JP5824608B2 - 肺音分析装置 - Google Patents

肺音分析装置 Download PDF

Info

Publication number
JP5824608B2
JP5824608B2 JP2011123119A JP2011123119A JP5824608B2 JP 5824608 B2 JP5824608 B2 JP 5824608B2 JP 2011123119 A JP2011123119 A JP 2011123119A JP 2011123119 A JP2011123119 A JP 2011123119A JP 5824608 B2 JP5824608 B2 JP 5824608B2
Authority
JP
Japan
Prior art keywords
sound
heart
heart sound
identification
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011123119A
Other languages
English (en)
Other versions
JP2012249730A (ja
Inventor
堀井 則彰
則彰 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011123119A priority Critical patent/JP5824608B2/ja
Publication of JP2012249730A publication Critical patent/JP2012249730A/ja
Application granted granted Critical
Publication of JP5824608B2 publication Critical patent/JP5824608B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、センサを用いて肺音を測定し、信号処理によって肺音を分析する肺音分析装置に関するものである。
医師が病院等で患者を診察する場合、聴診器によって心音や肺音などの生体音を聴取し、診断を行っている。しかしながら、聴診による診断は、医師の主観的評価に基づいており、熟練を要するものであった。このため、肺音の分析を客観的に且つ簡単に行うために、信号処理による肺音分析が求められている。
肺音とは、肺・胸郭内で呼吸運動とともに発生し、正常・異常とは関係なく、心血管系を音源とする音を除く全ての音である。さらに、肺音は呼吸により気道内に生じた空気の流れを音源とする生理的な音である呼吸音と、喘鳴や胸膜摩擦音などの病的状態で発生する異常な音である副雑音とに分類される。なお、呼吸音の音源は、比較的太い気道内で起こると考えられている。また、副雑音は、疾病によって吸気時に発生しやすい場合や、呼気時に発生しやすい場合などがあり、吸気または呼気のどちらで発生しているかは、診断において重要になる場合がある。
一方、遠隔医療等において、電子聴診器を用いて一般人が肺音を測定し、インターネット等の回線を通じて遠隔にいる医師に送信して診断を行う場合がある。この場合、電子聴診器を用いて肺音を測定することはできるが、吸気また呼気に関する情報を取得することは出来なかった。
吸気または呼気という呼吸相を識別する方法として、呼吸フローを測定して判別する方法や、胸部または腹部に巻くベルト式の呼吸センサを用いて判別する方法がある。しかしながら、患者に余計な装置を装着する必要があり、利便性に欠けていた。
また、特許文献1では、胸部で測定した心音から、呼吸曲線を推定する方法が提案されている。この方法では、呼吸における心音の振幅変化に着目し、心音振幅のピーク値を検出して、ピーク値同士の補間処理を行い、呼吸曲線を推定している。
特許第3122757号公報
特許文献1において、心音を用いて呼吸相を判別する場合、姿勢や測定箇所、呼吸の仕方などの測定条件によって、心音に呼吸相の影響が反映されにくい場合があった。また、心音に呼吸相の影響が反映されていたとしても、呼吸相の識別に失敗する場合があった。
本発明は、上記の課題を解決するためになされたもので、呼吸相の識別に適切な心音を選択し、測定条件に応じて心音を用いた呼吸相の識別基準を変更する肺音分析装置を提供することを目的とする。
上記課題を解決するために、本発明の肺音分析装置は、生体内を伝播する振動である生体音を測定する生体音測定部と、生体音から、心臓のある特定の動作に対応する振幅およびパワの極値を含む心音情報を検出する心音情報検出部と、心音情報から、心音振幅変化の周期を算出する心音振幅変化周期算出部と、生体音から呼吸周期を算出する呼吸周期算出部と、心音振幅変化の周期と呼吸周期とを比較し、周期の差が所定値以内である心音情報を選択する心音選択部と、を備える。
この構成により、呼吸相の識別に適切な心音を選択することができる。
本発明の肺音分析装置は、心音選択部で選択された心音情報に該当する測定条件を決定する測定条件決定部と、測定条件に該当する識別基準を選択する識別基準選択部と、識別基準と心音情報に基づいて、吸気区間と呼気区間とを識別する呼吸相識別部とをさらに備える構成であってもよい。
