability of the measurement position based on the difference between the maximum values in the common time interval indicated in the comparison result by the power comparison unit 2300.
  • the power comparison unit 2300 compares the extreme value detection unit 2302 that detects the extreme values of the calculated time series data of power with each time interval having the maximum value, and detects the common time interval.
  • biological sound test apparatus 100 includes at least biological sound measurement unit 101, power calculation unit 2301, power comparison unit 2300, and determination unit 2304. That's fine.
  • FIG. 4 is a flowchart showing an example of a basic processing flow of the biological sound test apparatus 100 of the first embodiment.
  • the body sound measuring unit 101 measures body sounds based on vibrations propagating through the inside of the measurement subject's body (S100).
  • the power calculation unit 2301 is a first body sound power (first power) that is one of two different sounds measured by the body sound measurement unit, and of the two kinds of sounds.
  • the power of the second living body sound (second power) that is the other sound is calculated (S100).
  • the power calculation unit 2301 calculates the power in the first frequency band and the power in the second frequency band of the digitized biological sound signal as the first power and the second power.
  • the power comparison unit 2300 compares the calculated first power and the second power, and calculates a comparison result indicating the ratio or difference between the first power and the second power (S120).
  • the extreme value detection unit 2302 included in the power comparison unit 2300 detects the maximum values (first maximum value and second maximum value) of the time series data of each of the first power and the second power.
  • the common time interval detection unit 2303 included in the power comparison unit 2300 detects a common time interval common between the time interval corresponding to the first maximum value and the time interval corresponding to the second maximum value.
  • the power comparison unit 2300 further calculates a comparison result indicating a difference between the first maximum value and the second maximum value.
  • the determination unit 2304 determines that the measurement position of the body sound is inappropriate when the difference indicated in the comparison result is equal to or less than the threshold (S130).
  • FIG. 5 is a flowchart illustrating an example of a processing flow in the signal processing unit 104 for determining whether or not the measurement position by the biological sound measurement unit 101 is appropriate.
  • the measurement position is an inappropriate position that is too close to a bone such as a clavicle or a rib.
  • the power calculation unit 2301 When the power calculation unit 2301 receives the body sound signal from the A / D processing unit 103, the power calculation unit 2301 calculates the power in the low frequency band of the heart sound in order to extract the time interval and the intensity of the heart sound (S300). .
  • This low frequency band is an example of the first frequency band
  • the biological sound in the low frequency band is an example of the first biological sound.
  • the power in the low frequency band is an example of the first power.
  • the calculation of the power in this low frequency band is performed, for example, by setting 85 msec as one frame and calculating one frame of power every 21 msec.
  • FIG. 6 is a diagram illustrating an example of frequency characteristics of heart sounds, where a solid line indicates a heart sound, and a broken line indicates background noise during heart sound measurement.
  • the frequency band for calculating power may be a frequency band of 400 Hz or less.
  • the frequency band is preferably 20 Hz or more and 80 Hz or less. This is because this band has a feature that it is highly possible to detect the time interval and the intensity of the heart sound with high accuracy.
  • FIG. 7A shows time-series data of power in a frequency band of 20 Hz or more and 80 Hz or less of a biological sound signal measured near the clavicle.
  • heart sounds I and II appear as power peaks.
  • the I sound is a sound generated at the start of the ventricular systole
  • the II sound is a sound generated at the start of the ventricular diastole.
  • a power peak of slightly over 20 dB that appears immediately after the start of measurement is the I sound
  • a power peak of slightly over 15 dB that appears immediately after that is the II sound.
  • I sound and II sound appear alternately. Note that the power levels of the I sound and the II sound vary depending on the individual and may change even for the same individual.
  • the extreme value detection unit 2302 detects the local maximum value and the time interval including the local maximum value from the power time series data of the low frequency band of the heart sound calculated in S300 (S301).
  • the detected maximum value and the time interval correspond to the time interval in which the heart sounds I or II sounds appear.
  • the detected maximum value and its time interval are examples of the first maximum value and the first time interval, and at least one maximum value and its time interval are detected.
  • the time interval indicates the time interval of 5 frames, and the maximum value is calculated for each frame.
  • the maximum value is detected by differentiating the power time-series data in the time axis direction, and when the power at the time when the differential value changes from positive to negative is greater than or equal to a predetermined value, the maximum value (hereinafter referred to as “heart sound low-frequency maximum value”). ").
  • the predetermined value may be the average power of the power time-series data 10 seconds before the time when the differential value changes from positive to negative, or may be a value obtained by subtracting 10 dB from the maximum value.
  • this predetermined value is not limited to this, and if it is set to a value that satisfies the minimum value and the maximum value of the power time-series data before the time when the differential value changes from positive to negative. Good.
  • one heart sound low band maximum value that is the local maximum value is selected.
  • the local minimum value is detected from the power time series data, and the time of the minimum value detected before and after the heart sound low range maximum value is started and ended. It is detected by setting the time.
  • the minimum value is detected by differentiating the power time-series data in the time axis direction, and when the power at the time when the differential value changes from negative to positive is less than or equal to a predetermined value, it is detected as a minimum value. It should be noted that other methods may be used to detect the maximum value and the minimum value.
  • FIG. 7B is a diagram showing time-series data when the heart sound low-frequency maximum value and its time interval are detected from the data shown in FIG. 7A and the values of other time intervals are masked with 0.
  • the power calculation unit 2301 calculates high-frequency power in the frequency band of the heart sound using the biological sound signal received from the A / D processing unit 103 (S302).
  • the frequency band for calculating power is 400 Hz or less, including a frequency band larger than the frequency band (for example, 20 Hz or more and 80 Hz or less) targeted for power calculation in S300. It only has to be.
  • the frequency band be 300 Hz or more and 400 Hz or less.
  • Heart sound in a frequency band of 300 Hz or more and 400 Hz or less propagates without being attenuated so much in bone conduction by ribs or clavicles, but when propagating through tissues other than bone, such as muscle, fat, or lungs, It is greatly attenuated compared to bone conduction.
  • the heart sound power in this frequency band has the feature that the difference in the size appears prominently in the vicinity of the clavicle and the others, and there is a high possibility that the suitability of the measurement position of the body sound can be judged with high accuracy. ing.
  • This frequency band (high frequency band) is an example of the second frequency band
  • the biological sound in the high frequency band is an example of the second biological sound.
  • the power in the high frequency band is an example of the second power.
  • the first frequency band includes a lower frequency component than the second frequency band.
  • FIG. 8A shows time-series data of power in a frequency band of 300 Hz to 400 Hz of a biological sound signal measured near the clavicle.
  • the data shown in FIG. 8A includes power peaks due to heart sounds and power excitement due to lung sounds during breathing.
  • the low frequency band biological sound measured in S300 is mainly heart sounds
  • the high frequency band biological sound measured in S302 is mainly mixed sounds of heart sounds and lung sounds.
  • the extreme value detection unit 2302 is based on time series data of power in the high frequency band of the heart sound calculated in S302, and a time interval in which the maximum value (hereinafter also referred to as “high frequency maximum value”) and the high frequency maximum value are included. Is detected (S303).
  • the detected high-frequency maximum value and its time interval are examples of the second maximum value and the second time interval.
  • the extreme value detection unit 2302 uses the high-frequency maximum value and the time interval including the high-frequency maximum value At least one set is detected.
  • FIG. 8B is a diagram showing time-series data when the high-frequency maximum value and its time interval are detected from the data shown in FIG. 8A and the values of other time intervals are masked with 0.
  • the common time interval detection unit 2303 detects a common time interval that is a common time interval by comparing at least one time interval detected in S301 with at least one time interval detected in S303 ( S304).
  • the beginning of the interval that is, in determining whether the time interval including the maximum value is the same between the time series data in the low frequency band and the time series data in the high frequency band, the beginning of the interval Alternatively, the end times do not necessarily have to be exactly the same, and any time difference within a predetermined value may be used.
  • This predetermined value needs to be identified as corresponding to a time interval in which the peak of the I sound of the heart sound and the peak of the II sound are different, so it is desirable to select a value of 300 msec or less.
  • FIG. 9A shows a common time interval detected using the time series data of FIGS. 7B and 8B. Note that time intervals other than the detected common time interval are masked with zeros.
  • the solid line is the power of the time interval corresponding to the heart sound low-frequency maximum, and the broken line is the power of the time interval corresponding to the high-frequency maximum.
  • FIG. 9B is a diagram illustrating an example of a portion that is not detected as a common time section in power time-series data of a low frequency band and a high frequency band.
  • FIG. 9C is a diagram illustrating an example of a portion detected as a common time interval in power time-series data of a low frequency band and a high frequency band.
  • the common time interval detection unit 2303 uses the time intervals [a], [ Neither b] nor [c] is determined as a common time interval.
  • the common time interval detection unit 2303 detects the time interval [d] or [e] as the common time interval.
  • time interval [c] in FIG. 9B is not synchronized with the time intervals [a] and [b], it is considered to be a time interval corresponding to a change in lung sound during breathing.
  • the time interval [d] in FIG. 9C can be said to be synchronized with the time interval [e], and this synchronization is due to chance or the heart sound affects the spectral components in the high frequency band. It is thought to be one of those that occurred due to
  • the measurement position of the body sound is in a bone such as a bone or a rib. It is inferred that the heart sound due to bone conduction has a large influence on the high frequency band because of the inappropriate position that is too close.
  • the determination unit 2304 determines that the measurement position is inappropriate when the difference value between the heart sound low-frequency maximum value and the high-frequency maximum value in the common time interval is equal to or less than a predetermined threshold value.
  • the power comparison unit 2300 calculates a difference between the heart sound low-frequency maximum value and the high-frequency maximum value, for example, a value obtained by subtracting the high-frequency maximum value from the heart sound low-frequency maximum value in the common time interval detected in S304.
  • the determination unit 2304 compares the calculated difference value with a predetermined threshold value (S305).
  • the determination unit 2304 determines that the measurement position is an inappropriate position that is too close to a bone such as the clavicle or the rib (S306).
  • control unit 105 warns the measurement person on the display unit 107 that the measurement position of the body sound is too close to the bone.
  • the determination unit 2304 determines that the measurement position is appropriate (S307).
  • the predetermined threshold is 5 dB and “D” shown in FIG. 9C is 5 dB or less, that is, the difference value D corresponding to the common time interval ([d] or [e]) is equal to or less than the predetermined value.
  • the measurement position of the body sound is determined to be an inappropriate position that is too close to the clavicle.
  • the determination unit 2304 when a plurality of common time intervals are detected, the determination unit 2304 has an inappropriate measurement position when a difference value in at least one time interval is equal to or less than a predetermined threshold. You may judge. Thereby, for example, when the measurement position is not actually an appropriate position, it is reliably determined that the measurement position is inappropriate.
  • the determination unit 2304 may determine that the home position is inappropriate when, for example, a difference value of a predetermined number of common time intervals or less is a predetermined threshold value or less. Thereby, for example, it is possible to suppress the occurrence of misjudgment due to mixing of some noise.
  • the predetermined threshold varies depending on the microphone to be used, but a value that can be used to discriminate between an inappropriate measurement position and an appropriate measurement position is experimentally or logically determined, and this calculated value is used as the threshold. Adopt it.
  • the power of the biological sound signal that has passed through the band pass filter of the corresponding frequency band may be used.
  • the body sound signal received from the A / D processing unit 103 may be subjected to frequency conversion, and the power in the corresponding frequency band may be calculated from the power spectrum of the body sound signal.
  • 10A and 10B show data related to the body sound signal measured at the position of the second intercostal space on the right clavicle midline.
  • the solid line is power time series data of 20 Hz to 80 Hz
  • the broken line is power time series data of 300 Hz to 400 Hz
  • FIG. 10B shows a common time interval obtained by applying the processing from S300 to S304 described above to the time series data of FIG. 10A.
  • the solid line corresponds to power of 20 Hz to 80 Hz
  • the broken line corresponds to power of 300 Hz to 400 Hz.
  • heart sounds are attenuated while propagating through the lungs.
  • the lung has characteristics like a low-pass filter, the power of the heart sound in the high frequency band is significantly attenuated compared to the power in the low frequency band.
  • the difference between the heart sound low-frequency maximum value and the high-frequency maximum value becomes large.
  • the predetermined threshold value is 5 dB
  • the difference value in each common time interval shown in FIG. 10B becomes larger than the predetermined threshold value in S306, and as a result, it is determined as an appropriate position at 308.
  • the biological sound test apparatus 100 uses the heart sound included in the measured biological sound, and whether the measurement position of the biological sound is an inappropriate position that is too close to bones such as the clavicle or the rib. Can be judged.
  • the biological sound measuring unit 101 has been described as transmitting a biological sound signal via the lead wire 204.
  • the present invention is not limited to this, and the biological sound is transmitted by a wireless transmitter instead of the lead wire 204.
  • a signal may be transmitted.
  • the lead wire 204 is not required, and for example, when measuring a body sound, it is prevented that noise is mixed from the lead wire 204 due to vibrations caused by contact of the lead wire 204 with the body or electromagnetic waves. be able to.
  • the biological sound test apparatus 100 may start the biological sound analysis for determining a disease or the like only when it is determined that the measurement position is appropriate. With this configuration, it is possible to ensure that the lung sound inspected by the body sound inspection apparatus 100 is always a body sound measured at a correct position. Therefore, when the doctor confirms the analysis result of the body sound, the diagnosis can be performed based on the reliable lung sound analysis result.
  • the biological sound measurement unit 101 detects the biological sound using the microphone 203
  • the biological sound may be detected using an acceleration sensor.
  • the diaphragm part 201 and the space part 202 become unnecessary. As a result, it is possible to reduce the possibility that environmental noise that is propagated by air vibration is mixed into the body sound via the diaphragm portion 201 or the space portion 202.
  • FIG. 11 is a block diagram illustrating a basic configuration of the signal processing unit 104 included in the biological sound inspection apparatus 100 according to the second embodiment.
  • FIG. 12 illustrates a common time interval in the biological sound inspection apparatus 100 according to the second embodiment. It is a flowchart which shows an example of the flow of the process which concerns on a detection.
  • the noise section detection unit 2401 detects a low noise section with a low lung sound level from the power of the biological sound signal calculated by the power calculation unit 2301 (S900).
  • FIG. 13 is a diagram showing an example of frequency characteristics of lung sounds measured on the chest wall. As shown in FIG. 13, the spectrum component of the lung sound is contained a lot at 1 kHz or less. Moreover, as shown in FIG. 6, most of the spectral components of the heart sound are included in 100 Hz or less.
  • the power calculation unit 2301 calculates the power included in the frequency band of 100 Hz or more and 1 kHz or less.
  • the noise interval detector 2401 detects a time interval in which the power calculated by the power calculator 2301 is equal to or less than a predetermined value as a low noise interval.
  • the band including the frequency component of the lung sound of 1 kHz or less is an example of the third frequency band.
  • the noise section detection unit 2401 detects a time section included in the low noise section from a plurality of time sections, each of which includes a maximum value in the low frequency band (heart sound low band maximum value) detected in S301 ( S901). As a result, a heart sound interval in a low noise interval, which is a time interval in which the level of lung sound is low, is detected.
  • the common time interval detection unit 2402 detects a time interval common to the time interval detected in S901 and the time interval detected in S303 (S902).
  • the time interval in which the level of the lung sound is low the time interval in which the power level is high in both the low frequency band and the high frequency band of the heart sound is detected as the common time interval.
  • the determination unit 2403 determines whether or not the common time interval has been successfully detected in S902 (S903). If the determination unit 2403 determines that the common time interval has been successfully detected in S903 (Yes in S903), the processing after S305 is performed. carry out.
  • the determination unit 2403 determines that the detection of the common time interval has failed in S903 (No in S903), the determination unit determines that the measurement position is an appropriate position that is not too close to a bone such as the clavicle or the rib ( S904).
  • the spectral components of heart sounds may be masked by the spectral components of lung sounds during the breathing interval. For this reason, the time interval in which the level of the lung sound is low can easily detect the time interval common to the low frequency band and the high frequency band of the heart sound.
  • the possibility that the heart sound is mixed into the sensor due to bone conduction Low Therefore, it can be determined that the measurement position is not too close to the bone.
  • the time required from the start of measurement to the determination of whether or not the measurement position is appropriate can be shortened.
  • FIG. 10B when it is determined whether the measurement position is appropriate after detecting the common time interval without considering the low noise interval which is a time interval with a low lung sound level, FIG. If it is an example of such a biological sound signal, it cannot be determined that about 4 seconds have not elapsed since the start of measurement at the earliest (see FIG. 10B).
  • the power in the low frequency band of the heart sound increases around 2 seconds after the start of the measurement, and further, according to the broken line in FIG. It is getting smaller.
  • the measurement position is appropriate in about 2 seconds from the start of measurement. For this reason, for example, it is possible to hold the patient until the determination as to whether the measurement position is appropriate is completed without imposing a heavy burden on the measurement subject, and as a result, it is possible to make a determination in a shorter time. It is.
  • the biological sound inspection apparatus 100 can accurately determine in a short time whether or not the measurement position of the biological sound is a position that is too close to a bone such as the clavicle or the rib by using the low noise section. it can.
  • the biological sound inspection apparatus 100 has at least a biological sound measurement unit 101, a power calculation unit 2301, a power comparison unit 2300, and a noise section detection unit 2401. And a unit 2403.
  • FIG. 14 is a diagram illustrating a configuration outline of the body sound measurement unit 1100 according to the third embodiment.
  • the configuration of the biological sound inspection apparatus 100 according to the third embodiment other than the biological sound measurement unit 1100 is basically the same as that of the biological sound inspection apparatus 100 according to the first or second embodiment.
  • the biological sound measurement unit 1100 includes a direction detection unit 1101 that detects a predetermined direction, and light emitting units 1102, 1103, 1104, and 1105 that turn on a warning lamp when the measurement position of the biological sound is inappropriate.
  • the display unit 107 having the light emitting units 1102 to 1105 is arranged in the biological sound measuring unit 1100.
  • FIG. 15 is a flowchart illustrating an example of a flow of processing for turning on the warning light of the biological sound measurement unit 1100 when it is determined that the measurement position of the biological sound is inappropriate.
  • the direction detection unit 1101 of the biological sound measurement unit 1100 detects a predetermined direction. Specifically, the direction of gravity is detected (S1200).
  • the direction detection unit 1101 a gyro sensor or an acceleration sensor is employed.
  • control unit 105 selects a light emitting unit arranged closest to the direction of gravity among the light emitting units 1102 to 1105 (S1201). When there are two light emitting units as the light emitting unit closest to the direction of gravity, the corresponding two light emitting units may be selected.
  • the light emitting unit selected in S1201 lights a warning lamp (S1202).
  • the body sound measurement unit 1100 is most vertically downward at that time, regardless of the direction (circumferential direction in the upper diagram of FIG. 14). A near light emitting part is selected and light is emitted.
  • the biological sound inspection apparatus 100 in the present embodiment includes the light emitting unit. Specifically, the light emitting units 1102 to 1105 are arranged in the biological sound measuring unit 1100. Thereby, the measurer can confirm whether or not the measurement position is appropriate without looking away from the body sound measurement unit 1100 and the measurement position.
  • the measurement person places the biological sound measurement unit 1100 at a position that is too close to the clavicle, it is determined that the measurement position is an inappropriate position that is too close to the clavicle, and the direction of gravity, that is, the biological sound measurement unit 1100 is moved.
  • the warning light is turned on by the light emitting part in the direction of the chest wall (direction of the chest wall). As a result, the measurer can easily find an appropriate measurement position.
  • the light emitting unit arranged in the intercostal direction emits light so as to move the biological sound measuring unit 1100 between the ribs.
  • the biological sound measuring unit 1100 may include only one light emitting unit. In this case, the direction detection unit 1101 is not necessary. In this case, if the measurement position is determined to be inappropriate, the warning light is turned on by the one light emitting unit. As a result, the measurer can confirm at least whether or not the measurement position is appropriate.
  • the body sound measuring unit 1100 since the number of parts of the body sound measuring unit 1100 can be reduced, the body sound measuring unit 1100 can be manufactured at a low cost. In addition, the body sound measurement unit 1100 can be reduced in size and weight, and the measurement sensitivity of body sound can be improved.
  • the biological sound measurement unit 1100 may be configured to include a sound output unit such as a speaker instead of the light emitting unit, and to sound a warning sound if the measurement position is determined to be inappropriate.
  • a sound output unit such as a speaker instead of the light emitting unit
  • the low-cost body sound measuring unit 1100 can be manufactured, and the size and weight can be reduced.
  • the direction detection unit 1101 detects the direction of gravity.
  • the predetermined direction detected by the direction detection unit 1101 is not limited to the direction of gravity.
  • the direction detection unit 1101 may detect, for example, the direction of the clavicle or the opposite direction, that is, the direction of the upper body (the direction from the lower body to the upper body) or the direction of the lower body (the direction from the upper body to the lower body).
  • the filling unit 205 or the diaphragm unit 201 may be provided with a strain sensor, and the direction of the lower part of the body may be detected using the fact that the strain is detected on the clavicle and the rib.
  • the biological sound measurement unit 1100 may include a plurality of strain sensors, and the direction opposite to the direction in which the strain is detected may be set as the direction of the lower part of the body. As a result, the direction of the lower part of the body can be detected even when the measurement subject is not in an upright posture such as a supine position.
  • the direction detection unit 1101 may not be included in the body sound measurement unit 1100.
  • the direction detection unit 1101 may be realized by a sensor provided outside the biological sound measurement unit 1100.
  • the light emitting units 1102 to 1105 may not be arranged in the biological sound measuring unit 1100, and may be arranged, for example, in the main body of the biological sound inspection apparatus 100 including the signal processing unit 104 and the like. In this case, each of the light emitting units 1102 to 1105 may receive a direction detection result by the direction detection unit 1101 provided in the biological sound measurement unit 1100, for example, and emit light according to the detection result.
  • FIG. 16 is a block diagram showing a basic configuration of biological sound inspection apparatus 1300 in the fourth embodiment
  • FIG. 17 is a diagram showing a configuration example of signal processing unit 1304 in the fourth embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • biological sound inspection apparatus 1300 further includes biological sound measurement unit 1301 that measures biological sound, and amplification that amplifies the biological sound signal measured by biological sound measurement unit 1301.
  • the signal processing unit 1304 analyzes the biological sound signal converted into digital data by the A / D processing unit 103 and the A / D processing unit 1303.
