WO2011113280A1 - 均衡充电装置及均衡充电方法 - Google Patents

均衡充电装置及均衡充电方法 Download PDF

Info

Publication number
WO2011113280A1
WO2011113280A1 PCT/CN2010/078220 CN2010078220W WO2011113280A1 WO 2011113280 A1 WO2011113280 A1 WO 2011113280A1 CN 2010078220 W CN2010078220 W CN 2010078220W WO 2011113280 A1 WO2011113280 A1 WO 2011113280A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
soc
value
voltage
equalization
Prior art date
Application number
PCT/CN2010/078220
Other languages
English (en)
French (fr)
Inventor
马建新
杨重科
邓小明
李德伟
蔡文远
Original Assignee
北汽福田汽车股份有限公司
北京五源通汽车电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北汽福田汽车股份有限公司, 北京五源通汽车电子科技有限公司 filed Critical 北汽福田汽车股份有限公司
Publication of WO2011113280A1 publication Critical patent/WO2011113280A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits

Definitions

  • Embodiments of the present invention relate to a charging device, and more particularly to an equalizing charging device and a balanced charging method for a series battery pack. Background technique
  • Rechargeable power batteries are widely used in various electronic products due to their better utilization, especially in electric vehicles or hybrid vehicles.
  • a power battery pack as a power source device in which a plurality of unit cells are connected in series is provided.
  • the inventors have found that the prior art has at least the following problems. Due to the difference in the manufacturing and use environment of the rechargeable power battery, the battery cell has a tendency to gradually increase after multiple charging and discharging cycles, thereby easily causing the series battery pack during the charging process. Unbalanced charging of the unit directly affects the service life and performance of the battery pack, which is a problem that cannot be ignored for electric vehicles and hybrid vehicles.
  • Existing power cell balancing methods include resistance discharge equalization, capacitive energy transfer, and inductive energy transfer.
  • the resistance discharge equalization method is a passive discharge method for energy consumption. It can only discharge a single cell with a high charge, but cannot charge a single cell with a low charge. Both the capacitive energy transfer method and the inductive energy transfer method are energy transfer.
  • the active equalization method can achieve the charging and lowering of the single battery, but the method is costly, and the inductor and the capacitor component technology are not mature enough, resulting in poor reliability, so it is difficult to apply to the electric vehicle on a large scale. And on a hybrid car. Summary of the invention
  • the embodiments of the present invention provide a balanced charging device and a balanced charging method for a series battery pack with low cost and high reliability to achieve balanced charging of the battery pack.
  • An equalization charging device for a series battery pack provided by an embodiment of the present invention, the equalization charging device A plurality of charging branches are included, each charging branch is configured to respectively charge a corresponding single battery in the series battery pack, the equalization charging device further includes a controller, and the controller is configured to acquire each single battery in real time.
  • the charging branch that controls charging of the single battery corresponding to the minimum SOC value is closed until the difference between the SOC value of the single battery and the average value of the SOC updated in real time is less than
  • the second threshold controls the disconnection of the charging branch that charges the unit cell.
  • the equalization charging method for the serial battery pack includes the following steps: acquiring the SOC value of each single battery in real time, and calculating and updating the SOC average value of the serial battery pack in real time according to the SOC value; Comparing a minimum SOC value of the acquired SOC values with the SOC average value; and starting a single corresponding to the minimum SOC value when a difference between the minimum SOC value and the SOC average value is greater than the first threshold value The body battery is charged until the battery unit is stopped until the difference between the SOC value of the unit battery and the average value of the SOC updated in real time is less than a second threshold.
  • the equalization charging device and the equalization charging method for the serial battery pack provided by the embodiment of the present invention calculate and update the SOC average value of the tandem battery pack by acquiring the SOC value of each single battery in the serial battery pack in real time, The SOC average value of the real-time update of the series battery pack is used as a judgment condition of whether or not the battery pack is charged in series, and the minimum SOC value of the acquired SOC value is compared with the SOC average value to determine that the equalization charging is required.
  • the single battery is connected to the charging power source to realize the charging power of the single battery with the lowest power, until the SOC value of the single battery satisfies the equalizing charging condition, and the connection between the single battery and the charging power source is disconnected.
  • the equalization charging device and the equalization charging method for the series battery pack provided by the embodiments of the present invention can correctly select the battery cells that need to be balancedly charged, and the cost is low and the reliability is high, thereby solving the problem that the series battery pack is not charged uniformly.
  • the voltage equalization of the series battery pack is fully realized, and the performance of the battery pack is effectively improved.
  • FIG. 1 is a schematic structural diagram of an equalization charging device for a series battery pack according to an embodiment of the present invention
  • FIG. 2 is a flowchart of an equalization charging method for a series battery pack according to an embodiment of the present invention. detailed description
  • FIG. 1 is a schematic structural diagram of an equalization charging device for a series battery pack according to an embodiment of the present invention.
  • an equalization charging device for a series battery pack according to an embodiment of the present invention includes a plurality of charging branches, and each charging branch is configured to respectively charge a corresponding single battery in the series battery group, wherein The equalization charging device further includes a controller 4, wherein the controller 4 is configured to acquire the SOC value of each single battery in real time and calculate and update the SOC average value of the serial battery pack in real time according to the SOC value, and the acquired
  • the minimum SOC value of the SOC value of the single battery is compared with the average value of the SOC, and when the difference between the minimum SOC value and the SOC average value is greater than the first threshold, the charging of the single battery corresponding to the minimum SOC value is controlled.
  • the charging branch is closed until the difference between the SOC value of the single cell and the average value of the SOC updated in real time is less than the second threshold, and the charging branch that controls
  • State of Charge SOC (State Of Charge) is used to indicate the remaining capacity of the battery and is an important parameter describing the charge and discharge performance of the battery, and is well known to those skilled in the art.
  • SOC State of Charge
  • the equalization charging device preferably further includes a plurality of controllable switches 2, each of which is located in each charging branch, the controller 4 having a plurality of outputs, each output The terminals are respectively connected to the control terminals of each of the controllable switches 2, and the controller 4 controls the closing or opening of the charging branch by controlling the controllable switch 2 to be closed or opened.
