WO2015011923A1 - 生体音検査装置及び生体音検査方法 - Google Patents
生体音検査装置及び生体音検査方法 Download PDFInfo
- Publication number
- WO2015011923A1 WO2015011923A1 PCT/JP2014/003884 JP2014003884W WO2015011923A1 WO 2015011923 A1 WO2015011923 A1 WO 2015011923A1 JP 2014003884 W JP2014003884 W JP 2014003884W WO 2015011923 A1 WO2015011923 A1 WO 2015011923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- band
- index value
- reflecting
- biological sound
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B7/00—Instruments for auscultation
- A61B7/003—Detecting lung or respiration noise
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/742—Details of notification to user or communication with user or patient ; user input means using visual displays
- A61B5/743—Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B7/00—Instruments for auscultation
- A61B7/02—Stethoscopes
- A61B7/04—Electric stethoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0204—Acoustic sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
- A61B5/087—Measuring breath flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
- A61B5/7257—Details of waveform analysis characterised by using transforms using Fourier transforms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7278—Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
Definitions
- the present invention relates to a biological sound inspection apparatus, and more particularly, to a biological sound inspection apparatus that supports estimation of a biological state by measuring a biological sound.
- Treatment of respiratory diseases such as asthma is often long-term.
- the basic treatment of asthma is to take anti-inflammatory drugs to control airway inflammation daily, and to take bronchodilators to control airway stenosis during seizures, and to maintain good airway control over the long term.
- Daily drugs may be a combination of anti-inflammatory and bronchodilators.
- the respiratory sound increases as the respiratory flow velocity increases and decreases as the physique increases, and an index value based on the respiratory sound that reduces these effects is known.
- respiratory sound is measured at two points, the neck and the chest, and the influence of the respiratory flow rate and the physique is reduced by using the power ratio between the neck and the chest.
- one of the plurality of index values predicts a high frequency from a band reflecting the respiratory flow velocity in the neck, and calculates the prediction residual to reduce the influence of the respiratory flow velocity.
- the biological sound inspection apparatus described in Patent Document 1 described above has a problem that the operation becomes complicated because two sensors for the neck and the chest are used.
- the chest close to the peripheral airway is suitable for detecting small changes in the airway state, so it can be assumed that the airway state can be estimated using only the chest sensor. Therefore, the influence of factors other than the desired airway state is large, and an index value that appropriately reflects the airway state cannot be obtained.
- two sensors for the chest and the neck are necessary.
- the present invention has been made in view of such circumstances, and a biological sound inspection apparatus and a biological sound inspection that can obtain an index value that appropriately reflects an airway state while reducing the number of sensors that measure the biological sound. It aims to provide a method.
- the biological sound test apparatus of the present invention includes a band power calculation unit that calculates band power in a predetermined section for a plurality of predetermined frequency bands based on the body sound, and 250 of the band powers of the predetermined plurality of frequency bands.
- a reference power calculation unit that calculates a reference power based on the band power of a band that includes at least a portion of any frequency in the range of 1050 Hz or less and any frequency in the range of 1250 to 1550 Hz, and the reference power
- An index value calculation unit that calculates at least one index value based on band power of the predetermined plurality of frequency bands.
- the above configuration provides an index value that appropriately reflects the airway condition.
- the index value calculation unit calculates a prediction value for each band based on at least the reference power, and subtracts the prediction value for each band from the band power for each band.
- a corrected power calculation unit that calculates corrected power for each band, and calculates an index value based on the corrected power.
- the plurality of bands for performing the correction include 700 Hz and 1400 Hz.
- the index value calculation unit performs correction for one band based on each of two or more types of reference power, and sets each corrected power as an index value.
- the two or more types of reference powers are: a reference power based on a weighted addition of the respiratory flow velocity reflecting power and the specific change reflecting power, and the respiratory flow velocity reflecting power and the specific change reflecting power.
- Reference power based on weighted subtraction.
- a display unit is further provided to display the index value.
- the display unit plots two or more types of index values along the time axis.
- the display unit displays two types of index values as a two-dimensional map and displays the measurement points connected in time series.
- the index value calculation unit calculates an index value based on a linear sum of two or more corrected powers.
- the predicted value calculation unit predicts a standard value of the band power corresponding to the reference power based on a measurement sample in a standard state.
- the band power calculation unit includes a frequency analysis unit that performs frequency analysis on the measured body sound, a section specification unit that specifies a section to be analyzed from a plurality of breathing sections, and a frequency that is generated by the frequency analysis unit.
- a section representative band power calculating section that calculates a representative band power in the section designated by the section designation section for a predetermined plurality of frequency bands based on the analyzed body sound.
- the body sound measurement unit that measures the body sound measures the body sound at one point on the chest of the body.
- the respiratory flow rate reflecting power is calculated based on the band power of the band reflecting the respiratory flow rate including at least part of any frequency in the range of 250 or more and 1050 Hz or less, and any of the ranges of 1250 or more and 1550 Hz or less
- Specific change reflected power is calculated based on the band power of a band reflecting a specific change of a living body including at least a part of the frequency of the living body, and the reference is calculated based on the respiratory flow velocity reflected power and the specific change reflected power Ask for power.
- the band reflecting the specific change is a band where the difference between the power after administration of the bronchodilator and the power after administration of the anti-inflammatory drug is large.
- the biological sound inspection method of the present invention includes a step of calculating band power in a predetermined section for a plurality of predetermined frequency bands based on the body sound, and a range of 250 to 1050 Hz or less of the predetermined plurality of frequency bands. Calculating a reference power based on any frequency and a band including at least a part of any frequency in the range of 1250 to 1550 Hz, and based on the reference power and the band power of the predetermined frequency bands Calculating at least one index value.
- the index value that appropriately reflects the airway condition can be obtained by the above method.
- the present invention it is possible to obtain an index value that appropriately reflects the airway state while reducing the number of sensors that measure body sound. Further, since the number of sensors can be reduced, the operation can be simplified.
- the block diagram which shows schematic structure of the biological sound test
- inspection apparatus of FIG. The figure which shows the example of the zone
- the graph which shows the frequency dependence of the power after performing the correction
- inspection apparatus of FIG. Box-and-whisker diagram showing frequency dependence of power distribution after correction (b) in the biological sound test apparatus of FIG.
- inspection apparatus of FIG. Box-and-whisker diagram showing frequency dependence of power distribution after correction by correction (b) in the biological sound test apparatus of FIG.
- inspection apparatus of FIG. The figure which shows the example of the analysis map by the some parameter
- inspection apparatus of FIG. The figure which shows the example of the display of the index value in the biological sound test
- inspection apparatus of FIG. The figure which
- FIG. 1 is a block diagram showing a schematic configuration of a biological sound inspection apparatus according to an embodiment of the present invention.
- the biological sound test apparatus 1 includes a biological sound measurement unit 7, a band power calculation unit 2, a reference power calculation unit 8, an index value calculation unit 5, a display unit 6, Is provided.
- the reference power calculation unit 8 includes a respiratory flow velocity reflected power calculation unit 3 and a specific change reflected power calculation unit 4.
- the biological sound measuring unit 7 is a measuring device with a sensor such as an electronic stethoscope, for example, and measures the biological sound at one point on the chest of the living body.
- the body sound is acquired in real time.
- a recorded body sound may be acquired with a recording function.
- a pasting type or embedded type sensor may be used.
- the band power calculation unit 2 calculates band power in a predetermined section for a plurality of predetermined frequency bands based on the body sound, and performs frequency analysis on the body sound measured by the body sound measurement unit 7.
- the section designating unit 203 for designating a section to be analyzed from a plurality of breathing sections, and the body sound subjected to frequency analysis by the frequency analyzing unit 202, the section designating unit 203 for a predetermined plurality of frequency bands.
- a section representative band power calculation unit 204 that calculates the representative band power in the section specified by.
- the frequency analysis unit 202 performs frequency analysis using, for example, fast Fourier transform.
- the section specifying unit 203 specifies a section to be used in the analysis of the section representative band power calculating unit 204 described later.
- the section to be specified only needs to be inhaled, the sound level is appropriate, and the noise is low, and does not require doctor's expertise. It can be automatically extracted by the program to satisfy the above conditions. Further, the breathing interval may be manually specified by GUI (Graphical User Interface) or the like.
- the section representative band power calculation unit 204 is specified by the section specifying unit 203 for each band of, for example, 15 bands (center frequencies 100 Hz, 200 Hz, 300 Hz,..., 1300 Hz, 1400 Hz, 1500 Hz and a bandwidth of 100 Hz).
- the power representative of the interval is calculated.
- the power value of the analysis frame unit of the frequency analysis is averaged over the analysis frames included in the section.
- the band of the center frequency 100 Hz is 50 to 150 Hz
- the band of the center frequency 200 Hz is 150 to 250 Hz
- the band of the center frequency 300 Hz is 250 to 350 Hz
- the band of the center frequency 1300 Hz since the width of each band is 100 Hz, the band of the center frequency 100 Hz is 50 to 150 Hz, the band of the center frequency 200 Hz is 150 to 250 Hz, the band of the center frequency 300 Hz is 250 to 350 Hz, and the band of the center frequency 1300 Hz.
- the center frequency 1400 Hz band is 1350 to 1450 Hz
- the center frequency 1500 Hz band is 1450 to 1550 Hz.
- the frequency band “15” is merely an example, and it may be more or less than 15 bands. Further, the bandwidth is not limited to 100 Hz, and may be variable for each band.
- the section representative band power calculation unit 204 similarly calculates section representative band powers of eight bands having center frequencies of 300 Hz, 400 Hz, 500 Hz, 600 Hz, 700 Hz, 800 Hz, 900 Hz, and 1000 Hz. These eight bands are bands that reflect the respiratory flow rate.
- the frequency band “8”, which is a band reflecting the respiratory flow velocity is an example, and it may be more or less than the eight bands.
- section representative band power calculation unit 204 similarly calculates section representative band power of three bands having center frequencies of 1300 Hz, 1400 Hz, and 1500 Hz. These three bands are bands that reflect specific changes in the living body. Specifically, this is a band where the difference between the power after administration of the bronchodilator and the power after administration of the anti-inflammatory drug is large. Note that the frequency band “3”, which is a band reflecting a specific change in the living body, is an example, and may be more or less than the three bands.
- the section representative band power calculation unit 204 calculates the band power of the 15 bands at the center frequency of 100 Hz to 1500 Hz, and then outputs the calculated band power of the 15 bands to the corrected power calculation unit 503 of the index value calculation unit 5.
- the section representative band power calculation unit 204 calculates the band power of the eight bands at the center frequency of 300 Hz to 1000 Hz, and then calculates the calculated band power of the eight bands to the respiratory flow velocity reflected power calculation unit 3 included in the reference power calculation unit 8. Output to. Further, the section representative band power calculation unit 204 calculates the band power of the three bands at the center frequency of 1300 Hz to 1500 Hz, and then calculates the band power of the calculated three bands to a specific change reflected power calculation unit included in the reference power calculation unit 8 4 is output.
- the breathing flow rate reflecting power calculation unit 3 calculates the breathing flow rate reflecting power by taking the average of the band powers of the eight bands that are the bands reflecting the breathing flow rate.
- the band reflecting the respiratory flow rate in the respiratory flow rate reflecting power calculation unit 3 is set to a frequency of 250 to 1050 Hz (300 to 1000 Hz in terms of the central frequency), but in the range of 250 to 1050 Hz. Any band that includes at least a part of any frequency may be used.
- the specific change-reflecting power calculation unit 4 calculates the specific change-reflecting power by taking an average of the band powers of the three bands, which are bands reflecting specific changes other than the respiratory flow velocity.
- the band reflecting the specific change in the specific change reflection power calculation unit 4 is set to a frequency of 1250 to 1550 Hz (1300 to 1500 Hz in terms of the center frequency), but 1250 to 1550 Hz. Any band that includes at least part of any frequency in the range may be used.
- the calculation for calculating the respiratory flow velocity reflecting power and the calculation of the specific change reflecting power may be a calculation other than the average.
- the index value calculation unit 5 is calculated by the respiration flow rate reflection power calculated by the respiration flow rate reflection power calculation unit 3 and the specific change reflection power and band power calculation unit 2 calculated by the specific change reflection power calculation unit 4. At least one index value is calculated from the band power, a prediction coefficient holding unit 501 that holds a prediction coefficient for each band for predicting a prediction value for each band, a respiratory flow velocity reflecting power, a specific value Based on the change reflected power and the prediction coefficient for each band, a predicted value calculation unit 502 that calculates a predicted value for each band, and subtracts the predicted value for each band from the representative band power for each band, thereby correcting each band.
- an individual profile for example, physique, age, medication status, etc.
- the breathing sound is affected by the power level of each band depending on the magnitude of the respiratory flow velocity, but the degree of each band is different, and the influence of factors other than the respiratory flow velocity is also different for each band.
- the information on the airway state that the user wants to know remains in the difference between the predicted value and the measured value (predicted residual), and the influence of other factors is not affected.
- the standard power value corresponding to the reference power is predicted using the power in an easy band as the reference power.
- the reference power may be calculated based on the respiratory flow velocity reflected power calculated by the respiratory flow velocity reflected power calculation unit 3 and the specific change reflected power calculated by the specific change reflected power calculation unit 4. That is, the reference power is calculated by the reference power calculation unit 8.
- the display unit 6 includes display means such as a liquid crystal display and an organic EL display, and displays the index value in a visually recognizable form. If displayed together with stored past index value samples, comparison between index values can also be performed. For example, two or more index values are plotted along the time axis. In addition, two index values are displayed as a two-dimensional map, and are displayed by connecting measurement points along a time series.
- display means such as a liquid crystal display and an organic EL display
- FIG. 2 is a flowchart for explaining the operation of the biological sound inspection apparatus 1 according to the present embodiment.
- the band power calculation unit 2 calculates band power in a predetermined section for a plurality of predetermined frequency bands based on the body sound (step S1). That is, the band power calculation unit 2 includes a step of measuring a body sound at one point on the chest of a living body (a body sound measuring step), a step of performing a frequency analysis on the measured body sound (a frequency analysis step), and a plurality of breathing sections.
- a step for automatically specifying a section to be analyzed from GUI or the like based on a predetermined program (section specifying step), within a section specified for a plurality of predetermined frequency bands based on a body sound subjected to frequency analysis
- Steps for calculating the representative band power of are sequentially executed.
- the frequency band is 15 bands with a width of 100 Hz (hereinafter, simply referred to as “15 bands”) having a center frequency of 100, 200,..., 1500 Hz.
- the auscultation position of the chest includes not only the front surface of the body but also the back surface and the side surface.
- the band power calculation unit 2 calculates the band power of the body sound, and then, among the 15 bands, the band power of the center frequency 300 to 1000 Hz, which is a band that strongly reflects the respiratory flow velocity, and a specific change of the living body (for example, the airway)
- a band power having a center frequency of 1300 to 1500 Hz, which is a band that strongly reflects a change due to stenosis, or a difference between airway inflammation and airway stenosis) is output to the reference power calculation unit 8.
- the reference power calculation unit 8 calculates the reference power based on these band powers (step S2). That is, the reference power calculation unit 8 executes a reference power calculation step. Then, the calculated reference power is output to the index value calculation unit 5.
- the respiratory flow velocity reflected power calculation unit 3 calculates the respiratory flow velocity reflected power based on the band power of the center frequency of 300 to 1000 Hz. That is, the breathing flow rate reflecting power is calculated by taking the average of the bands that reflect the breathing flow rate out of the 15 bands. Then, the calculated respiratory flow velocity reflected power is output to the index value calculation unit 5.
- the specific change reflected power calculation unit 4 calculates the specific change reflected power based on the band power of the center frequency 1300 to 1500 Hz. That is, a specific change reflecting power is calculated by taking an average of bands reflecting a specific change among the 15 bands. Then, the calculated specific reflected power is output to the index value calculation unit 5.
- the index value calculation unit 5 is one or more based on the reference power calculated by the reference power calculation unit 8 (respiratory flow velocity reflection power and specific change reflection power) and the band power calculated by the band power calculation unit 2. Is calculated (step S3). That is, the index value calculation unit 5 reads a prediction coefficient for each band for predicting a prediction value for each band (prediction coefficient reading step), a respiratory flow velocity reflection power, a specific change reflection power, and a prediction coefficient for each band.
- a step of calculating a predicted value for each band (predicted value calculating step) and a step of calculating corrected power for each band by subtracting the predicted value for each band from the representative band power for each band (after correction) (Power calculation step) and a step of calculating at least one index value based on the corrected power for each band (index value calculation step) are sequentially executed.
- the index value calculated by the index value calculation unit 5 is obtained as a single corrected power or a linear sum of a plurality of corrected powers.
- step S1 a plurality of intake intervals may be specified, and in step S3, a representative value (median or the like) may be determined from index values for each specified interval.
- FIG. 3 is a diagram illustrating an example of a band reflecting the respiratory flow velocity.
- the horizontal axis indicates the band (center frequency), and the vertical axis indicates the partial regression coefficient with respect to the respiratory flow velocity.
- the measurement of the body sound was performed on both the neck and the chest, and at the same time, the respiratory flow rate was measured with a respiratory flow meter. In particular, chest sounds were measured in the second intercostal space on the right clavicle midline.
- the multiple regression analysis by the respiratory flow velocity and the height was performed with respect to the power for each measurement site and band, and the partial regression coefficient with respect to the respiratory flow velocity was obtained.
- the cervical power is highly dependent on the respiratory flow rate up to the high range, but the chest power is found to be less dependent on the respiratory flow rate in both the low and high ranges centering on 600 Hz.
- the band W1 reflecting the respiratory flow rate in the chest power is, for example, 300 to 1000 Hz.
- FIG. 4 is a diagram showing an example of a band reflecting a specific change in the airway state.
- the horizontal axis indicates a band (center frequency), and the vertical axis indicates an effect amount with respect to a specific change. This is the result of comparing the sound of breathing after administration of the group (20 people) improved by daily management drugs and the sound after administration of the group (19 people) whose trachea was dilated only by bronchodilators. The effect amount is obtained for each band. As shown in the figure, the effect amount is relatively large in the band W2 of 1300 to 1500 Hz.
- the power of breathing sound improved by daily management drugs tends to be higher than other bands compared to before taking medicine, and depending on the bronchodilator, the power is higher than other bands compared to before taking drugs. It is in a downward trend and moves in the opposite direction.
- FIG. 5 is a diagram illustrating an example of how correction is performed.
- 15 bands are corrected based on the reference power, and the index value is obtained from the corrected power of each band.
- the reference power is common to 15 bands.
- the 15 bands for correction include 700 Hz and 1400 Hz.
- FIG. 5 exemplifies correction of power with a center frequency of 700 Hz in particular.
- a standard value (band power value in a standard state) can be obtained by analyzing the relationship between the reference power based on a single band of 700 Hz and a plurality of bands.
- the analysis includes a method such as regression analysis, and in addition to the reference power, a parameter indicating the physique such as height and a parameter indicating the age may be added.
- the reference power may be divided into a plurality of zones according to the level, a representative value based on the least square method may be determined for each zone, and the representative value may be connected.
- These numerical values representing the relationship between the standard value of the reference power and the band power, such as a coefficient by regression analysis and a representative value for each zone, are called prediction coefficients.
- the respiratory flow velocity reflecting power is used as the reference power.
- the horizontal axis represents the reference power (dB)
- the vertical axis represents the 700 Hz band power value (dB).
- “dot” represents a measurement sample.
- two “black circles” represent the measured value P1 and the predicted value P2 that are noted for the sake of explanation.
- the predicted value P2 is a standard value predicted from the reference power.
- the prediction residual S obtained by taking the difference between the measured value P1 and the predicted value P2 is the corrected power.
- the difference from the standard state is expressed numerically.
- the reference power for correction (a) is used. This correction (a) reduces the influence of the respiratory flow velocity. It has been confirmed from the data that the prediction residual using the correction reference power has almost no respiratory flow velocity dependency, physique dependency, or age dependency.
- base_pow Fpow
- base_pow reference power
- Fpow respiratory flow velocity reflecting power
- the correction it is possible to use two or more reference powers.
- the reference power is increased by modifying the reference power equation (“white circle P3”)
- the predicted value increases as the reference power increases, but the single-band power remains unchanged.
- the prediction residual S decreases.
- the prediction residual S increases as the reference power decreases.
- the formulas for adding or subtracting a specific change-reflecting power in order to increase / decrease the reference power are formulas for the reference power for correction (b) and correction (c).
- the correction (b) is to reduce the influence of the respiratory flow velocity and the influence of the airway stenosis
- the correction (c) is to reduce the influence of the respiratory flow velocity and emphasize the influence of the airway stenosis.
- base_pow represents reference power
- Fpow represents respiratory flow velocity reflecting power
- Npow represents specific change reflecting power
- the specific reflected power is the band where power is reduced by the effect of bronchodilators (reducing airway stenosis) and the power is increased by the effect of anti-inflammatory drugs (reducing airway inflammation)
- correction (b) in which a specific change reflection power is weighted and added to the respiratory flow velocity reflection power, the corrected power increases due to the improvement of airway stenosis, and the corrected power tends to decrease due to the improvement of airway inflammation. It becomes.
- the correction (c) in which a specific change reflection power is weighted and subtracted from the respiratory flow velocity reflection power, the corrected power decreases due to improvement of airway stenosis, and the correction power increases due to improvement of airway inflammation. Tend to.
- the weights of the calculation formulas for correction (b) and correction (c) are adjusted so that changes due to ⁇ 2 stimulants are averaged to 0 in correction (b), and in anti-inflammatory drugs in correction (c). The change was about 0 on average.
- the weights of the correction (b) and the correction (c) are, for example, “0.3” for the correction (b) and “0.2” for the correction (c). Therefore, it is considered that the index value (b) obtained by the correction (b) mainly represents the degree of airway inflammation, and the index value (c) obtained by the correction (c) mainly represents the degree of airway stenosis. .
- an average value of power in a wide band (for example, 300 to 1500 Hz or 200 to 1500 Hz) including the respiratory velocity reflecting power band and the specific change reflecting power band may be used as the reference power.
- the band may be removed or may be interpolated from the surrounding band power.
- the index value can be used properly according to the content of medication.
- the frequency band “15” is merely an example, and other definitions may be used.
- correction is performed for two bands (700 Hz, 1400 Hz) based on the common reference power (correction (a)), and after each correction.
- power is used as an index value
- correction for one band is performed based on each of two or more types of reference power (for example, reference power for correction (b) and correction (c)).
- the corrected power may be used as an index value.
- two or more kinds of reference powers are a reference power based on a weighted addition of the respiratory flow velocity reflecting power and the specific change reflecting power, and a reference based on a weighted subtraction between the respiratory flow velocity reflecting power and the specific change reflecting power. Including power.
- FIG. 6 is a graph showing the frequency dependence of power (average value) after correction by correction (a).
- FIG. 7 is a box-and-whisker diagram showing the frequency dependence of the power distribution after correction (a).
- FIG. 8 is a graph showing the frequency dependence of the power (average value) after the correction by the correction (b).
- FIG. 9 is a box-and-whisker diagram showing the frequency dependence of the power distribution after correction by correction (b).
- FIG. 10 shows examples of drug types ((1) anti-inflammatory drugs, (2) combinations of anti-inflammatory drugs and bronchodilators, and (3) both anti-inflammatory drugs and drugs) and index values.
- the index value (a) is an index value that reduces the influence of the respiratory flow velocity
- the index value (b) is the index value that reduces the influence of the respiratory flow velocity and the influence of airway stenosis
- the index value (c) is The index value (d), which reduces the influence of respiratory flow velocity and emphasizes the influence of airway stenosis, is an average value of the index value (b) and the index value (c).
- index value (a) the direction of change in the index value before and after the administration for each case is gusset, but in the index value (b), a certain tendency is seen in the change for each case, and it depends on the type of drug. Absent. Since the index value (d) and the index value (a) are similar, the index value (b) and the index value (c) can be interpreted as those obtained by decomposing the index value (a) from different viewpoints. That is, in the index value (b), it is considered that the change due to the improvement of inflammation is extracted by removing the influence of airway stenosis.
- FIG. 11 is a diagram showing the difference between the index value (a) and the index value (b).
- the effect amount d at the index value (a) is “0.86”
- the effect amount d at the index value (b) is “2.11”.
- the effect amount relating to the difference between the average values of the index values before and after the administration is “0. It was greatly improved from “86” to “2.11”.
- FIG. 12 is a diagram showing an example of an analysis map using a plurality of indices.
- each figure in the upper stage is a two-dimensional map of the index value (b) 700 Hz and the index value (c) 700 Hz
- each figure in the lower stage is an index value (b) 700 Hz and an index value (b) 1400 Hz. It is a two-dimensional map.
- group G1 is grouped by long-term management drugs, and the distribution of index values is different between before administration (thin line M1) and after 1 month (thick line M2). The index value moves to the left due to the improvement of the state.
- Group G2 is grouped by ⁇ 2 stimulants, and the distribution of index values is different before administration (thin line M1) and after 20 minutes (thick line M2). Due to the improvement of the condition, the index value is moving downward.
- the group G3 is a grouping by spirometry, and the distribution of the index values is different when the value of V50 is less than 80 (thin line M1) and 80 or more (thick line M2). The poorer state is distributed in the upper right. In the upper diagram, the vertical axis moves differently, but is similar to the lower diagram in that it moves differently between groups.
- FIG. 13 is a diagram showing an example of display of index values.
- the display unit 6 of the biological sound inspection apparatus 1 displays the current index value together with the stored past index value samples.
- FIG. 14 is a diagram showing another example of display of index values. As shown in the figure, by dividing the two indicators into the X-axis and Y-axis, plotting a large number of measurement samples in the background, and then plotting the trajectory of the change in the index value of a specific subject , Can clarify the position in the overall distribution.
- the body sound inspection apparatus 1 calculates the band power for the 15 frequency bands of 100 Hz in the band of 100 to 1500 Hz (center frequency) based on the body sound obtained at one point on the chest, Further, out of the 15 bands at 100 to 1500 Hz, the band powers of 8 bands of 300 to 1000 Hz, which is a band reflecting the respiratory flow velocity, and 3 bands of 1300 to 1500 Hz, which is a band reflecting a specific change of the living body, are respectively calculated. Calculate the respiratory power reflecting power by taking the average of the band power of the band that reflects the calculated respiratory flow velocity, and calculate the specific changing power by taking the average of the band power of the band that reflects the specific change.
- the reference power is obtained by a linear sum of the reflected respiratory flow velocity reflected power and the specific change reflected power.
- the difference between the predicted value and the band power corresponding to is calculated as corrected power, and at least one index value is calculated based on the corrected power, so the airway state can be reduced while reducing the number of sensors that measure biological sounds. An index value appropriately reflected can be obtained. Further, since the number of sensors can be reduced, the operation can be simplified.
- the biological sound inspection apparatus 1 can be realized with a dedicated circuit configuration, and can also be realized with a configuration using a computer. It is also possible to divide the processing between the terminal and the cloud.
- the program shown in FIG. 2 can be stored and distributed in a storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory. It is also possible to download the program via a network.
- a storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory. It is also possible to download the program via a network.
- the present invention has an effect that an index value appropriately reflecting an airway state can be obtained while reducing the number of sensors that measure a body sound, and can be applied to a medical device or the like that supports estimation of a body state. Applicable.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Acoustics & Sound (AREA)
- Pulmonology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Physiology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
Abstract
胸部一点で得られる生体音に基づき、呼吸流速を反映する帯域である300~1000Hzの8帯域と生体の特定の変化を反映する帯域である1300~1500Hzの3帯域の帯域パワーをそれぞれ算出し、算出した呼吸流速を反映する帯域の帯域パワーの平均を取って呼吸流速反映パワーを算出すると共に、生体の特定の変化を反映する帯域の帯域パワーの平均を取って特定の変化反映パワーを算出し、算出した呼吸流速反映パワーと特定の変化反映パワーとの線形和により基準パワーを求め、帯域ごとに基準パワーに対応する予測値と帯域パワーとの差分を補正後パワーとして算出し、補正後パワーに基づき少なくとも1つの指標値を算出する。基準パワーの計算は、200~1500Hzの平均としてもよい。
Description
本発明は、生体音検査装置に関し、特に、生体音を測定することで、生体の状態の推定を支援する生体音検査装置に関する。
喘息等の呼吸器疾患の治療は長期に及ぶことが多い。喘息の治療は、気道の炎症をコントロールする抗炎症薬を日々服用し、発作時には気道の狭窄をコントロールする気管支拡張薬を服用し、長期的に気道の良いコントロール状態を保つことが基本である。日々の薬には、抗炎症薬と気管支拡張薬を配合した合剤が使われる場合もある。
気道状態の判断には専門医の経験による総合判断が必要であり、広く適切な判断が行われるためには検査機器から得られる客観指標によるサポートが広く望まれている。この種の検査機器として、例えば特許文献1に記載された生体音検査装置がある。
呼吸音は、呼吸流速が大きくなるにつれて大きくなることや、体格が大きくなるにつれて小さくなることが知られており、それらの影響を低減させた呼吸音基準の指標値が知られている。特許文献1に記載された生体音検査装置では、頚部と胸部の二点で呼吸音を測定し、頚部と胸部のパワー比を用いることで呼吸流速や体格の影響を低減させている。また、複数の指標値の内の1つは頚部において呼吸流速を反映する帯域から高域を予測し、予測残差を計算することで呼吸流速による影響を低減している。
しかしながら、上述した特許文献1に記載された生体音検査装置は、頚部用と胸部用の2つのセンサを使用する分、操作が煩雑になるという課題がある。頚部と胸部では、抹消気道に近い胸部の方が気道状態の小さな変化を検知するのに適していることから胸部用のセンサのみでも気道状態の推定が可能と想定できるが、呼吸音は胸部の方が小さいため、知りたい気道状態以外の要因の影響が大きく、気道状態を適切に反映した指標値が得られない。このように、気道状態を適切に反映した指標値を得るためには、胸部用と頚部用の2つのセンサが必要であった。
本発明は、係る事情に鑑みてなされたものであり、生体音を測定するセンサの数を減らしながらも、気道状態を適切に反映した指標値を得ることができる生体音検査装置及び生体音検査方法を提供することを目的とする。
本発明の生体音検査装置は、生体音に基づき所定の複数の周波数帯域について所定の区間内の帯域パワーを算出する帯域パワー算出部と、前記所定の複数の周波数帯域の帯域パワーのうち、250以上1050Hz以下の範囲のいずれかの周波数及び1250以上1550Hz以下の範囲のいずれかの周波数を少なくとも一部に含む帯域の前記帯域パワーに基づき基準パワーを算出する基準パワー算出部と、前記基準パワーと前記所定の複数の周波数帯域の帯域パワーとに基づき少なくとも1つの指標値を算出する指標値算出部と、を備えた。
上記構成により、気道状態を適切に反映した指標値が得られる。
上記構成において、前記指標値算出部は、少なくとも前記基準パワーに基づき、帯域ごとの予測値を算出する予測値算出部と、帯域ごとの前記帯域パワーから帯域ごとの前記予測値を減算することで、帯域ごとの補正後パワーを算出する補正後パワー算出部とを備え、前記補正後パワーに基づき指標値を算出する。
上記構成において、前記補正を行う複数の帯域は、700Hzと1400Hzを含む。
上記構成において、前記指標値算出部は、2種類以上の基準パワーのそれぞれに基づいて、1つの帯域についての補正を行い、それぞれの補正後パワーを指標値とする。
上記構成において、前記2種類以上の基準パワーは、前記呼吸流速反映パワーと前記特定の変化反映パワーとの重み付き加算に基づく基準パワーと、前記呼吸流速反映パワーと前記特定の変化反映パワーとの重み付き減算に基づく基準パワーとを含む。
上記構成において、さらに表示部を備え、前記指標値を表示する。
上記構成において、前記表示部は、2種類以上の指標値を時間軸に沿ってプロットする。
上記構成において、前記表示部は、2種類の指標値を2次元マップとして表示し、時系列に沿って、測定点を結んで表示する。
上記構成において、前記指標値算出部は、2つ以上の補正後パワーの線形和に基づき指標値を算出する。
上記構成において、前記予測値算出部は、標準状態の測定サンプルに基づき、前記基準パワーに対応する前記帯域パワーの標準値を予測する。
上記構成において、前記帯域パワー算出部は、測定された生体音に対して周波数分析を行う周波数分析部と、複数の呼吸区間から分析する区間を指定する区間指定部と、前記周波数分析部により周波数分析が行われた前記生体音に基づき、所定の複数の周波数帯域について前記区間指定部により指定された前記区間内の代表帯域パワーを算出する区間代表帯域パワー算出部と、を備えた。
上記構成において、前記生体音を測定する生体音測定部は、生体の胸部一点で前記生体音を測定する。
上記構成により、生体音を測定するセンサが一点で済むことから、操作の簡素化が図れる。
上記構成において、250以上1050Hz以下の範囲のいずれかの周波数を少なくとも一部に含む呼吸流速を反映する帯域の前記帯域パワーに基づき呼吸流速反映パワーを算出し、1250以上1550Hz以下の範囲のいずれかの周波数を少なくとも一部に含む生体の特定の変化を反映する帯域の前記帯域パワーに基づき特定の変化反映パワーを算出し、前記呼吸流速反映パワーと前記特定の変化反映パワーとに基づいて前記基準パワーを求める。
上記構成において、前記特定の変化を反映する帯域は、気管支拡張薬の投薬後のパワーと抗炎症薬の投薬後のパワーとの差分が大きい帯域である。
本発明の生体音検査方法は、生体音に基づき所定の複数の周波数帯域について所定の区間内の帯域パワーを算出するステップと、前記所定の複数の周波数帯域のうち、250以上1050Hz以下の範囲のいずれかの周波数及び1250以上1550Hz以下の範囲のいずれかの周波数を少なくとも一部に含む帯域に基づき基準パワーを算出するステップと、前記基準パワーと前記所定の複数の周波数帯域の帯域パワーとに基づき少なくとも1つの指標値を算出するステップと、を備えた。
上記方法により、気道状態を適切に反映した指標値が得られる。
本発明によれば、生体音を測定するセンサの数を減らしながらも、気道状態を適切に反映した指標値を得ることができる。また、センサ数を少なくできるので、操作の簡素化が図れる。
以下、本発明を実施するための好適な実施の形態について、図面を参照して詳細に説明する。
図1は、本発明の一実施の形態に係る生体音検査装置の概略構成を示すブロック図である。同図において、本実施の形態に係る生体音検査装置1は、生体音測定部7と、帯域パワー算出部2と、基準パワー算出部8と、指標値算出部5と、表示部6と、を備える。なお、基準パワー算出部8は、呼吸流速反映パワー算出部3と、特定の変化反映パワー算出部4とを含む。生体音測定部7は、例えば電子聴診器等のセンサ付き測定器であり、生体の胸部一点で生体音を測定する。なお、本実施の形態では、生体音をリアルタイムで取得するが、録音機能を持たせて、録音済みの生体音を取得するようにしても構わない。また、貼り付け型や埋め込み型のセンサを使用しても構わない。帯域パワー算出部2は、生体音に基づき所定の複数の周波数帯域について所定の区間内の帯域パワーを算出するものであり、生体音測定部7で測定された生体音に対して周波数分析を行う周波数分析部202と、複数の呼吸区間から分析する区間を指定する区間指定部203と、周波数分析部202により周波数分析が行われた生体音に基づき、所定の複数の周波数帯域について区間指定部203により指定された区間内の代表帯域パワーを算出する区間代表帯域パワー算出部204と、を備える。
図1は、本発明の一実施の形態に係る生体音検査装置の概略構成を示すブロック図である。同図において、本実施の形態に係る生体音検査装置1は、生体音測定部7と、帯域パワー算出部2と、基準パワー算出部8と、指標値算出部5と、表示部6と、を備える。なお、基準パワー算出部8は、呼吸流速反映パワー算出部3と、特定の変化反映パワー算出部4とを含む。生体音測定部7は、例えば電子聴診器等のセンサ付き測定器であり、生体の胸部一点で生体音を測定する。なお、本実施の形態では、生体音をリアルタイムで取得するが、録音機能を持たせて、録音済みの生体音を取得するようにしても構わない。また、貼り付け型や埋め込み型のセンサを使用しても構わない。帯域パワー算出部2は、生体音に基づき所定の複数の周波数帯域について所定の区間内の帯域パワーを算出するものであり、生体音測定部7で測定された生体音に対して周波数分析を行う周波数分析部202と、複数の呼吸区間から分析する区間を指定する区間指定部203と、周波数分析部202により周波数分析が行われた生体音に基づき、所定の複数の周波数帯域について区間指定部203により指定された区間内の代表帯域パワーを算出する区間代表帯域パワー算出部204と、を備える。
周波数分析部202は、例えば高速フーリエ変換を用いて周波数分析を行う。区間指定部203は、後述の区間代表帯域パワー算出部204の分析で使用する区間を指定する。指定する区間は、吸気であること、音のレベルが適当であること、ノイズが少ないことなどを条件とすればよく、医師の専門知識は必要としない。前述の条件を満たすようにプログラムにより自動的に抽出できる。また、GUI(Graphical User Interface)等により人手で呼吸区間を指定するようにしても構わない。
区間代表帯域パワー算出部204は、例えば、15帯域(中心周波数100Hz,200Hz,300Hz,…,1300Hz,1400Hz,1500Hzで、帯域幅が100Hz帯域)それぞれの帯域について、区間指定部203により区間指定された区間を代表するパワーを算出する。例えば、周波数分析の分析フレーム単位のパワー値を区間内に含まれる分析フレームにわたって平均する。この場合、各帯域の幅を100Hzとするので、中心周波数100Hzの帯域は50~150Hz、中心周波数200Hzの帯域は150~250Hz、中心周波数300Hzの帯域は250~350Hz、…、中心周波数1300Hzの帯域は1250~1350Hz、中心周波数1400Hzの帯域は1350~1450Hz、中心周波数1500Hzの帯域は1450~1550Hzとなる。なお、「15」の周波数帯域はあくまでも一例であり、15帯域より多くしても少なくしても構わない。また、帯域幅も100Hzに限らないし、帯域ごとに可変であっても構わない。また、区間代表帯域パワー算出部204は、同様に、中心周波数300Hz,400Hz,500Hz,600Hz,700Hz,800Hz,900Hz,1000Hzの8帯域の区間代表帯域パワーを算出する。この8帯域は、呼吸流速を反映する帯域である。なお、呼吸流速を反映する帯域である「8」の周波数帯域は一例であり、8帯域より多くしても少なくしても構わない。
また、区間代表帯域パワー算出部204は、同様に、中心周波数1300Hz,1400Hz,1500Hzの3帯域の区間代表帯域パワーを算出する。この3帯域は、生体の特定の変化を反映する帯域である。具体的には、気管支拡張薬の投薬後のパワーと抗炎症薬の投薬後のパワーとの差分が大きい帯域である。なお、生体の特定の変化を反映する帯域である「3」の周波数帯域は一例であり、3帯域より多くしても少なくしても構わない。
区間代表帯域パワー算出部204は、中心周波数100Hz~1500Hzにおける15帯域の帯域パワーを算出した後、算出した15帯域の帯域パワーを指標値算出部5の補正後パワー算出部503に出力する。また、区間代表帯域パワー算出部204は、中心周波数300Hz~1000Hzにおける8帯域の帯域パワーを算出した後、算出した8帯域の帯域パワーを基準パワー算出部8に含まれる呼吸流速反映パワー算出部3に出力する。また、区間代表帯域パワー算出部204は、中心周波数1300Hz~1500Hzにおける3帯域の帯域パワーを算出した後、算出した3帯域の帯域パワーを基準パワー算出部8に含まれる特定の変化反映パワー算出部4に出力する。
呼吸流速反映パワー算出部3は、呼吸流速を反映する帯域である8帯域の帯域パワーの平均を取って呼吸流速反映パワーを算出する。なお、本実施の形態では、呼吸流速反映パワー算出部3における呼吸流速を反映する帯域を250以上1050Hz以下(中心周波数で言うと300~1000Hz)の周波数とするが、250以上1050Hz以下の範囲のいずれかの周波数を少なくとも一部に含む帯域であればよい。特定の変化反映パワー算出部4は、呼吸流速以外の特定の変化を反映する帯域である3帯域の帯域パワーの平均を取って特定の変化反映パワーを算出する。なお、本実施の形態では、特定の変化反映パワー算出部4における特定の変化を反映する帯域を1250以上1550Hz以下(中心周波数で言うと1300~1500Hz)の周波数とするが、1250以上1550Hz以下の範囲のいずれかの周波数を少なくとも一部に含む帯域であればよい。また、呼吸流速反映パワーの算出、および、特定の変化反映パワーの算出のための演算は平均以外の演算であっても構わない。
指標値算出部5は、呼吸流速反映パワー算出部3で算出された呼吸流速反映パワーと特定の変化反映パワー算出部4で算出された特定の変化反映パワーと帯域パワー算出部2で算出された帯域パワーとから少なくとも1つの指標値を算出するものであり、帯域ごとの予測値を予測するための帯域ごとの予測係数を保持しておく予測係数保持部501と、呼吸流速反映パワー、特定の変化反映パワー及び帯域ごとの予測係数に基づき、帯域ごとの予測値を算出する予測値算出部502と、帯域ごとの代表帯域パワーから帯域ごとの予測値を減算することで、帯域ごとの補正後パワーを算出する補正後パワー算出部503と、帯域ごとの補正後パワーに基づき指標値を算出する指標値算出部504と、を備える。なお、予測値算出部502に、個人のプロフィール(例えば、体格、年齢、投薬状況等)を入力するようにしても構わない。一般に、呼吸音は、呼吸流速の大小に応じて、各帯域のパワーの大小も影響を受けるが、帯域ごとにその度合いは異なり、また、呼吸流速以外の要因の影響も帯域ごと異なる。本実施の形態では、予測値と実測値の差分(予測残差)に知りたい気道状態の情報が残り、それ以外の要因の影響が除かれるようにするために、呼吸流速等の影響を受けやすい帯域のパワーを基準パワーとし、基準パワーに対応する標準的なパワー値を予測する。基準パワーは、呼吸流速反映パワー算出部3で算出された呼吸流速反映パワーと特定の変化反映パワー算出部4で算出された特定の変化反映パワーとに基づいて算出すればよい。即ち、基準パワーは、基準パワー算出部8で算出される。
表示部6は、液晶表示器や有機EL表示器等の表示手段を有し、指標値を視認可能な形態で表示する。記憶されている過去の指標値サンプルとともに表示すれば、指標値間の比較も行える。例えば、2つ以上の指標値を時間軸に沿ってプロットする。また、2つの指標値を2次元マップとして表示し、時系列に沿って、測定点を結んで表示する。
次に、本実施の形態に係る生体音検査装置1の動作について説明する。
図2は、本実施の形態に係る生体音検査装置1の動作を説明するためのフローチャートである。同図において、まず帯域パワー算出部2は、生体音に基づき所定の複数の周波数帯域について所定の区間内の帯域パワーを算出する(ステップS1)。即ち、帯域パワー算出部2は、生体の胸部一点で生体音を測定するステップ(生体音測定ステップ)、測定された生体音に対して周波数分析を行うステップ(周波数分析ステップ)、複数の呼吸区間から分析する区間をGUI等により人手、または所定のプログラムに基づき自動で指定するステップ(区間指定ステップ)、周波数分析が行われた生体音に基づき、所定の複数の周波数帯域について指定された区間内の代表帯域パワーを算出するステップ(区間代表帯域パワー算出ステップ)を順次実行する。この場合、周波数帯は、100,200,…,1500Hzを中心周波数とする100Hz幅の15帯域(以下、単に「15帯域」と呼ぶ)である。なお、胸部の聴診位置は、体の前面のみならず、背面や側面も含まれる。
図2は、本実施の形態に係る生体音検査装置1の動作を説明するためのフローチャートである。同図において、まず帯域パワー算出部2は、生体音に基づき所定の複数の周波数帯域について所定の区間内の帯域パワーを算出する(ステップS1)。即ち、帯域パワー算出部2は、生体の胸部一点で生体音を測定するステップ(生体音測定ステップ)、測定された生体音に対して周波数分析を行うステップ(周波数分析ステップ)、複数の呼吸区間から分析する区間をGUI等により人手、または所定のプログラムに基づき自動で指定するステップ(区間指定ステップ)、周波数分析が行われた生体音に基づき、所定の複数の周波数帯域について指定された区間内の代表帯域パワーを算出するステップ(区間代表帯域パワー算出ステップ)を順次実行する。この場合、周波数帯は、100,200,…,1500Hzを中心周波数とする100Hz幅の15帯域(以下、単に「15帯域」と呼ぶ)である。なお、胸部の聴診位置は、体の前面のみならず、背面や側面も含まれる。
帯域パワー算出部2は、生体音の帯域パワーを算出した後、15帯域のうち、呼吸流速を強く反映する帯域である中心周波数300~1000Hzの帯域パワーと、生体の特定の変化(例えば、気道狭窄による変化、または、気道炎症と気道狭窄との違い)を強く反映する帯域である中心周波数1300~1500Hzの帯域パワーとを基準パワー算出部8に出力する。基準パワー算出部8は、これらの帯域パワーに基づき、基準パワーを算出する(ステップS2)。即ち、基準パワー算出部8は、基準パワー算出ステップを実行する。そして、算出した基準パワーを指標値算出部5に出力する。
詳細には、呼吸流速反映パワー算出部3が、中心周波数300~1000Hzの帯域パワーに基づき、呼吸流速反映パワーを算出する。即ち、15帯域のうち、呼吸流速を反映する帯域の平均を取って呼吸流速反映パワーを算出する。そして、算出した呼吸流速反映パワーを指標値算出部5に出力する。
また、特定の変化反映パワー算出部4が、中心周波数1300~1500Hzの帯域パワーに基づき、特定の変化反映パワーを算出する。即ち、15帯域のうち、特定の変化を反映する帯域の平均を取って特定の変化反映パワーを算出する。そして、算出した特定の変化反映パワーを指標値算出部5に出力する。
指標値算出部5は、基準パワー算出部8で算出された基準パワー(呼吸流速反映パワーと特定の変化反映パワー)と、帯域パワー算出部2で算出された帯域パワーとに基づき、1つ以上の指標値を算出する(ステップS3)。即ち、指標値算出部5は、帯域ごとの予測値を予測するための帯域ごとの予測係数を読み込むステップ(予測係数読み込みステップ)、呼吸流速反映パワー、特定の変化反映パワー及び帯域ごとの予測係数に基づき、帯域ごとの予測値を算出するステップ(予測値算出ステップ)、帯域ごとの代表帯域パワーから帯域ごとの予測値を減算することで、帯域ごとの補正後パワーを算出するステップ(補正後パワー算出ステップ)、帯域ごとの補正後パワーに基づき少なくとも1つの指標値を算出するステップ(指標値算出ステップ)を順次実行する。指標値算出部5で算出する指標値は、単独の補正後パワーや、複数の補正後パワーの線形和として求める。
なお、ステップS1において、複数の吸気区間を指定し、ステップS3において、指定された区間ごとの指標値の中から代表値(medianなど)を決めるようにしてもよい。
次に、本実施の形態に係る生体音検査装置1の特徴について詳細に説明する。
図3は、呼吸流速を反映する帯域の例を示す図である。同図において、横軸は帯域(中心周波数)を示し、縦軸は呼吸流速に対する偏回帰係数を示す。生体音の測定は、頚部と胸部の双方で行い、同時に呼吸フロー計で呼吸流速の計測を行った。特に、胸部音は右鎖骨中線上第二肋間で測定した。61名のデータを用いて、測定部位と帯域ごとのパワーに対して、呼吸流速と身長による重回帰分析を行い、呼吸流速に対する偏回帰係数を求めた。同図に示すように、頚部のパワーについては高域まで呼吸流速依存性が高いが、胸部のパワーについては600Hzを中心に低域も高域も呼吸流速依存性が低くなることが分かった。胸部のパワーにおける呼吸流速を反映する帯域W1は、例えば、300~1000Hzである。
図3は、呼吸流速を反映する帯域の例を示す図である。同図において、横軸は帯域(中心周波数)を示し、縦軸は呼吸流速に対する偏回帰係数を示す。生体音の測定は、頚部と胸部の双方で行い、同時に呼吸フロー計で呼吸流速の計測を行った。特に、胸部音は右鎖骨中線上第二肋間で測定した。61名のデータを用いて、測定部位と帯域ごとのパワーに対して、呼吸流速と身長による重回帰分析を行い、呼吸流速に対する偏回帰係数を求めた。同図に示すように、頚部のパワーについては高域まで呼吸流速依存性が高いが、胸部のパワーについては600Hzを中心に低域も高域も呼吸流速依存性が低くなることが分かった。胸部のパワーにおける呼吸流速を反映する帯域W1は、例えば、300~1000Hzである。
図4は、気道状態の特定の変化を反映する帯域の例を示す図である。同図において、横軸は帯域(中心周波数)を示し、縦軸は特定の変化に対する効果量を示す。これは、日々の管理薬により良化した群(20名)の投薬後の呼吸音と、気管支拡張剤のみにより気管を拡張した群(19名)の投薬後の音を群間比較した場合の効果量を帯域ごとに求めたものである。同図に示すように、1300~1500Hzの帯域W2では比較的効果量が大きくなっているのが分る。この帯域W2では、日々の管理薬により良化した呼吸音のパワーは服薬前に比べて他の帯域よりも上昇傾向にあり、気管支拡張剤によってはパワーが服薬前に比べて他の帯域よりも下降傾向にあり、逆の動きをする。
日々の管理薬により良化した呼吸音と気管支拡張剤のみにより気管を拡張した音の差分が大きい帯域のパワーを特定の変化反映パワーとし、また呼吸流速反映パワーと特定の変化反映パワーを加える方向に線形演算したものを基準パワーとすると、慢性炎症の良化に伴う呼吸音の変化を重視した指標値が計算できる。逆に、呼吸流速反映パワーから特定の変化反映パワーを減じる方向に線形演算したものを基準パワーとすると、気道狭窄の良化に伴う呼吸音の変化を重視した指標値が計算できる。
図5は、補正の様子を表す例を示す図である。本実施の形態では、基準パワーに基づいて、15帯域についての補正を行い、それぞれの帯域の補正後パワーから指標値を求めるものである。基準パワーは15帯域に対して共通である。補正を行う15帯域は、700Hzと1400Hzを含む。図5では、特に700Hzを中心周波数とするパワーの補正について、例示している。
ここで、予測係数の求め方について説明する。本実施の形態の生体音検査装置の使用に先立って、医師により非喘息と診断された症例や喘息を患っているが気道状態が良いと診断された症例の呼吸音を多数集めて標準状態の呼吸音としてあるものとする。700Hzの単帯域と複数帯域をベースにした基準パワーの関係を分析することで標準値(標準状態における帯域パワーの値)を求めることができる。分析には回帰分析などの方法があり、基準パワーのほかに身長など体格を表すパラメータや、年齢を表すパラメータを加えてもよい。また、基準パワーをレベルにより複数のゾーンに分割し、ゾーンごとに最小二乗法に基づく代表値を決め、代表値を結んでもよい。これらの、回帰分析による係数や、ゾーンごとの代表値など、基準パワーと帯域パワーの標準値の関係を表した数値を予測係数と呼ぶ。
通常、基準パワーが大きくなれば、単帯域のパワーも大きくなるので、単調増加の関係となる。概ね線形の関係になるが、細かく見れば非線形の関係となる。最初に、呼吸流速反映パワーを基準パワーとしたときの例を示す。図5において、横軸は基準パワー(dB)、縦軸は700Hzの帯域パワーの値(dB)である。また、図中、「ドット」は測定サンプルを表す。また、2つの「黒丸」は説明のため注目した測定値P1と予測値P2を表す。予測値P2は、基準パワーから予測した標準値である。測定値P1と予測値P2の差分をとった予測残差Sが補正後のパワーとなる。標準的な気道状態であればこれくらいの値になるであろうという予測値からの残差であるために、標準的な状態との差が数値で表現される。この例は、補正(a)の基準パワーを用いた例である。この補正(a)は、呼吸流速による影響を低減するものである。この補正の基準パワーを用いた予測残差には、呼吸流速依存性や体格依存性や年齢依存性がほとんどないことがデータから確認されている。
補正(a)の基準パワー base_pow=Fpow
ここで、base_powは基準パワー、Fpowは呼吸流速反映パワーを表す。
ここで、base_powは基準パワー、Fpowは呼吸流速反映パワーを表す。
次に、基準パワーを2種類用いる場合の例を示す。補正において、基準パワーを2種類以上にすることも可能である。ここで、基準パワーの式を変形して、基準パワーが大きくなった場合(「白丸P3」)を考えると、基準パワーの増加に伴い、予測値も増加するが、単帯域のパワーはそのままなので、予測残差Sは減少する。逆に、基準パワーが小さくなると予測残差Sは大きくなる。このように、基準パワーを増減させるために特定の変化反映パワーを足したり引いたりした式が、補正(b)および補正(c)の基準パワーの式である。ただし、変形後の基準パワーの式に応じた予測値を準備しておく必要がある。補正(b)は、呼吸流速による影響と気道狭窄の影響を低減するものであり、補正(c)は、呼吸流速による影響を低減し、気道狭窄の影響を強調するものである。
補正(b)の基準パワー base_pow=Fpow+0.3×Npow
補正(c)の基準パワー base_pow=Fpow-0.2×Npow
ここで、base_powは基準パワー、Fpowは呼吸流速反映パワー、Npowは特定の変化反映パワーを表す。
補正(c)の基準パワー base_pow=Fpow-0.2×Npow
ここで、base_powは基準パワー、Fpowは呼吸流速反映パワー、Npowは特定の変化反映パワーを表す。
特定の変化反映パワーは、気管支拡張薬の効果(気道狭窄の良化)によってパワーが低下する帯域で、かつ抗炎症薬の効果(気道炎症の良化)によってパワーが増加する帯域であるため、呼吸流速反映パワーに特定の変化反映パワーが重み付き加算される補正(b)においては、気道狭窄の良化により補正後のパワーが増加、気道炎症の良化によって補正後のパワーが低下する傾向となる。また、呼吸流速反映パワーに特定の変化反映パワーが重み付き減算される補正(c)においては、気道狭窄の良化により補正後のパワーが減少、気道炎症の良化によって補正後のパワーが増加する傾向となる。
補正(b)と補正(c)の計算式の重みを調整し、補正(b)においてはβ2刺激薬による変化が平均的に0になる程度にし、補正(c)においては、抗炎症薬による変化が平均的に0になる程度にした。補正(b)と補正(c)の重みは、例えば補正(b)に対して「0.3」とし、補正(c)に対しては「0.2」とした。したがって、補正(b)によって求めた指標値(b)は、主に気道炎症の程度を表現し、補正(c)によって求めた指標値(c)は、主に気道狭窄の程度を表現すると考える。
このように、基準パワーの計算式を複数とおり準備して、対応した標準値を求めておき、補正を行うことができる。また、700Hz以外の単帯域についても同様に標準値を求めておき、補正を行う。補正(b)によっても、1400Hzなど気道狭窄の悪化によりパワーが増加する帯域では、気道狭窄の程度が表現される。つまり、標準値は、基準パワーの定義ごとに単帯域の数だけ存在する。ただし、最終的に利用されない帯域については演算を行う必要もパラメータを保存する必要もない。
なお、補正(b)の変形例として、呼吸流速反映パワーの帯域と特定の変化反映パワーの帯域を含む広帯域(例えば、300~1500Hzや200~1500Hz)のパワーの平均値を基準パワーとしてもよい。また、一部の帯域にノイズが乗りやすい場合には、その帯域を除いたり、周囲の帯域パワーから補間してもよい。
また、補正(a)の補正後の700Hzのパワーと補正後の1400Hzのパワーの値とを重み付き加算または重み付き減算しても、それぞれ、補正(c)、補正(b)と似た効果が得られる。
指標値は、投薬内容によって、使い分けることができる。
また、「15」の周波数帯域は一例であり、他の定義でも構わない。
また、補正(a)の補正後の700Hzのパワーと補正後の1400Hzのパワーの値とを重み付き加算または重み付き減算しても、それぞれ、補正(c)、補正(b)と似た効果が得られる。
指標値は、投薬内容によって、使い分けることができる。
また、「15」の周波数帯域は一例であり、他の定義でも構わない。
図5に示す700Hzの例と同様に1400Hzについても補正を行うと、共通の基準パワー(補正(a))に基づいて、2つ帯域(700Hz、1400Hz)についての補正を行い、それぞれの補正後パワーを指標値とすることになるが、2種類以上の基準パワー(例えば、補正(b)と補正(c)の基準パワー)のそれぞれに基づいて、1つの帯域(例えば、700Hz)についての補正を行い、それぞれの補正後パワーを指標値としてもよい。この場合、2種類以上の基準パワーは、呼吸流速反映パワーと特定の変化反映パワーとの重み付き加算に基づく基準パワーと、呼吸流速反映パワーと特定の変化反映パワーとの重み付き減算に基づく基準パワーとを含むものである。
図6は、補正(a)による補正を行った後のパワー(平均値)の周波数依存性を示すグラフである。また、図7は、補正(a)による補正を行った後のパワー分布の周波数依存性を示す箱ひげ図である。また、図8は、補正(b)による補正を行った後のパワー(平均値)の周波数依存性を示すグラフである。また、図9は、補正(b)による補正を行った後のパワー分布の周波数依存性を示す箱ひげ図である。それぞれ、長期管理薬の投薬開始時と投薬開始から1ヶ月後の症例数「11」の統計量を表している。図6及び図8で、投薬前後の平均値の比較をすると、低域から中域で、投薬前後でパワーの低下が見られるが、300~700Hzについてはどの帯域でも変化量の大きな差はない。図6と図8を比べると、補正(b)では、補正(a)よりも700Hzまでの差が拡大している。一方、図7及び図9では、特に700Hzにおいて、ばらつきが小さく、投薬前後での分布の重なりが小さいため、指標値として、特に700Hzの値に注目するのが良いということが分る。図7と図9を比べると、補正(b)は補正(a)よりも補正後パワーの分布の重なりが小さい。
図10は、薬の種類((1)抗炎症薬、(2)抗炎症薬と気管支拡張薬の合剤、および、(3)抗炎症薬と合剤の両方)と指標値の変化の例を示す図である。同図において、指標値(a)は、呼吸流速による影響を低減した指標値、指標値(b)は、呼吸流速による影響と気道狭窄の影響を低減した指標値、指標値(c)は、呼吸流速による影響を低減し気道狭窄の影響を強調した指標値、指標値(d)は、指標値(b)と指標値(c)の平均値である。薬の種類ごとに投薬開始時と投薬開始から1ヵ月後の指標値の分布を表示しており、個別の症例を点線で結んでいる。指標値(a)では、症例ごとの投薬前後の指標値の変化の方向がマチマチであるが、指標値(b)では、症例ごとの変化に一定の傾向が見られ、薬の種類にもよらない。指標値(d)と指標値(a)が似ていることから、指標値(b)と指標値(c)は、指標値(a)を別々の観点で分解したものと解釈できる。つまり、指標値(b)では、気道狭窄性の影響を除くことで、炎症の良化による変化が抽出されていると思われる。
ここで、日々の気道のコントロール状態としては、気管支拡張薬により拡張されているかという点よりも、炎症のコントロールがうまくいっているかの方を知りたい。気管支拡張薬は、文字どおり、気管を拡張する作用があり、音響管としての物理特性を変化させるため、呼吸音も変化する。しかしながら、呼吸音に表れる気道状態には炎症のコントロール状態と狭窄のコントロール状態は混合されている。この点、本発明では、気道狭窄性の影響を除くことができるので、炎症のコントロールがうまくいっているかを知ることができる。
図11は、指標値(a)と指標値(b)の違いを示す図である。同図に示すように、指標値(a)での効果量dは「0.86」、指標値(b)での効果量dは「2.11」となった。このように、呼吸流速のみを考慮した補正方法から呼吸流速および気道状態の特定の変化を考慮した補正方法への変更により、投薬前後の指標値の平均値の差に関する効果量は、「0.86」から「2.11」に大きく改善された。
図12は、複数指標による分析マップの例を示す図である。同図において、上段の各図は、指標値(b)700Hzと指標値(c)700Hzの2次元マップであり、下段の各図は、指標値(b)700Hzと指標値(b)1400Hzの2次元マップである。下段の図において、グループG1は長期管理薬によるグループ分けであり、投薬前(細い線M1)と1ヵ月後(太い線M2)で指標値の分布が異なる。状態の良化により、指標値は左に動いている。グループG2はβ2刺激薬によるグループ分けであり、投薬前(細い線M1)と20分後(太い線M2)で指標値の分布が異なる。状態の良化により、指標値は下に動いている。グループG3は、スパイロメトリーによるグループ分けであり、V50の値が80未満(細い線M1)と80以上(太い線M2)で指標値の分布が異なる。状態が悪い方が、右上に分布している。上段の図においては、縦軸の動きが異なるが、グループ間で異なる動きをするという点では下段の図と同様である。
図13は、指標値の表示の例を示す図である。同図に示すように、本実施の形態に係る生体音検査装置1の表示部6は、記憶しておいた過去の指標値サンプルとともに現在の指標値を表示する。同一の被測定者について、2つの指標値を時系列で追うと、気道状態の変化を多角的に評価することを支援できる。同図に示す例では、気道炎症が先に良化し、後から気道狭窄が良化している。
図14は、指標値の表示の他の例を示す図である。同図に示すように、2つの指標をX軸とY軸に振り分け、背景に多数の測定サンプルをプロットし、その上に、特定の被測定者の指標値の変化の軌跡をプロットすることで、全体的な分布の中での位置づけを明確にすることができる。
このように、本実施の形態に係る生体音検査装置1は、胸部一点で得られる生体音に基づき100~1500Hz(中心周波数)における帯域幅100Hzの15帯域の周波数帯域について帯域パワーを算出し、また100~1500Hzにおける15帯域のうち、呼吸流速を反映する帯域である300~1000Hzの8帯域と生体の特定の変化を反映する帯域である1300~1500Hzの3帯域の帯域パワーをそれぞれ算出し、算出した呼吸流速を反映する帯域の帯域パワーの平均を取って呼吸流速反映パワーを算出すると共に、特定の変化を反映する帯域の帯域パワーの平均を取って特定の変化反映パワーを算出し、算出した呼吸流速反映パワーと特定の変化反映パワーとの線形和により基準パワーを求め、帯域ごとに基準パワーに対応する予測値と帯域パワーとの差分を補正後パワーとして算出し、補正後パワーに基づき少なくとも1つの指標値を算出するので、生体音を測定するセンサの数を減らしながらも、気道状態を適切に反映した指標値を得ることができる。また、センサ数を少なくできるので、操作の簡素化が図れる。
なお、本実施の形態における演算は線形の演算を例に説明したが、対数や指数などの非線形の演算を含んでも構わない。
また、本実施の形態に係る生体音検査装置1は、専用の回路構成で実現可能であり、またコンピュータを用いた構成でも実現可能である。端末とクラウドとで処理を分割して行うことも可能である。
また、図2に示すプログラムを磁気ディスク、光ディスク、光磁気ディスク、半導体メモリ等の記憶媒体に格納して頒布することもできる。プログラムをネットワークを介して、ダウンロードすることも可能である。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2013年7月26日出願の日本特許出願(特願2013-155811)に基づくものであり、その内容はここに参照として取り込まれる。
本発明は、生体音を測定するセンサの数を減らしながらも、気道状態を適切に反映した指標値を得ることができるといった効果を有し、生体の状態の推定を支援する医療機器等への適用が可能である。
1 生体音検査装置
2 帯域パワー算出部
3 呼吸流速反映パワー算出部
4 特定の変化反映パワー算出部
5 指標値算出部
6 表示部
7 生体音測定部
8 基準パワー算出部
202 周波数分析部
203 区間指定部
204 区間代表帯域パワー算出部
501 予測係数保持部
502 予測値算出部
503 補正後パワー算出部
504 指標値算出部
2 帯域パワー算出部
3 呼吸流速反映パワー算出部
4 特定の変化反映パワー算出部
5 指標値算出部
6 表示部
7 生体音測定部
8 基準パワー算出部
202 周波数分析部
203 区間指定部
204 区間代表帯域パワー算出部
501 予測係数保持部
502 予測値算出部
503 補正後パワー算出部
504 指標値算出部
Claims (15)
- 生体音に基づき所定の複数の周波数帯域について所定の区間内の帯域パワーを算出する帯域パワー算出部と、
前記所定の複数の周波数帯域の帯域パワーのうち、250以上1050Hz以下の範囲のいずれかの周波数及び1250以上1550Hz以下の範囲のいずれかの周波数を少なくとも一部に含む帯域の前記帯域パワーに基づき基準パワーを算出する基準パワー算出部と、
前記基準パワーと前記所定の複数の周波数帯域の帯域パワーとに基づき少なくとも1つの指標値を算出する指標値算出部と、
を備えた生体音検査装置。 - 前記指標値算出部は、
少なくとも前記基準パワーに基づき、帯域ごとの予測値を算出する予測値算出部と、
帯域ごとの前記帯域パワーから帯域ごとの前記予測値を減算することで、帯域ごとの補正後パワーを算出する補正後パワー算出部とを備え、
前記補正後パワーに基づき指標値を算出する請求項1に記載の生体音検査装置。 - 補正を行う複数の帯域は、700Hzと1400Hzを含む
請求項2に記載の生体音検査装置。 - 前記指標値算出部は、2種類以上の基準パワーのそれぞれに基づいて、1つの帯域についての補正を行い、それぞれの補正後パワーを指標値とする
請求項1に記載の生体音検査装置。 - 前記2種類以上の基準パワーは、呼吸流速反映パワーと特定の変化反映パワーとの重み付き加算に基づく基準パワーと、前記呼吸流速反映パワーと前記特定の変化反映パワーとの重み付き減算に基づく基準パワーとを含む
請求項4に記載の生体音検査装置。 - さらに表示部を備え、前記指標値を表示する
請求項1に記載の生体音検査装置。 - 前記表示部は、2種類以上の指標値を時間軸に沿ってプロットする
請求項6に記載の生体音検査装置。 - 前記表示部は、2種類の指標値を2次元マップとして表示し、時系列に沿って、測定点を結んで表示する
請求項6に記載の生体音検査装置。 - 前記指標値算出部は、2つ以上の補正後パワーの線形和に基づき指標値を算出する
請求項2に記載の生体音検査装置。 - 前記予測値算出部は、標準状態の測定サンプルに基づき、前記基準パワーに対応する前記帯域パワーの標準値を予測する
請求項2に記載の生体音検査装置。 - 前記帯域パワー算出部は、
測定された生体音に対して周波数分析を行う周波数分析部と、
複数の呼吸区間から分析する区間を指定する区間指定部と、
前記周波数分析部により周波数分析が行われた前記生体音に基づき、所定の複数の周波数帯域について前記区間指定部により指定された前記区間内の代表帯域パワーを算出する区間代表帯域パワー算出部と、
を備えた請求項1に記載の生体音検査装置。 - 前記生体音を測定する生体音測定部は、生体の胸部一点で前記生体音を測定する
請求項11に記載の生体音検査装置。 - 250以上1050Hz以下の範囲のいずれかの周波数を少なくとも一部に含む呼吸流速を反映する帯域の前記帯域パワーに基づき呼吸流速反映パワーを算出し、1250以上1550Hz以下の範囲のいずれかの周波数を少なくとも一部に含む生体の特定の変化を反映する帯域の前記帯域パワーに基づき特定の変化反映パワーを算出し、前記呼吸流速反映パワーと前記特定の変化反映パワーとに基づいて前記基準パワーを求める
請求項1に記載の生体音検査装置。 - 前記特定の変化を反映する帯域は、
気管支拡張薬の投薬後のパワーと抗炎症薬の投薬後のパワーとの差分が大きい帯域である
請求項13に記載の生体音検査装置。 - 生体音に基づき所定の複数の周波数帯域について所定の区間内の帯域パワーを算出するステップと、
前記所定の複数の周波数帯域のうち、250以上1050Hz以下の範囲のいずれかの周波数及び1250以上1550Hz以下の範囲のいずれかの周波数を少なくとも一部に含む帯域に基づき基準パワーを算出するステップと、
前記基準パワーと前記所定の複数の周波数帯域の帯域パワーとに基づき少なくとも1つの指標値を算出するステップと、
を備えた生体音検査方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14829507.4A EP3025649B1 (en) | 2013-07-26 | 2014-07-23 | Biometric sound testing device and biometric sound testing method |
CN201480002532.7A CN104736066B (zh) | 2013-07-26 | 2014-07-23 | 生物声学声音测试设备和生物声学声音测试方法 |
JP2014561223A JP5786222B2 (ja) | 2013-07-26 | 2014-07-23 | 生体音検査装置及び生体音検査方法 |
US14/677,272 US11096652B2 (en) | 2013-07-26 | 2015-04-02 | Bioacoustic sound testing device and bioacoustic sound testing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-155811 | 2013-07-26 | ||
JP2013155811 | 2013-07-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/677,272 Continuation US11096652B2 (en) | 2013-07-26 | 2015-04-02 | Bioacoustic sound testing device and bioacoustic sound testing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015011923A1 true WO2015011923A1 (ja) | 2015-01-29 |
Family
ID=52392987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/003884 WO2015011923A1 (ja) | 2013-07-26 | 2014-07-23 | 生体音検査装置及び生体音検査方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11096652B2 (ja) |
EP (1) | EP3025649B1 (ja) |
JP (3) | JP5786222B2 (ja) |
CN (1) | CN104736066B (ja) |
WO (1) | WO2015011923A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020039706A (ja) * | 2018-09-12 | 2020-03-19 | オムロンヘルスケア株式会社 | 喘鳴検出装置、喘鳴検出方法、及び喘鳴検出プログラム |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11529072B2 (en) * | 2012-06-18 | 2022-12-20 | AireHealth Inc. | Method and apparatus for performing dynamic respiratory classification and tracking of wheeze and crackle |
JP6378105B2 (ja) * | 2015-02-05 | 2018-08-22 | シチズン時計株式会社 | 呼吸器疾患の判定装置 |
DK3541288T3 (da) * | 2016-11-15 | 2023-09-11 | Boehringer Ingelheim Vetmedica Gmbh | Fremgangsmåde til at forudse et specifikt respiratorisk patogen |
JP7295368B2 (ja) * | 2020-12-31 | 2023-06-21 | Yanchers株式会社 | 聴診音の解析システム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004512066A (ja) * | 2000-10-06 | 2004-04-22 | バイオメディカル・アコースティック・リサーチ・インコーポレイテッド | 呼吸器の状態の音響検出 |
WO2011114669A1 (ja) * | 2010-03-18 | 2011-09-22 | パナソニック株式会社 | 生体音検査装置 |
WO2012060107A1 (ja) | 2010-11-04 | 2012-05-10 | パナソニック株式会社 | 生体音検査装置、及び、生体音検査方法 |
JP2012205693A (ja) * | 2011-03-29 | 2012-10-25 | Shizuoka Prefecture | 呼吸音解析装置、呼吸音解析方法、および呼吸音解析プログラム |
JP2013123494A (ja) * | 2011-12-13 | 2013-06-24 | Sharp Corp | 情報解析装置、情報解析方法、制御プログラム、および、記録媒体 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8394031B2 (en) | 2000-10-06 | 2013-03-12 | Biomedical Acoustic Research, Corp. | Acoustic detection of endotracheal tube location |
US20080281219A1 (en) * | 2007-04-11 | 2008-11-13 | Deepbreeze Ltd. | Method and System for Assessing Lung Condition and Managing Mechanical Respiratory Ventilation |
WO2010044452A1 (ja) | 2008-10-16 | 2010-04-22 | 国立大学法人長崎大学 | 情報判定支援方法、音情報判定方法、音情報判定支援装置、音情報判定装置、音情報判定支援システム及びプログラム |
CA2739351C (en) * | 2008-11-17 | 2013-01-29 | Toronto Rehabilitation Institute | Method and apparatus for monitoring breathing cycle by frequency analysis of an acoustic data stream |
US8758262B2 (en) * | 2009-11-25 | 2014-06-24 | University Of Rochester | Respiratory disease monitoring system |
CN103889335B (zh) | 2011-10-28 | 2016-06-22 | 皇家飞利浦有限公司 | 用于处理针对听诊的心音的设备与方法 |
-
2014
- 2014-07-23 EP EP14829507.4A patent/EP3025649B1/en active Active
- 2014-07-23 CN CN201480002532.7A patent/CN104736066B/zh active Active
- 2014-07-23 WO PCT/JP2014/003884 patent/WO2015011923A1/ja active Application Filing
- 2014-07-23 JP JP2014561223A patent/JP5786222B2/ja active Active
-
2015
- 2015-04-02 US US14/677,272 patent/US11096652B2/en active Active
- 2015-04-27 JP JP2015090634A patent/JP2015171544A/ja active Pending
-
2017
- 2017-01-18 JP JP2017006869A patent/JP6291093B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004512066A (ja) * | 2000-10-06 | 2004-04-22 | バイオメディカル・アコースティック・リサーチ・インコーポレイテッド | 呼吸器の状態の音響検出 |
WO2011114669A1 (ja) * | 2010-03-18 | 2011-09-22 | パナソニック株式会社 | 生体音検査装置 |
WO2012060107A1 (ja) | 2010-11-04 | 2012-05-10 | パナソニック株式会社 | 生体音検査装置、及び、生体音検査方法 |
JP2012205693A (ja) * | 2011-03-29 | 2012-10-25 | Shizuoka Prefecture | 呼吸音解析装置、呼吸音解析方法、および呼吸音解析プログラム |
JP2013123494A (ja) * | 2011-12-13 | 2013-06-24 | Sharp Corp | 情報解析装置、情報解析方法、制御プログラム、および、記録媒体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3025649A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020039706A (ja) * | 2018-09-12 | 2020-03-19 | オムロンヘルスケア株式会社 | 喘鳴検出装置、喘鳴検出方法、及び喘鳴検出プログラム |
WO2020054349A1 (ja) * | 2018-09-12 | 2020-03-19 | オムロンヘルスケア株式会社 | 喘鳴検出装置、喘鳴検出方法、及び喘鳴検出プログラム |
CN112672688A (zh) * | 2018-09-12 | 2021-04-16 | 欧姆龙健康医疗事业株式会社 | 喘鸣检测装置、喘鸣检测方法和喘鸣检测程序 |
JP7081409B2 (ja) | 2018-09-12 | 2022-06-07 | オムロンヘルスケア株式会社 | 喘鳴検出装置、喘鳴検出方法、及び喘鳴検出プログラム |
Also Published As
Publication number | Publication date |
---|---|
US20150209000A1 (en) | 2015-07-30 |
US11096652B2 (en) | 2021-08-24 |
EP3025649B1 (en) | 2022-09-07 |
EP3025649A4 (en) | 2016-08-03 |
JP2017099916A (ja) | 2017-06-08 |
JP5786222B2 (ja) | 2015-09-30 |
CN104736066B (zh) | 2018-07-10 |
JP2015171544A (ja) | 2015-10-01 |
JPWO2015011923A1 (ja) | 2017-03-02 |
JP6291093B2 (ja) | 2018-03-14 |
EP3025649A1 (en) | 2016-06-01 |
CN104736066A (zh) | 2015-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6291093B2 (ja) | 生体音検査装置及び生体音検査装置の作動方法 | |
JP5519778B2 (ja) | 生体音検査装置、及び、生体音検査方法 | |
Thamrin et al. | Predicting future risk of asthma exacerbations using individual conditional probabilities | |
AU2013266376B2 (en) | Spirometer system and methods of data analysis | |
Blanco-Almazán et al. | Chest movement and respiratory volume both contribute to thoracic bioimpedance during loaded breathing | |
Ribeiro et al. | Forced oscillation technique for early detection of the effects of smoking and COPD: contribution of fractional-order modeling | |
US20130144641A1 (en) | Method of Measuring Healthcare Outcomes | |
Gircys et al. | Photoplethysmography-based continuous systolic blood pressure estimation method for low processing power wearable devices | |
Ghita et al. | Low frequency forced oscillation lung function test can distinguish dynamic tissue non-linearity in COPD patients | |
Takeichi et al. | Comparison of impedance measured by the forced oscillation technique and pulmonary functions, including static lung compliance, in obstructive and interstitial lung disease | |
Doheny et al. | Estimation of respiratory rate and exhale duration using audio signals recorded by smartphone microphones | |
JP2023116614A (ja) | 心血管パラメータを決定するための方法及びシステム | |
Gupta et al. | Oscillometry–The future of estimating pulmonary functions | |
Skalicky et al. | Detection of respiratory phases in a breath sound and their subsequent utilization in a diagnosis | |
Brockmann-Bauser et al. | Do we get what we need from clinical acoustic voice measurements? | |
WO2020146326A1 (en) | Computer-based dynamic rating of ataxic breathing | |
Georgieva-Tsaneva et al. | Cardio-diagnostic assisting computer system | |
Markuleva et al. | The Hemodynamic Parameters Values Prediction on the Non-Invasive Hydrocuff Technology Basis with a Neural Network Applying | |
Tran et al. | An application for diagnosing lung diseases on Android phone | |
Parameswaran et al. | Assessing structure–function relations in mice using the forced oscillation technique and quantitative histology | |
Fu et al. | Estimation of respiratory nasal pressure and flow rate signals using different respiratory sound features | |
Kazemi et al. | Investigating Frequency Contents of Capnogram using Fast Fourier Transform (FFT) and Autoregressive Modeling (AR) | |
Lima Junior et al. | Determining airflow obstruction from tracheal sound analysis: simulated tests and evaluations in patients with acromegaly | |
Shokrollahi et al. | A novel approach for acoustic estimation of neck fluid volume between men and women | |
CN114242242A (zh) | 一种基于人体形态表型的肺功能测量方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014561223 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14829507 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014829507 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |