WO2011113968A1 - Procedimiento para mejorar propiedades funcionales mediante luz pulsada, muestras con propiedades funcionales mejoradas y usos de las mismas - Google Patents

Procedimiento para mejorar propiedades funcionales mediante luz pulsada, muestras con propiedades funcionales mejoradas y usos de las mismas Download PDF

Info

Publication number
WO2011113968A1
WO2011113968A1 PCT/ES2010/070163 ES2010070163W WO2011113968A1 WO 2011113968 A1 WO2011113968 A1 WO 2011113968A1 ES 2010070163 W ES2010070163 W ES 2010070163W WO 2011113968 A1 WO2011113968 A1 WO 2011113968A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
protein
properties
light
functional properties
Prior art date
Application number
PCT/ES2010/070163
Other languages
English (en)
French (fr)
Inventor
Juan Carlos Arboleya Payo
Maria Luz ARTÍGUEZ BÁRCENA
Estibaliz FERNÁNDEZ PINTO
Iñigo MARTÍNEZ DE MARAÑÓN IBABE
Original Assignee
Fundacion Azti/Azti Fundazioa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Azti/Azti Fundazioa filed Critical Fundacion Azti/Azti Fundazioa
Priority to EP10847765.4A priority Critical patent/EP2548450B1/en
Priority to PCT/ES2010/070163 priority patent/WO2011113968A1/es
Priority to US13/505,894 priority patent/US20120238489A1/en
Priority to BRBR112012010360-1A priority patent/BR112012010360A2/pt
Publication of WO2011113968A1 publication Critical patent/WO2011113968A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/042Gels
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/30Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation
    • A23L5/32Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation using phonon wave energy, e.g. sound or ultrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/98Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution of animal origin
    • A61K8/981Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution of animal origin of mammals or bird
    • A61K8/986Milk; Derivatives thereof, e.g. butter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/48Thickener, Thickening system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/49Solubiliser, Solubilising system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/81Preparation or application process involves irradiation