  • the controllable switch 2 is any type of switching element having a control terminal, and its opening and closing can be controlled by an electric signal, such as a diode, a triode or a relay.
  • the controllable switch 2 is in a normally open state when a control signal from the controller 4 that controls its closing or opening is not received.
  • the controllable switch 2 is a MOSFET.
  • the MOSFET can withstand currents greater than 5A and features high voltage isolation for balanced charging up to 5A on a single cell.
  • the use of a MOSFET as the controllable switch 2 reduces the cost of the equalization charging device and reduces the size of the equalization charging device, increasing system reliability.
  • the series battery pack is formed by connecting a plurality of unit cells in series, and a charging branch is connected to both ends of each unit battery.
  • the charging branch is The number of the roads is N+1, so that only one single battery can be connected to the charging power source at a time, and only one single battery can be equalized and charged at the same time, so there is no need to consider the internal balance of the charging device during the equalization process.
  • the voltage isolation problem reduces system complexity and reduces the cost of isolated circuits.
  • the input terminal of the controller 4 is connected to each unit cell through a CAN bus for collecting the voltage of each unit cell and calculating the SOC value of each unit cell.
  • the calculation of the SOC value of the single cell is well known to those skilled in the art.
  • the operator can arbitrarily set the voltage acquisition sequence while ensuring voltage acquisition for each of the cells in the series battery pack to obtain the SOC value of each of the cells.
  • the voltage acquisition sequence is set to sequentially collect voltages for each of the individual cells from the first cell connected in series until the last cell.
  • the controller 4 calculates and updates the SOC average value of the series battery pack in real time by the SOC value of each unit battery acquired in real time, and the SOC average value is divided by the sum of the SOC values of all the serially connected unit batteries. This is obtained in the number of single cells, which is well known to those skilled in the art.
  • the controller 4 is preset with a first threshold and a second threshold, and the controller 4 also calculates the minimum SOC value of the acquired SOC values of the unit cells and the SOC average value of the series battery pack.
  • the controller 4 controls the charging branch for charging the single battery to be disconnected, thereby completing the single The charging process of the body battery.
  • the controller 4 continues to perform the above steps, that is, updating the SOC average value of the series battery pack in real time and continuing the minimum SOC.
  • the comparison of the value with the SOC average is performed to continuously determine and charge the single cells that need to be charged to achieve continuous charging equalization of the series battery.
  • the first threshold and the second threshold may be preset by the operator in the controller 4.
  • the first threshold is any one of 4%-10%
  • the second threshold is 0- Any one of 3%. More preferably, the first threshold is 5% and the second threshold is 2%, so that the balance between the individual cells is better.
  • the controller 4 is configured to obtain the SOC value of each of the battery cells in the series battery pack in real time according to the instruction of the program, calculate and update the SOC average value of the serial battery pack in real time, and control the controllable switch 2 according to the instruction of the program.
  • the open/close controller can be, for example, a PLC or a single chip microcomputer.
  • the equalization charging device further includes a voltage conversion device 3, the input terminal of the voltage conversion device 3 is used for inputting a charging voltage, and the output terminal and the plurality of The charging branch is connected, and the voltage converting device 3 is configured to convert the input charging voltage into a voltage within a rated voltage range of the single battery, and output the converted voltage to each charging branch.
  • the battery cells can be charged by connecting an external power source, which can be an AC power source or a DC power source. Since the single battery needs to be charged under a direct current voltage, when the external power source is an alternating current power source, the voltage conversion device is an AC/DC converter for converting the alternating current voltage supplied by the power source into a rated voltage range of the single battery. DC voltage; when the external power source is a DC power source, the voltage conversion device is a DC/DC converter for converting the DC voltage supplied by the power source It is the DC voltage within the rated voltage range of the single cell.
  • the voltage conversion device 3 is any AC/DC converter that can convert an AC voltage into a DC voltage within a required range or any DC/DC that can convert a DC voltage into a DC voltage within a desired range.
  • Converters such as isolated step-down AC/DC converters, isolated step-down DC/DC converters.
  • the voltage conversion device 3 is preferably a DC/DC converter, and the input charging voltage may be from any battery, preferably from a 12V lead-acid battery, so that it can be passed through a DC/DC converter.
  • the 12V DC voltage from the onboard 12V lead-acid battery is converted to a DC low voltage that satisfies the charging requirements of the single battery.
  • FIG. 2 is a flowchart of an equalization charging method for a series battery pack according to an embodiment of the present invention.
  • the equalization charging method of the serial battery pack provided by the embodiment of the present invention includes the following steps: acquiring the SOC value of each single battery in real time, and calculating and updating the SOC average value of the serial battery pack in real time according to the SOC value; The minimum SOC value of the SOC values of the single cells is compared with the SOC average value; and the single cell corresponding to the minimum SOC value is started when the difference between the minimum SOC value and the SOC average value is greater than the first threshold value Charging, until the difference between the SOC value of the single cell and the average value of the SOC updated in real time is less than the second threshold, the charging of the single cell is stopped.
  • the method further includes the following steps: converting the charging voltage for charging the single cell into a voltage within a rated voltage range of the single cell, and then using the converted The voltage charges the single battery.
  • the single battery can be charged by connecting an external power source.
  • the charging voltage for charging the single battery can be from any battery.
  • the input charging voltage for charging the single battery is from the vehicle 12V lead acid. battery.
  • the SOC value of each single cell in the series battery pack is first obtained in real time, and each unit cell is sequentially obtained from the first cell connected in series. SOC value up to the last section of the cell; then pass in real time through the acquired The soc value of the single cell is used to calculate and update the soc average of the series battery; thereafter, the minimum SOC value of the acquired SOC value is compared with the SOC average; when the comparison result is the minimum SOC When the difference between the value and the SOC average value is greater than the first threshold, determining that the single battery corresponding to the minimum SOC value needs to be charged, thereby controlling a pair of controllable switches 2 connected to the single battery corresponding to the minimum SOC value to be closed a charging voltage for charging the single cell is introduced into the single cell by the closed controllable switch 2 to be charged after voltage conversion; when the SOC value of the charged single cell is updated in real time When the difference between the average values of the SOCs is less than