  • the body sound measurement unit 1301 has the same configuration as the body sound measurement unit 101 (see FIG. 2). Also, as shown in FIG. 17, the signal processing unit 1304 calculates the power of two types of biological sounds measured by the two biological sound measurement units (1301 and 101), and the power between the two types of biological sounds. A power ratio calculation unit 2501 that calculates the ratio, and a determination unit 2502 that compares the calculated power ratio with the reference power ratio to determine whether the measurement position is appropriate.
  • the power ratio calculation unit 2501 realizes the functions of the power calculation unit and the power comparison unit in the biological sound inspection apparatus according to an aspect of the present invention.
  • the two types of biological sounds measured by the biological sound measuring units 1301 and 101 are examples of the first biological sound and the second biological sound.
  • the powers of two body sounds calculated by the power ratio calculation unit 2501 are examples of the first power and the second power.
  • the body sound measurement unit 1301 is an example of a first measurement unit
  • the body sound measurement unit 101 is an example of a second measurement unit.
  • biological sound test apparatus 1300 includes at least biological sound measurement unit 101, biological sound measurement unit 1301, power ratio calculation unit 2501, and determination unit 2502. It only has to be.
  • FIG. 18 is a flowchart showing an example of the flow of processing in the signal processing unit 1304 for determining whether or not the measurement position of the biological sound measurement unit 101 is an appropriate measurement position on the chest wall.
  • the power ratio calculation unit 2501 calculates the ratio of the power in the low frequency band of the lung sound between these body sound signals. (S1400).
  • the frequency band for calculating the power ratio may be a frequency band of 1 kHz or less.
  • the frequency band of 100 Hz or less includes a lot of spectrum components of heart sounds. For this reason, it is desirable that the influence of the heart sound is small and that the low frequency band for measuring the lung sound is a frequency band of 100 Hz or more and 200 Hz or less.
  • the calculation of the power ratio is performed by calculating the power of 100 Hz to 200 Hz of the two body sound signals, and calculating the calculated power ratio.
  • the calculation of the power of each biological sound signal may be performed by performing frequency conversion on each biological sound signal and calculating the power of the frequency band to be calculated from the power spectrum of each biological sound signal.
  • the spectrum of each biological sound signal may be calculated by frequency conversion, and the power ratio may be calculated using a cross spectrum method.
  • the determination unit 2502 calculates a difference between the reference power ratio measured in advance by the biological sound test apparatus 1300 and recorded in the recording unit 106 and the power ratio calculated in S1400. Specifically, the determination unit 2502 determines whether or not the difference value is equal to or greater than the first threshold value by using a value obtained by subtracting the reference power ratio from the calculated power ratio as a difference value (S1401).
  • the first threshold depends on the measurement position determined according to the type of the body sound that is the object of measurement, its reproducibility, the age of the subject, etc., and is determined by experiment. For example, in the case of an adult and the position of the second intercostal space on the right clavicle midline is the correct measurement position, the first threshold value may be “2 dB”.
  • the determination unit 2502 determines that the measurement position of the biological sound measurement unit 101 is closer to the center of the body than the appropriate position. It is determined that the position is close to (S1402).
  • the determination unit 2502 determines whether or not the difference value is equal to or smaller than the second threshold value that is less than the first threshold value (S1403).
  • the second threshold value is also determined by experiments, depending on the measurement position determined according to the type of biological sound to be measured, its reproducibility, the age of the subject, and the like.
  • the second threshold value may be a value obtained by inverting the sign of the first threshold value. For example, in the case of an adult and the position of the second intercostal space on the right clavicle midline is the correct measurement position, the second threshold value may be “ ⁇ 2 dB”.
  • the determination unit 2502 determines that the measurement position is closer to the outside of the body than the appropriate position (S1404). If the difference value is larger than the second threshold (No in S1403), the determination unit 2502 determines that the measurement position is appropriate (S1405).
  • the reference power ratio used in S1401 is the power ratio in the low frequency band of lung sound measured at an appropriate measurement position.
  • the calculation method and frequency band of the reference power ratio are the same as those in S1400.
  • the measurement position of the body sound measurement unit 101 is a position where it is desired to auscultate the body sound for diagnosis or the like.
  • the measurement position of the body sound measurement unit 1301 is such that the distance from the trachea to the body surface is short, and the carotid artery and jugular vein are in order to measure the sound source of lung sounds (that is, respiratory sounds) that are not secondary noise with high S / N. It is desirable to measure with a sternum notch that bloodstream sound is difficult to mix.
  • the denominator of the power ratio is the power related to the body sound measured by the sternal notch
  • the numerator is the power related to the body sound at the position to be auscultated.
  • the reason why it is possible to determine whether or not the measurement position is appropriate based on the power ratio in the low frequency band between lung sounds measured at different sites is as follows.
  • the power in the low frequency band of the lung sound that propagates through the lungs during breathing is less affected by the presence or absence of disease, and attenuates depending largely on the distance that the lung sound propagates.
  • attenuation of the power of the low frequency band of the lung sound by distance can be confirmed, for example by the difference in attenuation by a physique difference.
  • FIG. 19 shows a comparison result of power ratios between 100 Hz and 200 Hz of lung sounds between two groups of healthy subjects and asthma patients (the number of subjects is 262).
  • the measurement position is the sternal notch and the second intercostal space on the right clavicle midline. As shown in FIG. 19, a significant difference is not recognized about the average value shown by the thick line in each group. Therefore, it can be said that the power ratio of lung sounds of 100 Hz or more and 200 Hz or less is not affected by the presence or absence of asthma.
  • the measurement position is the sternal notch and the second intercostal space on the right clavicle midline.
  • the variation in power ratio even with the same height is greatly influenced by individual differences due to the amount of fat or muscle. In general, the larger the height, the larger the lung, and as a result, the distance that the lung propagates is considered to be longer.
  • the power ratio in the low frequency band between the lung sounds measured at the two locations is less affected by the disease, less affected by changes in fat, muscle, etc., and the lung sounds. It depends greatly on the measurement position that is related to the propagation distance.
  • FIG. 21A is a diagram showing an example of different measurement positions under the right clavicle in the same individual.
  • FIG. 21B is a measurement result of a power ratio of 100 Hz or more and 200 Hz or less of the lung sound corresponding to each measurement position shown in FIG. 21A.
  • the measurement position 3 is a position between the second ribs on the right clavicle midline, and is measured at a position shifted from the center by 25 mm and 50 mm toward the center of the body and outside.
  • Pulmonary sounds other than secondary noise, are turbulent noise and airway wall vibrations caused by the flow of air generated in a relatively thick airway with breathing and are heard on the chest wall through the lungs. .
  • the relatively thick airway that serves as the sound source is located on the center of the body.
  • FIG. 21B means that the lung sound is greatly attenuated as the distance from the center line of the body increases.
  • an appropriate position at which the reference power ratio is measured is a measurement position 3 (power ratio is -16.5 dB), and a position measured at the time of re-inspection is a measurement position 5 (power ratio is -10.7 dB).
  • the first threshold value is 1.0 dB
  • the second threshold value is -1.0 dB.
  • the difference value is equal to or greater than the first threshold value, and in S1403, it is determined that the measurement position is shifted to the center side from the appropriate position.
  • the difference value is not greater than or equal to the first threshold value, but in S1403, the difference value is determined to be less than or equal to the second threshold value. As a result, in S1405, it is determined that the measurement position is shifted outward from an appropriate position.
  • the first threshold value and the second threshold value are determined depending on the measurement position determined according to the type of the body sound that is the object of measurement and the accuracy of the reproducibility thereof. For example, when the appropriate position is the position of the second intercostal space (measurement position 3) on the right clavicle midline and the error of the measurement position is within ⁇ 25 mm from the appropriate position, the first threshold is +2 dB, the second Setting the threshold to -2 dB is considered effective.
  • the absolute values of the first threshold and the second threshold may be different.
  • the first threshold value may be +2 dB and the second threshold value may be ⁇ 2.5 dB.
  • control unit 105 instructs the measurer that the measurement position is inappropriate or the measurement position is changed by displaying information on the display unit 107. May be.
  • control unit 105 causes the display unit 107 to display that the measurement position is too close to the center side of the body.
  • the display unit 107 may be controlled to give an instruction to change the measurement position to the outside (position farther from the center of the body).
  • control unit 105 causes the display unit 107 to place the measurement position too close to the outside of the body (too far from the center of the body). ) May be displayed, thereby causing an instruction to change the measurement position to the inside (position closer to the center of the body).
  • the measurement of the reference power ratio it becomes a problem when and who measures at the appropriate measurement position. For example, in the case of a patient who is regularly examined or examined at a hospital due to chronic diseases, etc., measurements were taken at an appropriate measurement position when examining lung sounds by a doctor or laboratory technician at the hospital.
  • the power ratio in the low frequency band of the lung sound can be used as the reference power ratio.
  • the reference power ratio measured at the hospital is recorded in the recording unit 106, even if you are at home and the measurer is a general person, you can manage your physical condition at a position close to the position measured by the expert. Therefore, it is possible to measure the body sound.
  • the biological sound test apparatus 1300 includes an input / output interface with an external recording medium such as a memory card, the patient can record the results measured at home on a memory card and bring them to the hospital.
  • an external recording medium such as a memory card
  • the reference power ratio measured at the time of the examination at the hospital is recorded on a memory card and connected to the biological sound test apparatus 1300 in the house after returning home, the reference power ratio can be easily set and updated. Can do.
  • data may be transmitted and received between the hospital and the house via the Internet or the like.
  • the biological sound inspection apparatus 1300 can measure at a position close to the position where an expert or the like measures the biological sound, even if the person is not familiar with the measurement of the biological sound. As a result, reliable daily management data can be obtained, management of illness hate and treatment process at home, or early detection of illness without hospitalization or daily visits, and frequent visit care It can be performed.
  • the signal processing unit 1304 or the amplification unit 102 may be controlled so as to correct the biological sound signal measured by the biological sound measurement unit 101 based on the difference value used in S1401.
  • the frequency band of the lung sound in the biological sound signal may be amplified by a level obtained by multiplying the difference value by -1.
  • a band of 1 kHz or less that is the frequency band of the lung sound may be amplified by ⁇ 3 dB with respect to the biological sound signal measured by the biological sound measurement unit 101.
  • the amplifying unit 102 may amplify the second biological sound using a value obtained by inverting the sign of the difference value.
  • the signal processing unit 1304 or the amplification unit 1302 so as to correct the biological sound signal measured by the biological sound measurement unit 101 based on the difference value in S1401. May be controlled.
  • the power level of the biological sound signal being measured can be approximated by the power of the biological sound signal when measured at an appropriate position.
  • the diagnostic accuracy can be improved by sound analysis.
  • FIG. 22 is a flowchart showing an example of the flow of warning display processing when the biological sound inspection apparatus 1300 in Embodiment 5 determines that the measurement position is not appropriate.
  • the configuration of the body sound measurement unit 1100 in the fifth embodiment is the same as the structure of the body sound measurement unit 1100 in the third embodiment shown in FIG.
  • the body sound test apparatus 1300 in the fifth embodiment has the same configuration as the body sound test apparatus 1300 in the fourth embodiment.
  • the direction detection unit 1101 of the body sound measurement unit 1100 detects a predetermined direction using the direction detection unit 1101 in S1800. .
  • the direction of gravity is detected as the predetermined direction.
  • the predetermined direction detected by the body sound measurement unit 1100 is not limited to the direction of gravity, but is the direction where the clavicle is present or the opposite direction using other sensors.
  • the direction of the upper body or lower body may be detected.
  • the process will be described by taking the case where the direction detection unit 1101 detects the direction of gravity as an example, but the same process is performed even if the direction of gravity is referred to as the lower body direction.
  • control unit 105 determines whether the determination result of the measurement position is on the center side of the body (S1801).
  • the control unit 105 is arranged in the living body sound measurement unit 1100 to be arranged on the left side (left side toward the measurer) from the axis in the gravity direction.
  • a plurality of light emitting units are selected (S1802).
  • the axis in the gravitational direction is an axis that passes through the biological sound measuring unit 1100 and is parallel to the gravitational direction. For example, it passes through the center of the biological sound measuring unit 1100 in plan view (see the upper diagram in FIG. 14) and An axis parallel to the direction of gravity.
  • control unit 105 selects one or a plurality of light emitting units arranged on the right side of the gravity direction axis (S1803).
  • the light emitting unit selected in S1802 and S1803 turns on the warning lamp by emitting light (S1804).
  • the measurer places the biological sound measurement unit from an appropriate measurement position to a position close to the center of the body.
  • the biological sound test apparatus 1300 determines that the measurement position of the biological sound is close to the center side of the body, and turns on a warning lamp on the light emitting unit located outside the body. Thereby, it is possible to instruct the measurer to move the measurement position to the outside of the body.
  • the above example is an example where the correct measurement position is in the right lung.
  • the light emitting unit selected in S1802 and S1803 selects the light emitting unit in the opposite direction to the above description. Whether the correct position is in the right lung or the left lung depends on the type of biological sound to be measured, and may be determined in advance.
  • the measurer can confirm whether or not the measurement position is appropriate without looking away from the body sound measurement unit 1100 or the measurement position, and can easily find an appropriate measurement position. It becomes.
  • the biological sound measurement unit 1100 may include only one light emitting unit. In this case, the direction detection unit 1101 is not necessary. In this case, if the measurement position is determined to be inappropriate, the warning light is turned on by the one light emitting unit. As a result, the measurer can confirm at least whether or not the measurement position is appropriate.
  • the body sound measurement unit 1100 since the number of parts of the body sound measurement unit 1100 can be reduced, a low-cost body sound measurement unit can be manufactured. In addition, the body sound measurement unit 1100 can be reduced in weight, and the body sound measurement sensitivity can be improved.
  • the biological sound measurement unit 1100 may include a sound output unit such as a speaker as in the third embodiment.
  • the direction detecting unit 1101 and the light emitting units 1102 to 1105 may be arranged other than the body sound measuring unit 1100 as in the third embodiment.
  • FIG. 24 is a diagram illustrating an example of a process flow of the biological sound test apparatus 1300 according to the sixth embodiment.
  • the biological sound inspection apparatus 1300 according to the sixth embodiment executes, for example, the processing flow shown in FIG. 18 in the same manner as the biological sound inspection apparatus 1300 according to the fourth embodiment. However, a characteristic process is executed in the process of S1401.
  • the flow of processing when biological sound test apparatus 1300 in the sixth embodiment calculates the difference between the reference power ratio and the measured power ratio of lung sound in S1401 in FIG. To do.
  • the determination unit 2502 Based on the body index value indicating the body shape at the time when the reference power ratio is set and the time when the biological sound is to be re-measured, and the correction formula recorded in advance in the recording unit 106, the determination unit 2502 The power ratio is corrected (S2000). Details of the correction method will be described later.
  • the determination unit 2502 calculates a difference between the corrected reference power ratio and the power ratio calculated in S1400, and performs a comparison process based on the difference value.
  • the correction formula is, for example, (Formula 1).
  • NewPowR OrgPowR-0.583 * ⁇ Y (Formula 1)
  • NewPowR is the corrected reference power ratio
  • OrgPowR is the initially set reference power ratio
  • the reference power ratio is ⁇ 8.2915 dB ( ⁇ 8-0. 583 * 0.5).
  • the biological sound inspection apparatus 1300 When the body type index value is age, the biological sound inspection apparatus 1300 has an interface unit that allows the user to input age when, for example, first measuring a certain user, and the recording unit 106 has the body type index value as the body type index value. Record it.
  • the age information may be updated via the interface unit for each measurement, or recorded in the recording unit 106 so that the correspondence between the measurement date and the age can be understood as in the above example, and the next measurement is performed.
  • the age at the next measurement may be determined from the difference with the day.
  • Equation 1 The coefficient ⁇ 0.583 in (Equation 1) is the slope in the regression line between the age and the power ratio of the lung sound between 100 Hz and 200 Hz shown in FIG.
  • the regression line in FIG. 25 is, for example, (Formula 2).
  • PowR is a power ratio of 100 Hz to 200 Hz of lung sounds, and Y is age.
  • NewPowR OrgPowR + (f1 (Y2) ⁇ f1 (Y1)) (Formula 3)
  • Y1 is the age when the reference power ratio is first set
  • Y2 is the age when re-measurement is performed.
  • F1 (Y) is an example of a prediction formula
  • f1 (Y1) and f1 (Y2) are examples of a first prediction power ratio and a second prediction power ratio.
  • the correction of the reference power ratio may be calculated from the body type index value based on height and a correction formula.
  • FIG. 20 described above is a correlation diagram between the power ratio of the lung sound of 100 Hz to 200 Hz and the height.
  • the regression line of height and power ratio is, for example, (Equation 4).
  • H is height (cm).
  • inspection apparatus 1300 has an interface part, and a user may input height through it. Further, the height of the user may be acquired by connecting the interface unit to, for example, a height measuring device. Alternatively, the height at the time of measurement may be read from an external memory such as an SD card via the interface unit.
  • the standard power ratio correction formula using height is, for example, (Formula 5).
  • NewPowR OrgPowR-0.102 * ⁇ H (Formula 5)
  • ⁇ H is the height difference from the time when the reference power ratio is set for the first time until it is measured again. For example, when a child has a reference power ratio of 120 dB when the reference power ratio is -5 dB, and the body sound is measured again at 130 cm, the reference power ratio is ⁇ 6.02 dB ( ⁇ 5 ⁇ 0.102 * 10 ) Is corrected.
  • NewPowR OrgPowR + (f2 (H2) ⁇ f2 (H1)) (Formula 6)
  • the function f2 is a regression curve for the power ratio and height of the lung sound of 100 Hz to 200 Hz, and is an example of a prediction formula.
  • H1 is the height when the reference power ratio is first set, and H2 is the height when the body sound is remeasured.
  • F2 is an example of a prediction formula
  • f2 (H1) and f2 (H2) are examples of a first prediction power ratio and a second prediction power ratio.
  • FIG. 26 is a correlation diagram showing an example of the correlation between the body surface area and the power ratio of the lung sound between 100 Hz and 200 Hz.
  • the body surface area uses a predicted value calculated from height and weight using (Equation 7), but other prediction formulas may be used. Moreover, what is necessary is just to acquire a height and a weight from an interface part as described above.
  • BSA body surface area (m ⁇ 2)
  • H height (cm)
  • W body weight (kg).
  • the regression line is, for example, (Equation 8).
  • the standard power ratio correction formula using the body surface area is, for example, (Formula 9).
  • NewPowR OrgPowR-6.947 * ⁇ BSA (Formula 9)
  • ⁇ BSA is the difference in body surface area between when the reference power ratio is first set and when remeasured. For example, if a child has a standard power ratio of -9 dB when the body surface area is 1.0 m ⁇ 2, and the body sound is remeasured when the body surface area becomes 1.1 m ⁇ 2, the standard power ratio is , ⁇ 9.6947 dB ( ⁇ 9 ⁇ 6.947 * 0.1).
  • NewPowR OrgPowR + (f3 (BSA2) ⁇ f3 (BSA1)) (Formula 10)
  • the function f3 is a regression curve for the power ratio and body surface area of the lung sound from 100 Hz to 200 Hz
  • BSA1 is the body surface area when the reference power ratio is initially set
  • BSA2 is the body when re-measured. Surface area.
  • F3 is an example of a prediction formula
  • f3 (BSA1) and f3 (BSA2) are examples of a first prediction power ratio and a second prediction power ratio.
  • correction is based on height or body surface area, correction can be made according to the degree of growth of each individual. Also, there is no need to consider restrictions due to age.
  • the body sound test device can automatically calculate the elapsed time at the time of re-measurement. There is no need for input, and a troublesome operation by the measurer is unnecessary. In addition, mistakes due to input mistakes can be avoided.
  • the body index value such as age at the time when the reference power ratio is set is an example of the first body index value
  • the body index value such as age at the time of remeasurement is an example of the second body index value.
  • Each of ⁇ Y, ⁇ H, and ⁇ BSA is an example of a body type difference value.
  • the reference power ratio can be corrected by the body index value.
  • daily biological sound management at home can be performed even if it is not possible to frequently visit medical institutions and the reference power ratio cannot be updated for a long time.
  • the regression line and the correction formula described above are examples, and are not limited to these, and may be formulas composed of other coefficients and constants. These values are coefficients calculated in a given experiment, and the power ratio decreases as the physique increases. Therefore, in the case of the correction formula derived from the regression line, if the slope coefficient is a negative number, it is used almost the same. I think it can be done.
  • the correction formula may be a formula composed of a plurality of body type index values.
  • the correction formula may be obtained using, for example, multiple regression analysis of a plurality of body type index values and power ratios. Further, the correction formula may be different in gender.
  • the body sound that is the object of measurement by the body sound inspection apparatuses 100 and 1300 may be other than the lung sound and the heart sound.
  • a blood flow sound flowing through a predetermined location in the living body may be the purpose of measurement.
  • the biological sound test apparatus 100 or 1300 whether the measurement position is suitable for measuring the target blood flow sound from two types of measured biological sounds having different frequency bands or measurement positions. It is possible to determine whether or not.
  • each of the above devices is configured by a computer system including a microprocessor, ROM (Read Only Memory), RAM (Random Access Memory), a hard disk unit, and the like.
  • the RAM or hard disk unit stores a computer program that achieves the same operation as each of the above devices.
  • Each device achieves its functions by the microprocessor operating according to the computer program.
  • a part or all of the components constituting each of the above devices may be configured by one system LSI (Large Scale Integration).
  • the system LSI is a super multifunctional LSI manufactured by integrating a plurality of components on one chip, and specifically, a computer system including a microprocessor, a ROM, a RAM, and the like. .
  • the RAM stores a computer program that achieves the same operation as each of the above devices.
  • the system LSI achieves its functions by the microprocessor operating according to the computer program.
  • a part or all of the constituent elements constituting each of the above devices may be constituted by an IC card or a single module that can be attached to and detached from each device.
  • the IC card or the module is a computer system including a microprocessor, a ROM, a RAM, and the like.
  • the IC card or the module may include the super multifunctional LSI described above.
  • the IC card or the module achieves its function by the microprocessor operating according to the computer program. This IC card or this module may have tamper resistance.
  • the present invention may be a method realized by the computer processing described above. Further, the present invention may be a computer program that realizes these methods by a computer, or may be a digital signal composed of the computer program.
  • the computer program or the digital signal may be recorded on a computer-readable recording medium.
  • the computer-readable recording medium include a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-RAM, a BD (Blu-ray Disc), and a semiconductor memory.
  • the present invention may be the digital signal recorded on these recording media.
  • the computer program or the digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
  • the present invention may also be a computer system including a microprocessor and a memory.
  • the memory may store the computer program, and the microprocessor may operate according to the computer program.
  • the program or the digital signal is recorded on the recording medium and transferred, or the program or the digital signal is transferred via the network or the like, and executed by another independent computer system. It is good.
  • the biological sound inspection apparatus has an effect that even a person unaccustomed to measuring biological sound can measure the biological sound at an accurate position. Therefore, if a nurse measures the patient's body sound in advance at a hospital, etc. before a doctor's outpatient examination or inpatient round-up, it saves the doctor's auscultation during the examination, The examination time can be shortened.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