この構成により、適切な心音を用いて正確な呼吸相の識別を行うことができる。
本発明の肺音分析装置は、測定条件が、心音情報が測定された測定位置と心音の種類と姿勢のうちの一つまたは複数である構成であってもよい。
この構成により、肺音分析装置は、測定位置や心音の種類、姿勢に応じて識別基準を変更することができ、より正確な呼吸相の識別を行うことができる。
本発明の肺音分析装置は、心音選択部で選択された複数の心音情報において、呼吸相の識別に最適な心音情報を選択する最適心音選択部を、さらに備える構成であってもよい。
この構成により、呼吸相識別に最も適切な心音を選択することができ、より正確な呼吸相識別が可能となる。
本発明の肺音分析装置は、呼吸相識別部で識別された複数の識別結果において、信頼度の最も高い識別結果を選択する識別結果選択部を、さらに備える構成であってもよい。
この構成により、複数の呼吸相識別結果から、信頼性の最も高い結果を採用することができ、より正確に呼吸相を識別することができる。
本発明によれば、肺音分析装置は、生体音に混入する心音を用いて、精度よく呼吸相の識別を行うことができる。
実施の形態1の肺音分析装置を示すブロック図 生体音測定部の構成図 信号処理部の機能ブロックの一例を示す図 心音を選択するフローチャート 頸部で測定した生体音信号の一例を示す図 頸部で測定した生体音から抽出された心音の一例を示す図 心音の自己相関の一例を示す図 肺音の自己相関の一例を示す図 実施の形態2の肺音分析装置を示すブロック図 識別部の機能ブロックの一例を示す図 呼吸相を識別するフローチャート (a)右鎖骨下で測定される心音の一例を示す図、(b)頸部で測定される心音の一例を示す図、(c)頸部で測定される肺音の一例を示す図 信号処理部の機能ブロックの他の例を示す図 最適心音を選択するフローチャート 識別部の機能ブロックの他の例を示す図 識別結果を選択するフローチャート
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、同じ要素には同じ符号を付しており、説明を省略する場合もある。
(実施の形態1)
図1は、実施の形態1の肺音分析装置100の構成を示すブロック図である。
肺音分析装置100は、生体音を測定する生体音測定部101と、生体音測定部101で測定した生体音信号を増幅する増幅部102と、増幅部102で増幅された生体音信号をデジタルデータに変換するA/D処理部103と、A/D処理部103でデジタルデータに変換された生体音信号を分析する信号処理部104と、測定者に生体音信号の分析結果等を出力する出力部105とを備える。
まず、生体音測定部101の構成について、図2を用いて説明する。
図2に示すように、生体音測定部101は、生体内を伝播する生体音の振動を空気の振動に変換するダイヤフラム部201と、ダイヤフラム部201で空気振動に変換された生体音を伝播させる空間部202と、空間部202を伝播してきた生体音を電気信号に変換するマイクロフォン203と、マイクロフォン203で電気信号に変換された生体音信号を伝送するためのリード線204とを備える。なお、充填部205は、外部からの環境雑音による振動が空間部202に伝播しないように、ゴム素材やゲル等の制振材が充填されていてもよい。
信号処理部104の構成について、図3を用いて説明する。信号処理部104は、デジタル化された生体音信号から、心臓のある動きに対応した心音であるI音およびII音の振幅の極値を検出する心音情報検出部301と、検出された極値からI音およびII音のそれぞれの振幅変化の周期を算出する心音振幅変化周期算出部302と、デジタル化された生体音信号から呼吸周期を算出する呼吸周期算出部303と、心音振幅変化の周期と呼吸周期とを比較して、呼吸相識別に適切なI音およびII音を選択し、選択されたI音およびII音の極値を含む振幅情報と、I音またはII音のどちらであるかを示す心音の種類と、該当する心音が測定された生体音測定部の識別子とを含む心音情報を出力する心音選択部304とを備える。なお、心臓の1周期には代表的な2つの振動が測定されることが知られており、I音とII音とがある。I音とは房室弁が閉まる音であり、II音とは動脈弁が閉まる音である。
次に、肺音分析装置100において、生体音信号が入力された場合の動作について図4を用いて説明する。
図4は、信号処理部104において、生体音測定部101で測定される生体音から、呼吸相の識別に適切なI音およびII音を選択するフローチャートである。
心音情報検出部301は、A/D処理部103から生体音信号を受け取ると、I音およびII音のそれぞれの極値を振幅情報として算出する(ステップS400)。なお、A/D処理部103では、例えば、サンプリング周波数が6kHz、量子化ビット数が16ビットでデジタルデータ変換される。ステップS400において、I音およびII音の極値を検出する方法としては、従来公知のものを用いてもよい。例えば、特許文献1に記載の方法を採用することができる。特許文献1によれば、あらかじめ心拍の時間間隔を概算しておく。次に、最初の1秒程度のデータを読み込んで極値と、極値を検出するための閾値を算出し、心拍の時間間隔ごとに閾値を越える極値を検出し、I音およびII音の極値を抽出することになる。