Description

均衡充电装置及均衡充电方法
技术领域
本发明实施例涉及充电装置,尤其涉及一种用于串联电池组的均衡充电 装置及均衡充电方法。 背景技术
可充电动力电池因其较好的利用率而被广泛地应用于各类电子产品, 尤 其是电动汽车或混合动力汽车中。 对于电动汽车或混合动力汽车, 设有由多 个单体电池串联连接而成的作为电源装置的动力电池组。在实现本发明实施 例的过程中, 发明人发现现有技术至少存在以下问题。 由于可充电动力电池 制造和使用环境的差异性, 导致动力电池在经过多次充、 放电循环之后, 电 池单体差异性表现出逐渐增大的趋势, 由此在充电过程中容易导致串联电池 组单体充电不均衡, 直接影响电池组的使用寿命和性能, 这对于电动汽车和 混合动力汽车来说是不容忽视的问题。
现有的动力电池单体均衡方法包括电阻放电均衡法、 电容能量转移法和 电感能量转移法。 电阻放电均衡法是一种能量消耗的被动放电法, 只能对电 量高的单体电池放电, 而不能对电量低的单体电池充电; 电容能量转移法和 电感能量转移法均是能量转移的主动均衡方法, 可以实现对单体电池的充低 放高, 但该方法成本很高, 并且由于电感、 电容器件技术的不够成熟, 导致 可靠性较差, 因此很难大规模地应用在电动汽车和混合动力汽车上。 发明内容
发明实施例提供一种成本低、可靠性高的用于串联电池组的均衡充电装 置及均衡充电方法, 以实现电池组均衡充电。
本发明实施例提供的用于串联电池组的均衡充电装置, 该均衡充电装置 包括多个充电支路,每个充电支路用于分别对串联电池组中的对应的单体电 池充电, 该均衡充电装置还包括控制器, 所述控制器用于实时获取每个单体 电池的 SOC值并根据所述 SOC值实时计算并更新串联电池组的 SOC平均 值, 将所获取的单体电池的 SOC值中的最小 SOC值与所述 SOC平均值进 行比较, 当最小 SOC值与 SOC平均值的差值大于第一阈值时控制对该最小 SOC值所对应的单体电池充电的充电支路闭合, 直至该单体电池的 SOC值 与实时更新的所述 SOC平均值的差值小于第二阈值时控制对该单体电池充 电的充电支路断开。
本发明实施例提供的用于串联电池组的均衡充电方法包括以下歩骤: 实 时获取每个单体电池的 SOC值, 并根据所述 SOC值实时计算并更新串联电 池组的 SOC平均值; 将所获取的单体电池的 SOC值中的最小 SOC值与所 述 SOC平均值进行比较; 以及当最小 SOC值与 SOC平均值的差值大于第 一阈值时开始对该最小 SOC值所对应的单体电池充电, 直至该单体电池的 SOC值与实时更新的所述 SOC平均值的差值小于第二阈值时停止对该单体 电池充电。
本发明实施例提供的用于串联电池组的均衡充电装置及均衡充电方法 通过实时获取串联电池组中的每个单体电池的 SOC值来计算并更新该串联 电池组的 SOC平均值, 采用该串联电池组的实时更新的 SOC平均值作为串 联电池组是否充电均衡的判断条件, 通过将所获取的单体电池的 SOC值中 的最小 SOC值与 SOC平均值进行比较来判断需要进行均衡充电的单体电 池, 进而将该单体电池与充电电源连接, 实现对电量最低的单体电池补充电 量, 直至该单体电池的 SOC值满足均衡充电条件才断开该单体电池与充电 电源的连接, 由此实现串联电池组的充电均衡。 采用本发明实施例提供的用 于串联电池组的均衡充电装置及均衡充电方法可以正确选择需要均衡充电 的电池单体, 且成本低、 可靠性高, 解决了串联电池组充电不均衡的问题, 完全实现了串联电池组的电压均衡, 有效地提高了电池组的使用性能。 附图说明
图 1为本发明实施例提供的用于串联电池组的均衡充电装置的结构示意 图;
图 2为本发明实施例提供的用于串联电池组的均衡充电方法的流程图。 具体实施方式
下面结合附图对本发明实施例提供的用于串联电池组的均衡充电装置 及均衡充电方法做进一歩的详细描述。
图 1为本发明实施例提供的用于串联电池组的均衡充电装置的结构示意 图。 如图 1所示, 本发明实施例提供的用于串联电池组的均衡充电装置包括 多个充电支路, 每个充电支路用于分别对串联电池组中的对应的单体电池充 电, 其中, 该均衡充电装置还包括控制器 4, 所述控制器 4用于实时获取每 个单体电池的 SOC值并根据所述 SOC值实时计算并更新串联电池组的 SOC 平均值, 将所获取的单体电池的 SOC值中的最小 SOC值与所述 SOC平均 值进行比较, 当最小 SOC值与 SOC平均值的差值大于第一阈值时控制对该 最小 SOC值所对应的单体电池充电的充电支路闭合,直至该单体电池的 SOC 值与实时更新的所述 SOC平均值的差值小于第二阈值时控制对该单体电池 充电的充电支路断开。
电池荷电状态 SOC ( State Of Charge) 用于表示电池的剩余电量, 是描 述电池充放电性能的重要参数, 为本领域技术人员所公知。在动力电池使用 过程中, 单体电池 SOC值的不同体现了电池单体差异性。
如图 1所示, 所述均衡充电装置优选还包括多个可控开关 2, 每个可控 开关 2分别位于每个充电支路中, 所述控制器 4具有多个输出端, 每个输出 端分别与每个可控开关 2的控制端连接, 所述控制器 4通过控制可控开关 2 闭合或断开来控制充电支路的闭合或断开。
所述可控开关 2为任意一种具有控制端的开关元件, 其开闭可以由电信 号进行控制, 例如二极管、 三极管或继电器。 所述可控开关 2在未接收到控 制器 4发出的控制其闭合或断开的控制信号时处于常开状态。 优选情况下, 所述可控开关 2为 MOSFET。 MOSFET可以承受大于 5A的电流, 具有高电 压隔离功能, 可以实现对单体电池最高 5A的均衡充电。采用 MOSFET作为 可控开关 2, 可以降低均衡充电装置的成本且减少均衡充电装置的体积, 增 加了系统可靠性。
如图 1所示, 串联电池组由多节单体电池串联连接而成, 每节单体电池 正负极两端都连接一个充电支路, 如果单体电池的个数为 N, 则充电支路的 个数为 N+1 , 由此可以实现每次只允许一个单体电池与充电电源连接, 实现 同一时刻只对一个单体电池进行均衡充电, 因此不需要考虑均衡过程中均衡 充电装置内部的电压隔离问题,减少了系统复杂性,降低了隔离电路的成本。 所述控制器 4的输入端通过 CAN总线与每个单体电池连接, 用于采集每个 单体电池的电压并计算每个单体电池的 SOC值。 对单体电池 SOC值的计算 过程为本领域技术人员所公知。操作者在保证对串联电池组中每个单体电池 都进行电压采集以获取每个单体电池的 SOC值的前提下可任意设置电压采 集顺序。 优选情况下, 将电压采集顺序设定为从串联连接的第一节单体电池 开始依次对每一节单体电池进行电压采集直至最后一节单体电池。
所述控制器 4通过实时获取到的每个单体电池的 SOC值来实时计算并 更新串联电池组的 SOC平均值, 该 SOC平均值通过以所有串联连接的单体 电池的 SOC值之和除以单体电池的个数得到, 该计算过程为本领域技术人 员所公知。所述控制器 4中预先设定有第一阈值和第二阈值, 控制器 4还将 所获取的单体电池的 SOC值中的最小 SOC值与串联电池组的 SOC平均值 进行比较,当最小 SOC值与 SOC平均值的差值大于预先设定的第一阈值时, 控制对最小 SOC值所对应的单体电池充电的充电支路闭合, 由此对该单体 电池充电, 直至该单体电池的 SOC值与实时更新的所述 SOC平均值的差值 小于第二阈值时, 控制器 4控制对该单体电池充电的充电支路断开, 由此完 成对该单体电池的充电过程。 为了持续地维持串联电池组的充电均衡, 控制 器 4在完成对该单体电池的充电过程之后, 继续执行上述的各项歩骤, 即实 时地更新串联电池组的 SOC平均值并继续最小 SOC值与 SOC平均值的比 较歩骤, 以持续地确定需要充电的单体电池并对其充电, 以实现串联电池组 持续的充电均衡。所述第一阈值和第二阈值可由操作者在控制器 4中进行预 先设置, 优选情况下, 所述第一阈值为 4%-10%中的任意一个值, 所述第二 阈值为 0-3%中的任意一个值。 更加优选的情况下, 所述第一阈值为 5%, 所 述第二阈值为 2%, 以使得各个单体电池之间的均衡性更佳。
所述控制器 4为任意可以根据程序的指示实时获取串联电池组中的每个 单体电池的 SOC值并实时计算和更新串联电池组的 SOC平均值, 并根据程 序的指示控制可控开关 2的开闭的控制器, 例如可以为 PLC或单片机。
为了防止对单体电池的过充情况的发生, 如图 1所示, 所述均衡充电装 置还包括电压转换装置 3, 该电压转换装置 3的输入端用于输入充电电压, 输出端与多个充电支路相连, 该电压转换装置 3用于将所输入的充电电压转 换成单体电池额定电压范围内的电压, 并将转换后的电压输出到每个充电支 路。
可以通过连接外部电源对单体电池进行充电,所述外部电源可以为交流 电源或直流电源。 由于需要在直流电压下对单体电池进行充电, 当外部电源 为交流电源时, 所述电压转换装置为 AC/DC转换器, 用于将电源提供的交 流电压转换为单体电池额定电压范围内的直流电压; 当外部电源为直流电源 时, 所述电压转换装置为 DC/DC转换器, 用于将电源提供的直流电压转换 为单体电池额定电压范围内的直流电压。
所述电压转换装置 3为任意一种可以将交流电压转换为所需范围内的直 流电压的 AC/DC转换器或任意一种可以将直流电压转换为所需范围内的直 流电压的 DC/DC转换器, 例如隔离式降压型 AC/DC转换器、 隔离式降压型 DC/DC转换器。
为了节省能源, 优选情况下, 所述电压转换装置 3为 DC/DC转换器, 所输入的充电电压可以来自任意电池,优选来自于车载 12V铅酸电池, 由此 可以通过 DC/DC转换器将来自于车载 12V铅酸电池的 12V直流电压转换为 满足单体电池充电要求的直流低电压。
图 2为本发明实施例提供的用于串联电池组的均衡充电方法的流程图。 本发明实施例提供的串联电池组的均衡充电方法包括以下歩骤: 实时获取每 个单体电池的 SOC值, 并根据所述 SOC值实时计算并更新串联电池组的 SOC平均值; 将所获取的单体电池的 SOC值中的最小 SOC值与所述 SOC 平均值进行比较; 以及当最小 SOC值与 SOC平均值的差值大于第一阈值时 开始对该最小 SOC值所对应的单体电池充电, 直至该单体电池的 SOC值与 实时更新的所述 SOC平均值的差值小于第二阈值时停止对该单体电池充电。
为了防止对单体电池的过充情况的发生, 该方法还包括以下歩骤: 将对 所述单体电池充电的充电电压转换成单体电池额定电压范围内的电压后,再 利用转换后的电压对所述单体电池充电。
可以通过连接外部电源对单体电池进行充电,例如对单体电池进行充电 的充电电压可以来自任意电池, 优选情况下, 所输入的对所述单体电池充电 的充电电压来自于车载 12V铅酸电池。
根据本发明实施例提供的方法, 如图 2所示, 首先实时获取串联电池组 中每个单体电池的 SOC值, 从串联连接的第一节单体电池开始, 依次获取 每节单体电池的 SOC值直至最后一节单体电池; 然后实时地通过所获取的 单体电池的 soc值来计算并更新串联电池组的 soc平均值; 之后, 将所获 取的单体电池的 SOC值中的最小 SOC值与所述 SOC平均值进行比较; 当 比较结果为最小 SOC值与 SOC平均值的差值大于第一阈值时, 确定该最小 SOC值对应的单体电池需要充电, 由此控制与该最小 SOC值所对应的单体 电池相连的一对可控开关 2闭合,对该单体电池进行充电的充电电压经由电 压转换后由所闭合的可控开关 2引入到该单体电池中以对其进行充电; 当该 被充电的单体电池的 SOC值与实时更新的所述 SOC平均值的差值小于第二 阈值时, 将该单体电池所连接的一对可控开关 2断开, 停止对该单体电池充 电。
虽然本发明已通过上述实施例所公开,然而上述实施例并非用以限定本 发明, 任何本发明所属技术领域中的技术人员, 在不脱离本发明的精神和范 围内, 应当可作各种更动与修改。 因此本发明的保护范围应当以所附权利要 求书所界定的范围为准。