 被測定者の生体の内部を伝播する振動に基づく生体音を測定する生体音測定部(101)と、生体音測定部(101)によって同一の期間に測定された、互いに異なる2種類の生体音のうちの一方である第一生体音のパワ、および、2種類の生体音のうちの他方である第二生体音のパワを算出するパワ算出部(2301)と、パワ算出部(2301)により算出された第一生体音のパワである第一パワと第二生体音のパワある第二パワとを比較し、第一パワと第二パワとの比または差を示す比較結果を算出するパワ比較部(2300)と、パワ比較部により算出された比較結果と、閾値とを比較することで、生体音測定部による生体音の測定位置が適切であるか否かを判断する判断部(2304)とを備える生体音検査装置。

Description

生体音検査装置
 本発明は、生体音を取得して、信号処理することにより生体の状態を推定する生体音検査装置に関する。
 医師が病院等で患者を診察する場合、聴診器によって心音および肺音などの生体音を聴取することで診断を行っている。しかしながら、聴診による診断は、医師の主観的評価に基づくものであるため、正確な診断には熟練の必要があった。
 肺音とは、肺および胸郭内で呼吸運動とともに発生し、正常または異常とは関係なく、心血管系を音源とする音を除く全ての音である。さらに、肺音は呼吸により気道内に生じた空気の流れを音源とする生理的な音である呼吸音と、喘鳴または胸膜摩擦音などの、病的状態で発生する異常な音である副雑音とに分類される。なお、呼吸音の音源は、比較的太い気道内であると考えられている。
 肺疾患の一つとして気胸がある。気胸とは、肺と胸壁の間に気腔が形成されるものであり、理学的所見では、呼吸音の減少として現れる。そこで、気胸の状態を検出するために、スピーカから口および気管内に音波を放射し、放射された音波が患者内を伝播し、伝播してきた音波を胸壁上で測定して信号処理を行う方法が提案されている(特許文献1参照)。
 この方法では、放射される音波と胸壁上で測定した音波とを用いて伝達関数を算出し、伝達関数を用いて低周波数帯域と高周波数帯域のエネルギ比を算出し、気胸の状態を検出している。
 また、特許文献1では、スピーカから音波を放射する手段を利用しない方法として、胸壁上で測定した肺音を分析する方法が提案されている。この方法では、胸壁上で測定した肺音信号を用いて周波数変換し、低周波数帯域と高周波数帯域のエネルギ比を算出し、呼吸器の状態を検出している。
 一方、医師が呼吸器の診断を行う場合、身体の複数箇所に聴診器を当てて肺音を聴取している。肺音を測定した位置を検出するために、肺音を測定するセンサに加速度センサを備えた装置が提案されている(特許文献2参照)。
 この装置では、加速度センサの出力値を積分してセンサの移動距離を算出し、肺音の測定位置を自動検出している。
 また、患者が遠隔地にいる場合の診断において、医師以外の者が患者の所定の箇所にマイクを当てて生体音を測定し、有線および無線で生体音を医師のもとに伝送して聴診する場合がある。
 患者の所定の箇所にマイクが当てられていない場合でも、遠隔地にいる医師の診断を可能にするために、患者に複数のマイクを当てることにより診断を支援する装置が提案されている(特許文献3参照)。
 この装置では、複数のマイクからの音響信号を用いて重みつき和を算出し、マイクが当てられていない箇所の音響信号を擬似的に作成することにより、遠隔地での診断を支援している。
特表2004-512066号公報 特開2005-27751号公報 特許第3604127号公報
 従来は、生体音を信号処理によって分析する場合、身体の適切な箇所に生体音のセンサを置く必要があり、聴診に不慣れな者は、適切な聴診位置(生体音の測定位置)を探るのが難しいという問題があった。
 特に、肺音および心音の聴診位置は、鎖骨および肋骨などの骨を避け、胸壁上で聴診する必要がある。また、胸壁上にセンサを当てたとしても、身体の中心線からどの程度離れた位置が適切な聴診位置になるのかを探ることは難しい。
 例えば、鎖骨中線上にある聴診位置を探る場合、中線の位置を見極めるのは難しい。また、特許文献1のように、理学的所見による呼吸音の減弱を信号処理によって検出する場合、聴診位置は非常に重要である。
 ここで、生体音の測定位置の適否について特許文献2の方法を利用することを検討すると、特許文献2の方法により、所定の位置からのセンサの移動量が算出されたとしても、移動後の位置が、当該被測定者に対して適しているか否かまで判断することはできない。
 また、特許文献3の方法を利用しても、身体内は臓器、骨、筋肉、および脂肪等があり、身体内での生体音の伝播中に様々な反射または干渉が発生するため、複数マイクからの信号の重みつき和によって作成される音響信号では、正確な生体音の分析をすることは難しい。
 本発明は、上記の課題を解決するためになされたもので、生体音の測定位置の適否を的確に判断することのできる生体音検査装置を提供することを目的とする。
 上記課題を解決するために、本発明の一態様に係る生体音検査装置は、被測定者の生体の内部を伝播する振動に基づく生体音を測定する生体音測定部と、前記生体音測定部によって同一の期間に測定された、互いに異なる2種類の生体音のうちの一方である第一生体音のパワ、および、前記2種類の生体音のうちの他方である第二生体音のパワを算出するパワ算出部と、前記パワ算出部により算出された前記第一生体音のパワである第一パワと前記第二生体音のパワある第二パワとを比較し、前記第一パワと前記第二パワとの比または差を示す比較結果を算出するパワ比較部と、前記パワ比較部により算出された前記比較結果と、閾値とを比較することで、前記生体音測定部による生体音の測定位置が適切であるか否かを判断する判断部とを備える。
 この構成によれば、2種類の生体音間におけるパワの比または差に基づいて、生体音の測定位置の適否が判断される。つまり、測定された2種類の生体音間における物理量の違いを利用することで、当該2種類の生体音の少なくとも一方が測定された位置の適否が的確に判断される。
 また、本発明の一態様に係る生体音検査装置において、前記生体音測定部は、前記生体の第一部位で生体音を測定することで、前記第一生体音を測定する第一測定部と、前記生体の、前記第一部位とは異なる第二部位で生体音を測定することで、前記第二生体音を測定する第二測定部とを有し、前記パワ比較部は、所定の周波数帯域における前記第一パワと前記第二パワとの比であるパワ比を示す前記比較結果を算出し、前記判断部は、(a)前記パワ比から所定の基準パワ比を減算した結果である差分値が、前記閾値である第一閾値以上である場合、および、(b)前記差分値が、前記第一閾値未満の値である第二閾値以下である場合に、前記第二生体音の測定位置が不適切であると判断するとしてもよい。
 この構成によれば、二箇所で測定された生体音間におけるパワ比が、基準パワ比との比較において大きすぎる場合、および、当該パワ比が、基準パワ比との比較において小さすぎる場合に、第二生体音の測定位置が不適切であると判断される。
 つまり、二箇所で測定された生体音間のパワ比に基づいて、いずれか一方の生体音の測定位置の適否が的確に判断される。
 また、本発明の一態様に係る生体音検査装置において、前記第一測定部は、前記第一部位である胸骨切痕の位置で生体音を測定することで、前記第一生体音を測定し、前記第二測定部は、前記第二部位である胸壁上の位置で生体音を測定することで、前記第二生体音を測定するとしてもよい。
 この構成によれば、生体音検査装置は、生体音の測定位置が、肺音の測定位置として適切な範囲である胸壁上の範囲にあるか否かをより正確に判断することができる。
 また、本発明の一態様に係る生体音検査装置はさらに、前記判断部により前記第二生体音の測定位置が不適切であると判断された場合、前記被測定者または測定者に対して、前記測定位置の変更の指示を表示する表示部を備え、前記表示部は、前記判断部による判断結果が、前記差分値が前記第一閾値以上であることを示す場合、前記測定位置を、前記生体の中心からより遠い位置に変更させるための指示を表示し、前記判断結果が、前記差分値が前記第二閾値以下であることを示す場合、前記測定位置を前記生体の中心により近い位置に変更させるための指示を表示するとしてもよい。
 この構成によれば、生体音検査装置は、測定位置が不適切である場合、例えば測定者に対して測定位置の変更方向を的確に指示することができ、これにより効果的な測定支援が実現される。
 また、本発明の一態様に係る生体音検査装置において、前記表示部は、少なくとも一つの発光部を備え、前記少なくとも一つの発光部は、前記判断部により前記第二生体音の測定位置が不適切であると判断された場合、発光することで前記指示を表示するとしてもよい。
 この構成によれば、測定位置が不適切である場合、例えば測定者は、測定位置の変更方向を視覚的に理解することができる。つまり、変更方向の指示を測定者に容易に認識させることができる。
 また、本発明の一態様に係る生体音検査装置はさらに、所定の方向を検知する方向検出部を備え、前記方向検出部は、前記判断部により前記第二生体音の測定位置が不適切であると判断された場合、前記所定の方向である前記生体の上半身から下半身に向かう方向を検出し、前記表示部は、前記少なくとも一つの発光部を含む複数の発光部を有し、前記判断部による判断結果が、前記差分値が前記第一閾値以上であることを示す場合、前記複数の発光部のうちの前記第二測定部を通る軸であって、検出された前記所定の方向に平行な軸よりも右側または左側に位置する第一発光部を発光させ、前記判断結果が、前記差分値が前記第二閾値以下であることを示す場合、前記複数の発光部のうちの、前記軸を挟んで前記第一発光部とは反対側に位置する第二発光部を発光させるとしてもよい。
 この構成によれば、測定位置が不適切である場合、測定者は測定位置を左右のどちらにずらすべきかを視覚的に理解することできる。つまり、測定位置の変更方向を測定者に容易に理解させることができる。
 また、本発明の一態様に係る生体音検査装置において、前記判断部は、前記基準パワ比が設定された時点の、前記被測定者の体型指標値である第一体型指標値と、前記第一生体音および前記第二生体音を測定する時点の、前記被測定者の前記体型指標値である第二体型指標値と、あらかじめ設定された補正式とを用いて補正するとしてもよい。
 この構成によれば、測定者の体型の変化に応じて適切に基準パワ比が補正される。そのため、例えば頻繁に基準パワ比を更新しなくても、生体音の測定位置の適否が体型の変化に応じて的確に判断される。
 また、本発明の一態様に係る生体音検査装置において、前記補正式は、前記第一体型指標値と前記第二体型指標値との差分である体型差分値と、所定の係数を積算した値を補正前の前記基準パワ比に加算する式であるとしてもよい。
 この構成によれば、例えば、簡易な計算によって、基準パワ比に対する、体型の変化に追随した適切な補正が実現される。
 また、本発明の一態様に係る生体音検査装置において、前記補正式は、補正差分値を前記基準パワ比に加算する式であり、前記補正差分値は、第一予測パワ比と第二予測パワ比との差分を示す値であり、前記第一予測パワ比は、前記体型指標値から前記パワ比を予測する予測式に基づいて、前記第一体型指標値から予測される値であり、前記第二予測パワ比は、前記予測式に基づいて、前記第二体型指標値から予測される値であるとしてもよい。
 この構成によれば、例えば、パワ比と体型指標値とが線形な相関関係でない場合であっても、体型の変化に応じた基準パワ比の適切な補正が実現される。
 また、本発明の一態様に係る生体音検査装置において、前記第一体型指標値および前記第二体型指標値は、身長、年齢、体重、体表面積、および、ボディ・マス・インデックスのいずれかであるとしてもよい。
 この構成によれば、例えば、一般家庭でも簡単に計測できる指標を利用することで、体型の変化に応じた基準パワ比の適切な補正が実現される。
 また、本発明の一態様に係る生体音検査装置はさらに、前記差分値の符号を反転させた値を用いて、前記第二生体音を増幅する増幅部を備えるとしてもよい。
 この構成によれば、例えば、不適切な測定位置で測定した生体音を、適切な測定位置で測定した生体音の信号パワに近似させることができる。
 また、本発明の一態様に係る生体音検査装置において、前記パワ算出部は、(e)前記第一生体音である、第一周波数帯域における、測定された前記生体音のパワを算出することで、前記第一パワを算出し、(f)前記第二生体音である、前記第一周波数帯域とは異なる第二周波数帯域における、測定された前記生体音のパワを算出することで、前記第二パワを算出し、前記パワ比較部は、前記第一パワの時系列データにおける極大値である第一極大値と前記第一極大値を含む第一時間区間との組を少なくとも一つ検出し、かつ、前記第二パワの時系列データにおける極大値である第二極大値と前記第二極大値を含む第二時間区間との組を少なくとも一つ検出する極値検出部と、少なくとも一つの前記第一時間区間と、少なくとも一つの前記第二時間区間との間で共通する時間区間である共通時間区間を検出する共通時間区間検出部とを有し、前記第一パワと前記第二パワとの差である、前記共通時間区間に含まれる前記第一極大値と前記第二極大値との差を示す前記比較結果を算出し、前記判断部は、前記比較結果に示される差が前記閾値以下の場合、前記生体音の測定位置が不適切であると判断するとしてもよい。
 この構成によれば、ある位置で測定された生体音から得られる、互いに異なる周波数帯域における2種類の生体音それぞれのパワ(第一パワおよび第二パワ)が算出される。
 また、第一パワと第二パワとが同じようなタイミングで極大値をとっている共通時間区間が検出される。さらに、共通時間区間における第一パワの極大値と第二パワの極大値との差分が閾値以下の場合に、生体音の測定位置が不適切であると判断される。
 つまり、簡単にいうと、共通時間区間における第一パワの極大値と第二パワの極大値とが近い場合、例えば、第一パワの極大値が、第二パワの影響を大きく受けていると判断される。
 すなわち、本態様の生体音検査装置によれば、ある臓器を音源とする生体音の測定を目的とする場合に、測定された生体音が、他の臓器からの音に大きな影響を受けているか否かに基づいて、生体音の測定位置の適否を的確に判断することができる。
 また、本発明の一態様に係る生体音検査装置はさらに、前記生体音の第三周波数帯域に含まれるパワが所定値以下である低雑音区間を検出する雑音区間検出部を備え、前記判断部は、前記共通時間区間検出部により、前記低雑音区間内で前記共通時間区間が検出されない場合、前記測定位置が適切であると判断するとしてもよい。
 この構成によれば、例えば、生体音の測定位置が適切な範囲内にあるか否かが、精度よくかつ短時間に判断される。
 また、本発明の一態様に係る生体音検査装置はさらに、前記判断部により前記測定位置が不適切であると判断された場合、前記被測定者または測定者に対して、前記測定位置の変更の指示を表示する表示部を備えるとしてもよい。
 この構成により、例えば、測定位置が不適切である場合、生体音検査装置は測定位置の変更を被測定者または測定者へ指示することができ、これにより効果的な測定支援が実現される。
 また、本発明の一態様に係る生体音検査装置において、前記生体音は所定の骨の近傍の所定位置において測定されるべき音であり、前記表示部は、前記判断部により前記測定位置が不適切であると判断された場合、前記測定位置を前記所定の骨から離れる方向に変更する指示を表示するとしてもよい。
 この構成により、測定位置が不適切である場合、例えば測定者に、測定位置を変更させる方向を正しく理解することができる。
 また、本発明の一態様に係る生体音検査装置において、前記表示部は、少なくとも一つの発光部を備え、前記少なくとも一つの発光部は、前記判断部により前記測定位置が不適切であると判断された場合、発光することで前記指示を表示するとしてもよい。
 この構成によれば、例えば、測定位置が不適切である場合、測定者は、測定位置の変更方向を視覚的に理解することができる。つまり、変更方向の指示を測定者に容易に認識させることができる。
 また、本発明の一態様に係る生体音検査装置はさらに、所定の方向を検知する方向検出部を備え、前記方向検出部は、前記判断部により前記測定位置が不適切と判断された場合、前記所定の方向である前記生体の上半身から下半身に向かう方向を検出し、前記表示部は、前記少なくとも一つの発光部を含む複数の発光部を有し、前記判断部により前記測定位置が不適切と判断された場合、前記複数の発光部のうちの、最も前記所定の方向側に配置された発光部を発光させるとしてもよい。
 この構成によれば、例えば、測定者は、測定位置を変更させる方向を視覚的に理解することができ、適切な位置を早く探ることができる。
 また、本発明の一態様に係る生体音検査装置において、前記第一周波数帯域は、前記第二周波数帯域よりも低い周波数成分を含むとしてもよい。
 この構成によれば、例えば、測定位置が適切か否かを判断できる精度を向上させることができる。
 また、本発明の一態様に係る生体音検査装置において、前記第三周波数帯域は、1kHz以下の肺音の周波数成分が含まれる帯域であるとしてもよい。
 この構成によれば、例えば、被測定者が呼吸をしている場合であっても、測定位置が適切か否かを精度よくかつ短時間で判断することができる。
 また、本発明は、上記いずれかの態様に係る生体音検査装置が実行する特徴的な処理を含む生体音検査方法として実現することもできる。また、当該生体音検査方法が含む各処理をコンピュータに実行させるためのプログラムとして実現すること、および、そのプログラムが記録された記録媒体として実現することもできる。そして、そのプログラムをインターネット等の伝送媒体又はDVD等の記録媒体を介して配信することもできる。
 また、本発明は、上記いずれかの態様に係る生体音検査装置の構成の一部または全部を含む集積回路として実現することもできる。
 本発明によれば、生体音の測定位置の適否を的確に判断することのできる生体音検査装置を提供することができる。
 例えば、本発明の一態様に係る生体音検査装置は、生体音の測定位置が、鎖骨または肋骨等の骨に近すぎる不適切な位置であるか否か、および身体中心線からの距離が指定された距離とは異なる、胸壁上の不適切な位置であるか否かを判断することができる。
図1は、実施の形態1における生体音検査装置の基本的な構成を示すブロック図である。 図2は、実施の形態1における生体音測定部の構成概要を示す図である。 図3は、実施の形態1の信号処理部の基本的な構成を示すブロック図である。 図4は、実施の形態1の生体音検査装置の基本的な処理の流れの一例を示すフローチャートである。 図5は、信号処理部において生体音測定部による測定位置が適切であるか否かを判断する処理の流れの一例を示すフローチャートである。 図6は、心音の周波数特性の一例を示す図である。 図7Aは、鎖骨付近で測定した生体音信号の20Hz以上かつ80Hz以下の周波数帯域のパワの時系列データを示す図である。 図7Bは、図7Aに示すデータから心音低域極大値とその時間区間を検出し、他の時間区間の値を0でマスクした場合の時系列データを示す図である。 図8Aは、鎖骨付近で測定した生体音信号の300Hz以上かつ400Hz以下の周波数帯域のパワの時系列データを示す図である。 図8Bは、図8Aに示すデータから心音高域極大値とその時間区間を検出し、他の時間区間の値を0でマスクした場合の時系列データを示す図である。 図9Aは、図7Bと図8Bの時系列データを用いて検出された共通時間区間を示す図である。 図9Bは、低周波数帯域および高周波数帯域のパワの時系列データにおける共通時間区間として検出されない部分の一例を示す図である。 図9Cは、低周波数帯域および高周波数帯域のパワの時系列データにおける共通時間区間として検出される部分の一例を示す図である。 図10Aは、胸壁上で測定した生体音の低域パワと高域パワの時系列データの一例を示す図である。 図10Bは、図10Aに示すデータから検出された共通時間区間を示す図である。 図11は、実施の形態2における信号処理部の基本的な構成を示すブロック図である。 図12は、実施の形態2の生体音検査装置における共通時間区間の検出に係る処理の流れの一例を示すフローチャートである。 図13は、胸壁上で測定した肺音の周波数特性の一例を示す図である。 図14は、実施の形態3における生体音測定部の構成概要を示す図である。 図15は、生体音の測定位置が不適切であると判断された場合に、生体音測定部の警告灯を点灯させる処理の流れの一例を示すフローチャートである。 図16は、実施の形態4における生体音検査装置の基本的な構成を示すブロック図である。 図17は、実施の形態4における信号処理部の構成例を示す図である。 図18は、信号処理部において生体音測定部の測定位置が胸壁上の適切な測定位置であるか否かを判断する処理の流れの一例を示すフローチャートである。 図19は、健常者と喘息患者の2群間における肺音のパワ比の比較結果を示す図である。 図20は、身長と肺音のパワ比との相関の一例を示す相関図である。 図21Aは、同一個人での右鎖骨下における異なる測定位置の例を示す図である。 図21Bは、図21Aに示す各測定位置に対応する肺音のパワ比の測定結果を示す図である。 図22は、実施の形態5における生体音検査装置によって測定位置が適切でないと判断された場合の警告表示処理の流れの一例を示すフローチャートである。 図23は、警告灯が点灯される場合の測定位置の一例を示す図である。 図24は、実施の形態6における生体音検査装置の処理の流れの一例を示す図である。 図25は、年齢とパワ比との相関の一例を示す相関図である。 図26は、体表面積と肺音のパワ比との相関の一例を示す相関図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、同じ要素には同じ符号を付しており、説明を省略する場合もある。
 (実施の形態1)
 図1は、実施の形態1における生体音検査装置100の基本的な構成を示すブロック図である。
 生体音検査装置100は、生体音を測定する生体音測定部101と、生体音測定部101で測定した生体音信号を増幅する増幅部102と、増幅部102で増幅された生体音信号をデジタルデータに変換するA/D処理部103と、A/D処理部103でデジタルデータに変換された生体音信号を分析する信号処理部104と、生体音検査装置100での処理を制御する制御部105と、信号処理部104で利用する情報、および、生体音信号の分析結果を記録する記録部106と、測定者に生体音信号の分析結果および警告等を表示する表示部107とを備える。
 まず、生体音測定部101の構成について、図2を用いて説明する。
 図2は、実施の形態1における生体音測定部101の構成概要を示す図である。
 図2に示すように、生体音測定部101は、生体内を伝播する生体音の振動を空気の振動に変換するダイヤフラム部201と、ダイヤフラム部201で空気振動に変換された生体音を伝播させる空間部202と、空間部202を伝播してきた生体音を電気信号に変換するマイクロフォン203と、マイクロフォン203で電気信号に変換された生体音信号を伝送するためのリード線204と、充填部205とを備える。
 なお、充填部205には、外部からの環境雑音による振動が空間部202に伝播しないように、例えば、ゴム素材またはゲル等の制振材が充填されている。
 次に、信号処理部104の構成について、図3を用いて説明する。
 図3は、実施の形態1の信号処理部104の基本的な構成を示すブロック図である。
 信号処理部104は、互いに異なる2種類の音である第一生体音および第二生体音それぞれのパワを算出するパワ算出部2301と、算出された2種類の生体音のパワ(第一パワおよび第二パワ)を比較するパワ比較部2300と、パワ比較部2300による比較結果に示される共通時間区間における極大値の差に基づいて測定位置の適否を判断する判断部2304とを備える。
 また、パワ比較部2300は、算出されたパワの時系列データの極値をそれぞれ検出する極値検出部2302と、極大値を有するそれぞれの時間区間を比較し、共通時間区間を検出する共通時間区間検出部2303とを有する。
 なお、実施の形態1における生体音検査装置100は、図3に示すように、少なくとも、生体音測定部101と、パワ算出部2301と、パワ比較部2300と、判断部2304とを備えていればよい。
 以上説明した構成を備える生体音検査装置100の基本的な処理の流れを、図4を用いて説明する。
 図4は、実施の形態1の生体音検査装置100の基本的な処理の流れの一例を示すフローチャートである。
 なお、後述する実施の形態4および6における生体音検査装置1300の基本的な処理の流れも、図4に示す処理の流れと同様である。
 生体音測定部101は、被測定者の生体の内部を伝播する振動に基づく生体音を測定する(S100)。
 パワ算出部2301は、生体音測定部によって測定された、互いに異なる2種類の音のうちの一方の音である第一生体音のパワ(第一パワ)、および、当該2種類の音のうちの他方の音である第二生体音のパワ(第二パワ)を算出する(S100)。
 本実施の形態では、パワ算出部2301は、第一パワおよび第二パワとして、デジタル化された生体音信号の、第一周波数帯域におけるパワと第二周波数帯域におけるパワとを算出する。
 パワ比較部2300は、算出された第一パワと第二パワとを比較し、第一パワと第二パワとの比または差を示す比較結果を算出する(S120)。
 本実施の形態では、パワ比較部2300が有する極値検出部2302が、第一パワと第二パワそれぞれの時系列データの極大値(第一極大値および第二極大値)を検出する。また、パワ比較部2300が有する共通時間区間検出部2303が、第一極大値に対応する時間区間と、第二極大値に対応する時間区間との間で共通する共通時間区間を検出する。
 パワ比較部2300はさらに、第一極大値と第二極大値との差を示す比較結果を算出する。
 判断部2304は、当該比較結果に示される差が閾値以下の場合、当該生体音の測定位置が不適切であると判断する(S130)。
 次に、上記の基本的な処理を実行する生体音検査装置100において、生体音信号が入力された場合の動作の詳細について図5を用いて説明する。
 図5は、信号処理部104において、生体音測定部101による測定位置が適切であるか否かを判断する処理の流れの一例を示すフローチャートである。
 この一連の処理により、例えば、測定位置が、鎖骨または肋骨等の骨に近すぎる不適切な位置であるか否かが判断される。
 パワ算出部2301は、A/D処理部103から生体音信号を受け取ると、心音の時間区間とその強さを抽出するために、心音の周波数帯域における低周波数帯域のパワを算出する(S300)。
 この低周波数帯域は、第一周波数帯域の一例であり、低周波数帯域における生体音は第一生体音の一例である。また、低周波数帯域におけるパワは、第一パワの一例である。
 この低周波数帯域のパワの算出は例えば、85msecを1フレームとし、21msec経過するごとに1フレームのパワを算出することで行われる。
 図6は、心音の周波数特性の一例を示す図であり、実線は心音を示し、破線は心音測定時の背景ノイズを示す。
 図6に示すように、心音のスペクトル成分の多くは、400Hz以下の周波数帯域に含まれている。このため、パワを算出する周波数帯域は、400Hz以下の周波数帯域であればよい。特に、20Hz以上かつ80Hz以下である周波数帯域であることが望ましい。この帯域は、心音の時間区間とその強さを高精度に検出できる可能性が高いという特徴を有しているためである。
 図7Aに、鎖骨付近で測定した生体音信号の20Hz以上かつ80Hz以下の周波数帯域のパワの時系列データを示す。
 図7Aでは、心音のI音とII音がパワのピークとして現れている。I音とは、心室収縮期の開始時に発生する音であり、II音とは、心室拡張期の開始時に発生する音である。図7Aの場合、例えば、測定開始直後に現れる20dB強のパワのピークがI音であり、その直後に現れている15dB強のパワのピークがII音である。その後、I音とII音が交互に現れている。なお、I音およびII音のパワのレベルは、個人によって異なり、同一個人であっても変化する場合がある。
 次に、極値検出部2302は、S300で算出された心音の低周波数帯域のパワの時系列データから、極大値とその極大値が含まれる時間区間を検出する(S301)。検出される極大値およびその時間区間は、心音のI音またはII音が現れている時間区間に相当する。
 また、検出される極大値およびその時間区間は、第一極大値および第一時間区間の一例であり、少なくとも一つの極大値とその時間区間が検出される。
 この極大値および時間区間は、例えばI音およびII音の出現時間が5フレーム分の時間長に相当する場合、時間区間はこの5フレームの時間区間を指し、極大値は各フレームごとに算出される5つのパワのうちの最大値を指す。
 極大値の検出は、パワの時系列データを時間軸方向に微分し、微分値が正から負に変化した時刻のパワが所定値以上である場合、極大値(以下、「心音低域極大値」という。)として検出する。
 この所定値は、微分値が正から負に変化した時刻から10秒以前におけるパワの時系列データの平均パワとしてもよいし、最大値から10dB減算した値としてもよい。また、この所定値は、これに限ったものでなく、微分値が正から負に変化した時刻より以前のパワの時系列データの最小値以上かつ最大値以下を満たすような値に設定すればよい。
 なお、心音低域極大値が短い時間区間で複数個検出される場合は、局所最大値となる心音低域極大値を一つ選択する。
 また、心音低域極大値が含まれる時間区間については、パワの時系列データから極小値を検出し、心音低域極大値の前後で検出される極小値の時刻を当該時間区間の開始と終了時刻とすることで検出される。
 極小値の検出は、パワの時系列データを時間軸方向に微分し、微分値が負から正に変化した時刻のパワが所定値以下である場合、極小値として検出する。なお、極大値および極小値の検出は、他の方法を用いても構わない。
 図7Bは、図7Aに示すデータから心音低域極大値とその時間区間を検出し、他の時間区間の値を0でマスクした場合の時系列データを示す図である。
 パワ算出部2301は、A/D処理部103から受け取った生体音信号を用いて、心音の周波数帯域における高域のパワを算出する(S302)。
 心音のスペクトル成分の多くは400Hz以下であるため、パワを算出する周波数帯域は400Hz以下であり、S300でパワの算出対象とした周波数帯域(例えば20Hz以上かつ80Hz以下)より大きい周波数帯域を含んでいればよい。
 特に、300Hz以上かつ400Hz以下の周波数帯域であることが望ましい。300Hz以上かつ400Hz以下の周波数帯域の心音は、肋骨または鎖骨等による骨伝導では、あまり減衰せずに伝播するが、骨以外の組織、例えば、筋肉、脂肪、または肺などを伝播する場合は、骨伝導と比較して大きく減衰する。
 従って、この周波数帯域の心音パワは、その大きさの違いが、鎖骨付近とそれ以外とで顕著に現れ、生体音の測定位置の適否を高精度に判断できる可能性が高いという特徴を有している。
 なお、この周波数帯域(高周波数帯域)は第二周波数帯域の一例であり、高周波数帯域における生体音は第二生体音の一例である。また、高周波数帯域におけるパワは、第二パワの一例である。
 つまり、本実施の形態では、第一周波数帯域は、第二周波数帯域よりも低い周波数成分を含んでいる。
 図8Aに、鎖骨付近で測定した生体音信号の300Hz以上かつ400Hz以下の周波数帯域のパワの時系列データを示す。図8Aに示すデータでは、心音によるパワのピークと、呼吸時の肺音によるパワの盛り上がりとが含まれる。
 つまり、簡単にいうと、S300で測定された低周波数帯域の生体音は、主として心音であり、S302で測定された高周波数帯域の生体音は、主として心音と肺音との混合音である。
 極値検出部2302は、S302で算出した心音の高周波数帯域のパワの時系列データから、極大値(以下、「高域極大値」ともいう。)と高域極大値が含まれる時間区間とを検出する(S303)。
 検出される高域極大値およびその時間区間は、第二極大値および第二時間区間の一例であり、極値検出部2302により、高域極大値と、当該高域極大値を含む時間区間との組が少なくとも一つ検出される。
 S303における検出方法は、上述のS301で用いた検出方法と同様のものを利用してもよい。図8Bは、図8Aに示すデータから高域極大値とその時間区間を検出し、他の時間区間の値を0でマスクした場合の時系列データを示す図である。
 共通時間区間検出部2303は、S301で検出された少なくとも一つの時間区間と、S303で検出された少なくとも一つの時間区間とを比較することで、共通する時間区間である共通時間区間を検出する(S304)。
 つまり、低周波数帯域の時系列データと高周波数帯域での時系列データとの間で、同一または近いタイミングで極大値を頂点とするパワの上昇および下降曲線が存在する時間区間が検出される。
 なお、共通時間区間の検出、つまり、極大値を含む時間区間が低周波数帯域の時系列データと高周波数帯域での時系列データとの間で同じであるか否かの判別において、区間の始端または終端の時刻が必ずしも全く同じである必要はなく、所定値以内の時間差であればよい。
 この所定値は、心音のI音のピークとII音のピークとは異なる時間区間に対応すると識別しておく必要があるため、300msec以下の値を選択することが望ましい。
 図9Aに、図7Bと図8Bの時系列データを用いて検出された共通時間区間を示す。なお、検出された共通時間区間以外の時間区間は0でマスクされている。また、実線は心音低域極大値に相当する時間区間のパワであり、破線は高域極大値に相当する時間区間のパワである。
 ここで、共通時間区間について図9Bおよび図9Cを用いて簡単に説明する。
 図9Bは、低周波数帯域および高周波数帯域のパワの時系列データにおける共通時間区間として検出されない部分の一例を示す図である。
 図9Cは、低周波数帯域および高周波数帯域のパワの時系列データにおける共通時間区間として検出される部分の一例を示す図である。
 図9Bに示すように、それぞれが心音低域極大値に対応する時間区間[a]および[b]は、高域極大値に対応する時間区間[c]に含まれている。しかし、時間区間[a]および[b]それぞれの始端および終端と、時間区間[c]の始端および終端とは大きく離れているため、共通時間区間検出部2303は、時間区間[a]、[b]、[c]のいずれについても共通時間区間とは判断しない。
 また、図9Cに示すように、心音低域極大値に対応する時間区間[d]の始端および終端と、高域極大値に対応する時間区間[e]の始端および終端とは、完全に同一ではないものの非常に近い(例えば、共通時間区間についての閾値以下)である。そのため、共通時間区間検出部2303は、時間区間[d]または[e]を、共通時間区間として検出する。
 ここで、図9Bにおける、時間区間[c]は、時間区間[a]および[b]と同期していないため、呼吸時における肺音の変化に対応する時間区間であると考えられる。
 一方、図9Cにおける、時間区間[d]は、時間区間[e]と同期していると言え、この同期は、偶然によるものか、または、心音が、高周波数帯域のスペクトル成分に影響を与えたために発生したものかのいずれかであると考えられる。
 つまり、共通時間区間における高域極大値との心音低域極大値との差(例えば、図9Cにおける“D”)が比較的小さい場合、生体音の測定位置が、骨または肋骨等の骨に近すぎる不適切な位置であるために、骨伝導による心音が高周波数帯域に大きな影響を与えていると推認される。
 そこで、判断部2304は、共通時間区間における心音低域極大値と高域極大値との差分値が、所定の閾値以下である場合、測定位置は不適切であると判断する。具体的な処理の流れは以下の通りである。
 パワ比較部2300は、S304で検出された共通時間区間において、心音低域極大値と高域極大値の差分、例えば、心音低域極大値から高域極大値を減算した値を算出する。判断部2304は、算出された差分値を所定の閾値と比較する(S305)。
 判断部2304は、差分値が所定の閾値以下である場合(S305でYes)、測定位置は、鎖骨または肋骨等の骨に近すぎる不適切な位置であると判断する(S306)。
 この時、制御部105は、表示部107で測定者に対して生体音の測定位置が骨に近すぎる位置であることを警告する。
 また、判断部2304は、差分値が所定の閾値よりも大きい場合(S305でYes)、当該測定位置は適切であると判断する(S307)。
 例えば、所定の閾値が5dBであり、図9Cに示す“D”が5dB以下である場合、つまり、当該共通時間区間([d]または[e])に対応する差分値Dが所定の値以下である場合、当該生体音の測定位置は、鎖骨に近すぎる不適切な位置であると判断される。
 なお、図9Aに示すように、複数の共通時間区間が検出された場合、判断部2304は、少なくとも一つの時間区間における差分値が所定の閾値以下である場合に、測定位置が不適切であると判断してもよい。これにより、例えば、測定位置が実際に適切な位置ではない場合に、当該測定位置が不適切であることが確実に判断される。
 また、判断部2304は、例えば、所定の数以上の共通時間区間の差分値が所定の閾値以下である場合に、定位置が不適切であると判断してもよい。これにより、例えば、何らかのノイズが混ざることによる誤判断の発生を抑制することができる。
 また、この所定の閾値は使用するマイクロフォン等によって異なるが、不適切な測定位置と適切な測定位置とが判別できる程度の値を、実験的にまたは論理的に求め、この求めた値を閾値として採用すればよい。
 なお、S300およびS302において、各周波数帯域のパワを算出する場合、該当する周波数帯域の帯域通過フィルタを通過した生体音信号のパワを利用してもよい。また、A/D処理部103から受け取った生体音信号に対して周波数変換を行い、生体音信号のパワースペクトルから該当する周波数帯域のパワを算出してもよい。
 図10Aおよび図10Bに、右鎖骨中線上第二肋間の位置で測定した生体音信号に関するデータを示す。
 具体的には、図10Aにおいて、実線は20Hz以上かつ80Hz以下のパワの時系列データであり、破線は300Hz以上かつ400Hz以下のパワの時系列データである。また、図10Bは、図10Aの時系列データに対して、上述のS300からS304までの処理を適用して得られる共通時間区間を表している。実線は20Hz以上かつ80Hz以下のパワに相当し、破線は300Hz以上かつ400Hz以下のパワに相当する。
 胸壁上で生体音を測定する場合、心音は肺を伝播する間に減衰される。特に、肺は低域通過フィルタのような特性をもつため、心音の高周波数帯域のパワは低周波数帯域のパワに比べて顕著に減衰する。
 このため、図10Bのように、心音低域極大値と高域極大値の差分は大きくなる。例えば、所定の閾値が5dBの場合、S306において、図10Bに示す各共通時間区間における差分値は所定の閾値より大きくなり、その結果、308で適正位置と判断される。
 以上のようにして、生体音検査装置100は、測定した生体音に含まれる心音を利用し、生体音の測定位置が、鎖骨または肋骨等の骨に近すぎる不適切な位置であるか否かを判断することができる。
 なお本実施の形態では、生体音測定部101がリード線204を介して生体音信号を伝送するとして説明したが、これに限ったものではなく、リード線204の替わりに無線送信機で生体音信号を伝送してもよい。
 この構成によると、リード線204が不要となり、例えば、生体音測定時に、リード線204の身体への接触等による振動、または、電磁波などの影響により、リード線204からノイズが混入することを防ぐことができる。
 また、生体音検査装置100は、測定位置が適切であると判断された場合にのみ、疾病等の判別のための生体音分析を開始するとしてもよい。この構成によって、生体音検査装置100で検査される肺音は常に正しい位置で測定された生体音であることを保証することができる。従って、医師が生体音の分析結果を確認する場合、信頼性の高い肺音分析結果に基づいて診断することができる。
 また、生体音測定部101は、マイクロフォン203を用いて生体音を検出するとしたが、加速度センサを用いて生体音を検出してもよい。この場合、ダイヤフラム部201および空間部202は不要となる。この結果、空気振動によって伝播してくる環境雑音が、ダイヤフラム部201または空間部202を介して生体音に混入してしまう可能性を低減することができる。
 また、本実施の形態では、生体音のパワの表現について、自然対数を用いたデシベル表記を想定していたため、極大値間の差分算出には減算を用いていた。しかし、極大値間の差分算出に自然対数を用いない場合は、除算、もしくはビットシフト演算を用いることになる。
 以上述べた実施の形態1についての補足事項は、他の実施の形態でも同じである。
 (実施の形態2)
 図11は、実施の形態2における生体音検査装置100が備える信号処理部104の基本的な構成を示すブロック図であり、図12は、実施の形態2の生体音検査装置100における共通時間区間の検出に係る処理の流れの一例を示すフローチャートである。
 以下、実施の形態1と同様の構成については、同じ符号を用い、説明を省略する。
 雑音区間検出部2401は、パワ算出部2301が算出した生体音信号のパワから、肺音レベルの小さい低雑音区間を検出する(S900)。
 図13は、胸壁上で測定した肺音の周波数特性の一例を示す図である。図13が示す通り、肺音のスペクトル成分は1kHz以下に多く含まれる。また、図6に示す通り、心音のスペクトル成分の多くは100Hz以下に含まれる。