Definitions

  • the invention relates to the field of compositions with improved properties used in food, cosmetics, biotechnology, biomedicine or pharmacy, among other industrial sectors.
  • the invention relates to a method for improving the functional properties of samples containing components susceptible to modifications when absorbing ultraviolet light by the use of pulsed light.
  • the invention relates to samples with improved functional properties obtainable by the same and to the use thereof.
  • compositions based on macromolecules such as proteins, carbohydrates, lipids, etc. are used in the food industry.
  • Proteins for example, have different physical-chemical properties: hydration properties, glass transition, solubility, water retention capacity, oil retention capacity, thickening, dispersing, emulsifying, foaming or gelling properties, film-forming properties , properties as a support agent, surface properties (wettability, adhesion, ...), among other interesting functional properties. These properties are really positive for the food industry (preparation of pastry and bakery products, sauces, meat products, dairy products, fermented or unfermented, drinks, etc.).
  • these macromolecules mainly proteins and carbohydrates
  • these macromolecules are also applied in cosmetics in order to obtain creams, foams and facial or hair gels, shampoos, emulsions, etc., with a particular texture for a better application of the product and subsequent distribution of the active substance thereof or to encapsulate or bind particles, for example.
  • protein additives or vehicles for example, in the preparation of creams, ointments, emulsions, foams, lotions and other pharmaceutical forms for topical, ocular, transdermal application, etc., as well as in obtaining microcapsules, nanocapsules, support materials, controlled release systems, etc.
  • compositions based on proteins and carbohydrates have been used for biomedical and biotechnological applications, particularly to obtain biomedical materials such as implants, parts incorporated into the organism, stitches or tissue support in which biopolymers are used.
  • biotechnological application may be the use of these compounds as surfactants (emulsion stabilizers and foams) for the removal of ink on recycled paper or for the collection of undesirable or toxic oils by emulsion formation.
  • Chen et al. they proposed a method to improve the foaming properties of a serum protein preparation by enzymatic hydrolysis (US 2002/0012720).
  • Baker et al. they defined a method for preparing an isolated whey protein with improved foaming from an aqueous solution thereof properties by adjusting the pH to 5-8 and then heating to 60-80 5 C (US 2002/0051843).
  • Gustaw et al. described a procedure to obtain gels from whey protein isolates by the conventional method of water bathing and subsequent microwave heating.
  • the gels obtained at pH 3 and 10 by microwave heating had a fine band structure, presenting stronger gels (improved gelling properties) than those obtained by conventional heating (Gustaw and MIeko 2007 "Gelation of whey proteins by microwave heating", Cincinnati 62 (4): 439-442).
  • Schmitt et al. described a process of preparing a food product that contains native whey proteins and that, by treatment thermal, at least 20% of these proteins are transformed into micelles that have very good foaming and emulsifying capacity, this thermal treatment can be carried out by microwave (EP 1839504).
  • Wilkinson described a method for producing milk foam for the preparation of cappuccino and other coffee-based beverages from a composition comprising milk proteins such as whey.
  • Said composition is emulsified and introduced into an aerosol container so that a product is obtained that is refrigerated and that, subsequently, when dispensed and heated with microwaves, is very similar to milk foam produced by steam (US 2004 / 0076730).
  • Protein irradiation has been proposed by Tada et al. (US 6586037) that developed a method to improve the gelling properties of proteins by irradiation of electron beams using a linear electron accelerator.
  • Tada et al. US 6586037
  • such technology is very different from that of pulsed light since the type of electromagnetic waves is different.
  • UV starch treatment can lower its viscosity (Bertolini et al. 2001, "Free radical formation in UV- and gamma-irradiated cassava starch", Carbohydrate Polymers, 44 (3): 269-271), increase the capacity of water retention and solubility among others.
  • Such treatment can in some cases generate the formation of crosslinked starch molecules which causes a clear improvement in their gelling abilities, to provide texture for example, thus improving the expansion in bakery and bakery products (Vatanasuchart et al. 2005, "Molecular properties of cassava starch modified with different UV irradiations to enhance baking expansion", Carbohydrate Polymers 61: 80-87).
  • pulsed light has a high content of UV light
  • pulsed light comprises a broad emission spectrum (190- 1 100nm) which includes not only the UV range, but also the visible and infrared range, so that the wavelengths emitted in each pulse of light other than those of the UV range can affect the functional properties of the different ones in a non-specific way components of the treated sample.
  • the long exposure time required by conventional continuous UV sources, in addition to the high intensities used, cause negative effects on the appearance and quality of the treated samples, so, a priori, the light technology Pulsed is not suitable for the improvement of functional properties of samples intended for food applications.
  • pulsed light technology has not been used or suggested to improve the functional properties of liquid protein and / or carbohydrate samples or other types of samples containing other compounds that undergo modifications when they absorb ultraviolet light in continuous.
  • the process of the present invention is an alternative method for improving the functional properties of protein samples and other components that are susceptible to modifications by absorbing ultraviolet light continuously.
  • Said samples with improved functional properties find application in the food, cosmetic, pharmaceutical, biomedical, biotechnological and other industries (paper, fabrics, cements, inks, detergents, etc.)
  • the process of the invention in addition to improving the functional properties of the treated sample, also achieves decontamination thereof.
  • pulsed light has other advantages over conventional UV light systems, among which it is worth mentioning the reduced treatment time, very suitable for continuous processing lines, as well as the use of xenon lamps that do not require of a preheating period.
  • it is a non-toxic gas, potential risks at the environmental and health level that can be derived from the use of mercury lamps, usual lamps in continuous UV processing, are avoided.
  • the present invention is intended to provide a method for improving the functional properties of a sample comprising at least one component that is susceptible to modifications by absorbing ultraviolet light, a method comprising the use of pulsed light with a spectrum of 190-1 100 nm emission and high ultraviolet light content.
  • Another object of the present invention is the sample with improved functional properties (hydration properties, glass transition, solubility, water retention capacity, oil retention capacity, properties thickeners, dispersants, emulsifiers, foaming or gelling agents, film-forming properties, properties as a support agent, surface properties - wettability, adhesion, ...-), obtainable by said process.
  • Another object of the invention is the use of said sample with improved functional properties in the food, cosmetic, biotechnology, biomedical, pharmaceutical or chemical industry.
  • Figure 1 shows the surface tension as a function of the concentration of aqueous solutions of untreated beta-lactoglobulin and aqueous solutions of beta-lactoglobulin treated by the method of the invention at different treatment intensities (with different number of light pulses) .
  • Figure 2 shows the surface elastic modulus as a function of the concentration of aqueous solutions of untreated beta-lactoglobulin and aqueous solutions of beta-lactoglobulin treated by the method of the invention at different treatment intensities (with different number of light pulses ).
  • Figure 3 shows the foaming capacity as a function of the concentration of aqueous solutions of untreated beta-lactoglobulin and aqueous solutions of beta-lactoglobulin treated by the method of the invention at different treatment intensities (with different number of light pulses) .
  • Figure 4 shows the foaming stability as a function of the concentration of aqueous solutions of untreated beta-lactoglobulin and aqueous solutions of beta-lactoglobulin treated by the method of the invention at different treatment intensities (with different number of light pulses) .
  • Figure 5 shows the maximum elastic modulus of the gel formed from an aqueous solution of untreated beta-lactoglobulin and an aqueous solution of beta-lactoglobulin treated by the method of the invention with 10 light pulses.
  • Figure 6 shows the elastic modulus as a function of time and temperature of the gel formed from a solution of untreated serum proteins and a solution of serum proteins treated by the method of the invention with 10 light pulses.
  • Figure 7 shows the elastic modulus as a function of time and temperature of the gel formed from the untreated whey and whey treated by the method of the invention with 10 pulses of light.
  • Figure 8 shows the particle size of the emulsion obtained using an aqueous solution of untreated beta-lactoglobulin and an aqueous solution of beta-lactoglobulin treated by the method of the invention with 10 light pulses.
  • the present invention provides a method for improving the functional properties of a sample comprising at least one component that is susceptible to modifications by absorbing continuous ultraviolet light (hereinafter “the process of the invention") comprising the use of pulsed light with an emission spectrum of 190-1 100 nm and a high content of ultraviolet light.
  • the term "functional properties" refers to those physical-chemical properties of the component in question, be it a biomolecule (protein, carbohydrate, lipid, etc.) or another, which affects the behavior of said components in food systems, among others, during the process, storage, preparation and consumption. That is, any property, with the exception of nutritional properties, that affect its use.
  • These functional properties include, for example, the properties of hydration, glass transition, solubility, water retention capacity, oil retention capacity, thickening, dispersing, emulsifying, foaming or gelling properties, film-forming properties, properties as a support agent, or surface properties (wettability, accession,).
  • component that is susceptible to modifications by absorbing ultraviolet light refers to a biomolecule or other component that is capable of absorbing light in the wavelength range of ultraviolet light and that, as a consequence, it undergoes structural modifications.
  • a high content in ultraviolet light refers to approximately 20% to 50% of the total pulsed light emitted by the equipment in question corresponds to the UV spectrum.
  • the pulsed light processing consists in the application of successive flashes or flashes of high intensity light on the product to be treated, each pulse being characterized by its short duration and its wide emission spectrum (usually 190-1 100 nm, that is to say , from ultraviolet (UV) to near infrared (IR). In addition to its broad emission spectrum, light pulses are also characterized by their short duration, which generally ranges from 100 to 350 ⁇ .
  • pulsed light technology has been used for the inactivation of a wide range of microorganisms (Dunn et al. 1989, US 4871559, Wekhof et al., 1991, "Treatment of contaminated water, air and soil with UV flashlamps ", Environmental progress 10: 241-243 for example) and for the increase in vitamin D in mushrooms (Beelman et al. US 2009/0269441).
  • the process of light pulses is more efficient and faster than the application of continuous UV light to produce the same level of microbial inactivation, being therefore a technology that can be implemented more successfully and easily in processing lines in continuous, particularly high speed or productivity or high flow.
  • the pulse generator system is basically composed of an electric unit, with an electric power capacitor and high voltage switches (one per lamp); one or more xenon lamps; and a control module that, in the case of having several lamps, allows to select between the simultaneous or sequential emission of the light pulses.
  • the spectrum of the light emitted in each pulse ranges from 190 nm to 1 100 nm.
  • the pulsed light that excites the sample will cover the range of wavelengths corresponding to the peak or absorption peaks of the sample component or components.
  • the pulsed light used in the process of the invention has a high UV light content, of the order of 20% to 50% of the total pulsed light emitted by the equipment used corresponds to the UV spectrum.
  • each lamp which normally consist of parabolic surfaces made of highly reflective materials.
  • the function of the reflector or reflectors is to redirect the light emitted by the lamps in all directions towards the area of the reactor where the product to be treated is located.
  • the reactor or treatment chamber is constructed of highly reflective materials, so that the light that initially does not affect the product to be treated can be reflected by the walls of the chamber until finally reaching said product, thus increasing the efficiency of process.
  • the sample is treated with pulsed light with a total creep equal to or greater than the minimum total creep from which modifications in the functional properties are observed, preferably with a total creep equal to the minimum total creep from which these modifications are observed.
  • Total creep is defined as the product of creep received by an object during a light pulse by the number of pulses. In turn, creep is defined as the energy or quantity of photons received per unit area by an object treated with pulsed light during a given exposure time
  • the term dose of light is used, as it is a more intuitive term, which refers to the energy or quantity of photons absorbed per unit area by an object treated with pulsed light during an exposure time determined (usually expressed in J / cm 2 ).
  • the word dose implies complete absorption.
  • the invention relates to a process for improving the functional properties of samples containing components that are susceptible to modifications when absorbing ultraviolet light by using pulsed light, not all light in the range 190-1 100 nm, in particular in the ultraviolet range (190-400 nm), which reaches the components of the sample is absorbed by them.
  • the maximum total creep will be that marked by the corresponding legislation.
  • the only legislation in this regard is that of the United States (FDA, 21 CFR179.41, 1996), according to which the maximum total creep allowed is 12 J / cm 2 during the use of pulsed light in the production, processing or handling of food.
  • Total creep is determined by voltage, radiant energy, power emitted radiant, radiant excitability, creep speed, pulse creep, exposure time, distance to the lamps and number of pulses, although it will be sufficient to provide the total creep values so that the person skilled in the art can carry out the method of the invention
  • the sample to be treated will contain at least one component that is susceptible to modifications when absorbing ultraviolet light.
  • at least one component of the treated sample is a protein, a peptide, a carbohydrate, a lipid or mixtures thereof.
  • the sample comprises several components with different absorption spectra
  • some components are positively modified, while others are modified negatively.
  • an improvement of the functional properties of component "a” can be achieved without modifying those of component "b".
  • filters can be used that eliminate part of the emitted spectrum so that the spectrum of light that reaches the sample has the wavelength that positively modifies the component "a” but not the wavelengths that affect it negative to component "b".
  • This effect can be achieved, in addition to a filter that allows the passage of wavelengths but not others, also with another type of lamp with different emission spectrum, that is, that emits only those wavelengths that positively affect the component "a”.
  • pulsed light is used, although it would be possible to use alternatively, to reduce the emission spectrum, pulsed laser in the range of wavelengths that positively modify the "a” component of the sample without negatively modifying the "b” component of the sample.
  • said component is a protein.
  • Said protein may be one or more proteins of animal origin, of plant origin, of microbial origin or one or more proteins produced by biotechnology, or mixtures thereof.
  • proteins of animal origin we can mention the milk proteins, blood serum proteins, myofibrillar proteins, regulatory proteins, sarcoplasmic proteins, egg proteins, etc.
  • said protein is an animal protein.
  • said protein is selected from beta-lactoglobulin, beta-casein and alpha-lactoalbumin.
  • said component is a mixture of at least one protein and at least one carbohydrate.
  • Said carbohydrate may be one or more carbohydrates selected from monosaccharides, disaccharides and polysaccharides.
  • said carbohydrate is a disaccharide.
  • said carbohydrate is selected from lactose and sucrose.
  • said component is a mixture of at least one protein and at least one peptide.
  • said component is a mixture of at least one protein and at least one lipid.
  • said component is a mixture of at least one peptide and at least one carbohydrate.
  • said component is a mixture of at least one peptide and at least one lipid.
  • said component is a mixture of at least one carbohydrate and at least one lipid.
  • these components can be commercial or can be obtained by methods known in the state of the art.
  • beta-lactoglobulin can be bovine beta-lactoglobulin B ⁇ 90% (PAGE) L8005, marketed by Sigma, or it can be obtained by a chromatography separation process from whey.
  • the sample to be treated in the process of the invention can be solid, liquid, in the form of foam, aerosol, nebulization, etc.
  • said sample is a liquid sample.
  • Liquid samples may be, for example, solutions, dispersions, suspensions, emulsions, etc., in which the type of solvent will be selected by the person skilled in the art.
  • the sample is a solid sample.
  • the sample is a nebulized sample in which the small droplets have a high concentration of solid particles.
  • the sample is an aerosol.
  • the sample is a foam.
  • the concentration of the component or components of the sample to be treated by the process of the invention can be any, although the expert will determine the limits thereof.
  • the mixing percentages in any case will be by weight / weight, volume / volume or weight / volume, for example.
  • said sample is a liquid sample comprising at least one protein.
  • said liquid sample is a solution of one or more milk proteins such as a beta-lactoglobulin solution or a serum protein solution.
  • said liquid sample is lactoserum, which is a mixture of serum proteins and carbohydrates such as lactose, among other diverse components.
  • the concentration of the component of interest can be very variable.
  • the protein concentration will vary depending on its nature, the type of liquid sample, the pH, the temperature, etc.
  • the liquid sample has a concentration of 0.0001-1000 mg / ml protein. In a preferred embodiment, the liquid sample has a concentration of 0.001-1000 mg / ml protein. In an even more preferred embodiment, liquid sample has a concentration of 0.01-200 mg / ml protein.
  • the liquid sample to be treated may be a beta-lactoglobulin solution with a concentration of 0.01-200 mg / ml, preferably 0.1 -100 mg / ml and, more preferably, 0.5-10 mg / ml protein
  • the liquid sample to be treated may be a solution of serum proteins with a concentration of 0.01 -200 mg / ml, preferably 0.1 -100 mg / ml and, more preferably, 0.5-10 mg / ml of protein
  • the liquid sample to be treated may be whey with a concentration of 0.01-200 mg / ml, preferably 0.1 -100 mg / ml and, more preferably, 0.5-10 mg / ml of protein. It is important to highlight that the process of the invention, in addition to improving the functional properties of the treated sample, also allows the decontamination thereof. Thus, the process of the invention involves obtaining a combined effect of improving the functionality and recontamination of the sample.
  • the invention provides a sample with improved functional properties obtainable by the previously described method, in which the improved functional properties are the hydration, glass transition, solubility, water retention capacity, water capacity oil retention, thickeners, dispersants, emulsifiers, foaming agents, gelling agents, film-forming, properties as a support and surface agent such as wetting or adhesion properties, previously described.
  • the invention provides a sample with improved functional properties obtainable by the previously described process, in which the improved functional properties are the foaming, gelling or emulsifying properties. This improvement is greater as the intensity of the treatment is increased, that is, as the total creep applied is increased (by increasing the number of light pulses, for example).
  • This sample also has a reduced or practically zero microbiological load and, therefore, better conservation properties.
  • the sample will have been treated with pulsed light with a total creep equal to or greater than the minimum required to produce the modifications of the functional properties, as previously indicated, preferably with a total creep equal to the required minimum to produce such modifications.
  • the maximum total creep of the pulsed light employed in the process of the invention will be that permitted by the legislation, preferably a maximum total creep of 12 J / cm 2 , which is the maximum limit set by the FDA. These total creep values can be obtained by different pulsed light equipment, as indicated.
  • the sample with improved functional properties is a liquid sample comprising at least one protein with a concentration of 0.0001-1000 mg / ml that has been treated with pulsed light with a total creep of up to 12 J / cm 2 .
  • the sample with improved functional properties is a liquid sample comprising at least one protein with a concentration of 0.001-1000 mg / ml that has been treated with pulsed light with a total creep of 0.3-10 J / cm 2
  • the sample with improved functional properties is a liquid sample of at least one protein with a concentration of 0.01-200 mg / ml that has been treated with pulsed light with a total creep of 0.3-3 J / cm 2 .
  • the sample with improved functional properties is a beta-lactoglobulin solution with a concentration of 0.01-200 mg / ml that has been treated with pulsed light with a total creep of 0.3-3 J / cm 2
  • it is a solution of serum proteins with a concentration of 0.01-200 mg / ml that has been treated with pulsed light with a total creep of 0.3-3 J / cm 2
  • said liquid sample is whey with a concentration of 0.01-200 mg / ml of protein that has been treated with pulsed light with a total creep of 0.3-3 J / cm 2 .
  • the sample with improved functional properties is a beta-lactoglobulin solution with a concentration of 0.1 -100 mg / ml that has been treated with pulsed light with a total creep of 0.3-3 J / cm 2 .
  • it is a solution of serum proteins with a concentration of 0.1 -100 mg / ml that has been treated with pulsed light with a total creep of 0.3-3 J / cm 2 .
  • said liquid sample is whey with a concentration of 0.1 -100 mg / ml of protein that has been treated with pulsed light with a total creep of 0.3-3 J / cm 2 .
  • the sample with improved functional properties is a beta-lactoglobulin solution with a concentration of 0.5-10 mg / ml that has been treated with pulsed light with a total creep of 0.3-3 J / cm 2 .
  • it is a solution of serum proteins with a concentration of 0.5-10 mg / ml that has been treated with pulsed light with a total creep of 0.3-3 J / cm 2 .
  • said liquid sample is whey with a concentration of 0.5-10 mg / ml of protein that has been treated with pulsed light with a total creep of 0.3-3 J / cm 2 .
  • the invention also provides the use of the sample with improved functional properties previously described in different applications of the food, cosmetic, biotechnological, biomedical, pharmaceutical, or chemical industry as well as in other industries such as the paper, tissue industry , cements, inks, detergents or in environmental management (collection of undesirable oils and ink removal, for example).
  • the sample with improved functional properties previously described is used in the food, cosmetic, biotechnological, biomedical, pharmaceutical or chemical industry.
  • Pulsed light equipment XeMaticA- (L + L), SteriBeam.
  • the liquid samples were treated by introducing a volume of them into a treatment reactor that allows the passage of the emitted light.
  • beta-lactoglobulin Treatment of aqueous solutions of beta-lactoglobulin to improve its surface tension properties, surface rheology, foaming capacity, foaming stability and gelling properties.
  • Different quantities of a sample of commercial beta-lactoglobulin L-8005 Sigma, bovine beta-lactoglobulin B ⁇ 90% (PAGE) were dissolved in ultrapure water with constant surface tension (72.5 mN / m) to obtain different solutions with concentrations of 0.1 to 10 mg / ml protein.
  • the surface tension of each of these solutions was measured by the pendant drop technique, using a FTA200 pendant drop tensiometer (First Ten Angstroms, USA). This technique measures surface tension over time by analyzing the image of a drop hanging from a syringe. The shape of the drop (determined by its density and surface tension) is analyzed using the capillary equation to finally achieve the surface tension value in a given time.
  • the syringe volume was 100 ⁇ and the initial drop presented a volume of 12 ⁇ .
  • the syringe needle had 0.94 mm in diameter. All measurements were performed at room temperature (approximately 20 5 C).
  • Figure 1 shows the surface tension as a function of the concentration of the untreated beta-lactoglobulin solution (B-Lg Control) and the beta-lactoglobulin solution treated by the method of the invention at different treatment intensities: with 4 pulses (B-Lg 4p) and with 10 pulses (B-Lg 10p).
  • B-Lg 4p the concentration of the untreated beta-lactoglobulin solution
  • B-Lg 10p 10 pulses
  • Figure 2 shows the surface elastic modulus as a function of the concentration of aqueous solutions of untreated beta-lactoglobulin (B-Lg Control) and aqueous solutions of beta-lactoglobulin treated by the method of the invention at different treatment intensities. (with different number of light pulses): with 4 pulses (B-Lg 4p) and with 10 pulses (B-Lg
  • the elastic surface modulus gives a measure of the stability of a formed foam: the greater the elasticity at the interface, the greater the resistance to drainage of a foam created thus allowing greater foam stability.
  • Foamscan Instrument France
  • these values are determined by conductivity measurements.
  • the foam is generated by the application of a nitrogen flow of 500 ml / min and is passed through a porous glass filter for 30 seconds (pore diameter 10-16 ⁇ ).
  • the foaming capacity was determined by the difference between the total volume of the foam formed and the initial volume of the solution (30 ml).
  • the foaming stability was determined by the average time (t (1/2) - amount of solution drained at half the measurement time). Used protein concentrations: 0.5-10 mg / ml
  • FIG 3 shows the foaming capacity (FC or Foaming Capacity) as a function of the concentration of aqueous solutions of untreated beta-lactoglobulin (B-Lg Control) and aqueous solutions of beta-lactoglobulin treated by the process of the invention at different treatment intensities
  • the untreated protein had a lower foaming capacity while at a higher intensity of treatment applied, said capacity was higher.
  • the main differences are seen at concentrations 0.5 and 1.5 mg / ml, although they are not very evident.
  • the elastic modulus (G ' ) values of the gel formed from a beta-lactoglobulin solution (10% by weight / volume, 100 mg / ml) were determined by using an AR2000 Advanced Rheometer (TA Instruments) rheometer. A steel geometry was used, plate-plate 40 mm in diameter. The oscillatory measurements were made with a frequency of 1 Hz. All measurements were made in the linear viscoelastic region with a strain value of 0.5%. A peltier plate controlled the temperature throughout the measurements.
  • the temperature profile applied was as follows: a temperature increase of 20-90 5 C with an increase of 2.5 5 C / min; the temperature was maintained at 90 5 C for half an hour and a temperature decrease was finally made to 20 5 C with a decrease of 4.5 5 C / min.
  • the elastic modulus (G ' ) values of the gel formed from a solution of serum proteins (10% by weight / volume, 100 mg / ml) were determined by using an AR2000 Advanced Rheometer (TA Instruments) rheometer. A steel geometry was used, plate-plate 40 mm in diameter. The oscillatory measurements were made with a frequency of 1 Hz.
  • Figure 6 shows the elastic modulus as a function of time and temperature of the gel formed from a solution of untreated serum proteins (control) and a solution of serum proteins treated by the method of the invention with 10 pulses of light.
  • Figure 6 shows a heating curve of the serum protein sample: after 60 5 C the untreated protein initiates a denaturation which causes the gelification phenomenon to reach maximum gel elasticity values of 600 mN / m.
  • the treatment with 10 pulses of light shows an effect on the gelation of the same, indicating that the effect of light on the denaturation of the protein has a positive effect, since the treated protein has higher elasticity values than untreated protein, up to 1000 mN / m.
  • pulsed light (10 pulses of light) improved the properties of the gel formed from this solution of serum proteins.
  • a sample of whey obtained in a cheese factory was obtained from cheese making, which had the following composition:
  • This whey was treated with 10 pulses of light, according to the previously indicated treatment conditions using an untreated sample as a control.
  • the elastic modulus (G ' ) values of the gel formed from whey (direct residue with direct protein content of 1%) were determined by using an AR2000 Advanced Rheometer (TA Instruments) rheometer. A steel geometry was used, plate-plate 40 mm in diameter. The oscillatory measurements were made with a frequency of 1 Hz. All measurements were made in the linear viscoelastic region with a strain value of 0.5%. A peltier plate controlled the temperature throughout the measurements. The temperature profile applied was as follows: a temperature increase of 20-90 5 C with an increase of 2.5 5 C / min; the temperature was maintained at 90 5 C for half an hour and a temperature decrease was finally made to 20 5 C with a decrease of 4.5 5 C / min.
  • Figure 7 shows the elastic modulus as a function of time and temperature of the gel formed from the untreated whey (control) and whey treated by the method of the invention with 10 pulses of light.
  • Figure 7 shows a heating curve of the serum protein sample: after 60 5 C the untreated protein initiates a denaturation which causes the gelification phenomenon to reach very low maximum gel elasticity values (of about 2 mN / m).
  • the treatment with 10 light pulses shows an effect on the gelation of the same, indicating that the effect of light on the denaturation of the protein has a positive effect, since the treated protein has elasticity values higher than untreated protein, about 42 mN / m.
  • pulsed light (10 pulses of light) clearly improved the properties of the gel formed from whey.
  • beta-lactoglobulin L-8005 Sigma, bovine beta-lactoglobulin B ⁇ 90% (PAGE) was dissolved in ultrapure water with constant surface tension (72.5 mN / m) to obtain a beta-lactoglobulin solution with a concentration of 1.5 mg / ml protein. This solution was treated with 10 light pulses, according to the treatment conditions previously indicated using as a control an untreated sample.
  • Oil-in-water emulsions were prepared using 75% aqueous phase and 25% lipid phase (n-tetradecane).
  • Prehomogenization was performed by vigorous agitation and after that, homogenization was performed by ultrasound.
  • the emulsifying capacity was determined by measuring the particle size.
  • a Malvern Mastersizer nano series was used by measuring the average particle size (d 32 ) by the Light-scattering technique.
  • Figure 8 shows the particle size of the emulsion obtained using an aqueous solution of untreated beta-lactoglobulin and an aqueous solution of beta-lactoglobulin and treated by the method of the invention with 10 light pulses.
  • a smaller particle size in the emulsion is significant in having a higher emulsifying stability in said system.
  • the differences between emulsions measured at time 0 and at time 2.25 hours are practically non-existent.

Abstract

La invención define un procedimiento para mejorar las propiedades funcionales de una muestra, que comprende al menos un componente que es susceptible de sufrir modificaciones al absorber luz ultravioleta, mediante el empleo de luz pulsada con un espectro de emisión de 190-1100 nm y un alto contenido en luz ultravioleta. Dicho procedimiento permite obtener muestras con propiedades funcionales mejoradas (propiedades de hidratación, transición vítrea, solubilidad, capacidad de retención de agua, capacidad de retención de aceite, propiedades espesantes, dispersantes, emulsionantes, espumantes o gelificantes, propiedades de formación de films, propiedades como agente de soporte, propiedades de superficie (mojabilidad, adhesión,…) que encuentran aplicación en la industria alimentaria, cosmética, farmacéutica, biomédica, biotecnológica, química y en otras industrias.

Description

PROCEDIMIENTO PARA MEJORAR PROPIEDADES FUNCIONALES
MEDIANTE LUZ PULSADA, MUESTRAS CON PROPIEDADES FUNCIONALES
MEJORADAS Y USOS DE LAS MISMAS CAMPO DE LA INVENCIÓN
La invención se refiere al campo de las composiciones con propiedades mejoradas utilizadas en alimentación, cosmética, biotecnología, biomedicina o farmacia, entre otros sectores industriales. En particular, la invención se refiere a un procedimiento para mejorar las propiedades funcionales de muestras que contienen componentes susceptibles de sufrir modificaciones cuando absorben luz ultravioleta mediante el empleo de luz pulsada. Igualmente, la invención se refiere a las muestras con propiedades funcionales mejoradas obtenibles por el mismo y al uso de las mismas.
ANTECEDENTES DE LA INVENCIÓN
Como es bien conocido en el estado de la técnica, en la industria alimentaria se emplean composiciones a base de macromoléculas tales como proteínas, carbohidratos, lípidos, etc. Las proteínas, por ejemplo, presentan diferentes propiedades físico-químicas: propiedades de hidratación, transición vitrea, solubilidad, capacidad de retención de agua, capacidad de retención de aceite, propiedades espesantes, dispersantes, emulsionantes, espumantes o gelificantes, propiedades de formación de films, propiedades como agente de soporte, propiedades de superficie (mojabilidad, adhesión,...), entre otras propiedades funcionales interesantes. Estas propiedades son realmente positivas para la industria alimentaria (preparación de productos de pastelería y panadería, salsas, productos cárnicos, productos lácteos, fermentados o sin fermentar, bebidas, etc.).
Asimismo, las propiedades funcionales de estas macromoléculas (proteínas y carbohidratos principalmente) se aplican también en cosmética a fin de obtener cremas, espumas y geles faciales o capilares, champús, emulsiones, etc., con una textura particular para una mejor aplicación del producto y posterior distribución del principio activo del mismo o bien para encapsular o unir partículas, por ejemplo.
Por otro lado, en el campo farmacéutico también es ampliamente conocido el uso de aditivos o vehículos de tipo proteico, por ejemplo, en la preparación de cremas, pomadas, emulsiones, espumas, lociones y otras formas farmacéuticas para aplicación tópica, ocular, transdérmica, etc., así como en la obtención de microcápsulas, nanocápsulas, materiales de soporte, sistemas de liberación controlada, etc.
Igualmente, se han usado composiciones a base de proteínas y carbohidratos para aplicaciones biomédicas y biotecnológicas, particularmente para obtener materiales biomédicos tales como implantes, piezas incorporadas al organismo, puntos de sutura o soporte de tejidos en los que se utilizan biopolímeros. Otro ejemplo de aplicación biotecnológica puede ser la utilización de estos compuestos como surfactantes (estabilizadores de emulsiones y espumas) para la eliminación de tinta en el papel reciclado o para la recogida de aceites indeseables ó tóxicos por formación de emulsiones.
En el caso de las composiciones proteicas para la industria alimentaria, por ejemplo, se han conseguido mejorar sus propiedades funcionales mediante métodos de texturización (por congelación, por extrusión o expansión, o por coagulación) o métodos de hidrólisis química o enzimática, entre otros.
Así, por ejemplo, Chen et al. propusieron un método para mejorar las propiedades espumantes de una preparación de proteínas séricas mediante hidrólisis enzimática (US 2002/0012720). Baker et al., por su parte, definieron un método para preparar un aislado de proteínas de suero de leche con mejores propiedades espumantes a partir de una disolución acuosa del mismo mediante ajuste del pH a 5-8 y posterior calentamiento a 60-80 5C (US 2002/0051843). Igualmente, Gustaw et al. describieron un procedimiento para obtener geles de aislados de proteínas de suero de leche por el método convencional de baño de agua y posterior calentamiento con microondas. Los geles obtenidos a pH 3 y 10 mediante calentamiento con microondas presentaban una estructura de bandas finas, presentando geles más fuertes (propiedades gelificantes mejoradas) que los obtenidos por calentamiento convencional (Gustaw y MIeko 2007 "Gelation of whey proteins by microwave heating", Milchwissenschaft 62 (4): 439-442). Asimismo, Schmitt et al. describieron un proceso de preparación de un producto alimenticio que contiene proteínas de suero de leche nativas y que, mediante tratamiento térmico, al menos un 20% de estas proteínas se transforman en micelas que tienen muy buena capacidad espumante y emulsionante, pudiéndose efectuar este tratamiento térmico mediante microondas (EP 1839504). Finalmente, Wilkinson describió un método para producir espuma de leche para la preparación de capuchino y otras bebidas a base de café a partir de una composición que comprende proteínas lácteas tal como suero de leche. Dicha composición se emulsiona y se introduce en un envase de aerosol de modo que se obtiene un producto que se refrigera y que, posteriormente, cuando se dispensa y se calienta con microondas, es muy similar a la espuma de leche producida mediante vapor (US 2004/0076730).
Continúa existiendo en el estado de la técnica, por tanto, la necesidad de composiciones de macromoléculas (proteínas, carbohidratos, lípidos, etc.) con propiedades funcionales mejoradas para usar en la industria alimentaria y en otros sectores industriales.
Sorprendentemente, los presentes inventores han descubierto que la aplicación de luz pulsada a muestras líquidas que contienen proteínas permite mejorar las propiedades funcionales de las mismas.
La irradiación de proteínas ha sido propuesta por Tada et al. (US 6586037) que desarrollaron un método para mejorar las propiedades gelificantes de proteínas mediante irradiación de haces de electrones empleando un acelerador lineal de electrones. Sin embargo, dicha tecnología es muy diferente a la de luz pulsada ya que es diferente el tipo de ondas electromagnéticas.
Asimismo, existen diferentes trabajos que prueban cambios en las propiedades funcionales de carbohidratos y proteínas por la aplicación de luz ultravioleta en continuo. El tratamiento de almidón por luz UV puede rebajar su viscosidad (Bertolini et al. 2001 , "Free radical formation in UV- and gamma- irradiated cassava starch", Carbohydrate Polymers, 44 (3): 269-271 ), aumentar la capacidad de retención de agua y la solubilidad entre otros. Dicho tratamiento puede generar en algunos casos la formación de moléculas de almidón entrecruzadas lo que provoca una clara mejora en sus capacidades gelificantes, para aportar textura por ejemplo, mejorando así la expansión en productos del sector panadería y bollería (Vatanasuchart et al. 2005, "Molecular properties of cassava starch modified with different UV irradiations to enhance baking expansión", Carbohydrate Polymers 61 : 80-87). La creación de estos cambios conformacionales por aplicación de UV resulta muy beneficioso incluso para la aplicación de estos hidrogeles en la liberación controlada de compuestos activos (alimentación y farmacéutica principalmente) o para aumentar la biocompatibilidad en materiales utilizados en la biomedicina. En el caso de las proteínas, se han encontrado también un efecto positivo en sus propiedades funcionales al ser tratadas por luz UV. Por ejemplo, muestras de colágeno/gelatina procesadas mediante luz UV pueden mostrar una mejora en la fuerza de gel, una marcada reducción de viscosidad y cambios significativos en la entalpia de fusión (Bhat y Karim 2009 "Ultraviolet irradiation improves gel strength of fish gelatine", Food Chemistry 1 13: 1 160-1 164).
Si bien la luz pulsada tiene elevado contenido de luz UV, existen, sin embargo, grandes diferencias entre el tratamiento con luz UV en continuo y el tratamiento con luz pulsada, debidas principalmente a que la luz pulsada comprende un amplio espectro de emisión (190-1 100nm) que incluye no sólo el rango UV, sino también el visible y el infrarrojo, por lo que las longitudes de onda emitidas en cada pulso de luz distintas a las del rango UV pueden afectar de modo inespecífico a las propiedades funcionales de los diferentes componentes de la muestra tratada. Por otro lado, el largo tiempo de exposición requerido por las fuentes de UV continuo convencionales, además de las altas intensidades empleadas, provocan efectos negativos sobre el aspecto y la calidad de las muestras tratadas, por lo que, a priori, la tecnología de luz pulsada no es adecuada para la mejora de propiedades funcionales de muestras destinadas a aplicaciones alimentarias.
Además, Elmnasser et al. efectuaron un estudio sobre el efecto de la luz pulsada sobre proteínas y lípidos de la leche, concluyendo que el procesado de leche cruda mediante luz pulsada no causaba cambios significativos en la estructura o composición de ciertas proteínas lácteas como la β-lactoglobulina y la α-lactoalbúmina y, por tanto, en las propiedades funcionales (Elmnasser et al. 2008, "Effect of Pulsed-Light Treatment on Milk Proteins and Lipids", Journal of Agricultura! and Food Chemistry 56: 1984-1991 ).
De hecho, la tecnología de luz pulsada se ha venido usando desde hace bastante tiempo para la inactivación de un amplio rango de microorganismos. El uso de lámparas de gas inerte para generar pulsos cortos de luz intensa como método de inactivación microbiana comenzó en Japón a finales de la década de los 70, patentándose unos años después (Hiramoto 1984 US 445042). En 1988, la empresa UVERG (Ultraviolet Energy Generators, Oakland, California) trabajó en el desarrollo de sistemas para la descontaminación y desinfección de agua, aire, y superficies publicando respectivas patentes y publicaciones (Wekhof 1991 ," Treatment of contaminated water, air and soil with UV flashlamps", Environmental Progrese, 10 (4): 241 -247; Wekhof, 1992 US 5144146). En el mismo año, la empresa Puré Pulse Technologies® (San Diego, California), filial de Maxwell Laboratories, adquirió la patente de Hiramoto (Wekhof 2000, "Disinfection with flash lamps". PDA Journal of Pharmaceutical Science & Technology 54(3): 264-276; Palmieri y Cacace 2005, "High intensity pulsed light technology". En: Emerging technologies for food processing: 279-306). Tras diversos trabajos de investigación, esta empresa patentó un nuevo proceso de luz pulsada llamado Puré Bright® caracterizado por su amplio espectro de emisión (Dunn et al., 1989, US 4871559). Entre las aplicaciones de este nuevo sistema estaban incluidas la inactivación de microorganismos y enzimas en la superficie de alimentos y material de envasado, así como en aire o fluidos transparentes como el agua. Entre los años 1991 y 1997, Dunn et al. publicaron patentes (Dunn et al. 1991 US 5034235) y artículos (Dunn et al. 1995, "Pulsed-Light treatment of food and packaging", Food Technology 49: 95- 98; Arrowood et al. 1996, "Disinfection of Cryptosporidium parvum oocysts by pulsed light treatment evaluated in an in vitro cultivation model", Journal of Eukaryot Microbiology 43(5): 88S; Dunn 1996, "Pulsed light and electric field for foods and eggs", Poultry Science 75: 1 133-1 136; Dunn et al. 1997, "Investigaron of pulsed light for terminal sterilization of WFI filled blow/fill/seal polyethylene containers", PDA Journal of Pharmaceutical Science & Technology 51 (3): 1 1 1 -1 15; Dunn et al. 1997, "Pulsed white light food processing", Cereal Food World 42: 510-515) fruto de los primeros esfuerzos de esta empresa para promover esta nueva tecnología. En 1996 la US Food and Drug Administration (21 CFR179.41 ) aprobó el uso de la luz pulsada para su empleo durante la producción, procesado y/o manipulación de los alimentos (FDA 1996), lo que impulsó un mayor esfuerzo en la investigación y desarrollo de esta tecnología en el campo de la industria alimentaria. Durante los años posteriores se han llevado a cabo grandes avances, publicándose patentes y artículos por investigadores vinculados a empresas que producen y comercializan equipos de luz pulsada, como la antigua WekTec y actual SteriBeam Systems en Alemania (Wekhof 2000, "Disinfection with flash lamps", PDA Journal of Pharmaceutical Science & Technology 54(3): 264-276, 2001 , "Pulsed UV to sterilise packaging and to preserve food staffs". Report to the conference "New technologies: future, today?" Campden & Chorleywood Food Research Association
(CCFRA). Gloucestershire, United Kindom, 2003, "Ultra-fast sterilisation by disintegration of microorganisms with intense pulsed UV light". Business briefing: Global surgery: 1 -5, 2006, "Six logs sterilization in pulsed UV tunnels from Steribeam". Technology News International), Econos en Japón (Hoshida 2001 JP 2001 171623), Xenón Corporation en USA (Pánico y Pánico 2006 US 7091495) y
Claranor en Francia (Scotto 2007 WO 023227).
Actualmente, por tanto, el empleo de la tecnología de luz pulsada se enfoca hacia el campo de la inactivación microbiana. Recientemente, en 2009 Beelman et al. han propuesto el uso de luz pulsada para otra aplicación muy distinta como es el incremento del contenido de vitamina D en champiñones (US 2009/0269441 ).
Así pues, hasta la fecha la tecnología de luz pulsada no se ha usado ni sugerido para mejorar las propiedades funcionales de muestras líquidas de proteínas y/o carbohidratos ni tampoco de otro tipo de muestras que contienen otros compuestos que sufren modificaciones cuando absorben luz ultravioleta en continuo.
Por tanto, el procedimiento de la presente invención es un procedimiento alternativo para mejorar las propiedades funcionales de muestras de proteínas y otros componentes que son susceptibles de sufrir modificaciones al absorber luz ultravioleta en continuo. Dichas muestras con propiedades funcionales mejoradas encuentran aplicación en la industria alimentaria, cosmética, farmacéutica, biomédica, biotecnológica y en otras industrias (de papel, tejidos, cementos, tintas, detergentes, etc.).
Por otro lado, el procedimiento de la invención, además de mejorar las propiedades funcionales de la muestra tratada, consigue también la descontaminación de la misma.
Diversos trabajos científicos han mostrado que la alta intensidad de cada pulso y el mayor poder de penetración de la luz pulsada son responsables de una inactivación microbiana significativamente mayor con respecto a la aplicación de luz UV en continuo (Dunn et al. 1989 US 4871559; Sharma y Demirci 2003,
"Inactivation of Escherichia coli 0157:1-17 on inoculated alfalfa seeds with pulsed ultraviolet light and response surface modeling", Journal of food Science 68(4): 1448-1453; Krishnamurthy et al. 2004, "Inactivation of Staphylococcus aureus by pulsed UV-light sterilization", Journal of Food Protection 67(5): 1027-1030; Lagunas-Solar et al. 2006, "Development of pulsed UV light processes for surface fungal disinfection of fresh fruits", Journal of Food Protection 69(2): 376-384). Por otra parte, la luz pulsada presenta otras ventajas frente a los sistemas de luz UV convencionales, entre las que cabe destacar el reducido tiempo de tratamiento, muy adecuado para líneas de procesado en continuo, así como el empleo de lámparas de xenón que no requieren de un periodo de precalentamiento. Además, al tratarse de un gas no tóxico, se evitan los riesgos potenciales a nivel medioambiental y de salud que pueden derivarse del empleo de lámparas de mercurio, lámparas habituales en el procesado por UV en continuo. OBJETO DE LA INVENCIÓN
La presente invención, por tanto, tiene por objeto proporcionar un procedimiento para mejorar las propiedades funcionales de una muestra que comprende al menos un componente que es susceptible de sufrir modificaciones al absorber luz ultravioleta, procedimiento que comprende el empleo de luz pulsada con un espectro de emisión de 190-1 100 nm y un alto contenido en luz ultravioleta.
Otro objeto de la presente invención es la muestra con propiedades funcionales mejoradas (propiedades de hidratación, transición vitrea, solubilidad, capacidad de retención de agua, capacidad de retención de aceite, propiedades espesantes, dispersantes, emulsionantes, espumantes o gelificantes, propiedades de formación de films, propiedades como agente de soporte, propiedades de superficie -mojabilidad, adhesión,...-), obtenible mediante dicho procedimiento.
Finalmente, otro objeto de la invención es el uso de dicha muestra con propiedades funcionales mejoradas en la industria alimentaria, cosmética, biotecnológica, biomédica, farmacéutica o química.
DESCRIPCIÓN DE LAS FIGURAS
La figura 1 muestra la tensión superficial en función de la concentración de disoluciones acuosas de beta-lactoglobulina sin tratar y de disoluciones acuosas de beta-lactoglobulina tratadas mediante el procedimiento de la invención a diferentes intensidades de tratamiento (con diferente número de pulsos de luz).
La figura 2 muestra el módulo elástico superficial en función de la concentración de disoluciones acuosas de beta-lactoglobulina sin tratar y de disoluciones acuosas de beta-lactoglobulina tratadas mediante el procedimiento de la invención a diferentes intensidades de tratamiento (con diferente número de pulsos de luz).
La figura 3 muestra la capacidad espumante en función de la concentración de disoluciones acuosas de beta-lactoglobulina sin tratar y de disoluciones acuosas de beta-lactoglobulina tratadas mediante el procedimiento de la invención a diferentes intensidades de tratamiento (con diferente número de pulsos de luz).
La figura 4 muestra la estabilidad espumante en función de la concentración de disoluciones acuosas de beta-lactoglobulina sin tratar y de disoluciones acuosas de beta-lactoglobulina tratadas mediante el procedimiento de la invención a diferentes intensidades de tratamiento (con diferente número de pulsos de luz).
La figura 5 muestra el módulo elástico máximo del gel formado a partir de una disolución acuosa de beta-lactoglobulina sin tratar y de una disolución acuosa de beta-lactoglobulina tratada mediante el procedimiento de la invención con 10 pulsos de luz. La figura 6 muestra el módulo elástico en función del tiempo y de la temperatura del gel formado a partir de una disolución de proteínas séricas sin tratar y de una disolución de proteínas séricas tratada mediante el procedimiento de la invención con 10 pulsos de luz.
La figura 7 muestra el módulo elástico en función del tiempo y de la temperatura del gel formado a partir de lactosuero sin tratar y de lactosuero tratado mediante el procedimiento de la invención con 10 pulsos de luz.
La figura 8 muestra el tamaño de partícula de la emulsión obtenida empleando una disolución acuosa de beta-lactoglobulina sin tratar y una disolución acuosa de beta-lactoglobulina tratada mediante el procedimiento de la invención con 10 pulsos de luz.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención proporciona un procedimiento para mejorar las propiedades funcionales de una muestra que comprende al menos un componente que es susceptible de sufrir modificaciones al absorber luz ultravioleta en continuo (en adelante "el procedimiento de la invención") que comprende el empleo de luz pulsada con un espectro de emisión de 190-1 100 nm y un alto contenido en luz ultravioleta.
En el contexto de la invención la expresión "propiedades funcionales" se refiere a aquellas propiedades físico-químicas del componente en cuestión, ya sea un biomolécula (proteína, carbohidrato, lípido, etc.) u otro, que afecta el comportamiento de dichos componentes en sistemas alimentarios, entre otros, durante el proceso, almacenamiento, preparación y consumo. Es decir, cualquier propiedad, a excepción de las nutricionales, que afecten a su utilización. Entre dichas propiedades funcionales se pueden destacar, por ejemplo, las propiedades de hidratación, transición vitrea, solubilidad, capacidad de retención de agua, capacidad de retención de aceite, propiedades espesantes, dispersantes, emulsionantes, espumantes o gelificantes, propiedades de formación de films, propiedades como agente de soporte, o las propiedades de superficie (mojabilidad, adhesión,...).
En el contexto de la invención la expresión "componente que es susceptible de sufrir modificaciones al absorber luz ultravioleta", se refiere a una biomolécula u otro componente que es capaz de absorber luz en el rango de longitudes de onda de la luz ultravioleta y que, como consecuencia de ello, sufre modificaciones estructurales.
Asimismo, en el contexto de la invención la expresión "un alto contenido en luz ultravioleta" se refiere a que aproximadamente entre el 20% y el 50% del total de la luz pulsada emitida por el equipo en cuestión corresponde al espectro UV.
El procesado mediante luz pulsada consiste en la aplicación de flashes o destellos sucesivos de luz de alta intensidad sobre el producto a tratar, caracterizándose cada pulso por su corta duración y por su amplio espectro de emisión (normalmente de 190-1 100 nm, es decir, desde el ultravioleta (UV) hasta el infrarrojo (IR) próximo). Además de por su amplio espectro de emisión, los pulsos de luz se caracterizan también por su corta duración que, generalmente, oscila entre los 100 y 350 με.
Como se ha detallado previamente, la tecnología de luz pulsada se ha usado para la inactivación de un amplio rango de microorganismos (Dunn et al. 1989, US 4871559, Wekhof et al., 1991 ," Treatment of contaminated water, air and soil with UV flashlamps", Environmental progrese 10: 241 -243 por ejemplo) y para el incremento en vitamina D en champiñones (Beelman et al. US 2009/0269441 ).
Cabe también destacar que el proceso de pulsos de luz es más eficaz y rápido que la aplicación de luz UV en continuo para producir el mismo nivel de inactivación microbiana, siendo por tanto una tecnología que puede implementarse con más éxito y facilidad en líneas de procesado en continuo, en particular de alta velocidad o productividad o de gran caudal.
El sistema generador de pulsos está compuesto básicamente de una unidad eléctrica, con un condensador de energía eléctrica y conmutadores de alto voltaje (uno por lámpara); una o varias lámparas de xenón; y un módulo de control que, en el caso de haber varias lámparas, permite seleccionar entre la emisión simultánea o secuencial de los pulsos de luz.
Para la emisión de cada pulso de luz, la energía eléctrica se acumula en el condensador. Posteriormente, la potencia eléctrica se magnifica al ser liberada muy rápidamente esta energía en la lámpara o lámparas de xenón, convirtiéndose la energía eléctrica en un destello de luz de alta intensidad que se emite en todas las direcciones.
Tal y como se ha indicado, en el procedimiento de la invención el espectro de la luz emitida en cada pulso se extiende de 190 nm a 1 100 nm. En cualquier caso, la luz pulsada que excite la muestra abarcará el rango de longitudes de onda correspondiente al pico o picos de absorción del componente o componentes de la muestra. Asimismo, la luz pulsada empleada en el procedimiento de la invención tiene un gran contenido de luz UV, del orden del 20% al 50% del total de la luz pulsada emitida por el equipo empleado corresponde al espectro UV. Aunque existe variabilidad entre las distintas lámparas que existen actualmente en el mercado, alrededor del 20% del total de luz emitida corresponde al espectro UV-C (200 - 280 nm), siendo menor el contenido en UV-B (280 - 320 nm) y UV-A (320 -400 nm), que constituyen alrededor del 8% y 12% del total, respectivamente.
Dependiendo del producto a tratar y de la configuración del reactor o cámara de tratamiento, pueden situarse alrededor de cada lámpara uno o más reflectores que, normalmente, consisten en superficies parabólicas fabricadas a base de materiales altamente reflectantes. La función del reflector o reflectores es redirigir la luz emitida por las lámparas en todas las direcciones hacia la zona del reactor donde se encuentra el producto a tratar. Asimismo, el reactor o cámara de tratamiento está construida de materiales altamente reflectantes, de modo que la luz que inicialmente no incida sobre el producto que se pretende tratar pueda ser reflejada por las paredes de la cámara hasta alcanzar finalmente dicho producto, aumentando así la eficacia del proceso.
En la actualidad existen diversas empresas que producen y comercializan equipos de luz pulsada, tales como SteriBeam, Claranor, o Xenón Corporation. Pruebas realizadas con diferentes casas industriales de equipos de luz pulsada permiten afirmar que el funcionamiento de diferentes equipos es común, por lo que los resultados del estudio son aplicables a cualquier equipo de luz pulsada.
En el procedimiento de la invención, la muestra se trata con luz pulsada con una fluencia total igual o superior a la fluencia total mínima a partir de la cual se observan modificaciones en las propiedades funcionales, preferiblemente con una fluencia total igual a la fluencia total mínima a partir de la cual se observan dichas modificaciones.
La fluencia total se define como el producto de la fluencia recibida por un objeto durante un pulso de luz por el número de pulsos. A su vez, la fluencia se define como la energía o cantidad de fotones recibidos por unidad de área por un objeto tratado con luz pulsada durante un tiempo de exposición determinado
(expresada generalmente en J/cm2). En ocasiones, en el sentido de fluencia se usa el término dosis de luz, por ser un término más intuitivo, que hace referencia a la energía o cantidad de fotones absorbidos por unidad de área por un objeto tratado con luz pulsada durante un tiempo de exposición determinado (expresada generalmente en J/cm2). Sin embargo no es un término adecuado ya que la palabra dosis implica absorción completa. Aunque la invención se refiere a un procedimiento para mejorar las propiedades funcionales de muestras que contienen componentes susceptibles de sufrir modificaciones cuando absorben luz ultravioleta mediante el empleo de luz pulsada, no toda la luz en el rango 190-1 100 nm, en particular en el rango ultravioleta (190-400 nm), que llega a los componentes de la muestra es absorbida por estos.
La fluencia total máxima será aquella marcada por la legislación correspondiente. Así, por ejemplo, en el campo de la industria alimentaria, la única legislación existente al respecto es la estadounidense (FDA, 21 CFR179.41 , 1996), según la cual la fluencia total máxima permitida es de 12 J/cm2 durante el uso de luz pulsada en la producción, procesado o manipulación de los alimentos.
La fluencia total viene determinada por el voltaje, energía radiante, potencia radiante emitida, excitancia radiante, velocidad de fluencia, fluencia del pulso, tiempo de exposición, distancia a las lámparas y número de pulsos, si bien será suficiente proporcionar los valores de la fluencia total para que el experto en la materia pueda llevar a cabo el procedimiento de la invención.
En cualquier caso la muestra a tratar contendrá al menos un componente que sea susceptible de sufrir modificaciones al absorber luz ultravioleta. Así, en una realización particular del procedimiento de la invención, al menos un componente de la muestra tratada es una proteína, un péptido, un carbohidrato, un lípido o mezclas de los mismos.
En el caso de que la muestra comprenda varios componentes con diferentes espectros de absorción, puede ocurrir que en el tratamiento con luz pulsada algunos componentes se vean modificados positivamente, mientras que otros se vean modificados de manera negativa. Así, por ejemplo, en el caso de que la muestra comprenda dos componentes con diferente espectro de absorción, se puede conseguir una mejora de las propiedades funcionales del componente "a" sin modificar las del componente "b". Para ello, se pueden emplear filtros que eliminen parte del espectro emitido de manera que el espectro de luz que llega a la muestra tenga la longitud de onda que modifica de manera positiva al componente "a" pero no las longitudes de onda que afectan de manera negativa al componente "b". Este efecto puede conseguirse, además de con un filtro que permitan el paso de unas longitudes de onda pero no de otras, también con otro tipo de lámpara con diferente espectro de emisión, es decir, que emita sólo aquellas longitudes de onda que afecten positivamente al componente "a". En el procedimiento de la invención se emplea luz pulsada, si bien sería posible usar de modo alternativo, para reducir el espectro de emisión, láser pulsado en el rango de longitudes de onda que modifican positivamente el componente "a" de la muestra sin modificar negativamente el componente "b" de la muestra.
En una realización particular, dicho componente es una proteína. Dicha proteína puede ser una o más proteínas de origen animal, de origen vegetal, de origen microbiano o una o más proteínas producidas mediante biotecnología, o mezclas de las mismas. Entre las proteínas de origen animal se pueden citar las proteínas lácteas, las proteínas del suero sanguíneo, proteínas miofibrilares, proteínas reguladoras, proteínas sarcoplasmáticas, proteínas del huevo, etc. En una realización preferida, dicha proteína es una proteína animal. En una realización aún más preferida, dicha proteína se selecciona entre beta-lactoglobulina, beta- caseína y alfa-lactoalbúmina.
En otra realización particular, dicho componente es una mezcla de al menos una proteína y al menos un carbohidrato. Dicho carbohidrato puede ser uno o más carbohidratos seleccionados entre monosacáridos, disacáridos y polisacáridos. En una realización preferida, dicho carbohidrato es un disacárido. En una realización aún más preferida, dicho carbohidrato se selecciona entre lactosa y sacarosa. En otra realización particular, dicho componente es una mezcla de al menos una proteína y al menos un péptido. En otra realización particular, dicho componente es una mezcla de al menos una proteína y al menos un lípido. En otra realización particular, dicho componente es una mezcla de al menos un péptido y al menos un carbohidrato. En otra realización particular, dicho componente es una mezcla de al menos un péptido y al menos un lípido. En otra realización particular, dicho componente es una mezcla de al menos un carbohidrato y al menos un lípido. Estos componentes pueden ser comerciales o pueden obtenerse mediante métodos conocidos del estado de la técnica. Así, por ejemplo, la beta-lactoglobulina puede ser beta-lactoglobulina B bovina≥90% (PAGE) L8005, comercializada por Sigma, o bien puede ser la obtenida por un proceso de separación por cromatografía a partir de lactosuero.
Asimismo, la muestra a tratar en el procedimiento de la invención puede ser sólida, líquida, en forma de espuma, aerosol, nebulización, etc. En una realización particular del procedimiento de la invención, dicha muestra es una muestra líquida. Las muestras líquidas pueden ser, por ejemplo, disoluciones, dispersiones, suspensiones, emulsiones, etc., en las que el tipo de disolvente lo seleccionará el experto en la materia. En otra realización particular, la muestra es una muestra sólida. En otra realización particular, la muestra es una muestra nebulizada en la que las gotas de pequeño tamaño presentan una alta concentración de partículas sólidas. En otra realización particular, la muestra es un aerosol. En otra realización particular, la muestra es una espuma.
En principio, la concentración del componente o componentes de la muestra a tratar por el procedimiento de la invención puede ser cualquiera, si bien el experto determinará los límites de la misma. Los porcentajes de mezcla en cualquier caso serán en peso/peso, volumen/volumen o peso/volumen, por ejemplo.
En una realización preferida, dicha muestra es una muestra líquida que comprende al menos una proteína. En una realización aún más preferida, dicha muestra líquida es una disolución de una o más proteínas lácteas tal como una disolución de beta-lactoglobulina o una disolución de proteínas séricas. En otra realización aún más preferida, dicha muestra líquida es lactosuero, que es una mezcla de proteínas séricas y carbohidratos tal como la lactosa, entre otros componentes diversos.
En el caso de muestras líquidas, la concentración del componente de interés puede ser muy variable. Así, por ejemplo, en el caso de una muestra líquida que comprende una o más proteínas, la concentración de proteína variará en función de su naturaleza, del tipo de muestra líquida, del pH, de la temperatura, etc.
En una realización particular del procedimiento de la invención, la muestra líquida tiene una concentración de 0,0001 -1000 mg/ml de proteína. En una realización preferida, la muestra líquida tiene una concentración de 0,001 -1000 mg/ml de proteína. En una realización aún más preferida, muestra líquida tiene una concentración de 0,01 -200 mg/ml de proteína. Así, la muestra líquida a tratar puede ser una disolución de beta-lactoglobulina con una concentración de 0,01 -200 mg/ml, preferiblemente de 0,1 -100 mg/ml y, más preferiblemente, de 0,5-10 mg/ml de proteína. Asimismo, la muestra líquida a tratar puede ser una disolución de proteínas séricas con una concentración de 0,01 -200 mg/ml, preferiblemente de 0,1 -100 mg/ml y, más preferiblemente, de 0,5-10 mg/ml de proteína. Igualmente, la muestra líquida a tratar puede ser lactosuero con una concentración de 0,01 -200 mg/ml, preferiblemente de 0,1 -100 mg/ml y, más preferiblemente, de 0,5-10 mg/ml de proteína. Es importante resaltar que el procedimiento de la invención, además de mejorar las propiedades funcionales de la muestra tratada, permite también la descontaminación de la misma. Así pues, el procedimiento de la invención supone obtener un efecto combinado de la mejora de la funcionalidad y la recontaminación de la muestra.
En otro aspecto, la invención proporciona una muestra con propiedades funcionales mejoradas obtenible por el procedimiento previamente descrito, en la que las propiedades funcionales mejoradas son las propiedades de hidratación, de transición vitrea, de solubilidad, de capacidad de retención de agua, de capacidad de retención de aceite, espesantes, dispersantes, emulsionantes, espumantes, gelificantes, de formación de films, propiedades como agente de soporte y de superficie tal como las propiedades de mojabilidad o adhesión, previamente descritas. En una realización particular, la invención proporciona una muestra con propiedades funcionales mejoradas obtenible por el procedimiento previamente descrito, en la que las propiedades funcionales mejoradas son las propiedades espumantes, gelificantes o emulsionantes. Esta mejora es mayor a medida que se aumenta la intensidad del tratamiento, es decir, a medida que se aumenta la fluencia total aplicada (mediante el aumento del número de pulsos de luz, por ejemplo). Dicha muestra, además, presenta una carga microbiológica reducida o prácticamente nula y, por tanto, unas mejores propiedades de conservación.
En cualquier caso, la muestra se habrá tratado con luz pulsada con una fluencia total igual o superior a la mínima requerida para producir las modificaciones de las propiedades funcionales, tal y como se ha indicado previamente, preferiblemente con una fluencia total igual a la mínima requerida para producir dichas modificaciones. La fluencia total máxima de la luz pulsada empleada en el procedimiento de la invención será la permitida por la legislación, preferiblemente una fluencia total máxima de 12 J/cm2, que es el límite máximo marcado por la FDA. Estos valores de fluencia total pueden ser obtenidos por diferentes equipamientos de luz pulsada, tal y como se ha señalado.
Así, en una realización particular, la muestra con propiedades funcionales mejoradas es una muestra líquida que comprende al menos una proteína con una concentración de 0,0001 -1000 mg/ml que ha sido tratada con luz pulsada con una fluencia total de hasta 12 J/cm2. En otra realización particular, la muestra con propiedades funcionales mejoradas es una muestra líquida que comprende al menos una proteína con una concentración de 0,001 -1000 mg/ml que ha sido tratada con luz pulsada con una fluencia total de 0,3-10 J/cm2. En una realización preferida, la muestra con propiedades funcionales mejoradas es una muestra líquida de al menos una proteína con una concentración de 0,01 -200 mg/ml que ha sido tratada con luz pulsada con una fluencia total de 0,3-3 J/cm2.
En una realización más preferida, la muestra con propiedades funcionales mejoradas es una disolución de beta-lactoglobulina con una concentración de 0,01 - 200 mg/ml que ha sido tratada con luz pulsada con una fluencia total de 0,3-3 J/cm2. En otra realización más preferida, es una disolución de proteínas séricas con una concentración de 0,01 -200 mg/ml que ha sido tratada con luz pulsada con una fluencia total de 0,3-3 J/cm2. En otra realización más preferida, dicha muestra líquida es lactosuero con una concentración de 0,01 -200 mg/ml de proteína que ha sido tratada con luz pulsada con una fluencia total de 0,3-3 J/cm2.
En una realización aún más preferida, la muestra con propiedades funcionales mejoradas es una disolución de beta-lactoglobulina con una concentración de 0,1 -100 mg/ml que ha sido tratada con luz pulsada con una fluencia total de 0,3-3 J/cm2. En otra realización aún más preferida, es una disolución de proteínas séricas con una concentración de 0,1 -100 mg/ml que ha sido tratada con luz pulsada con una fluencia total de 0,3-3 J/cm2. En otra realización aún más preferida, dicha muestra líquida es lactosuero con una concentración de 0,1 -100 mg/ml de proteína que ha sido tratada con luz pulsada con una fluencia total de 0,3-3 J/cm2.
En una realización aún más preferida, la muestra con propiedades funcionales mejoradas es una disolución de beta-lactoglobulina con una concentración de 0,5-10 mg/ml que ha sido tratada con luz pulsada con una fluencia total de 0,3-3 J/cm2. En otra realización aún más preferida, es una disolución de proteínas séricas con una concentración de 0,5-10 mg/ml que ha sido tratada con luz pulsada con una fluencia total de 0,3-3 J/cm2. En otra realización aún más preferida, dicha muestra líquida es lactosuero con una concentración de 0,5-10 mg/ml de proteína que ha sido tratada con luz pulsada con una fluencia total de 0,3- 3 J/cm2. En otro aspecto, la invención proporciona también el uso de la muestra con propiedades funcionales mejoradas previamente descrita en distintas aplicaciones de la industria alimentaria, cosmética, biotecnologica, biomédica, farmacéutica, o química así como en otras industrias tal como la industria de papel, tejidos, cementos, tintas, detergentes o en la gestión medioambiental (recogida de aceites indeseables y eliminación de tinta, por ejemplo). Así, en una realización particular, la muestra con propiedades funcionales mejoradas previamente descrita se usa en la industria alimentaria, cosmética, biotecnologica, biomédica, farmacéutica o química. Los siguientes ejemplos ilustran la invención y no deben ser considerados como limitativos del alcance de la misma.
Las condiciones de tratamiento empleadas en los ejemplos fueron las siguientes:
- Equipo de luz pulsada: XeMaticA-(L+L), SteriBeam. Los resultados obtenidos en pruebas realizadas con otro equipo de luz pulsada de otra casa comercial, Claranor, permite afirmar que las mejorad de las propiedades funcionales son obtenibles con cualquier equipo de luz pulsada.
- Condiciones de tratamiento: 2,2 kV/pulso, 300 J por pulso, 0,3 J/cm2/pulso, 6,5 cm de distancia a la lámpara. Duración de cada pulso 300 με, aproximadamente. Tratamientos de 0,3 a 3 J/cm2 (1 p a 10p) (Los resultados en las gráficas aparecen en función del número de pulsos).
- Las muestras líquidas se trataron introduciendo un volumen de las mismas en un reactor de tratamiento que permite el paso de la luz emitida.
EJEMPLO 1
Tratamiento de disoluciones acuosas de beta-lactoglobulina para mejorar sus propiedades de tensión superficial, reología superficial, capacidad espumante, estabilidad espumante y propiedades gelificantes. Se disolvieron distintas cantidades de una muestra de beta-lactoglobulina comercial (L-8005 Sigma, beta-lactoglobulina B bovina ≥90% (PAGE)) en agua ultrapura con tensión superficial constante (72,5 mN/m) para obtener distintas disoluciones con concentraciones de 0,1 a 10 mg/ml de proteína.
Estas disoluciones se trataron con 4 ó 10 pulsos de luz, según las condiciones de tratamiento previamente indicadas usando como control una muestra sin tratar. 1.1 Medida de la tensión superficial
Se midió la tensión superficial de cada una de estas disoluciones mediante la técnica de la gota colgante (pendant drop), utilizando un tensiómetro de gota colgante FTA200 (pulsating drop tensiometer, First Ten Angstroms, USA). Esta técnica mide la tensión superficial en el tiempo mediante el análisis de la imagen de una gota colgada de una jeringuilla. La forma de la gota (determinada por su densidad y su tensión superficial) es analizada utilizando la ecuación de capilaridad para conseguir finalmente el valor de tensión superficial en un tiempo determinado. El volumen de la jeringa fue de 100 μΙ y la gota inicial presentaba un volumen de 12 μΙ. La aguja de la jeringuilla presentó 0,94 mm de diámetro. Todas las medidas fueron realizadas a temperatura ambiente (aproximadamente 205C).
Concentraciones utilizadas de proteína: 0,1 -1 ,5 mg/ml
Resultados
En la Figura 1 se muestra la tensión superficial en función de la concentración de la disolución de beta-lactoglobulina sin tratar (B-Lg Control) y de la disolución de beta-lactoglobulina tratada mediante el procedimiento de la invención a diferentes intensidades de tratamiento: con 4 pulsos (B-Lg 4p) y con 10 pulsos (B-Lg 10p). Como puede observarse, los valores de tensión superficial fueron mejores para la disolución tratada que para la disolución sin tratar. Además, a mayor concentración de la proteína en la disolución se observaron mayores diferencias entre la disolución sin tratar y la tratada. Por otro lado, los valores de tensión superficial fueron claramente más bajos a medida que la disolución proteica fue tratada con mayor intensidad de luz, no habiendo gran diferencia entre el tratamiento con 4 pulsos y el tratamiento con 10 pulsos.
Cabe destacar que el hecho de que una disolución presente tensiones superficiales más bajas significa que la proteína va a ser más adsorbida en la interfase aire-agua y, por lo tanto, va a presentar una mejor capacidad espumante.
1.2 Medida de la reología superficial
Los experimentos de reología superficial fueron realizados mediante la utilización de un reómetro AR2000 Advanced Rheometer (TA Instruments). Fue usado un bicono de aluminio con diámetro de 60 mm y un ángulo de cono de 4:59:13. Esta geometría fue colocada en la interfase agua-aire. Las medidas oscilatorias fueron realizadas con una frecuencia de 1 Hz. Todas las medidas fueron realizadas en la región linear viscoelástica con un valor de deformación de 0,014. Los valores del módulo elástico (G') de la interfase fueron registrados durante 30 minutos. Los valores representados de las diferentes disoluciones son los conseguidos en el minuto 30. Concentraciones utilizadas de proteína: 0,1 -10 mg/ml. Resultados
En la Figura 2 se muestra el módulo elástico superficial en función de la concentración de disoluciones acuosas de beta-lactoglobulina sin tratar (B-Lg Control) y de disoluciones acuosas de beta-lactoglobulina tratadas mediante el procedimiento de la invención a diferentes intensidades de tratamiento (con diferente número de pulsos de luz): con 4 pulsos (B-Lg 4p) y con 10 pulsos (B-Lg
10p).
El módulo elástico superficial da una medida de la estabilidad de una espuma formada: cuanto mayor es la elasticidad en la interfase, mayor es la resistencia al drenaje de una espuma creada permitiendo así una mayor estabilidad de espuma.
Como puede verse, existen diferencias para todas las concentraciones ensayadas. Asimismo, se observan grandes diferencias entre la muestra sin tratar y la tratada con 4 pulsos y con 10 pulsos, siendo superior la modificación con el tratamiento más intenso.
1.3 - Medida de las propiedades espumantes: capacidad espumante y estabilidad espumante
Las medidas de capacidad y estabilidad espumante fueron realizadas en un
Foamscan Instrument (Francia). Con este instrumento, dichos valores son determinados mediante medidas de conductividad. La espuma es generada por la aplicación de un flujo de nitrógeno de 500 ml/min y es pasado a través de un filtro de vidrio poroso durante 30 segundos (diámetro de poro 10-16 μηι). La capacidad espumante fue determinada mediante la diferencia entre el volumen total de la espuma formada y el volumen inicial de la disolución (30 mi). La estabilidad espumante fue determinada mediante el tiempo medio ( t(1/2) - cantidad de disolución drenada a mitad de tiempo de medida). Concentraciones utilizadas de proteína: 0,5-10 mg/ml
Resultados
En la Figura 3 se muestra la capacidad espumante (FC o Foaming Capacity) en función de la concentración de disoluciones acuosas de beta-lactoglobulina sin tratar (B-Lg Control) y de disoluciones acuosas de beta-lactoglobulina tratadas mediante el procedimiento de la invención a diferentes intensidades de tratamiento
(con diferente número de pulsos de luz): con 4 pulsos (B-Lg 4p) y con 10 pulsos (B- Lg 10p).
La proteína sin tratar presentó menor capacidad espumante mientras que a mayor intensidad de tratamiento aplicada, dicha capacidad fue mayor. Las principales diferencias se ven a concentraciones 0,5 y 1 ,5 mg/ml, si bien no son muy evidentes.
En la Figura 4 se muestra la estabilidad espumante en función de la concentración de disoluciones acuosas de beta-lactoglobulina sin tratar (B-Lg
Control) y de disoluciones acuosas de beta-lactoglobulina tratadas mediante el procedimiento de la invención a diferentes intensidades de tratamiento (con diferente número de pulsos de luz): con 4 pulsos (B-Lg 4p) y con 10 pulsos (B-Lg 10p). La estabilidad espumante conseguida con una disolución tratada fue mucho mayor que la conseguida con la proteína nativa. Las diferencias entre las proteínas tratadas a diferentes pulsos de luz fueron muy significativas, observando claramente que la estabilidad espumante conseguida con una disolución tratada a 10 pulsos fue mucho mayor que la conseguida con la proteína nativa. Por otro lado, los efectos en la funcionalidad empezaron a observarse a partir de la aplicación de 4 pulsos de luz.
1.4 - Medida de las propiedades gelif ¡cantes
Los valores de módulo elástico (G') del gel formado a partir de una disolución de beta-lactoglobulina (10% en peso/volumen, 100 mg/ml) fueron determinadas mediante la utilización de un reómetro AR2000 Advanced Rheometer (TA Instruments). Fue usada una geometría de acero, plato-plato de 40 mm de diámetro. Las medidas oscilatorias fueron realizadas con una frecuencia de 1 Hz. Todas las medidas fueron realizadas en la región linear viscoelástica con un valor de deformación de 0,5%. Un plato peltier controló la temperatura a lo largo de las medidas. El perfil de temperatura aplicado fue el siguiente: un aumento de temperatura de 20-90 5C con un aumento de 2,5 5C/min; se mantuvo la temperatura a 90 5C durante media hora y se realizó finalmente un descenso de temperatura a 20 5C con un descenso de 4,55C/min.
Resultados
En la Figura 5 se muestra el módulo elástico máximo del gel formado a partir de una disolución acuosa de beta-lactoglobulina sin tratar y de una disolución acuosa de beta-lactoglobulina tratada mediante el procedimiento de la invención con 10 pulsos de luz
A mayor valor del módulo elástico máximo, mayor es la capacidad gelificante ya que se produce un aumento de la viscoelasticidad de la red formada y por lo tanto la fuerza de dicho gel.
EJEMPLO 2
Tratamiento de una disolución de proteínas séricas para mejorar sus propiedades gelificantes.
Se disolvió una muestra de proteínas séricas comercial PROVON 190 - Glanbia Nutritionals (Irlanda) (92% de proteínas séricas) en agua ultrapura con tensión superficial constante (72,5 mN/m)para obtener una disolución de proteínas séricas con una concentración de 100 mg/ml de proteína.
Esta disolución se trató con 10 pulsos de luz, según las condiciones de tratamiento previamente indicadas usando como control una muestra sin tratar. 2.1 Medida de las propiedades gelificantes
Los valores de módulo elástico (G') del gel formado a partir de una disolución de proteínas séricas (al 10% en peso/volumen, 100 mg/ml) fueron determinadas mediante la utilización de un reómetro AR2000 Advanced Rheometer (TA Instruments). Fue usada una geometría de acero, plato-plato de 40 mm de diámetro. Las medidas oscilatorias fueron realizadas con una frecuencia de 1 Hz.
Todas las medidas fueron realizadas en la región linear viscoelástica con un valor de deformación de 0,5%. Un plato peltier controló la temperatura a lo largo de las medidas. El perfil de temperatura aplicado fue el siguiente: un aumento de temperatura de 20-90 5C con un aumento de 2,5 5C/min; se mantuvo la temperatura a 90 5C durante media hora y se realizó finalmente un descenso de temperatura a
205C con un descenso de 4,5 5C/min.
Resultados
En la Figura 6 se muestra el módulo elástico en función del tiempo y de la temperatura del gel formado a partir de una disolución de proteínas séricas sin tratar(control) y de una disolución de proteínas séricas tratada mediante el procedimiento de la invención con 10 pulsos de luz.
La figura 6 muestra una curva de calentamiento de la muestra de proteínas séricas: a partir de los 60 5C la proteína sin tratamiento inicia una desnaturalización la cual origina el fenómeno de gelificación alcanzando valores máximos de elasticidad del gel de 600 mN/m. Por otro lado, el tratamiento con 10 pulsos de luz muestra un efecto sobre la gelificación de la misma, lo que indica que el efecto de la luz sobre la desnaturalización de la proteína tiene un efecto positivo, ya que la proteína tratada presenta valores de elasticidad más altos que la proteína sin tratar, de hasta 1000 mN/m.
En términos generales se pudo concluir que la aplicación de luz pulsada (10 pulsos de luz) mejoró las propiedades del gel formado a partir de esta disolución de proteínas séricas.
EJEMPLO 3
Tratamiento de lactosuero para mejorar sus propiedades gelificantes.
Se obtuvo una muestra de lactosuero obtenida en una quesería a partir de la elaboración de quesos, que tenía la siguiente composición:
Figure imgf000025_0001
Este lactosuero se trató con 10 pulsos de luz, según las condiciones de tratamiento previamente indicadas usando como control una muestra sin tratar.
3.1 Medida de las propiedades gelificantes
Los valores de módulo elástico (G') del gel formado a partir de lactosuero (residuo directo con contenido directo de proteína de 1 %) fueron determinadas mediante la utilización de un reómetro AR2000 Advanced Rheometer (TA Instruments). Fue usada una geometría de acero, plato-plato de 40 mm de diámetro. Las medidas oscilatorias fueron realizadas con una frecuencia de 1 Hz. Todas las medidas fueron realizadas en la región linear viscoelástica con un valor de deformación de 0,5%. Un plato peltier controló la temperatura a lo largo de las medidas. El perfil de temperatura aplicado fue el siguiente: un aumento de temperatura de 20-90 5C con un aumento de 2,5 5C/min; se mantuvo la temperatura a 90 5C durante media hora y se realizó finalmente un descenso de temperatura a 20 5C con un descenso de 4,5 5C/min.
Resultados En la Figura 7 se muestra el módulo elástico en función del tiempo y de la temperatura del_ gel formado a partir de lactosuero sin tratar (control) y de lactosuero tratado mediante el procedimiento de la invención con 10 pulsos de luz. La figura 7 muestra una curva de calentamiento de la muestra de proteínas séricas: a partir de los 60 5C la proteína sin tratamiento inicia una desnaturalización la cual origina el fenómeno de gelificación alcanzando valores máximos de elasticidad del gel muy bajos (de unos 2 mN/m). Por otro lado, el tratamiento con 10 pulsos de luz muestra un efecto sobre la gelificación de la misma, lo que indica que el efecto de la luz sobre la desnaturalización de la proteína tiene un efecto positivo, ya que la proteína tratada presenta valores de elasticidad más altos que la proteína sin tratar, de unos 42 mN/m.
Se pudo concluir que la aplicación de luz pulsada (10 pulsos de luz) mejoró claramente las propiedades del gel formado a partir de lactosuero.
EJEMPLO 4
Tratamiento de una disolución acuosa de beta-lactoglobulina y para mejorar sus propiedades emulsionantes.
Se disolvió una muestra de beta-lactoglobulina comercial (L-8005 Sigma, beta- lactoglobulina B bovina≥90% (PAGE)) en agua ultrapura con tensión superficial constante (72,5 mN/m) para obtener una disolución de beta-lactoglobulina con una concentración de 1 ,5 mg/ml de proteína. Esta disolución se trató con 10 pulsos de luz, según las condiciones de tratamiento previamente indicadas usando como control una muestra sin tratar.
Cada una de estas disoluciones acuosas, tratada y sin tratar, se empleó para preparar una emulsión de aceite en agua. Las emulsiones aceite en agua fueron preparadas utilizando 75% de fase acuosa y 25% de fase lipídica (n-tetradecano).
Se realizó una prehomogeneización por agitación vigorosa y después de eso, se realizó la homogeneización mediante ultrasonidos. La capacidad emulsionante fue determinada mediante la medida del tamaño de partícula. Para ello se utilizó un Malvern Mastersizer serie nano mediante la medida del tamaño medio de partícula (d32) por la técnica de Light-scattering. Resultados
En la Figura 8 se muestra el tamaño de partícula de la emulsión obtenida empleando una disolución acuosa de beta-lactoglobulina sin tratar y una disolución acuosa de beta-lactoglobulina y tratada mediante el procedimiento de la invención con 10 pulsos de luz.
Un menor tamaño de partícula en la emulsión es significativo de tener en dicho sistema una mayor estabilidad emulsionante. Las diferencias existentes entre las emulsiones medidas a tiempo 0 y a tiempo 2,25 horas son prácticamente inexistentes.
Sin embargo, existen diferencias significativas entre realizar una emulsión con una muestra de proteína tratada previamente por pulsos de luz a realizarla con una muestra de proteína sin tratar, concluyendo que la primera tiene mayor capacidad emulsionante.

Claims

REIVINDICACIONES
1 . Un procedimiento para mejorar las propiedades funcionales de una muestra que comprende al menos un componente que es susceptible de sufrir modificaciones al absorber luz ultravioleta, caracterizado porque comprende el empleo de luz pulsada con un espectro de emisión de 190-1 100 nm y un alto contenido en luz ultravioleta.
2. Procedimiento según la reivindicación 1 , caracterizado porque al menos un componente de la muestra tratada es una proteína, un péptido, un carbohidrato, un lípido o mezclas de los mismos.
3. Procedimiento según la reivindicación 2, caracterizado porque dicho componente de la muestra es una proteína.
4. Procedimiento según la reivindicación 3, caracterizado porque dicho componente de la muestra es una proteína de origen animal.
5. Procedimiento según la reivindicación 4, caracterizado porque dicho componente de la muestra es una proteína seleccionada entre beta-lactoglobulina, beta-caseína y alfa-lactoalbúmina.
6. Procedimiento según la reivindicación 1 , caracterizado porque dicha muestra es una muestra líquida.
7. Procedimiento según la reivindicación 6, caracterizado porque dicha muestra es una muestra líquida que comprende al menos una proteína.
8. Procedimiento según la reivindicación 7, caracterizado porque la muestra líquida tiene una concentración de 0,0001 -1000 mg/ml de proteína.
9. Procedimiento según la reivindicación 8, caracterizado porque la muestra líquida tiene una concentración de 0,01 -200 mg/ml de proteína.
10. Muestra con propiedades funcionales mejoradas obtenible por el procedimiento de las reivindicaciones 1 -9, caracterizada porque las propiedades funcionales mejoradas son las propiedades de hidratacion, de transición vitrea, de solubilidad, de capacidad de retención de agua, de capacidad de retención de aceite, espesantes, dispersantes, emulsionantes, espumantes, gelificantes, de formación de films, propiedades como agente de soporte y propiedades de superficie tal como mojabilidad o adhesión.
1 1 . Muestra según la reivindicación 10, caracterizada porque las propiedades funcionales mejoradas son las propiedades espumantes, gelificantes o emulsionantes.
12. Muestra según la reivindicación 10, caracterizada porque es una muestra líquida de al menos una proteína con una concentración de 0,0001 -1000 mg/ml que ha sido tratada con luz pulsada con una fluencia total de hasta 12 J/cm2.
13. Muestra según la reivindicación 12, caracterizada porque es una muestra líquida de al menos una proteína con una concentración de 0,01 -200 mg/ml que ha sido tratada con luz pulsada con una fluencia total de 0,3-3 J/cm2.
14. Uso de una muestra con propiedades funcionales mejoradas según las reivindicaciones 10-13 en la industria alimentaria, cosmética, biotecnológica, biomédica, farmacéutica o química.
PCT/ES2010/070163 2010-03-18 2010-03-18 Procedimiento para mejorar propiedades funcionales mediante luz pulsada, muestras con propiedades funcionales mejoradas y usos de las mismas WO2011113968A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10847765.4A EP2548450B1 (en) 2010-03-18 2010-03-18 Method for improving functional properties by means of pulsed light, samples with improved functional properties and uses thereof
PCT/ES2010/070163 WO2011113968A1 (es) 2010-03-18 2010-03-18 Procedimiento para mejorar propiedades funcionales mediante luz pulsada, muestras con propiedades funcionales mejoradas y usos de las mismas
US13/505,894 US20120238489A1 (en) 2010-03-18 2010-03-18 Method for improving functional properties by means of pulsed light, samples with improved functional properties and uses thereof
BRBR112012010360-1A BR112012010360A2 (pt) 2010-03-18 2010-03-18 "processo para melhorar as propriedades funcionais através da luz pulsada, mostras com propriedades funcionais melhoradas e utilizações das mesmas".

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070163 WO2011113968A1 (es) 2010-03-18 2010-03-18 Procedimiento para mejorar propiedades funcionales mediante luz pulsada, muestras con propiedades funcionales mejoradas y usos de las mismas

Publications (1)

Publication Number Publication Date
WO2011113968A1 true WO2011113968A1 (es) 2011-09-22

Family

ID=44648456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070163 WO2011113968A1 (es) 2010-03-18 2010-03-18 Procedimiento para mejorar propiedades funcionales mediante luz pulsada, muestras con propiedades funcionales mejoradas y usos de las mismas

Country Status (4)

Country Link
US (1) US20120238489A1 (es)
EP (1) EP2548450B1 (es)
BR (1) BR112012010360A2 (es)
WO (1) WO2011113968A1 (es)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022156877A1 (en) * 2021-01-19 2022-07-28 Beiersdorf Ag Protein formulation
CN114196719B (zh) * 2021-11-24 2023-06-13 湖北瑞邦生物科技有限公司 一种提高桑叶肽降血糖活性的工艺
CN115104714B (zh) * 2022-07-01 2024-04-23 福州百洋海味食品有限公司 一种提高食用菌虾滑凝胶性的方法和食用菌虾滑的制备方法
CN115104711B (zh) * 2022-07-01 2023-12-15 福州百洋海味食品有限公司 一种提高食用菌风味鱼滑凝胶性的方法和一种食用菌风味鱼滑的制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US445042A (en) 1891-01-20 carrara
US4871559A (en) 1983-11-23 1989-10-03 Maxwell Laboratories, Inc. Methods for preservation of foodstuffs
US5034235A (en) 1983-11-23 1991-07-23 Maxwell Laboratories, Inc. Methods for presevation of foodstuffs
US5144146A (en) 1990-07-06 1992-09-01 Ultraviolet Energy Generators, Inc. Method for destruction of toxic substances with ultraviolet radiation
JP2001171623A (ja) 1999-12-16 2001-06-26 Econos Japan Co Ltd 冷却機構を具えた殺菌装置
WO2002003227A2 (en) 2000-06-30 2002-01-10 The Musicbooth, Llc Method and system for using a communication network to supply targeted advertising in interactive media
US20020012720A1 (en) 1999-07-23 2002-01-31 Shengi A. Chen Modification of foaming properties of proteins
US20020051843A1 (en) 2000-07-24 2002-05-02 Baker Lois A. High-foaming, stable modified whey protein isolate
US6586037B1 (en) 1999-02-19 2003-07-01 Director Of National Food Research Institute, Ministry Of Agriculture, Forestry And Fisheries Method for improving gelling properties of protein
WO2003066108A1 (en) * 2002-02-04 2003-08-14 Purepulse Technologies, Inc. Inactivation of microbes in biological fluids
US20040076730A1 (en) 2002-10-22 2004-04-22 Wilkinson Jeffrey Fergus Process for creating milk foam, using aerosol delivery system
US7091495B2 (en) 2003-11-12 2006-08-15 Xenon Corporation Systems and methods for treating liquids
EP1839504A1 (en) 2006-03-27 2007-10-03 Nestec S.A. In situ preperation of whey protein micelles
US20090269441A1 (en) 2008-04-23 2009-10-29 The Penn State Research Foundation Methods and compositions for improving the nutritional content of mushrooms and fungi

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925885A (en) * 1996-05-22 1999-07-20 Purepulse Technologies, Inc. Parametric control in pulsed light sterilization of packages and their contents
US7371582B2 (en) * 2002-01-23 2008-05-13 Boditechmed Inc. Lateral flow quantitative assay method and strip and laser-induced fluorescence detection device therefor
US20030161756A1 (en) * 2002-02-22 2003-08-28 Heldebrant Charles M. Microdispersion treatment of a protein or pharmaceutical
US20090222069A1 (en) * 2005-11-16 2009-09-03 Aalborg Universitet Light modulation of cell function

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US445042A (en) 1891-01-20 carrara
US4871559A (en) 1983-11-23 1989-10-03 Maxwell Laboratories, Inc. Methods for preservation of foodstuffs
US5034235A (en) 1983-11-23 1991-07-23 Maxwell Laboratories, Inc. Methods for presevation of foodstuffs
US5144146A (en) 1990-07-06 1992-09-01 Ultraviolet Energy Generators, Inc. Method for destruction of toxic substances with ultraviolet radiation
US6586037B1 (en) 1999-02-19 2003-07-01 Director Of National Food Research Institute, Ministry Of Agriculture, Forestry And Fisheries Method for improving gelling properties of protein
US20020012720A1 (en) 1999-07-23 2002-01-31 Shengi A. Chen Modification of foaming properties of proteins
JP2001171623A (ja) 1999-12-16 2001-06-26 Econos Japan Co Ltd 冷却機構を具えた殺菌装置
WO2002003227A2 (en) 2000-06-30 2002-01-10 The Musicbooth, Llc Method and system for using a communication network to supply targeted advertising in interactive media
US20020051843A1 (en) 2000-07-24 2002-05-02 Baker Lois A. High-foaming, stable modified whey protein isolate
WO2003066108A1 (en) * 2002-02-04 2003-08-14 Purepulse Technologies, Inc. Inactivation of microbes in biological fluids
US20040076730A1 (en) 2002-10-22 2004-04-22 Wilkinson Jeffrey Fergus Process for creating milk foam, using aerosol delivery system
US7091495B2 (en) 2003-11-12 2006-08-15 Xenon Corporation Systems and methods for treating liquids
EP1839504A1 (en) 2006-03-27 2007-10-03 Nestec S.A. In situ preperation of whey protein micelles
US20090269441A1 (en) 2008-04-23 2009-10-29 The Penn State Research Foundation Methods and compositions for improving the nutritional content of mushrooms and fungi

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
"New technologies: future, today?", CAMPDEN & CHORLEYWOOD FOOD RESEARCH ASSOCIATION (CCFRA). GLOUCESTERSHIRE, UNITED KINDOM, 2003
"Ultra-fast sterilisation by disintegration of microorganisms with intense pulsed UV light", BUSINESS BRIEFING: GLOBAL SURGERY, vol. 1-5, 2006
ARROWOOD ET AL.: "Disinfection of Cryptosporidium parvum oocysts by pulsed light treatment evaluated in an in vitro cultivation model", JOURNAL OF EUKARYOT MICROBIOLOGY, vol. 43, no. 5, 1996, pages 88S
BERTOLINI ET AL.: "Free radical formation in UV- and gamma-irradiated cassava starch", CARBOHYDRATE POLYMERS, vol. 44, no. 3, 2001, pages 269 - 271, XP004219916, DOI: doi:10.1016/S0144-8617(00)00268-X
BHAT; KARIM: "Ultraviolet irradiation improves gel strength of fish gelatine", FOOD CHEMISTRY, vol. 113, 2009, pages 1160 - 1164, XP025674927, DOI: doi:10.1016/j.foodchem.2008.08.039
CHUNG S.-Y. ET AL: "Effects of pulsed UV-light on peanut allergens in extracts and liquid peanut butter", JOURNAL OF FOOD SCIENCE, vol. 73, no. 5, June 2008 (2008-06-01), pages C400 - C404 *
DUNN ET AL.: "Investigation of pulsed light for terminal sterilization of WFI filled blow/fill/seal polyethylene containers", PDA JOURNAL OF PHARMACEUTICAL SCIENCE & TECHNOLOGY, vol. 51, no. 3, 1997, pages 111 - 115
DUNN ET AL.: "Pulsed white light food processing", CEREAL FOOD WORLD, vol. 42, 1997, pages 510 - 515
DUNN ET AL.: "Pulsed-Light treatment of food and packaging", FOOD TECHNOLOGY, vol. 49, 1995, pages 95 - 98, XP000530193
DUNN: "Pulsed light and electric field for foods and eggs", POULTRY SCIENCE, vol. 75, 1996, pages 1133 - 1136
ELMNASSER ET AL.: "Effect of Pulsed-Light Treatment on Milk Proteins and Lipids", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 56, 2008, pages 1984 - 1991
ELMNASSER N. ET AL: "Effect of pulsed-light treatment on milk proteins and lipids", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 56, no. 6, 26 March 2008 (2008-03-26), pages 1984 - 1991 *
GUSTAW; MLEKO: "Gelation of whey proteins by microwave heating", MILCHWISSENSCHAFT, vol. 62, no. 4, 2007, pages 439 - 442
KRISHNAMURTHY ET AL.: "Inactivation of Staphylococcus aureus by pulsed UV- light sterilization", JOURNAL OF FOOD PROTECTION, vol. 67, no. 5, 2004, pages 1027 - 1030
LAGUNAS-SOLAR ET AL.: "Development of pulsed UV light processes for surface fungal disinfection of fresh fruits", JOURNAL OF FOOD PROTECTION, vol. 69, no. 2, 2006, pages 376 - 384
PALMIERI; CACACE: "High intensity pulsed light technology", EN: EMERGING TECHNOLOGIES FOR FOOD PROCESSING, 2005, pages 279 - 306
See also references of EP2548450A4 *
SHARMA; DEMIRCI: "Inactivation of Escherichia coli 0157:H7 on inoculated alfalfa seeds with pulsed ultraviolet light and response surface modeling", JOURNAL OF FOOD SCIENCE, vol. 68, no. 4, 2003, pages 1448 - 1453
VATANASUCHART ET AL.: "Molecular properties of cassava starch modified with different UV irradiations to enhance baking expansion", CARBOHYDRATE POLYMERS, vol. 61, 2005, pages 80 - 87, XP004932745, DOI: doi:10.1016/j.carbpol.2005.02.012
WEKHOF ET AL.: "Treatment of contaminated water, air and soil with UV flashlamps", ENVIRONMENTAL PROGRESS, vol. 10, 1991, pages 241 - 243
WEKHOF: "Disinfection with flash lamps", PDA JOURNAL OF PHARMACEUTICAL SCIENCE & TECHNOLOGY, vol. 54, no. 3, 2000, pages 264 - 276, XP002507596
WEKHOF: "Treatment of contaminated water, air and soil with UV flashlamps", ENVIRONMENTAL PROGRESS, vol. 10, no. 4, 1991, pages 241 - 247, XP055050363, DOI: doi:10.1002/ep.670100408

Also Published As

Publication number Publication date
US20120238489A1 (en) 2012-09-20
EP2548450B1 (en) 2017-04-26
EP2548450A1 (en) 2013-01-23
BR112012010360A2 (pt) 2015-09-01
EP2548450A4 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
Wang et al. Effects of pulsed ultrasound on rheological and structural properties of chicken myofibrillar protein
Feng et al. Improvement of the catalytic infrared drying process and quality characteristics of the dried garlic slices by ultrasound-assisted alcohol pretreatment
KR102091794B1 (ko) 분산액 및 하이드로겔 형성방법
Liu et al. Effects of high intensity unltrasound on structural and physicochemical properties of myosin from silver carp
KR102193902B1 (ko) 안티에이징용 피부 외용 조성물 및 그 제조방법
Li et al. Curcumin encapsulated in the complex of lysozyme/carboxymethylcellulose and implications for the antioxidant activity of curcumin
CN101513554B (zh) 一种智能型仿组织超声体模及其制作方法
KR102158165B1 (ko) 하이드로겔 형성재료, 프리믹스 및 하이드로겔 형성방법
WO2012063947A1 (ja) 脂質ペプチド型ゲル化剤と高分子化合物とを含有するゲルシート
CN104771331B (zh) 一种透明质酸弹性体及其应用
ES2864901T3 (es) Composiciones humectantes basadas en seda y métodos de las mismas
EA036027B1 (ru) Композиция из фрагментов белков шелка (варианты) и изделия, изготовленные из них
Zhao et al. Effects of electron beam irradiation (EBI) on structure characteristics and thermal properties of walnut protein flour
Jin et al. Effect of structure changes on hydrolysis degree, moisture state, and thermal denaturation of egg white protein treated by electron beam irradiation
Singh et al. Effect of ultrasonication on physicochemical and foaming properties of squid ovary powder
WO2011113968A1 (es) Procedimiento para mejorar propiedades funcionales mediante luz pulsada, muestras con propiedades funcionales mejoradas y usos de las mismas
CN109876179A (zh) 一种水凝胶敷料及其制备方法
De Vargas et al. Advanced technologies applied to enhance properties and structure of films and coatings: A review
Panyoyai et al. Diffusion of nicotinic acid in spray-dried capsules of whey protein isolate
CN105983131A (zh) 一种特别适用于油性皮肤的水凝胶型胶原蛋白敷料
Machado et al. Niosomes encapsulated in biohydrogels for tunable delivery of phytoalexin resveratrol
TW202017558A (zh) 被膜形成組成物
KR102419538B1 (ko) 지질 펩티드형 화합물을 함유하는 증점성 조성물
Fan et al. Preparation and characterization of carboxymethylated carrageenan modified with collagen peptides
WO2021131116A1 (ja) 細胞送達用キャリア

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847765

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010847765

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010847765

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13505894

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012010360

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012010360

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120502