Claims

权利要求书
1 . 一种用于串联电池组的均衡充电装置, 该均衡充电装置包括多个充 电支路, 每个充电支路用于分别对串联电池组中的对应的单体电池充电, 其 中, 该均衡充电装置还包括控制器 (4), 所述控制器 (4 ) 用于实时获取每 个单体电池的 SOC值并根据所述 SOC值实时计算并更新串联电池组的 SOC 平均值, 将所获取的单体电池的 SOC值中的最小 SOC值与所述 SOC平均 值进行比较, 当最小 SOC值与 SOC平均值的差值大于第一阈值时控制对该 最小 SOC值所对应的单体电池充电的充电支路闭合,直至该单体电池的 SOC 值与实时更新的所述 SOC平均值的差值小于第二阈值时控制对该单体电池 充电的充电支路断开。
2.根据权利要求 1所述的均衡充电装置,其中,所述第一阈值为 4%-10% 中的任意一个值, 所述第二阈值为 0-3%中的任意一个值。
3. 根据权利要求 1所述的均衡充电装置, 其中, 所述均衡充电装置还 包括电压转换装置 (3 ), 该电压转换装置(3 ) 的输入端用于输入充电电压, 输出端与所述多个充电支路相连, 该电压转换装置 (3 ) 用于将所输入的充 电电压转换成单体电池额定电压范围内的电压, 并将转换后的电压输出到每 个充电支路。
4. 根据权利要求 3所述的均衡充电装置, 其中,所述电压转换装置(3 ) 为 DC/DC转换器, 所输入的充电电压来自于车载 12V铅酸电池。
5. 根据权利要求 1-4 中任一项权利要求所述的均衡充电装置, 其中, 所述均衡充电装置还包括多个可控开关 (2), 每个可控开关 (2 ) 分别位于 每个充电支路中, 所述控制器 (4 ) 具有多个输出端, 每个输出端分别与每 个可控开关 (2 ) 的控制端连接, 所述控制器 (4 ) 通过控制可控开关 (2 ) 闭合或断开来控制充电支路的闭合或断开。
6.根据权利要求 5 所述的均衡充电装置, 其中, 所述可控开关 (2) 为 MOSFET。
7. 一种用于串联电池组的均衡充电方法, 其中, 该方法包括以下歩骤: 实时获取每个单体电池的 SOC值, 并根据所述 SOC值实时计算并更新 串联电池组的 SOC平均值;
将所获取的单体电池的 SOC值中的最小 SOC值与所述 SOC平均值进 行比较; 以及
当最小 SOC值与 SOC平均值的差值大于第一阈值时开始对该最小 SOC 值所对应的单体电池充电,直至该单体电池的 SOC值与实时更新的所述 SOC 平均值的差值小于第二阈值时停止对该单体电池充电。
8.根据权利要求 7所述的方法, 其中, 所述第一阈值为 4%-10%中的任 意一个值, 所述第二阈值为 0-3%中的任意一个值。
9. 根据权利要求 7或 8所述的方法, 其中, 该方法还包括: 将对所述 单体电池充电的充电电压转换成单体电池额定电压范围内的电压后,再利用 转换后的电压对所述单体电池充电。
10. 根据权利要求 9所述的均衡充电方法, 其中, 所输入的充电电压来 自于车载 12V铅酸电池。
PCT/CN2010/078220 2010-03-17 2010-10-29 均衡充电装置及均衡充电方法 WO2011113280A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010127685.8 2010-03-17
CN 201010127685 CN101777784A (zh) 2010-03-17 2010-03-17 均衡充电装置及均衡充电方法

Publications (1)

Publication Number Publication Date
WO2011113280A1 true WO2011113280A1 (zh) 2011-09-22

Family

ID=42514156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078220 WO2011113280A1 (zh) 2010-03-17 2010-10-29 均衡充电装置及均衡充电方法

Country Status (2)

Country Link
CN (1) CN101777784A (zh)
WO (1) WO2011113280A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016077216A1 (en) * 2014-11-11 2016-05-19 Protonex Technology Corporation Control module for dc power network
US10250134B2 (en) 2013-04-01 2019-04-02 Revision Military Ltd. Power manager
US10333315B2 (en) 2009-07-10 2019-06-25 Revision Military Ltd. Power managers and methods for operating power managers
US10587116B2 (en) 2015-11-20 2020-03-10 Galvion Soldier Power, Llc Distributed power manager
CN111251943A (zh) * 2020-03-17 2020-06-09 上海度普新能源科技有限公司 一种电池组的均衡方法及装置
US10848067B2 (en) 2015-11-20 2020-11-24 Galvion Soldier Power, Llc Power manager with reconfigurable power converting circuits
US10916784B2 (en) 2014-10-07 2021-02-09 Upstart Power, Inc. SOFC-conduction
US11108072B2 (en) 2016-08-11 2021-08-31 Upstart Power, Inc. Planar solid oxide fuel unit cell and stack
US11258366B2 (en) 2015-11-20 2022-02-22 Galvion Soldier Power, Llc Power manager with reconfigurable power converting circuits