 従って、パワ算出部2301は、100Hz以上かつ1kHz以下の周波数帯域に含まれるパワを算出する。雑音区間検出部2401は、パワ算出部2301で算出されたパワが所定値以下となる時間区間を低雑音区間として検出する。なお、1kHz以下の肺音の周波数成分が含まれる帯域は、第三周波数帯域の一例である。
 雑音区間検出部2401は、S301で検出された、それぞれが低周波数帯域の極大値(心音低域極大値)を含む複数の時間区間の中から、低雑音区間に含まれる時間区間を検出する(S901)。この結果、肺音のレベルが小さい時間区間である低雑音区間における心音区間が検出される。
 共通時間区間検出部2402は、S901で検出された時間区間と、S303で検出された時間区間とで共通する時間区間を検出する(S902)。
 この結果、肺音のレベルが小さい時間区間において、心音の低周波数帯域と高周波数帯域の両周波数帯域でパワのレベルが高い時間区間が共通時間区間として検出されることになる。
 判断部2403は、S902で共通時間区間の検出が成功したか否かを判断し(S903)、S903で共通時間区間の検出に成功したと判断した場合(S903でYes)、S305以降の処理を実施する。
 また、判断部2403は、S903で共通時間区間の検出に失敗したと判断した場合(S903でNo)、測定位置は、鎖骨または肋骨などの骨に近すぎない適切な位置であると判断する(S904)。
 心音の高周波数帯域と肺音の周波数帯域とは重なるため、呼吸区間中は心音のスペクトル成分が肺音のスペクトル成分にマスクされてしまうことがある。このため、肺音のレベルが小さい時間区間の方が、心音の低周波数帯域と高周波数帯域とで共通する時間区間の検出が容易になる。
 一方、肺音のレベルが小さい時間区間にもかかわらず、心音の低周波数帯域のパワが大きく、心音の高周波数帯域のパワが小さければ、骨伝導によって心音がセンサに混入している可能性は低い。そのため、測定位置は骨に近すぎない位置であると判断することができる。
 また、肺音レベルの小さい時間区間における心音を利用すれば、測定開始から、測定位置が適切であるか否かの判断までに要する時間を短くすることができる。
 例えば、図5のフローチャートのように、肺音レベルの小さい時間区間である低雑音区間を考慮せずに、共通時間区間を検出してから測定位置が適切か否かを判断する場合、図10Aのような生体音信号の例であれば、早くても測定開始から約4秒経過しないと判断することができない(図10B参照)。
 しかしながら、図10Aの実線によると、測定開始から2秒経過した辺りで心音の低周波数帯域のパワが大きくなっており、さらに、図10Aの破線によれば、パワの盛り上がりがなく肺音レベルが小さくなっている。
 従って、S901において、低雑音区間における心音低域極大値の時間区間として検出される。しかしながら、この時間区間は、破線が示すパワが小さく高域極大値は検出されないため、共通時間区間としては検出されない。つまり、S903で時間区間の検出に失敗したと判断される。この結果、S904において、測定位置は適切であると判断される。
 このように、低雑音区間を考慮することにより、測定開始から2秒程度で、測定位置が適切か否か判断される。そのため、例えば、被測定者にあまり負担を掛けずに、測定位置が適切か否かの判断が終了するまで息こらえをしてもらうことができ、その結果、より短時間で判断することも可能である。
 以上のようにして、生体音検査装置100は、低雑音区間を用いることで、生体音の測定位置が鎖骨または肋骨等の骨に近すぎる位置か否かを精度よく短時間に判断することができる。
 なお、実施の形態2における生体音検査装置100は、図11に示すように、少なくとも、生体音測定部101と、パワ算出部2301と、パワ比較部2300と、雑音区間検出部2401と、判断部2403とを備えていればよい。
 (実施の形態3)
 図14は、実施の形態3における生体音測定部1100の構成概要を示す図である。
 なお、実施の形態3における生体音検査装置100の、生体音測定部1100以外の構成は、基本的には実施の形態1または2における生体音検査装置100と同様である。
 以下、実施の形態1または2と同様の構成については、同じ符号を用い、説明を省略する。
 生体音測定部1100は、所定の方向を検出する方向検出部1101と、生体音の測定位置が不適切である場合に警告灯を点灯する発光部1102、1103、1104、および1105とを備える。
 つまり、本実施の形態では、発光部1102~1105を有する表示部107が生体音測定部1100に配置されているとも表現できる。
 次に、実施の形態3の生体音検査装置100において、生体音の測定位置が不適切であると判断された場合の動作について図15を用いて説明する。
 図15は、生体音の測定位置が不適切であると判断された場合に、生体音測定部1100の警告灯を点灯させる処理の流れの一例を示すフローチャートである。
 判断部2304または2403により生体音の測定位置が不適切と判断されると、生体音測定部1100の方向検出部1101は、所定の方向を検出する。具体的には、重力の方向を検出する(S1200)。なお、方向検出部1101としては、ジャイロセンサまたは加速度センサなどが採用される。
 次に、制御部105は、発光部1102~1105のうち、最も重力の方向側に配置された発光部を選択する(S1201)。なお、最も重力の方向側の発光部として二つの発光部が存在する場合は、該当する二つの発光部を選択してもよい。
 次に、S1201で選択された発光部は、警告灯を点灯する(S1202)。
 つまり、生体音の測定の際に、生体音測定部1100がどのような方向(図14の上図における周方向)で被測定者に当てられているかに関わらず、その時点で鉛直下方に最も近い発光部が選択され、発光される。
 以上のように、本実施の形態における生体音検査装置100は、発光部を備えている。具体的には、生体音測定部1100に発光部1102~1105が配置されている。これにより、測定者は、生体音測定部1100および測定位置から目をそらすことなく、測定位置が適切か否かを確認することができる。
 例えば、測定者が鎖骨に近すぎる位置に生体音測定部1100を当てた場合、測定位置が鎖骨に近すぎる不適切な位置であると判断され、重力の方向、つまり生体音測定部1100を移動させる方向(胸壁の方向)の発光部により警告灯が点灯される。この結果、測定者は、適切な測定位置を簡単に探すことが可能となる。
 なお、生体音の測定位置が肋骨上であった場合、肋間に生体音測定部1100を移動させるように、肋間の方向に配置された発光部が発光されることになる。
 また、生体音測定部1100は、発光部を一つだけ備えてもよい。この場合、方向検出部1101は不要となる。この場合、測定位置が不適切と判断されれば、当該一つの発光部により警告灯が点灯される。この結果、測定者は、少なくとも測定位置が適切か否かを確認することが可能となる。
 また、生体音測定部1100の部品数を減らすことができるため、低コストの生体音測定部1100を製造することが可能となる。また、生体音測定部1100の小型化および軽量化も可能となり、生体音の測定感度を向上させることができる。
 なお、生体音測定部1100は、発光部の代わりにスピーカ等の音出力部を備え、測定位置が不適切と判断されれば警告音を鳴らすような構成であってもよい。この場合も同様に低コストの生体音測定部1100を製造でき、かつ小型化および軽量化も可能となる。
 また、本実施の形態では、方向検出部1101が重力方向を検知するとしたが、方向検出部1101が検出する所定の方向は、重力方向に限らない。方向検出部1101は、例えば、鎖骨がある方向またはその逆方向、つまり身体上部の方向(下半身から上半身に向かう方向)または身体下部の方向(上半身から下半身に向かう方向)を検知してもよい。
 この場合、充填部205またはダイヤフラム部201に歪みセンサを備え、歪みを検出する箇所は鎖骨および肋骨上であることを利用し、身体下部の方向を検知するようにしてもよい。例えば、生体音測定部1100に複数の歪みセンサを備え、歪みを検出した方向とは逆の方向を身体下部の方向としてもよい。この結果、測定時の被測定者が仰臥位など直立の姿勢でない場合であっても、身体下部の方向を検知することが可能となる。
 また、方向検出部1101は、生体音測定部1100が備えていなくてもよい。例えば、生体音測定部1100の外部に備えられたセンサにより方向検出部1101が実現されてもよい。
 また、発光部1102~1105は、生体音測定部1100に配置されていなくてもよく、例えば、信号処理部104等を内蔵する、生体音検査装置100の本体に配置されていてもよい。この場合、発光部1102~1105のそれぞれは、例えば生体音測定部1100が備える方向検出部1101による方向の検出結果を受信し、その検出結果に応じて発光すればよい。
 (実施の形態4)
 図16は、実施の形態4における生体音検査装置1300の基本的な構成を示すブロック図であり、図17は、実施の形態4における信号処理部1304の構成例を示す図である。以下、実施の形態1と同様の構成については、同じ符号を用い、説明を省略する。
 生体音検査装置1300は、実施の形態1における生体音検査装置100の構成に、さらに、生体音を測定する生体音測定部1301と、生体音測定部1301で測定した生体音信号を増幅する増幅部1302と、増幅部1302で増幅された生体音信号をデジタルデータに変換するA/D処理部1303とを備え、かつ、信号処理部104に代えて、信号処理部1304を備える。
 信号処理部1304は、A/D処理部103およびA/D処理部1303でデジタルデータに変換された生体音信号を分析する。
 生体音測定部1301は、生体音測定部101(図2参照)と同じ構成を備える。また、図17に示すように、信号処理部1304は、二つの生体音測定部(1301および101)で測定された2種類の生体音のパワを算出し、当該2種類の生体音間のパワ比を算出するパワ比算出部2501と、算出されたパワ比と基準パワ比とを比較して測定位置の適否を判断する判断部2502を有する。
 なお、パワ比算出部2501によって、本発明の一態様に係る生体音検査装置におけるパワ算出部およびパワ比較部の機能が実現される。
 また、生体音測定部1301および101により測定される2種類の生体音は、第一生体音および第二生体音の一例である。また、パワ比算出部2501により算出される二つの生体音のパワは、第一パワおよび第二パワの一例である。
 また、生体音測定部1301は第一測定部の一例であり、生体音測定部101は第二測定部の一例である。
 また、実施の形態4における生体音検査装置1300は、図17に示すように、少なくとも、生体音測定部101と、生体音測定部1301と、パワ比算出部2501と、判断部2502とを備えていればよい。
 次に、生体音検査装置1300において、生体音信号が入力された場合の動作について図18を用いて説明する。
 図18は、信号処理部1304において、生体音測定部101の測定位置が、胸壁上の適切な測定位置であるか否かを判断する処理の流れの一例を示すフローチャートである。
 A/D処理部103およびA/D処理部1303のそれぞれから生体音信号を受け取ると、パワ比算出部2501は、これら生体音信号間における、肺音の低周波数帯域のパワの比を算出する(S1400)。
 ここで、図13に示すように、肺音のスペクトル成分の多くは、1kHz以下の周波数帯域に含まれている。このため、パワ比を算出する周波数帯域は、1kHz以下の周波数帯域であればよい。
 しかしながら、図6に示されるように、100Hz以下の周波数帯域には、心音のスペクトル成分が多く含まれる。このため、心音の影響が少なく、かつ、肺音を測定するための低周波数帯域として、特に100Hz以上かつ200Hz以下の周波数帯域であることが望ましい。
 パワ比の算出は、二つの生体音信号の100Hz以上かつ200Hz以下のパワをそれぞれ算出し、算出したパワの比を算出することで行われる。各生体音信号のパワの算出は、各生体音信号に対して周波数変換を行い、各生体音信号のパワースペクトルから算出したい周波数帯域のパワを算出してもよい。パワ比算出の他の方法として、周波数変換によって各生体音信号のスペクトルを算出し、クロススペクトル法を用いてパワ比を算出してもよい。
 次に、判断部2502は、生体音検査装置1300で事前に測定し、記録部106に記録しておいた基準パワ比と、S1400で算出したパワ比との差分を算出する。具体的には、判断部2502は、算出したパワ比から基準パワ比を減算した値を差分値として、差分値が第一閾値以上であるか否かを判定する(S1401)。
 なお、第一閾値は、測定の目的である生体音の種類に応じて決定される測定位置、その再現性、および被験者の年齢等に依存し、実験によって決められる。例えば、成人であって、右鎖骨中線上第二肋間の位置が正しい測定位置である場合、第一閾値は、“2dB”としてもよい。
 判断部2502は、差分値と第一閾値との比較の結果、差分値が第一閾値以上である場合(S1401でYes)、生体音測定部101の測定位置が適正位置よりも身体の中心側に近い位置であると判断する(S1402)。
 また、判断部2502は、差分値が第一閾値より小さい場合(S1401でNo)、差分値が、第一閾値未満の値である第二閾値以下か否かを判定する(S1403)。
 なお、第二閾値も、測定の目的となる生体音の種類に応じて決定される測定位置、その再現性、および被験者の年齢などに依存し、実験によって決められる。また、第二閾値は、第一閾値の符号を反転させた値としてもよい。例えば、成人であって、右鎖骨中線上第二肋間の位置が正しい測定位置である場合、第二閾値は、“-2dB”としてもよい。
 判断部2502は、比較の結果、差分値が第二閾値以下である場合(S1403でYes)、測定位置が適正位置よりも身体の外側に近い位置であると判断する(S1404)。また、判断部2502は、差分値が第二閾値より大きい場合(S1403でNo)、測定位置は適切であると判断する(S1405)。
 ここで、各処理ステップについて詳細に説明する。
 S1401で用いる基準パワ比は、適正な測定位置で測定した肺音の低周波数帯域のパワ比とする。基準パワ比の算出方法および周波数帯域は、S1400と同様のものとする。
 また、生体音測定部101の測定位置は、診断等のために生体音を聴診したい位置とする。生体音測定部1301の測定位置は、副雑音でない肺音(つまり呼吸音)の音源を高S/Nで測定するために、気管から体表面までの距離が短く、かつ、頚動脈および頸静脈の血流音が混入しにくい胸骨切痕で測定することが望ましい。
 また、パワ比の分母は、胸骨切痕で測定した生体音に関するパワであり、分子は、聴診したい位置の生体音に関するパワとする。
 このように、互いに異なる部位で測定された肺音間の低周波数帯域のパワ比によって測定位置が適切か否かを判断できる理由としては以下の理由があげられる。
 すなわち、呼吸時に肺を伝播する肺音の低周波数帯域のパワが、疾病の有無による影響を受けにくく、かつ、肺音が伝播する距離に大きく依存して減衰することがあげられる。なお、距離による肺音の低周波数帯域のパワの減衰は、例えば体格差による減衰の違いによって確認できる。
 図19に、健常者と喘息患者の2群間における、肺音の100Hz以上かつ200Hz以下のパワ比の比較結果を示す(被験者数は262)。
 測定位置は、胸骨切痕と右鎖骨中線上第二肋間である。図19に示す通り、各群における太線で示された平均値について有意な差は認められない。従って、100Hz以上かつ200Hz以下の肺音のパワ比は、喘息の有無による影響は受けないと言える。
 また、図20は、身長と肺音の100Hz以上かつ200Hz以下のパワ比との相関を示す相関図である(被験者数は262)。図20に示す通り、身長とパワ比には、有意な相関関係(相関係数=-0.484、有意確率<0.001)が認められる。
 なお、測定位置は、胸骨切痕と右鎖骨中線上第二肋間である。また、同じ身長でもパワ比にバラツキがあるのは、脂肪または筋肉の量等による個人差が大きく影響している。一般に、身長が大きくなれば肺も大きくなっており、その結果、肺が伝播する距離も長くなっていると考えられる。
 従って、同一個人の場合には、上記二箇所で測定された肺音間の低周波数帯域のパワ比は、疾病による影響を受けにくく、脂肪および筋肉等の変化による影響も少なく、かつ、肺音が伝播する距離と関係がある測定位置に大きく依存することとなる。
 また、図21Aは、同一個人での右鎖骨下における異なる測定位置の例を示す図であり。図21Bは、図21Aに示す各測定位置に対応する、肺音の100Hz以上かつ200Hz以下のパワ比の測定結果である。
 なお、測定位置3は右鎖骨中線上第二肋間の位置であり、そこから25mmおよび50mmずつ身体中心側および外側にずらした位置で測定している。
 図21Bに示すように、身体の中心線から外側の測定位置に移動するに従って、肺音の100Hz以上かつ200Hz以下のパワ比が減少していることがわかる。肺音は、副雑音以外の場合、呼吸に伴って比較的太い気道内に生じた空気の流れによる乱流騒音および気道壁の振動が、肺を伝播して胸壁上で聴取されるものである。音源となる比較的太い気道は、身体の中心側に位置している。図21Bは、肺音が、身体の中心線から遠ざかるに従って大きく減衰していることを意味する。
 図18におけるS1401以降の処理について、図21Aおよび図21Bを用いて説明する。
 例えば、基準パワ比を測定した適切な位置を測定位置3(パワ比は-16.5dB)とし、再検査時に測定した位置が測定位置5(パワ比は-10.7dB)であるとする。また、第一閾値を1.0dBとし、第二閾値が-1.0dBとする。
 まず、S1401において、差分値は、(-10.7)-(-16.5)=5.8dBと計算される。
 次に、S1402において、差分値は、第一閾値以上となり、S1403において、測定位置は、適切な位置より中心側にずれていると判断される。
 一方、再検査時に測定した位置が測定位置1(パワ比は-24.5dB)である場合、S1401において、差分値は(-24.5)-(-16.5)=-8.0dBと計算される。
 S1402では、差分値は第一閾値以上とはならないが、S1403において、差分値は第二閾値以下と判断される。この結果、S1405において、測定位置は、適切な位置より外側にずれていると判断される。
 なお、第一閾値および第二閾値は、上述のように、測定の目的となる生体音の種類に応じて決定される測定位置と、その再現性の精度に依存して決められる。例えば、適正位置が右鎖骨中線上第二肋間(測定位置3)の位置であって、測定位置の誤差を適正位置から±25mm以内の範囲におさめる場合には、第一閾値を+2dB,第二閾値を-2dBに設定することは有効と考えられる。
 もちろん、第一閾値と第二閾値の絶対値が異なっていてもよい。例えば、第一閾値を+2dBとし、第二閾値を-2.5dBとしても構わない。
 S1403およびS1405で、測定位置が適切でないと判断された場合、制御部105は、表示部107による情報表示により、測定位置が不適切であること、または、測定位置の変更を測定者に指示してもよい。
 さらに、S1403において、測定位置が身体の中心側に近い位置にあると判断された場合、制御部105は、表示部107に、利用者に測定位置が身体の中心側に近すぎることを表示させ、これにより、測定位置を外側(身体の中心からより遠い位置)に変更させる指示を行うように表示部107を制御してもよい。
 同様にして、S1405において、測定位置が身体の外側に近い位置であると判断された場合、制御部105は、表示部107に、測定位置が身体の外側に近すぎる(身体の中心から遠すぎる)ことを表示させ、これにより、測定位置を内側(身体の中心により近い位置)に変更する指示を行わせてもよい。
 なお、基準パワ比の測定に関して、いつ、誰が、適正な測定位置で測定しておくかが問題となる。例えば、慢性疾患等により、定期的に病院で診察または検査を受けている患者の場合、病院での医師または検査技師等の専門家による肺音の検査の際に、適切な測定位置で測定した肺音の低周波数帯域のパワ比を基準パワ比として利用することができる。
 病院で測定された基準パワ比を記録部106に記録しておけば、在宅であっても、かつ、測定者が一般人であったとしても、専門家が測定した位置と近い位置で体調管理のために生体音を測定することが可能となる。
 なお、生体音検査装置1300が、メモリカード等の外部記録媒体との入出力インタフェースを備えれば、患者は、在宅で測定した結果をメモリカード等に記録して病院に持参できるようになる。
 この場合、病院での検査時に測定された基準パワ比をメモリカードに記録し、帰宅後、当該住宅内の生体音検査装置1300に接続すれば、簡単に基準パワ比の設定および更新を行うことができる。もちろん、メモリカードの代わりに、インターネット等を経由し、病院と当該住宅との間でデータの送受信を行っても構わない。