この方法によれば、I音またはII音のいずれかの極値を検出することができる。しかしながら、検出された極値がI音かII音かは不明のままである。一般的に、I音の発生からII音が発生するまでの時間間隔と、II音が発生してから次の心拍のI音が発生するまでの時間間隔を比較すると、I音の発生からII音が発生するまでの時間間隔のほうが短いことが知られている。このため、先に検出された心音の極値(極値A)の発生時刻前後におけるある時間範囲内で次に大きな極値(極値B)を検出し、極値Aが極値Bよりも時間的に先に発生している場合は、極値AがI音、極値BがII音ということになる。逆に、極値Bが極値Aよりも時間的に先に発生している場合は、極値BがI音、極値AがII音ということになる。さらに、極値Bを基準とし、例えば特許文献1のような方法を用いてすべての極値Bを検出する。この結果、I音およびII音の極値をそれぞれ検出することができる。もちろん、I音およびII音の検出方法は、他の方法を用いても構わない。
なお、特許文献1は、測定信号をそのまま用いてI音またはII音を検出していたが、事前に低域通過フィルタを用いて心音が含まれる帯域の信号を抽出し、抽出された振幅の絶対値を算出して平滑化等の処理を行い、心音振幅の極値を検出するようにしても良い。これにより、心音以外のノイズや肺音による影響を抑えることができ、精度よくI音およびII音の極値を検出することができる。なお、この場合、信号処理の過程で振幅の絶対値を算出しているため、極値の検出は極大値の検出となる。
図5は、頸部で測定された生体音信号の波形である。吸気と呼気の肺音信号、および心音を示すパルシブな信号が周期的に測定されているのがわかる。なお、図5の場合、周期的に観測されている心音はII音であり、I音は肺音信号に埋もれている。図6は、図5の生体音信号に、カットオフ周波数が100Hzである低域通過フィルタの処理を行い、振幅の絶対値化と平滑化を行った結果である。また、○印および*印は、それぞれI音およびII音の極大値の検出結果を示している。図6に示す通り、心音のI音とII音が精度よく抽出されていることがわかる。なお、図6は、振幅最大値が1となるように正規化している。
次に、心音振幅変化周期算出部302は、検出されたI音およびII音の極値が含まれる振幅情報を用いて、それぞれの極値の変化の周期を算出する(ステップS401)。例えば、自己相関を計算して周期を求めることができる。図7は、頸部で測定された生体音に含まれるI音およびII音の振幅極大値に関する自己相関の計算結果である。なお、自己相関の値は、(検出された極値の数−ラグ数)で除算している。ステップS400では、各心拍におけるI音およびII音の極値を検出しているため、図7の横軸のラグは、心拍のラグに相当する。図7において、II音の自己相関については、極大値と極小値が周期的に明確に表れており、心音の極値の変化が周期的であることがわかる。この場合、1以上のラグに出現する最初の極大値をとるラグの値が、心音振幅変化の1周期に相当する。さらに、極大値をとるラグの値に、心音情報検出部301で算出した心拍の時間間隔の概算値を積算した値が、心音振幅変化の1周期の時間長となる。これをI音およびII音のそれぞれについて算出する。
しかしながら、図7のI音の自己相関のように、極大値と極小値が明確に表れていない場合がある。これは、呼吸の影響が心音に反映されていない可能性が高い。このような場合、自己相関の極大値が検出されない場合がある。これは、呼吸相識別に不適切な心音であることを意味するため、極大値が検出されない場合があってもよい。また、極大値と極小値が明確でないものを何らかの基準を設けて選択しないようにしてもよい。例えば、極小値と極大値の差を算出し、あらかじめ設定した閾値以下であれば呼吸の影響が心音に反映されていないと判断して、該当するI音およびII音が選択されないようにすることができる。もちろん、他の方法によって不適切なI音およびII音が選択されないようにしても構わない。
次に、呼吸周期算出部303は、測定された生体音信号から、呼吸周期を算出する(ステップS402)。この場合も、自己相関を用いて呼吸周期を算出することができる。図8は、図5の生体音信号に関する自己相関の計算結果である。図8によれば、自己相関の極大値と極小値が明確に周期的に表れており、呼吸が周期的に行われていることがわかる。なお、肺音の自己相関から呼吸周期を検出する場合は、1以上のラグにおいて、2番目に表れる極大値を検出することが望ましい。呼吸は、吸気と呼気の繰り返しで行われており、1番目に表れる極大値のラグは、吸気(または呼気)とその次に表れる呼気(または吸気)の時間間隔に相当する場合が多いためである。2番目に表れる極大値を採用することで、吸気(または呼気)とその次に表れる吸気(または呼気)の時間間隔である呼吸周期を算出することができる。以上のようにして、2番目に表れる極大値のラグの値を呼吸周期として算出する。もちろん、他の方法を用いて生体音信号から呼吸周期を算出しても構わない。
次に、心音選択部304は、算出されたI音またはII音の振幅変化の周期と呼吸周期とを比較し、同じ周期と判断されたI音またはII音を選択する(ステップS403)。この場合、周期の比較は厳密に行うのではなく、ある閾値を定めておき、周期の差が閾値以内であれば同じ周期であると判断する。呼吸周期と同じ周期をもつI音およびII音は、呼吸の影響が反映されており、呼吸相の識別に適切である可能性が高い。
以上のようにして、肺音分析装置100は、測定した生体音に含まれる心音について、呼吸相を識別するために適切なI音およびII音を選択することができる。
上記では、生体音測定部101がリード線204を備えて生体音信号を伝送するとして説明したが、これに限ったものではなく、リード線204の替わりに無線送信機で生体音信号を伝送する構成であってもよい。この構成によると、リード線204が不要となり、生体音測定時に、リード線204の身体への接触等による振動や、電磁波などの影響により、リード線204からノイズが混入することを防ぐことができる。
また、生体音測定部101は、マイクロフォン203を用いて生体音を検出する構成であったが、加速度センサを用いて生体音を検出するようにしてもよい。この場合、ダイヤフラム部201や、空間部202は不要となる。この結果、空気振動によって伝播してくる環境雑音が、ダイヤフラム部や空間部を介してセンサに混入してしまうのを低減させることができる。
また、心音情報検出部301では、I音またはII音の振幅の極値のみを検出していたが、極値を検出し、極値と極値の時間間隔には、該当するサンプル数分だけ0埋めをした時系列データを振幅情報として用いてもよい。さらには、低域通過フィルタ等を用いて平滑化してもよい。この結果、自己相関を計算した場合に、極大値および極小値が明確になる可能性がある。また、I音またはII音として誤って検出されたパルシブなノイズの極値による影響も抑えることが可能になる。
なお、肺音分析装置100は、2つ以上の生体音測定部を用いて身体の複数個所で同時に生体音を測定してもよい。例えば、N箇所で生体音を測定する場合、各測定箇所でI音とII音が検出されるので、最大2N個のI音およびII音が検出されることになる。この結果、心音選択部304において、2N個以下のI音およびII音が選択されることになる。
(実施の形態2)
図9は、肺音分析装置100の他の構成例を示す図である。以下、実施の形態1と同様の構成については、同じ符号を用い、説明を省略する。肺音分析装置900は、信号処理部104で選択された心音情報を用いて、吸気および呼気の時間区間を識別する識別部901をさらに備える。
識別部901の構成について、図10を用いて説明する。識別部901は、信号処理部104で出力される心音情報を用い、心音情報が測定された測定条件を決定する測定条件決定部1001と、測定条件に対応する呼吸相の識別基準を選択する識別基準選択部1002と、心音情報と識別基準とを用いて吸気および呼気の時間区間を識別する呼吸相識別部1003とを備える。
次に、識別部901において、心音情報が入力された場合の動作について図11を用いて説明する。
図11は、識別部901において、信号処理部104で選択される心音情報から、吸気および呼気の時間区間を識別するフローチャートである。
測定条件決定部1001は、信号処理部104から心音情報を受け取ると、心音情報に含まれる生体音測定部の識別子と、選択された心音がI音またはII音のいずれかを示す心音の種類に基づいて測定条件を決定する(ステップS1100)。測定条件としては、I音またはII音のいずれかを示す心音の種類と、測定位置と、測定時の被験者の姿勢とが含まれる。なお、測定位置は、生体音測定部の識別子に対応する測定位置をあらかじめ肺音分析装置900に記録しておき、識別子に応じて測定位置を決定すればよい。また、測定のたびに、測定者から測定位置を入力してもらってもよい。姿勢に関しても、肺音分析装置900にあらかじめ測定する姿勢を記録しておいてもよいし、測定毎に測定者から姿勢を入力してもらってもよい。
次に、識別基準選択部1002は、決定された測定条件に基づいて、呼吸相を識別する識別基準を選択する(ステップS1101)。識別基準とは、心音振幅が減衰および増幅する時間区間が、吸気区間か呼気区間のいずれであるかを示すものである。図12は、仰臥位の姿勢で、右鎖骨下で測定した生体音に含まれるI音の振幅変化(図12(a))と、頸部で測定した生体音に含まれるII音の振幅変化(図12(b))と、頸部で測定した生体音信号にカットオフ周波数が400Hzである高域通過フィルタの処理を行った信号(図12(c))を示している。なお、図12(a)および(b)は、振幅の最大値が1になるように正規化を行っている。図12(a)によれば、右鎖骨下で測定したI音の振幅は、吸気時に減衰し、呼気時に増幅する。一方、図12(b)によれば、頸部で測定したII音の振幅は、吸気時に増幅し、呼気時に減衰する。このように、心音の種類や測定箇所などによって心音振幅に現れる呼吸相の影響は変化する。また、姿勢によっても心音への影響が変わる場合がある。このため、測定条件に応じて、呼吸相識別の基準を選択する必要がある。
次に、呼吸相識別部1003は、選択された識別基準と、心音情報に含まれる心音の振幅情報とに基づいて、吸気および呼気の時間区間を識別する(ステップS1102)。呼吸相の識別には、従来公知のものを用いてもよい。例えば、特許文献1に記載の方法を採用することができる。特許文献1によれば、心音の振幅情報を用いて呼吸曲線が可能となる。呼吸曲線が算出されれば、選択された識別基準に基づいて、呼吸曲線が増大または減少している区間が、吸気または呼気かを特定すればよい。もちろん、呼吸曲線を用いなくても、心音の極値から、振幅が増大している区間および減少している区間を特定し、識別基準に基づいて特定された区間が吸気なのか呼気なのかを特定することもできる。また、心音情報検出部301において、心音の極値と極値の時間間隔を0埋めした時系列データに低域通過フィルタの処理をして得られる波形データを算出しておけば、それを呼吸曲線とみなして識別基準に基づいて呼吸相の識別を行うこともできる。
以上のようにして、肺音分析装置900は、心音情報に基づいて識別基準を選択し、正しい識別基準を用いて呼吸相を識別することができる。この結果、呼吸相の誤識別を低減させることができる。
なお、測定条件として、測定箇所と、心音の種類、姿勢の情報が含まれるとしたが、肺音分析装置を使用する内容によっては、これらのうちの一部のみを含むとしてもよい。例えば、生体音測定部を1つしか用いず、必ず同じ測定箇所で測定すると定められている場合には、識別基準選択部で選択される識別基準において、他の測定箇所に関する基準が選択されないように制限しておけば、測定条件として測定箇所が含まれていなくても問題はない。また、姿勢や抽出する心音の種類が事前に一意に定められている場合にも、同様にして識別基準の選択に制限を設けておけば、測定条件として姿勢や心音の情報が含まれていなくても良い。
(実施の形態3)
図13は、実施の形態1に関する信号処理部104の他の構成例を示す図である。以下、実施の形態1と同様の構成については、同じ符号を用い、説明を省略する。
信号処理部104は、心音選択部304で選択された一つまたは複数の心音情報から、呼吸相の識別に最も適した心音情報を選択する最適心音選択部1301をさらに備える。
次に、最適心音選択部1301において、心音情報が入力された場合の動作について図14を用いて説明する。
最適心音選択部1301は、複数の心音情報が入力されると、各心音情報に関する心音信頼度を算出する(ステップS1400)。心音信頼度は、該当する心音情報を用いた場合の呼吸相の識別結果の妥当性を示すものであり、心音信頼度の値が大きいほど、呼吸相の識別に適した心音情報であることを意味する。たとえば、心音情報に含まれる振幅情報から、心音振幅変化周期算出部302で求めたような自己相関係数を算出し、心音信頼度として用いることができる。この場合、振幅変化の周期が明確なものほど心音信頼度は高くなる。また、振幅情報において、心音振幅の最小値を基準とし、最大値との差および比を算出し、その差および比を心音信頼度として用いても良い。この場合、心音の振幅変化が最も大きいものほど心音信頼度が高くなり、呼吸の影響が強く出ている心音ほど選択されやすくなる。もちろん、あらかじめ測定箇所や姿勢、心音の種類等に応じて心音信頼度を決めておいてもよいし、他の方法を用いて心音信頼度を算出するようにしてもよい。
次に、心音情報ごとに算出された心音信頼度を比較し、最も高い心音信頼度を有する心音情報を選択する(ステップS1401)。
以上のようにして、肺音分析装置100は、呼吸相の識別に最も適した心音を選択することができる。なお、心音選択部304で選択される心音情報が1つであった場合、最適心音選択部1301は、心音信頼度を算出せずに心音選択部304で選択された心音情報を出力してもよい。
(実施の形態4)
図15は、実施の形態2に関する識別部901の他の構成例を示す図である。以下、実施の形態2と同様の構成については、同じ符号を用い、説明を省略する。
識別部901は、呼吸相識別部1003で識別された呼吸相の識別結果から、各呼吸区間において吸気または呼気の最終的な識別結果を選択する識別結果選択部1501をさらに備える。なお、呼吸区間とは、1つの吸気時間区間または1つの呼気時間区間を意味する。
次に、識別結果選択部1501に、呼吸相識別部1003で算出された心音情報が入力された場合の動作について、図16を用いて説明する。
識別結果選択部1501において、心音情報に基づいて識別された複数の呼吸相識別結果を用いて、呼吸区間ごとに吸気および呼気の識別結果信頼度を算出する(ステップS1600)。識別結果信頼度とは、吸気または呼気の識別結果の妥当性を示す指標であり、値が高いほど識別結果が妥当であることを意味する。識別結果信頼度を算出するために、複数の識別結果における吸気および呼気の統計的確率を用いてもよい。仮に、ある呼吸区間の呼吸相識別結果において、2つの心音情報によって吸気と識別され、1つの心音情報によって呼気と識別されていたとする。この場合、該当する呼吸区間について、吸気である統計的確率は2/3、呼気である統計的確率は1/3と計算される。この統計的確率を識別結果信頼度として用い、すべての呼吸区間において吸気および呼気の識別結果信頼度を算出することができる。
また、呼吸相識別部1003で呼吸相を識別する際に、呼吸区間ごとの識別結果に信頼度を算出しておき、その信頼度を採用してもよい。例えば、該当する呼吸区間の識別に用いた心音の振幅において、最小値を基準として最大値との差および比を信頼度としてもよい。以上のようにして、複数の心音情報によって吸気および呼気に付与された複数の信頼度について、それぞれの平均値または最大値を算出し、それらを吸気および呼気の識別結果信頼度として採用してもよい。もちろん、他の方法を用いて識別結果信頼度を算出してもよい。
次に、算出された識別結果信頼度に応じて、最も高い識別結果信頼度を有する呼気および吸気を最終的な識別結果として選択する(ステップS1601)。
以上のようにして、肺音分析装置900は、複数の呼吸相の識別結果から、呼吸区間ごとに最も信頼性の高い識別結果を選択することができる。
なお、呼吸相識別部1003で一つの識別結果しか算出されない場合は、その識別結果をそのまま選択してもよい。
(その他の変形例)
なお、本発明を上記実施の形態に基づいて説明してきたが、本発明は、上記の実施の形態に限定されず、以下のような場合も本発明に含まれる。
(1)上記の各装置の全部、もしくは一部を、マイクロプロセッサ、ROM、RAM、ハードディスクユニットなどから構成されるコンピュータシステムで構成した場合。前記RAMまたはハードディスクユニットには、上記各装置と同様の動作を達成するコンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムに従って動作することにより、各装置はその機能を達成する。
(2)上記の各装置を構成する構成要素の一部または全部は、一つのシステムLSI(Large Scale Integration(大規模集積回路))から構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。前記RAMには、上記各装置と同様の動作を達成するコンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムに従って動作することにより、システムLSIは、その機能を達成する。
(3)上記の各装置を構成する構成要素の一部または全部は、各装置に脱着可能なICカードまたは単体のモジュールから構成されているとしてもよい。前記ICカードまたは前記モジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。前記ICカードまたは前記モジュールは、上記の超多機能LSIを含むとしてもよい。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、前記ICカードまたは前記モジュールは、その機能を達成する。このICカードまたはこのモジュールは、耐タンパ性を有するとしてもよい。
(4)本発明は、上記に示すコンピュータの処理で実現する方法であるとしてもよい。また、本発明は、これらの方法をコンピュータにより実現するコンピュータプログラムであるとしてもよいし、前記コンピュータプログラムからなるデジタル信号であるとしてもよい。
また、本発明は、前記コンピュータプログラムまたは前記デジタル信号をコンピュータ読み取り可能な記録媒体に記録したものとしてもよい。コンピュータ読み取り可能な記録媒体は例えば、フレキシブルディスク、ハードディスク、CD−ROM、MO、DVD、DVD−ROM、DVD−RAM、BD(Blu−ray Disc)、半導体メモリなどである。また、本発明は、これらの記録媒体に記録されている前記デジタル信号であるとしてもよい。
また、本発明は、前記コンピュータプログラムまたは前記デジタル信号を、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送するものとしてもよい。
また本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、前記メモリは、上記コンピュータプログラムを記憶しており、前記マイクロプロセッサは、前記コンピュータプログラムに従って動作するとしてもよい。
また前記プログラムまたは前記デジタル信号を前記記録媒体に記録して移送することにより、または前記プログラムまたは前記デジタル信号を、前記ネットワーク等を経由して移送することにより、独立した他のコンピュータシステムにより実施するとしてもよい。
(5)上記実施の形態および上記変形例をそれぞれ組み合わせるとしてもよい。
以上のように、本発明に係る肺音分析装置は、呼吸フローセンサやベルト式の呼吸センサを用いることなく、生体音信号に含まれる心音を用いて吸気および呼気の時間区間を高精度に識別することができるという効果を有し、呼吸相に関する情報が必要な肺音分析等に有用である。
100,900 肺音分析装置
101 生体音測定部
102 増幅部
103 A/D処理部
104 信号処理部
105 出力部
901 識別部

Claims (5)

  1. 生体内を伝播する振動である生体音を測定する生体音測定部と、
    前記生体音測定部で測定された生体音から、心臓のある特定の動作に対応する心音であるI音およびII音のそれぞれについての振幅およびパワの極値を含む心音情報を検出する心音情報検出部と、
    前記心音情報から、前記I音および前記II音のそれぞれについての心音振幅変化の周期を算出する心音振幅変化周期算出部と、
    前記生体音から、呼吸周期を算出する呼吸周期算出部と、
    前記心音振幅変化の周期と前記呼吸周期とを比較し、周期の差が所定値以内である前記I音または前記II音に対応する心音情報を選択する心音選択部と、
    を備える肺音分析装置。
  2. 前記心音選択部で選択された心音情報に該当する測定条件を決定する測定条件決定部と、
    前記測定条件に該当する識別基準を選択する識別基準選択部と、
    前記識別基準と前記心音情報に基づいて、吸気区間と呼気区間を識別する呼吸相識別部とをさらに備える、
    請求項1に記載の肺音分析装置。
  3. 前記測定条件は、前記心音情報が測定された測定位置と前記選択された心音情報に対応する心音が前記I音またはII音のいずれであるかを示す心音の種類と姿勢とを含む
    請求項2に記載の肺音分析装置。
  4. 前記心音選択部で選択された複数の心音情報において、呼吸相の識別に最適な心音情報を選択する、最適心音選択部をさらに備える、
    請求項1に記載の肺音分析装置。
  5. 前記呼吸相識別部で識別された複数の識別結果において、信頼度の最も高い識別結果を選択する識別結果選択部をさらに備える、
    請求項2に記載の肺音分析装置。
JP2011123119A 2011-06-01 2011-06-01 肺音分析装置 Active JP5824608B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011123119A JP5824608B2 (ja) 2011-06-01 2011-06-01 肺音分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123119A JP5824608B2 (ja) 2011-06-01 2011-06-01 肺音分析装置

Publications (2)

Publication Number Publication Date
JP2012249730A JP2012249730A (ja) 2012-12-20
JP5824608B2 true JP5824608B2 (ja) 2015-11-25

Family

ID=47523179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123119A Active JP5824608B2 (ja) 2011-06-01 2011-06-01 肺音分析装置

Country Status (1)

Country Link
JP (1) JP5824608B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107411714B (zh) * 2017-08-18 2020-11-03 中山大学 一种家用睡眠呼吸暂停监测系统及其方法
EP4285815A1 (en) 2021-03-18 2023-12-06 TERUMO Kabushiki Kaisha Arterial pressure estimation device, arterial pressure estimation system, and arterial pressure estimation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2628690B2 (ja) * 1987-08-04 1997-07-09 コーリン電子株式会社 呼吸数モニタ装置
CA2464029A1 (en) * 2004-04-08 2005-10-08 Valery Telfort Non-invasive ventilation monitor
US7209786B2 (en) * 2004-06-10 2007-04-24 Cardiac Pacemakers, Inc. Method and apparatus for optimization of cardiac resynchronization therapy using heart sounds
JP4494985B2 (ja) * 2005-01-12 2010-06-30 株式会社国際電気通信基礎技術研究所 心拍および呼吸情報の収集装置
US20080119749A1 (en) * 2006-11-20 2008-05-22 Cardiac Pacemakers, Inc. Respiration-synchronized heart sound trending

Also Published As

Publication number Publication date
JP2012249730A (ja) 2012-12-20

Similar Documents

Publication Publication Date Title
US8882683B2 (en) Physiological sound examination device and physiological sound examination method
Nam et al. Estimation of respiratory rates using the built-in microphone of a smartphone or headset
JP5508517B2 (ja) 生体音検査装置、生体音検査方法、プログラム及び集積回路
JP6770527B2 (ja) 対象の疾患を検出するデバイス、システム、方法及びコンピュータプログラム
DK2593007T3 (en) PROPERTY CHARACTERISTICS FOR RESPIRATORY MONITOR
Penzel et al. The use of tracheal sounds for the diagnosis of sleep apnoea
KR101619611B1 (ko) 마이크로폰을 이용한 호흡률 추정 장치 및 기법
JP2017196425A (ja) 呼吸信号の組合せを使用する呼吸速度測定
JP4935931B2 (ja) 無呼吸検出プログラムおよび無呼吸検出装置
JP2013518607A (ja) 携帯型モニタリングのための生理学的信号の品質を分類する方法およびシステム
US20120253216A1 (en) Respiration analysis using acoustic signal trends
Doheny et al. Estimation of respiratory rate and exhale duration using audio signals recorded by smartphone microphones
JP2012157558A (ja) 心音測定装置
WO2017211866A1 (en) Method and system for measuring aortic pulse wave velocity
JP5824608B2 (ja) 肺音分析装置
Yuasa et al. Wearable device for monitoring respiratory phases based on breathing sound and chest movement
JP2013123496A (ja) 判定装置、電子聴診器、電子聴診システム、判定方法、判定プログラム、およびコンピュータ読み取り可能な記録媒体
EP2283773A1 (en) Processing a breathing signal
Castillo-Escario et al. Automatic silence events detector from smartphone audio signals: A pilot mHealth system for sleep apnea monitoring at home
US20100210962A1 (en) Respiratory signal detection and time domain signal processing method and system
JP7165209B2 (ja) 生体情報分析装置、生体情報分析方法、及び、生体情報分析システム
JP2018075076A (ja) 検査装置
WO2020090763A1 (ja) 処理装置、システム、処理方法、およびプログラム
WO2017042350A1 (en) Method and system for monitoring ventilatory parameter
CN113692523A (zh) 生物体信息监测系统、床系统以及生物体信息监测方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140204

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R151 Written notification of patent or utility model registration

Ref document number: 5824608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151