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777784A (zh) * 2010-03-17 2010-07-14 北汽福田汽车股份有限公司 均衡充电装置及均衡充电方法
JP5567956B2 (ja) * 2010-09-16 2014-08-06 矢崎総業株式会社 複数組電池のセル電圧均等化装置
CN102457070B (zh) * 2010-10-19 2014-04-02 财团法人联合船舶设计发展中心 电池组主动式电位等化充电方法
CN102111003B (zh) * 2011-02-21 2013-07-17 成都芯源系统有限公司 新型电池均衡电路及其调节方法
KR101798464B1 (ko) * 2011-02-22 2017-11-16 에스케이이노베이션 주식회사 다중 팩 병렬 구조의 soc 보정 시스템
CN102255114B (zh) * 2011-04-27 2013-11-20 艾默生网络能源有限公司 电池均衡充放电方法及装置
CN102868185A (zh) * 2011-07-04 2013-01-09 赵恩海 一种16节串联充电电池组主动均衡方法
US20130043840A1 (en) * 2011-08-16 2013-02-21 GM Global Technology Operations LLC Systems and methods for performing cell balancing in a vehicle using cell capacities
CN102355031B (zh) * 2011-10-29 2014-05-14 重庆大学 一种磷酸铁锂动力电池组主动均衡充电方法
CN102522603A (zh) * 2011-12-06 2012-06-27 深圳市五洲龙汽车有限公司 电池系统及电池充放电管理方法
CN102545332B (zh) * 2012-01-10 2014-04-02 北京海博思创科技有限公司 单体电池电量均衡方法和系统
CN103323775B (zh) * 2012-03-20 2015-07-08 北汽福田汽车股份有限公司 用于电池模块的平衡监控及测试系统
CN103872711B (zh) * 2012-12-13 2016-03-09 欣旺达电子股份有限公司 锂电池充放电平衡系统
CN103199580A (zh) * 2013-03-25 2013-07-10 中国科学院苏州纳米技术与纳米仿生研究所 智能充电系统
CN104600760B (zh) * 2013-10-30 2016-12-07 北汽福田汽车股份有限公司 电池组的单体电池平衡控制方法及系统
CN104659434B (zh) * 2013-11-22 2017-04-05 北汽福田汽车股份有限公司 动力电池组的均衡控制方法
CN103986219B (zh) * 2014-06-04 2016-09-28 北京华电天仁电力控制技术有限公司 一种基于两级式拓扑储能型变流器的电池soc均衡控制方法
CN104849666B (zh) * 2014-06-23 2017-10-13 北汽福田汽车股份有限公司 一种电池包soc的估算方法及系统
KR102256301B1 (ko) * 2015-01-30 2021-05-26 삼성에스디아이 주식회사 배터리 충방전 제어 시스템 및 방법
KR102377394B1 (ko) * 2015-05-14 2022-03-22 삼성에스디아이 주식회사 에너지 저장 시스템 및 그 구동 방법
CN107139742B (zh) * 2017-04-19 2019-07-12 中国第一汽车股份有限公司 车用动力电池单体电量均衡方法
CN108944479B (zh) * 2017-05-17 2021-05-14 宝沃汽车(中国)有限公司 动力电池均衡方法、装置及车辆
CN109435778B (zh) * 2017-08-31 2022-03-18 比亚迪股份有限公司 电池均衡方法、系统、车辆、存储介质及电子设备
CN110015170B (zh) * 2017-08-31 2022-10-18 比亚迪股份有限公司 电池均衡方法、系统、车辆、存储介质及电子设备
CN110015171B (zh) * 2017-08-31 2022-10-18 比亚迪股份有限公司 电池均衡方法、系统、车辆、存储介质及电子设备
CN107807333B (zh) * 2017-10-31 2019-09-17 暨南大学 一种退役动力电池组的soc估算方法
CN108110336B (zh) * 2017-11-30 2020-05-05 宁德时代新能源科技股份有限公司 电池包均衡控制方法、装置和设备
WO2019167786A1 (ja) * 2018-03-01 2019-09-06 株式会社村田製作所 組電池
CN109004700A (zh) * 2018-07-06 2018-12-14 金龙联合汽车工业(苏州)有限公司 一种电池包自放电差异的均衡方法
CN108964206B (zh) * 2018-08-21 2023-04-18 宁波明科机电有限公司 一种充电系统
CN109120035A (zh) * 2018-09-11 2019-01-01 深圳市科陆电子科技股份有限公司 电池箱系统内的soc均衡控制方法
US20200249279A1 (en) * 2019-02-06 2020-08-06 GM Global Technology Operations LLC Method and diagnostic service tool for a battery pack
CN110231572A (zh) * 2019-06-14 2019-09-13 安徽锐能科技有限公司 一种基于电池主动均衡的soc估计装置
CN111211594B (zh) * 2020-01-02 2024-03-15 安徽锐能科技有限公司 考虑温度和soh的补电式均衡控制方法、电路及存储介质
CN111114382A (zh) * 2020-01-02 2020-05-08 安徽锐能科技有限公司 基于soh的补电式主动均衡策略、电路及存储介质
CN112216883B (zh) * 2020-09-28 2022-02-22 长安大学 一种锂电池均衡方法、系统、设备及存储介质
CN112910042A (zh) * 2021-02-03 2021-06-04 国网浙江省电力有限公司杭州供电公司 一种串联电池组主动均衡系统
WO2024050773A1 (zh) * 2022-09-08 2024-03-14 宁德时代新能源科技股份有限公司 电池系统的控制方法和控制装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030146737A1 (en) * 2002-01-17 2003-08-07 Matsushita Electric Industrial Co., Ltd. Battery assembly system and electric-motor vehicle system using the same
KR20080053713A (ko) * 2006-12-11 2008-06-16 현대자동차주식회사 조전지의 충전 균등화 회로 장치
JP2009284591A (ja) * 2008-05-20 2009-12-03 Honda Motor Co Ltd 組電池の充電制御装置
CN101609994A (zh) * 2008-06-17 2009-12-23 比亚迪股份有限公司 均衡充电装置及均衡充电方法
CN101777784A (zh) * 2010-03-17 2010-07-14 北汽福田汽车股份有限公司 均衡充电装置及均衡充电方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1181593C (zh) * 2002-04-04 2004-12-22 北京航空航天大学 基于电池动态电量差异补偿的自动均衡充放电装置
CN101431248A (zh) * 2007-11-06 2009-05-13 比亚迪股份有限公司 均衡充电装置及均衡充电方法
KR101187766B1 (ko) * 2008-08-08 2012-10-05 주식회사 엘지화학 배터리 셀의 전압 변화 거동을 이용한 셀 밸런싱 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030146737A1 (en) * 2002-01-17 2003-08-07 Matsushita Electric Industrial Co., Ltd. Battery assembly system and electric-motor vehicle system using the same
KR20080053713A (ko) * 2006-12-11 2008-06-16 현대자동차주식회사 조전지의 충전 균등화 회로 장치
JP2009284591A (ja) * 2008-05-20 2009-12-03 Honda Motor Co Ltd 組電池の充電制御装置
CN101609994A (zh) * 2008-06-17 2009-12-23 比亚迪股份有限公司 均衡充电装置及均衡充电方法
CN101777784A (zh) * 2010-03-17 2010-07-14 北汽福田汽车股份有限公司 均衡充电装置及均衡充电方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10333315B2 (en) 2009-07-10 2019-06-25 Revision Military Ltd. Power managers and methods for operating power managers
US11569667B2 (en) 2009-07-10 2023-01-31 Galvion Soldier Power, Llc Power managers and methods for operating power managers
US11283265B2 (en) 2009-07-10 2022-03-22 Galvion Soldier Power, Llc Power managers and methods for operating power managers
US10250134B2 (en) 2013-04-01 2019-04-02 Revision Military Ltd. Power manager
US11784331B2 (en) 2014-10-07 2023-10-10 Upstart Power, Inc. SOFC-conduction
US10916784B2 (en) 2014-10-07 2021-02-09 Upstart Power, Inc. SOFC-conduction
WO2016077216A1 (en) * 2014-11-11 2016-05-19 Protonex Technology Corporation Control module for dc power network
US10326284B2 (en) 2014-11-11 2019-06-18 Revision Military Ltd. Control module for DC power network
US11108230B2 (en) 2015-11-20 2021-08-31 Galvion Soldier Power, Llc Power manager with reconfigurable power converting circuits
US11258366B2 (en) 2015-11-20 2022-02-22 Galvion Soldier Power, Llc Power manager with reconfigurable power converting circuits
US10848067B2 (en) 2015-11-20 2020-11-24 Galvion Soldier Power, Llc Power manager with reconfigurable power converting circuits
US11355928B2 (en) 2015-11-20 2022-06-07 Galvion Soldier Power, Llc Distributed power manager
US10587116B2 (en) 2015-11-20 2020-03-10 Galvion Soldier Power, Llc Distributed power manager
US11108072B2 (en) 2016-08-11 2021-08-31 Upstart Power, Inc. Planar solid oxide fuel unit cell and stack
US11664517B2 (en) 2016-08-11 2023-05-30 Upstart Power, Inc. Planar solid oxide fuel unit cell and stack
CN111251943A (zh) * 2020-03-17 2020-06-09 上海度普新能源科技有限公司 一种电池组的均衡方法及装置

Also Published As

Publication number Publication date
CN101777784A (zh) 2010-07-14

Similar Documents

Publication Publication Date Title
WO2011113280A1 (zh) 均衡充电装置及均衡充电方法
US11358492B2 (en) Self-balancing switching control of dual-pack rechargeable energy storage system with series and parallel modes
CN103119822B (zh) 蓄电系统以及蓄电系统的控制方法
CN101609994B (zh) 均衡充电装置及均衡充电方法
Zhang et al. Active battery equalization method based on redundant battery for electric vehicles
CN106374559B (zh) 串联电池组的快速充电方法及相关设备
CN103311979B (zh) 电池系统
US9641011B2 (en) Battery control device adapting the battery current limit by decreasing the stored current limit by comparing it with the measured battery current
CN110429671B (zh) 一种电动汽车高适应性充电系统及方法
CN104079052B (zh) 电动汽车直流充电系统
CN104505926B (zh) 一种动力电池组充电系统及充电方法
CN106099254B (zh) 一种电池系统和电动汽车
CN203967811U (zh) 电动汽车直流充电系统
CN102185354A (zh) 一种用于电动自行车的锂电池组智能充放电管理控制系统
CN102934314B (zh) 电池包
CN101431248A (zh) 均衡充电装置及均衡充电方法
CN108011425B (zh) 一种电池组主动均衡电路及方法
CN101976876A (zh) 实现在充电过程中对电池均衡的装置及方法
WO2018052576A1 (en) Supercapacitor based energy storage device
CN104578316A (zh) 电池组分布多模式均衡充电方法及均衡充电电路
CN104953659A (zh) 一种电池组充放电均衡电路和充放电方法
WO2022002122A1 (zh) 电池均流控制方法及电池均流控制系统
JP7466198B2 (ja) 蓄電システム
Vo et al. Experimental comparison of charging algorithms for a lithium-ion battery
Ekanayake et al. Active and passive based hybrid cell balancing approach to series connected lithium-ion battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24-01-2013)

122 Ep: pct application non-entry in european phase

Ref document number: 10847749

Country of ref document: EP

Kind code of ref document: A1