 以上のようにして、生体音検査装置1300は、生体音の測定に不慣れな者であっても、専門家等が生体音を測定する位置と近い位置で測定することができる。この結果、信頼性の高い日常管理データを取得することができ、入院または毎日の通院、および頻繁な訪問介護を受けることなく、在宅で病気の憎悪および治療の経過の管理、または病気の早期発見を行うことができる。
 なお本実施の形態では、測定位置が不適切と判断された場合、表示部107で測定者に警告を表示するとして説明した。しかし、S1401で用いられる差分値に基づいて、生体音測定部101で測定した生体音信号を補正するように、信号処理部1304または増幅部102が制御されてもよい。
 例えば、差分値に-1を乗じたレベルだけ、生体音信号における肺音の周波数帯域を増幅させてもよい。例えば、差分値が3dBである場合、生体音測定部101で測定した生体音信号に対して、肺音の周波数帯域である1kHz以下の帯域を-3dB増幅させてもよい。
 つまり、増幅部102は、差分値の符号を反転させた値を用いて、第二生体音を増幅してもよい。
 この構成によると、測定位置が正しい位置でなくても、測定位置を変更する必要はない。つまり、不適切な測定位置で測定した生体音を、適切な測定位置で測定した生体音の信号パワに近似させることができる。
 また、測定位置が不適切だと判断されていない場合でも、S1401での差分値に基づいて、生体音測定部101で測定した生体音信号を補正するように、信号処理部1304または増幅部1302が制御されてもよい。
 この構成によると、測定位置がある程度正しい位置であっても、測定している生体音信号のパワのレベルを、適切な位置で測定した時の生体音信号のパワにより近似させることができ、生体音分析による診断精度の向上が可能となる。
 (実施の形態5)
 図22は、実施の形態5における生体音検査装置1300によって測定位置が適切でないと判断された場合の警告表示処理の流れの一例を示すフローチャートである。
 なお、実施の形態5における生体音測定部1100の構成は、図14に示す実施の形態3における生体音測定部1100の構成と同様である。
 また、実施の形態5における生体音検査装置1300は、実施の形態4における生体音検査装置1300と同様の構成である。
 生体音検査装置1300において、生体音の測定位置が不適切と判断されると、生体音測定部1100の方向検出部1101は、S1800において、方向検出部1101を用いて、所定の方向を検出する。本実施の形態では、所定の方向として重力の方向を検出する。
 なお、生体音測定部1100が有する方向検出部1101としては、ジャイロセンサまたは加速度センサなどが採用される。また、実施の形態3と同様に、生体音測定部1100により検出される所定の方向は、重力の方向に限ったものではなく、他のセンサを用いて鎖骨がある方向またはその逆方向である、身体上部または身体下部の方向を検知してもよい。
 以下、方向検出部1101が重力方向を検出する場合を例にとり、処理を説明するが、重力方向を、身体下部方向と言い換えても同様の処理が行われる。
 次に、制御部105は、測定位置の判断結果が、身体の中心側であるか否かを判断する(S1801)。
 さらに、制御部105は、測定位置が身体の中心側と判断されていれば、生体音測定部1100において、重力方向の軸より左側(測定者に向かって左側)に配置されている一つまたは複数の発光部を選択する(S1802)。
 なお、当該重力方向の軸は、生体音測定部1100を通過し重力方向に平行な軸であり、例えば、生体音測定部1100の平面視(図14の上図参照)における中心を通り、かつ、重力方向に平行な軸である。
 一方、制御部105は、測定位置が身体の中心側と判断されていなければ、重力方向の軸より右側に配置されている一つまたは複数の発光部を選択する(S1803)。
 S1802およびS1803で選択された発光部は、発光することで警告灯を点灯する(S1804)。
 例えば、図23に示すように、測定者が、適切な測定位置から身体の中心に近い位置に生体音測定部を当てた場合を想定する。この場合、生体音検査装置1300は、生体音の測定位置が身体の中心側に近い位置であると判断し、身体の外側に位置する発光部に警告灯を点灯させる。これにより、測定者に測定位置を身体の外側に移動させるように指示することができる。
 なお、上記の例は正しい測定位置が右肺にある場合の例である。正しい測定位置が左肺にある場合は、S1802およびS1803で選択する発光部は上記の説明と逆の方向にある発光部を選択することになる。正しい位置が右肺か左肺にあるかは、測定の目的となる生体音の種類によって異なり、事前に決めておけばよい。
 以上のようにして、測定者は、生体音測定部1100または測定位置から目をそらすことなく、測定位置が適切か否かを確認することができ、簡単に適切な測定位置を探すことが可能となる。
 なお、生体音測定部1100は、発光部を一つだけ備えてもよい。この場合、方向検出部1101は不要となる。この場合、測定位置が不適切と判断されれば、当該一つの発光部により警告灯が点灯される。この結果、測定者は、少なくとも測定位置が適切か否かを確認することが可能となる。
 また、生体音測定部1100の部品数を減らすことができるため、低コストの生体音測定部を製造することが可能となる。また、生体音測定部1100の軽量化も可能となり、生体音の測定感度を向上させることができる。
 また、実施の形態5における生体音測定部1100も、実施の形態3と同様に、スピーカ等の音出力部を備えてもよい。
 さらに、実施の形態5においても、実施の形態3と同様に、方向検出部1101および発光部1102~1105は、生体音測定部1100以外に配置されていてもよい。
 (実施の形態6)
 図24は、実施の形態6における生体音検査装置1300の処理の流れの一例を示す図である。
 以下、実施の形態4と同様の構成については、同じ符号を用い、説明を省略する。
 実施の形態6における生体音検査装置1300は、実施の形態4における生体音検査装置1300と同様に、例えば図18に示す処理の流れを実行する。しかし、S1401の処理において特徴的な処理を実行する。
 そこで、図24を用いて、実施の形態6における生体音検査装置1300が、図18におけるS1401において、基準パワ比と測定した肺音のパワ比との差分を算出する際の処理の流れを説明する。
 判断部2502は、基準パワ比を設定した時点と、生体音を再測定しようとする時点との体型を示す体型指標値と、記録部106にあらかじめ記録されている補正式とに基づいて、基準パワ比を補正する(S2000)。補正方法の詳細については、後述する。
 さらに判断部2502は、S2001において、補正された基準パワ比とS1400で算出したパワ比との差分を算出し、この差分値に基づいて比較処理を実施する。
 以下に、S2000における補正方法について説明する。
 体型指標値が年齢である場合、補正式は、例えば(式1)となる。
 NewPowR=OrgPowR-0.583*δY    (式1)
 NewPowRは補正後の基準パワ比であり、OrgPowRは、最初に設定された基準パワ比であり、δYは、基準パワ比が設定された時点から再測定するまでの経過年数である。例えば、最初に設定された日から半年経過していれば、δY=0.5となる。
 仮に、10歳の子供について、最初に設定した基準パワ比が-8dBであり、基準パワ比を設定してから半年後に再測定する場合、基準パワ比は-8.2915dB(-8-0.583*0.5)に補正される。
 なお、体型指標値が年齢である場合は、生体音検査装置1300は、例えばあるユーザについて最初に測定する際に、ユーザが年齢を入力できるインタフェース部を有し、記録部106に体型指標値として記録しておけばよい。
 また、測定するごとにそのインタフェース部を介して年齢情報を更新してもよいし、上記の例のように測定日と年齢の対応がわかるように記録部106に記録しておき、次の測定日との差分から次の測定時の年齢を判断してもよい。
 (式1)の係数-0.583は、図25に示す、年齢と、肺音の100Hz以上かつ200Hz以下のパワ比との回帰直線における傾きである。
 年齢とパワ比とには、有意な相関関係(相関係数=-0.495、有意確率<0.001)が認められる。図25における回帰直線は、例えば(式2)となる。
 PowR=-0.583*Y-2.252          (式2)
 PowRは肺音の100Hz以上かつ200Hz以下のパワ比であり、Yは年齢である。
 また、基準パワ比の補正式は、2次以上の回帰曲線から導出しても構わない。仮に、回帰曲線がPowR=f1(Y)とすると、補正式は(式3)のようになる。
 NewPowR=OrgPowR+(f1(Y2)-f1(Y1))  (式3)
 なお、Y1は最初に基準パワ比を設定した時の年齢であり、Y2は再測定する時の年齢である。
 また、f1(Y)は予測式の一例であり、f1(Y1)およびf1(Y2)は、第一予測パワ比および第二予測パワ比の一例である。
 なお、成長による体型の変化は思春期辺りで鈍化するため、パワ比と年齢の回帰直線の傾きから補正式を作る場合、例えば15歳以下の子供に対して適用するなどの対象年齢を定めてもよい。
 また、基準パワ比の補正は、身長による体型指標値と補正式とから算出してもよい。前述の図20は、肺音の100Hz以上かつ200Hz以下のパワ比と身長との相関図である。この場合、身長とパワ比の回帰直線は、例えば(式4)となる。
 PowR=-0.102*H+5.91          (式4)
 Hは身長(cm)である。なお、身長を体型指標値とする場合も、生体音検査装置1300はインタフェース部を有し、それを介してユーザが身長を入力してもよい。また、インタフェース部が、例えば身長測定機器と接続されることで、ユーザの身長を取得してもよい。もしくはSDカードなどの外部メモリから、インタフェース部を介して測定時の身長を読み込んでもよい。
 この結果、身長を用いた基準パワ比の補正式は、例えば(式5)のようになる。
 NewPowR=OrgPowR-0.102*δH     (式5)
 δHは、最初に基準パワ比を設定した時から再測定するまでの身長差である。例えば、ある子供が120cmの時に設定した基準パワ比が-5dBであり、130cmになった時に生体音を再測定する場合、基準パワ比は、-6.02dB(-5-0.102*10)に補正される。
 なお、身長による2次以上の回帰曲線から基準パワ比の補正式を導出しても構わない。この場合、補正式は(式6)のようになる。
 NewPowR=OrgPowR+(f2(H2)-f2(H1))  (式6)
 関数f2は、肺音の100Hz以上かつ200Hz以下のパワ比と身長とについての回帰曲線であり、予測式の一例である。また、H1は最初に基準パワ比を設定した時の身長であり、H2は生体音を再測定する際の身長である。
 また、f2は予測式の一例であり、f2(H1)およびf2(H2)は、第一予測パワ比および第二予測パワ比の一例である。
 また、基準パワ比の補正は、体表面積による体型指標値と補正式とから算出してもよい。図26は、体表面積と肺音の100Hz以上かつ200Hz以下のパワ比との相関の一例を示す相関図である。
 なお、体表面積は、(式7)を用いて身長と体重から算出した予測値を用いているが、他の予測式を用いても構わない。また、身長および体重は、上記で記載した通り、インタフェース部から取得すればよい。
 BSA=H^(0.663)*W^(0.444)*0.008883  (式7)
 BSAは体表面積(m^2)であり、Hは身長(cm)、Wは体重(kg)である。図26において、体表面積とパワ比とには、有意な相関関係(相関係数=-0.518、有意確率<0.001)が認められる。この場合、回帰直線は、例えば(式8)となる。
 PowR=-6.947*BSA-0.416        (式8)
 従って、体表面積を用いた基準パワ比の補正式は、例えば(式9)のようになる。
 NewPowR=OrgPowR-6.947*δBSA   (式9)
 δBSAは、最初に基準パワ比を設定した時と再測定時との体表面積の差である。例えば、ある子供が1.0m^2の体表面積の時に設定した基準パワ比が-9dBであり、体表面積が1.1m^2になった時に生体音を再測定する場合、基準パワ比は、-9.6947dB(-9-6.947*0.1)に補正される。
 なお、体表面積による2次以上の回帰曲線から基準パワ比の補正式を導出しても構わない。この場合、補正式は(式10)のようになる。
 NewPowR=OrgPowR+(f3(BSA2)-f3(BSA1))(式10)
 関数f3は、肺音の100Hz以上かつ200Hz以下のパワ比と体表面積についての回帰曲線であり、BSA1は最初に基準パワ比を設定した時の体表面積であり、BSA2は再測定する時の体表面積である。
 また、f3は予測式の一例であり、f3(BSA1)およびf3(BSA2)は、第一予測パワ比および第二予測パワ比の一例である。
 ここで、身長または体表面積による補正であれば、各個人の成長の度合いに応じた補正を行うことができる。また、年齢等による制限も考慮する必要はない。
 同様の手法を用いれば、体重またはBMIを用いた基準パワ比の補正も可能である。一方、年齢による補正であれば、一度年齢を設定すれば、再測定の際には、生体音検査装置が経過時間を自動で算出することが可能なため、測定のたびに身長および体重等を入力する必要がなく、測定者による煩わしい操作が不要となる。また、入力ミスによる間違いも回避することができる。
 なお、基準パワ比が設定された時点の年齢等の体型指標値は第一体型指標値の一例であり、再測定の時点の年齢等の体型指標値は第二体型指標値の一例である。また、δY、δH、およびδBSAのそれぞれは、体型差分値の一例である。
 以上のようにして、基準パワ比を設定してから長時間が経過し、体型が変化して肺音の伝播する距離が変化したとしても、体型指標値による基準パワ比の補正が可能となる。この結果、医療機関に頻繁に行くことができず、長期間基準パワ比を更新することができなくても、在宅での日々の生体音管理が可能となる。
 なお、上記で説明した回帰直線および補正式は一例であって、これに限ったものではなく、他の係数および定数から構成される式であってもよい。これら数値は所定の実験において算出された係数であって、体格の増大に従ってパワ比は減少していくため、回帰直線から導出される補正式の場合、傾き係数が負数であればほぼ同様に使用することができると考えられる。
 また、補正式は、複数の体型指標値から構成される式であってもよい。この場合、補正式は、例えば、複数の体型指標値とパワ比の重回帰分析を用いて求めてもよい。さらに、補正式は、性別で異なる構成であってもよい。
 上記では、パワ比の表現について、自然対数を用いたデシベル表記を想定しているが、自然対数を用いない場合は、上記の内容に応じた修正が必要となる。
 (その他の変形例)
 なお、本発明を上記実施の形態に基づいて説明してきたが、本発明は、上記の実施の形態に限定されない。
 例えば、生体音検査装置100および1300による測定の目的となる生体音は、肺音および心音以外であってもよい。例えば、生体内の所定の箇所を流れる血流音が測定の目的であってもよい。
 この場合、生体音検査装置100または1300によれば、測定された、周波数帯域または測定位置の互いに異なる2種類の生体音から、当該測定位置が、目的となる血流音の測定に適しているか否かを判断することが可能である。
 さらに、以下のような場合も本発明に含まれる。
 (1)上記の各装置の全部、もしくは一部を、マイクロプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)、ハードディスクユニットなどから構成されるコンピュータシステムで構成した場合。前記RAMまたはハードディスクユニットには、上記各装置と同様の動作を達成するコンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムに従って動作することにより、各装置はその機能を達成する。
 (2)上記の各装置を構成する構成要素の一部または全部は、一つのシステムLSI(Large Scale Integration(大規模集積回路))から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。前記RAMには、上記各装置と同様の動作を達成するコンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムに従って動作することにより、システムLSIは、その機能を達成する。
 (3)上記の各装置を構成する構成要素の一部または全部は、各装置に脱着可能なICカードまたは単体のモジュールから構成されているとしてもよい。前記ICカードまたは前記モジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。前記ICカードまたは前記モジュールは、上記の超多機能LSIを含むとしてもよい。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、前記ICカードまたは前記モジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有するとしてもよい。
 (4)本発明は、上記に示すコンピュータの処理で実現する方法であるとしてもよい。また、本発明は、これらの方法をコンピュータにより実現するコンピュータプログラムであるとしてもよいし、前記コンピュータプログラムからなるデジタル信号であるとしてもよい。
 また、本発明は、前記コンピュータプログラムまたは前記デジタル信号をコンピュータ読み取り可能な記録媒体に記録したものとしてもよい。コンピュータ読み取り可能な記録媒体は例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blu-ray Disc)、半導体メモリなどである。また、本発明は、これらの記録媒体に記録されている前記デジタル信号であるとしてもよい。
 また、本発明は、前記コンピュータプログラムまたは前記デジタル信号を、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送するものとしてもよい。
 また本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、前記メモリは、上記コンピュータプログラムを記憶しており、前記マイクロプロセッサは、前記コンピュータプログラムに従って動作するとしてもよい。
 また前記プログラムまたは前記デジタル信号を前記記録媒体に記録して移送することにより、または前記プログラムまたは前記デジタル信号を、前記ネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施するとしてもよい。
 (5)上記実施の形態および上記変形例をそれぞれ組み合わせるとしてもよい。
 以上のように、本発明に係る生体音検査装置は、生体音測定に不慣れな人でも、正確な位置で生体音を測定することができるという効果ある。従って、病院等で、医師による外来の診察または入院患者の回診の前に、看護師が患者の生体音を事前に測定しておけば、診察時の医師による聴診の手間を省くこと、つまり、診察時間を短縮することが可能になる。
 また、遠隔医療等で、患者の近くに医師がいない場合にも、一般人が正しい位置で生体音を測定することが可能なため、測定した生体音を医師に伝送すれば、問診以上のより詳細な診察が受けることができる。
 さらには、慢性疾患等の在宅管理でも、一般人が正確な聴診位置で生体音を測定することが可能となる。従って、医師は、信頼性の高い日々の生体音を確認することができるため、治療経過の確認および疾病の憎悪の検知など、外来のみの診察では困難だった慢性疾患の管理が容易になる。
 100,1300  生体音検査装置
 101,1100,1301  生体音測定部
 102,1302  増幅部
 103,1303  A/D処理部
 104,1304  信号処理部
 105  制御部
 106  記録部
 107  表示部
 201  ダイヤフラム部
 202  空間部
 203  マイクロフォン
 204  リード線
 205  充填部
 1101  方向検出部
 1102,1103,1104,1105  発光部
 2300 パワ比較部
 2301 パワ算出部
 2302 極値検出部
 2303、2402 共通時間区間検出部
 2304、2403、2502 判断部
 2401 雑音区間検出部
 2501 パワ比算出部

Claims (22)

  1.  被測定者の生体の内部を伝播する振動に基づく生体音を測定する生体音測定部と、
     前記生体音測定部によって同一の期間に測定された、互いに異なる2種類の生体音のうちの一方である第一生体音のパワ、および、前記2種類の生体音のうちの他方である第二生体音のパワを算出するパワ算出部と、
     前記パワ算出部により算出された前記第一生体音のパワである第一パワと前記第二生体音のパワある第二パワとを比較し、前記第一パワと前記第二パワとの比または差を示す比較結果を算出するパワ比較部と、
     前記パワ比較部により算出された前記比較結果と、閾値とを比較することで、前記生体音測定部による生体音の測定位置が適切であるか否かを判断する判断部と
     を備える生体音検査装置。
  2.  前記生体音測定部は、
     前記生体の第一部位で生体音を測定することで、前記第一生体音を測定する第一測定部と、
     前記生体の、前記第一部位とは異なる第二部位で生体音を測定することで、前記第二生体音を測定する第二測定部とを有し、
     前記パワ比較部は、所定の周波数帯域における前記第一パワと前記第二パワとの比であるパワ比を示す前記比較結果を算出し、
     前記判断部は、(a)前記パワ比から所定の基準パワ比を減算した結果である差分値が、前記閾値である第一閾値以上である場合、および、(b)前記差分値が、前記第一閾値未満の値である第二閾値以下である場合に、前記第二生体音の測定位置が不適切であると判断する
     請求項1記載の生体音検査装置。
  3.  前記第一測定部は、前記第一部位である胸骨切痕の位置で生体音を測定することで、前記第一生体音を測定し、
     前記第二測定部は、前記第二部位である胸壁上の位置で生体音を測定することで、前記第二生体音を測定する
     請求項2記載の生体音検査装置。
  4.  さらに、前記判断部により前記第二生体音の測定位置が不適切であると判断された場合、前記被測定者または測定者に対して、前記測定位置の変更の指示を表示する表示部を備え、
     前記表示部は、
     前記判断部による判断結果が、前記差分値が前記第一閾値以上であることを示す場合、前記測定位置を、前記生体の中心からより遠い位置に変更させるための指示を表示し、
     前記判断結果が、前記差分値が前記第二閾値以下であることを示す場合、前記測定位置を前記生体の中心により近い位置に変更させるための指示を表示する
     請求項3記載の生体音検査装置。
  5.  前記表示部は、少なくとも一つの発光部を備え、
     前記少なくとも一つの発光部は、前記判断部により前記第二生体音の測定位置が不適切であると判断された場合、発光することで前記指示を表示する
     請求項4記載の生体音検査装置。
  6.  さらに、所定の方向を検知する方向検出部を備え、
     前記方向検出部は、前記判断部により前記第二生体音の測定位置が不適切であると判断された場合、前記所定の方向である前記生体の上半身から下半身に向かう方向を検出し、
     前記表示部は、
     前記少なくとも一つの発光部を含む複数の発光部を有し、
     前記判断部による判断結果が、前記差分値が前記第一閾値以上であることを示す場合、前記複数の発光部のうちの前記第二測定部を通る軸であって、検出された前記所定の方向に平行な軸よりも右側または左側に位置する第一発光部を発光させ、
     前記判断結果が、前記差分値が前記第二閾値以下であることを示す場合、前記複数の発光部のうちの、前記軸を挟んで前記第一発光部とは反対側に位置する第二発光部を発光させる
     請求項5記載の生体音検査装置。
  7.  前記判断部は、前記基準パワ比が設定された時点の、前記被測定者の体型指標値である第一体型指標値と、前記第一生体音および前記第二生体音を測定する時点の、前記被測定者の前記体型指標値である第二体型指標値と、あらかじめ設定された補正式とを用いて補正する
     請求項6記載の生体音検査装置。
  8.  前記補正式は、前記第一体型指標値と前記第二体型指標値との差分である体型差分値と、所定の係数を積算した値を補正前の前記基準パワ比に加算する式である
     請求項7記載の生体音検査装置。
  9.  前記補正式は、補正差分値を前記基準パワ比に加算する式であり、
     前記補正差分値は、第一予測パワ比と第二予測パワ比との差分を示す値であり、
     前記第一予測パワ比は、前記体型指標値から前記パワ比を予測する予測式に基づいて、前記第一体型指標値から予測される値であり、
     前記第二予測パワ比は、前記予測式に基づいて、前記第二体型指標値から予測される値である
     請求項7記載の生体音検査装置。
  10.  前記第一体型指標値および前記第二体型指標値は、身長、年齢、体重、体表面積、および、ボディ・マス・インデックスのいずれかである
     請求項7~9のいずれか一項に記載の生体音検査装置。
  11.  さらに、前記差分値の符号を反転させた値を用いて、前記第二生体音を増幅する増幅部を備える
     請求項1~10のいずれか一項に記載の生体音検査装置。
  12.  前記パワ算出部は、(e)前記第一生体音である、第一周波数帯域における、測定された前記生体音のパワを算出することで、前記第一パワを算出し、(f)前記第二生体音である、前記第一周波数帯域とは異なる第二周波数帯域における、測定された前記生体音のパワを算出することで、前記第二パワを算出し、
     前記パワ比較部は、
     前記第一パワの時系列データにおける極大値である第一極大値と前記第一極大値を含む第一時間区間との組を少なくとも一つ検出し、かつ、前記第二パワの時系列データにおける極大値である第二極大値と前記第二極大値を含む第二時間区間との組を少なくとも一つ検出する極値検出部と、
     少なくとも一つの前記第一時間区間と、少なくとも一つの前記第二時間区間との間で共通する時間区間である共通時間区間を検出する共通時間区間検出部とを有し、
     前記第一パワと前記第二パワとの差である、前記共通時間区間に含まれる前記第一極大値と前記第二極大値との差を示す前記比較結果を算出し、
     前記判断部は、前記比較結果に示される差が前記閾値以下の場合、前記生体音の測定位置が不適切であると判断する
     請求項1記載の生体音検査装置。
  13.  さらに、前記生体音の第三周波数帯域に含まれるパワが所定値以下である低雑音区間を検出する雑音区間検出部を備え、
     前記判断部は、前記共通時間区間検出部により、前記低雑音区間内で前記共通時間区間が検出されない場合、前記測定位置が適切であると判断する
     請求項12記載の生体音検査装置。
  14.  さらに、前記判断部により前記測定位置が不適切であると判断された場合、前記被測定者または測定者に対して、前記測定位置の変更の指示を表示する表示部を備える
     請求項12または13記載の生体音検査装置。
  15.  前記生体音は所定の骨の近傍の所定位置において測定されるべき音であり、
     前記表示部は、前記判断部により前記測定位置が不適切であると判断された場合、前記測定位置を前記所定の骨から離れる方向に変更する指示を表示する
     請求項13に記載の生体音検査装置。
  16.  前記表示部は、少なくとも一つの発光部を備え、
     前記少なくとも一つの発光部は、前記判断部により前記測定位置が不適切であると判断された場合、発光することで前記指示を表示する
     請求項14または15に記載の生体音検査装置。
  17.  さらに、所定の方向を検知する方向検出部を備え、
     前記方向検出部は、前記判断部により前記測定位置が不適切と判断された場合、前記所定の方向である前記生体の上半身から下半身に向かう方向を検出し、
     前記表示部は、
     前記少なくとも一つの発光部を含む複数の発光部を有し、
     前記判断部により前記測定位置が不適切と判断された場合、前記複数の発光部のうちの、最も前記所定の方向側に配置された発光部を発光させる
     請求項16記載の生体音検査装置。
  18.  前記第一周波数帯域は、前記第二周波数帯域よりも低い周波数成分を含む
     請求項12~17のいずれか一項に記載の生体音検査装置。
  19.  前記第三周波数帯域は、1kHz以下の肺音の周波数成分が含まれる帯域である
     請求項13~18のいずれか一項に記載の生体音検査装置。
  20.  被測定者の生体の内部を伝播する振動に基づく生体音を測定する生体音測定ステップと、
     前記生体音測定ステップにおいて同一の期間に測定された、互いに異なる2種類の生体音のうちの一方である第一生体音のパワ、および、前記2種類の生体音のうちの他方である第二生体音のパワを算出するパワ算出ステップと、
     前記パワ算出ステップにおいて算出された前記第一生体音のパワである第一パワと前記第二生体音のパワある第二パワとを比較し、前記第一パワと前記第二パワとの比または差を示す比較結果を算出するパワ比較ステップと、
     前記パワ比較ステップにおいて算出された前記比較結果と、閾値とを比較することで、前記生体音測定ステップにおける生体音の測定位置が適切であるか否かを判断する判断ステップと
     を含む生体音検査方法。
  21.  被測定者の生体の内部を伝播する振動に基づく生体音を測定する生体音測定ステップと、
     前記生体音測定ステップにおいて同一の期間に測定された、互いに異なる2種類の生体音のうちの一方である第一生体音のパワ、および、前記2種類の生体音のうちの他方である第二生体音のパワを算出するパワ算出ステップと、
     前記パワ算出ステップにおいて算出された前記第一生体音のパワである第一パワと前記第二生体音のパワある第二パワとを比較し、前記第一パワと前記第二パワとの比または差を示す比較結果を算出するパワ比較ステップと、
     前記パワ比較ステップにおいて算出された前記比較結果と、閾値とを比較することで、前記生体音測定ステップにおける生体音の測定位置が適切であるか否かを判断する判断ステップと
     をコンピュータに実行させるためのプログラム。
  22.  同一の期間に測定された、互いに異なる2種類の生体音のうちの一方である第一生体音のパワ、および、前記2種類の生体音のうちの他方である第二生体音のパワを算出するパワ算出部と、
     前記パワ算出部により算出された前記第一生体音のパワである第一パワと前記第二生体音のパワある第二パワとを比較し、前記第一パワと前記第二パワとの比または差を示す比較結果を算出するパワ比較部と、
     前記パワ比較部により算出された前記比較結果と、閾値とを比較することで、前記生体音測定部による生体音の測定位置が適切であるか否かを判断する判断部と
     を備える集積回路。
PCT/JP2011/001408 2010-03-18 2011-03-10 生体音検査装置 WO2011114669A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012505489A JP5508517B2 (ja) 2010-03-18 2011-03-10 生体音検査装置、生体音検査方法、プログラム及び集積回路
EP11755862.7A EP2548504B1 (en) 2010-03-18 2011-03-10 Biometric sound testing device
US13/319,861 US8702628B2 (en) 2010-03-18 2011-03-10 Physiological sound examination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-062324 2010-03-18
JP2010062324 2010-03-18

Publications (1)

Publication Number Publication Date
WO2011114669A1 true WO2011114669A1 (ja) 2011-09-22

Family

ID=44648784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001408 WO2011114669A1 (ja) 2010-03-18 2011-03-10 生体音検査装置

Country Status (4)

Country Link
US (1) US8702628B2 (ja)
EP (1) EP2548504B1 (ja)
JP (1) JP5508517B2 (ja)
WO (1) WO2011114669A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024390A (ja) * 2010-07-26 2012-02-09 Sharp Corp 生体測定装置、生体測定方法、生体測定装置の制御プログラム、および、該制御プログラムを記録した記録媒体
WO2015011923A1 (ja) * 2013-07-26 2015-01-29 パナソニック株式会社 生体音検査装置及び生体音検査方法
WO2019198770A1 (ja) * 2018-04-13 2019-10-17 オムロンヘルスケア株式会社 生体音測定装置、生体音測定支援方法、生体音測定支援プログラム
RU2720666C2 (ru) * 2015-02-03 2020-05-12 Конинклейке Филипс Н.В. Способы, системы и носимое устройство для получения множества показателей состояния здоровья
JP2022503484A (ja) * 2018-08-14 2022-01-12 ジ アサン ファウンデーション 心肺音を用いた情報獲得方法
WO2023136175A1 (ja) * 2022-01-12 2023-07-20 ソニーグループ株式会社 情報取得装置及び情報処理システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6604113B2 (ja) * 2015-09-24 2019-11-13 富士通株式会社 飲食行動検出装置、飲食行動検出方法及び飲食行動検出用コンピュータプログラム
AU2017285321A1 (en) * 2016-06-15 2019-01-17 Cvr Global, Inc. Method for detecting blockage in a fluid flow vessel
CN108652658A (zh) * 2017-03-31 2018-10-16 京东方科技集团股份有限公司 爆裂音识别方法及系统
KR102149748B1 (ko) * 2018-08-14 2020-08-31 재단법인 아산사회복지재단 심폐음 신호 획득 방법 및 장치
EP3701876A1 (en) 2019-02-27 2020-09-02 Koninklijke Philips N.V. Acoustic sensing apparatus and method
CN110074879B (zh) * 2019-05-07 2021-04-02 无锡市人民医院 一种多功能发声无线听诊装置及听诊提醒分析方法
US20220330912A1 (en) * 2019-09-17 2022-10-20 Dain Technology, Inc. Method, system, and non-transitory computer-readable recording media for analyzing breathing-related sound
KR102149753B1 (ko) * 2020-05-22 2020-08-31 재단법인 아산사회복지재단 심폐음 신호 획득 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512066A (ja) * 2000-10-06 2004-04-22 バイオメディカル・アコースティック・リサーチ・インコーポレイテッド 呼吸器の状態の音響検出
JP2007236534A (ja) * 2006-03-07 2007-09-20 Advanced Telecommunication Research Institute International Rr間隔指標を取得する方法およびシステム
JP2009240527A (ja) * 2008-03-31 2009-10-22 Yamaguchi Univ 心音周波数解析装置及び方法
JP2009540971A (ja) * 2006-06-26 2009-11-26 コロプラスト アクティーゼルスカブ 心血管音のマルチパラメータ分類

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394031B2 (en) 2000-10-06 2013-03-12 Biomedical Acoustic Research, Corp. Acoustic detection of endotracheal tube location
JP3604127B2 (ja) 2000-11-27 2004-12-22 日本電信電話株式会社 多チャネル音響信号収集装置
JP2005027751A (ja) 2003-07-08 2005-02-03 Konica Minolta Medical & Graphic Inc 生体音信号処理システム
US9770190B2 (en) * 2008-05-29 2017-09-26 Itamar Medical Ltd. Method and apparatus for examining subjects for particular physiological conditions utilizing acoustic information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004512066A (ja) * 2000-10-06 2004-04-22 バイオメディカル・アコースティック・リサーチ・インコーポレイテッド 呼吸器の状態の音響検出
JP2007236534A (ja) * 2006-03-07 2007-09-20 Advanced Telecommunication Research Institute International Rr間隔指標を取得する方法およびシステム
JP2009540971A (ja) * 2006-06-26 2009-11-26 コロプラスト アクティーゼルスカブ 心血管音のマルチパラメータ分類
JP2009240527A (ja) * 2008-03-31 2009-10-22 Yamaguchi Univ 心音周波数解析装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2548504A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024390A (ja) * 2010-07-26 2012-02-09 Sharp Corp 生体測定装置、生体測定方法、生体測定装置の制御プログラム、および、該制御プログラムを記録した記録媒体
WO2015011923A1 (ja) * 2013-07-26 2015-01-29 パナソニック株式会社 生体音検査装置及び生体音検査方法
JPWO2015011923A1 (ja) * 2013-07-26 2017-03-02 パナソニック株式会社 生体音検査装置及び生体音検査方法
US11096652B2 (en) 2013-07-26 2021-08-24 Panasonic Corporation Bioacoustic sound testing device and bioacoustic sound testing method
RU2720666C2 (ru) * 2015-02-03 2020-05-12 Конинклейке Филипс Н.В. Способы, системы и носимое устройство для получения множества показателей состояния здоровья
WO2019198770A1 (ja) * 2018-04-13 2019-10-17 オムロンヘルスケア株式会社 生体音測定装置、生体音測定支援方法、生体音測定支援プログラム
JP2019180988A (ja) * 2018-04-13 2019-10-24 オムロンヘルスケア株式会社 生体音測定装置、生体音測定支援方法、生体音測定支援プログラム
JP7006473B2 (ja) 2018-04-13 2022-01-24 オムロンヘルスケア株式会社 生体音測定装置、生体音測定支援方法、生体音測定支援プログラム
US11278258B2 (en) 2018-04-13 2022-03-22 Omron Healthcare Co., Ltd. Biological sound measuring device, biological sound measurement support method, and biological sound measurement support program
JP2022503484A (ja) * 2018-08-14 2022-01-12 ジ アサン ファウンデーション 心肺音を用いた情報獲得方法
WO2023136175A1 (ja) * 2022-01-12 2023-07-20 ソニーグループ株式会社 情報取得装置及び情報処理システム

Also Published As

Publication number Publication date
JPWO2011114669A1 (ja) 2013-06-27
US8702628B2 (en) 2014-04-22
EP2548504A4 (en) 2014-09-17
US20120059280A1 (en) 2012-03-08
EP2548504B1 (en) 2016-11-09
JP5508517B2 (ja) 2014-06-04
EP2548504A1 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5508517B2 (ja) 生体音検査装置、生体音検査方法、プログラム及び集積回路
JP5519778B2 (ja) 生体音検査装置、及び、生体音検査方法
US10349893B2 (en) Smartphone with telemedical device
Gross et al. The relationship between normal lung sounds, age, and gender
CN109273085B (zh) 病理呼吸音库的建立方法、呼吸疾病的检测系统及处理呼吸音的方法
JP5674646B2 (ja) 特定の生理学的状態について被験者を検査するために使用可能な音響情報を変更するための方法および装置
US20190313943A1 (en) Biological Monitoring Device
Ramanathan et al. Digital stethoscopes in paediatric medicine
WO2013089073A1 (ja) 情報解析装置、電子聴診器、情報解析方法、測定システム、制御プログラム、および、記録媒体
JP2024057015A (ja) 能動的聴診を遂行し音響エネルギー測定値を検出するためのシステム、デバイス、及び方法
Chamberlain et al. Mobile stethoscope and signal processing algorithms for pulmonary screening and diagnostics
JP2013123494A (ja) 情報解析装置、情報解析方法、制御プログラム、および、記録媒体
JP2013123495A (ja) 呼吸音解析装置、呼吸音解析方法、呼吸音解析プログラムおよび記録媒体
BRPI0921140B1 (pt) Sistema de diagnóstico de doenças em bovinos usando análise de auscuta
Zhou et al. Acoustic analysis of neonatal breath sounds using digital stethoscope technology
WO2017211866A1 (en) Method and system for measuring aortic pulse wave velocity
Awan et al. Use of a vortex whistle for measures of respiratory capacity
JP2013123496A (ja) 判定装置、電子聴診器、電子聴診システム、判定方法、判定プログラム、およびコンピュータ読み取り可能な記録媒体
WO2011120524A1 (en) Sound device for indications of health condition
Hayashi Detection of pneumothorax visualized by computer analysis of bilateral respiratory sounds
Rao et al. Tabla: An acoustic device designed for low cost pneumonia detection
JP5824608B2 (ja) 肺音分析装置
Nabi et al. Recommendations related to wheeze sound data acquisition
Yosef et al. Effect of airflow rate on vibration response imaging in normal lungs
RU2304928C2 (ru) Способ акустической диагностики очаговых изменений в легких человека

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012505489

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011755862

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011755862

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13319861

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE