CN109120035A - 电池箱系统内的soc均衡控制方法 - Google Patents

电池箱系统内的soc均衡控制方法 Download PDF

Info

Publication number
CN109120035A
CN109120035A CN201811056950.0A CN201811056950A CN109120035A CN 109120035 A CN109120035 A CN 109120035A CN 201811056950 A CN201811056950 A CN 201811056950A CN 109120035 A CN109120035 A CN 109120035A
Authority
CN
China
Prior art keywords
battery box
box system
power
battery
management system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811056950.0A
Other languages
English (en)
Inventor
但助兵
王宇翔
詹孟兴
雷莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Clou Electronics Co Ltd
Original Assignee
Shenzhen Clou Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Clou Electronics Co Ltd filed Critical Shenzhen Clou Electronics Co Ltd
Priority to CN201811056950.0A priority Critical patent/CN109120035A/zh
Publication of CN109120035A publication Critical patent/CN109120035A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种电池箱系统内的SOC均衡控制方法,其包括:获取电池管理系统BMSij的SOCij,其中,电池管理系统BMSij为第i个电池箱系统中的第j个电池管理系统BMS,1≤i≤M,1≤j≤N,其中,M为电池箱系统的个数,N为每一个电池箱系统中电池管理系统的个数;当接收到的功率控制指令非满功率指令时,根据SOCij执行箱内功率均衡策略,致使第i个电池箱系统内的N个电池管理系统的SOC值达到均衡。本发明根据SOC值自动实施箱内功率均衡策略,从而既提升了均衡效果,也提升了均衡自动性能。

Description

电池箱系统内的SOC均衡控制方法
技术领域
本发明涉及动力电池技术领域,尤其涉及一种电池箱系统内的SOC均衡控制方法。
背景技术
现有的AGC调频储能系统包括多个电池箱系统,每一个电池箱系统包括多个电池堆,每一个电池堆都具有一个独立的电池管理系统BMS,由于每一个电池堆自身的电池内阻、自放电能力的不一致,运行温度区间的差异等特征,所以,AGC调频储能系统长时间运行后,不同的电池管理系统的SOC值会出现差异。
有鉴于此,实有必要提供一种可以确保电池箱系统内的SOC值均衡的SOC均衡控制方法。
发明内容
本发明的目的在于提供一种电池箱系统内的SOC均衡控制方法,以解决现有的储能系统的电池箱系统内SOC值均衡效果不佳的问题。
为了解决上述问题,本发明提供了一种电池箱系统内的SOC均衡控制方法,其包括如下步骤:
获取电池管理系统BMSij的SOCij,其中,电池管理系统BMSij为第i个电池箱系统中的第j个电池管理系统BMS,1≤i≤M,1≤j≤N,其中,M为电池箱系统的个数,N为每一个电池箱系统中电池管理系统的个数;
当接收到的功率控制指令非满功率指令时,根据SOCij执行箱内功率均衡策略,致使第i个电池箱系统内的N个电池管理系统的SOC值达到均衡。
作为本发明的进一步改进,根据SOCij执行箱内功率均衡策略,致使第i个电池箱系统内的N个电池管理系统的SOC值达到均衡的步骤,包括:
判断功率控制指令是充电功率指令还是放电功率指令;
当功率控制指令为充电功率指令时,按照公式(1)进行充电功率的分配,其中,第i个电池箱系统分配的充电功率为P1i,为第i个电池箱系统中第j个电池管理系统BMS分配的充电功率为P1ij:
P1ij={(1-SOCij)/[(1-SOCi1)+(1-SOCi2)...+(1-SOCij)+...(1-SOCiN)]}*P1i
(1),其中,N为电池箱系统中电池管理系统BMS的个数,重复执行该步骤,直至每一个电池箱系统内的N个电池管理系统的SOC值达到均衡。
作为本发明的进一步改进,第i个电池箱系统按照公式(1)进行充电功率的分配的步骤之前,还包括:
确认与第i个电池箱系统对应的充电功率P1i。
作为本发明的进一步改进,判断功率控制指令是充电功率指令还是放电功率指令的步骤之后,还包括:
当功率控制指令为充电功率指令时,按照公式(2)进行放电功率的分配,其中,第i个电池箱系统分配的放电功率为P2i,为第i个电池箱系统中第j个电池管理系统BMS分配的放电功率为P2ij:
P2ij=[SOCij/(SOCi1+SOCi2+SOCij+...SOCiN)]*P2i(2),重复执行该步骤,直至每一个电池箱系统内的多个电池管理系统的SOC值达到均衡。
作为本发明的进一步改进,按照公式(2)进行放电功率的分配的步骤之前,还包括:
确认与第i个电池箱系统对应的放电功率P2i。
与现有技术相比,本发明根据每一个电池管理系统对应的SOC值,实施箱内功率均衡策略,以达到每一个电池箱系统内的N个电池管理系统的SOC值达到均衡的目的,至此,本发明根据SOC值自动实施箱内功率均衡策略,从而既提升了均衡效果,也提升了均衡自动性能。
附图说明
图1为本发明AGC调频储能系统一个实施例的框架结构示意图;
图2为本发明电池箱系统内的SOC均衡控制方法一个实施例的流程示意图;
图3为本发明电池箱系统内的SOC均衡控制方法中箱内均衡处理流程一个实施例的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述,附图中类似的组件标号代表类似的组件。显然,以下将描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1展示了本发明AGC调频储能系统的一个实施例。在本实施例中,该基于AGC调频储能系统包括AGC控制系统层、储能监控系统(EMS)层、高压环网箱系统层、多个中压箱系统层和多个电池箱系统层。其中,每一个中压箱系统层包括多个储能变流器PCS、一个集控设备KQ和一个变压器,每一个电池箱系统层包括多个电池管理系统BMS,每一个电池管理系统对应一个储能变流器。
为了更加详细说明本发明的技术方案,以中压箱系统层包括4个储能变流器PCS,电池箱系统层包括4个电池管理系统BMS为例,对本案进行详细说明。
参见图1,该AGC调频储能系统包括AGC控制系统层1、储能监控系统层2、高压环网箱系统层3、中压箱系统层4和电池箱系统层5。其中,中压箱系统层4包括第1个中压箱系统、第2个中压箱系统、第3个中压箱系统和第4个中压箱系统。电池箱系统层5包括第1个电池箱系统、第2个电池箱系统、第3个电池箱系统和第4个电池箱系统。
具体地,第1个中压箱系统包括变压器1(图中未示出)、集控设备KQ1、储能变流器PCS1-1、储能变流器PCS1-2、储能变流器PCS1-3、储能变流器PCS1-4;......;第4个中压箱系统包括变压器4(图中未示出)、集控设备KQ4、储能变流器PCS4-1、储能变流器PCS4-2、储能变流器PCS4-3、储能变流器PCS4-4。
第1个电池箱系统包括电池管理系统BMS1-1、电池管理系统BMS1-2、电池管理系统BMS1-3和电池管理系统BMS1-4;......;第4个电池箱系统包括电池管理系统BMS4-1、电池管理系统BMS4-2、电池管理系统BMS4-3和电池管理系统BMS4-4。
进一步地,电池管理系统BMSi-j与储能变流器PCSi-j通信连接。
至此,己经详细介绍了本发明实施例AGC调频储能系统的硬件结构。下面,将基于上述AGC调频储能系统,提出本发明的各个实施例。
图2-图3展示了本发明电池箱系统内的SOC均衡控制方法的一个实施例。在本实施例中,如图2所示,该电池箱系统内的SOC均衡控制方法包括如下步骤:
步骤S1,获取电池管理系统BMSij的SOCij,其中,电池管理系统BMSij为第i个电池箱系统中的第j个电池管理系统BMS,1≤i≤M,1≤j≤N,其中,M为电池箱系统的个数,N为每一个电池箱系统中电池管理系统的个数。
具体地,电池管理系统BMSij获取自身的SOCij。
步骤S2,当接收到的功率控制指令非满功率指令时,根据SOCij执行箱内功率均衡策略,致使第i个电池箱系统内的N个电池管理系统的SOC值达到均衡。
在本实施例的基础上,其他实施例中,参见图3,该步骤S2包括:
步骤S20,判断功率控制指令是充电功率指令还是放电功率指令;当功率控制指令为充电功率指令时,执行步骤S21。当功率控制指令为充电功率指令时,执行步骤S22。
具体地,集控设备KQi判断功率控制指令是充电功率指令还是放电功率指令。
步骤S21,按照公式(1)进行充电功率的分配,其中,第i个电池箱系统分配的充电功率为P1i,为第i个电池箱系统中第j个电池管理系统BMS分配的充电功率为P1ij:
P1ij={(1-SOCij)/[(1-SOCi1)+(1-SOCi2)...+(1-SOCij)+...(1-SOCiN)]}*P1i
(1),其中,N为电池箱系统中电池管理系统BMS的个数,重复执行该步骤,直至每一个电池箱系统内的N个电池管理系统的SOC值达到均衡。
具体地,集控设备KQi按照公式(1)进行充电功率的分配。
在本实施例中,假设电池箱系统层有4个电池箱系统,分别为第1个电池箱系统、第2个电池箱系统、第3个电池箱系统和第4个电池箱系统。
其中,第1个电池箱系统包括电池管理系统BMS1-1、电池管理系统BMS1-2、电池管理系统BMS1-3和电池管理系统BMS1-4。
具体地,第1个电池箱系统分配充电功率;
P111={(1-SOC11)/[(1-SOC11)+(1-SOC12)+(1-SOC13)+(1-SOC14)]}*P11;
P112={(1-SOC12)/[(1-SOC11)+(1-SOC12)+(1-SOC13)+(1-SOC14)]}*P11;
P113={(1-SOC13)/[(1-SOC11)+(1-SOC12)+(1-SOC13)+(1-SOC14)]}*P11;
P114={(1-SOC14)/[(1-SOC11)+(1-SOC12)+(1-SOC13)+(1-SOC14)]}*P11。
本实施例当电池管理系统的SOC值较小时,若处于充电过程中,根据公式(1)的分配规则可以分配更多的充电功率给SOC值较小的电池管理系统,从而致使该电池管理系统的SOC增长较快,其余的电池管理系统的SOC值增长较慢,进而达到电池管理系统间的SOC值自动均衡的目的,既提升了SOC均衡的效率,也提升了SOC均衡的自动性能。
在本实施例的基础上,其他实施例中,该步骤S21之前,还包括:
步骤S30,确认与第i个电池箱系统对应的充电功率P1i。
在本实施例中,首先,集控设备KQi根据公式(3)计算得到SOCi,并将该SOCi传送至储能监控系统层:
SOCi=(SOCi1+SOCi2+......+SOCij+....+SOCiN)/N (3)。
具体地,假设第1个电池箱系统包括电池管理系统BMS1-1,与电池管理系统BMS1-1对应的SOC值为SOC11、电池管理系统BMS1-2,与电池管理系统BMS1-2对应的SOC值为SOC12、电池管理系统BMS1-3,与电池管理系统BMS1-3对应的SOC值为SOC13、电池管理系统BMS1-4,与电池管理系统BMS1-4对应的SOC值为SOC14。
则SOC1=(SOC11+SOC12+SOC13+SOC14)/4。
其次,储能监控系统层按照公式(4)进行充电功率的分配,其中,与功率控制指令对应的充电功率为P1,为第i个电池箱系统分配的充电功率为P1i;
P1i={(1-SOCi)/[(1-SOC1)+(1-SOC2)...+(1-SOCi)+...(1-SOCM)]}*P1(4)。
在本实施例中,假设电池箱系统层有4个电池箱系统,分别为第1个电池箱系统、第2个电池箱系统、第3个电池箱系统和第4个电池箱系统。
则电池箱系统分配充电功率:
P11={(1-SOC1)/[(1-SOC1)+(1-SOC2)+(1-SOC3)+(1-SOC4)]}*P1;
P12={(1-SOC2)/[(1-SOC1)+(1-SOC2)+(1-SOC3)+(1-SOC4)]}*P1;
P13={(1-SOC3)/[(1-SOC1)+(1-SOC2)+(1-SOC3)+(1-SOC4)]}*P1;
P14={(1-SOC4)/[(1-SOC1)+(1-SOC2)+(1-SOC3)+(1-SOC4)]}*P1。
最后,本实施例根据公式(4)为第i个电池箱系统自动分配充电功率P1i,致使功率分配更加合理。
步骤S22,按照公式(2)进行放电功率的分配,其中,第i个电池箱系统分配的放电功率为P2i,为第i个电池箱系统中第j个电池管理系统BMS分配的放电功率为P2ij:
P2ij=[SOCij/(SOCi1+SOCi2+SOCij+...SOCiN)]*P2i(2),重复执行该步骤,直至每一个电池箱系统内的多个电池管理系统的SOC值达到均衡。
具体地,集控设备KQi按照公式(2)进行放电功率的分配。
在本实施例中,假设电池箱系统层有4个电池箱系统,分别为第1个电池箱系统、第2个电池箱系统、第3个电池箱系统和第4个电池箱系统。
其中,第1个电池箱系统包括电池管理系统BMS1-1、电池管理系统BMS1-2、电池管理系统BMS1-3和电池管理系统BMS1-4。
具体地,第1个电池箱系统分配放电功率;
P211=[SOC11/(SOC11+SOC12+SOC13+SOC14)]*P21;
P212=[SOC12/(SOC11+SOC12+SOC13+SOC14)]*P21;
P213=[SOC13/(SOC11+SOC12+SOC13+SOC14)]*P21;
P214=[SOC14/(SOC11+SOC12+SOC13+SOC14)]*P21。
本实施例当电池管理系统的SOC值较小时,若处于放电过程中,根据公式(2)的分配规则可以分配更少的放电功率给SOC值较小的电池管理系统,从而致使该电池管理系统的SOC下降较慢,其余的电池管理系统的SOC值下降较快,进而达到电池管理系统间的SOC值自动均衡的目的,既提升了SOC均衡的效率,也提升了SOC均衡的自动性能。
在本实施例的基础上,其他实施例中,该步骤S22之前,还包括:
步骤S31,确认与第i个电池箱系统对应的放电功率P2i。
在本实施例中,首先,集控设备KQi根据公式(5)计算得到SOCi,并将该SOCi传送至储能监控系统层:
SOCi=(SOCi1+SOCi2+......+SOCij+....+SOCiN)/N (5)。
具体地,假设第1个电池箱系统包括电池管理系统BMS1-1,与电池管理系统BMS1-1对应的SOC值为SOC11、电池管理系统BMS1-2,与电池管理系统BMS1-2对应的SOC值为SOC12、电池管理系统BMS1-3,与电池管理系统BMS1-3对应的SOC值为SOC13、电池管理系统BMS1-4,与电池管理系统BMS1-4对应的SOC值为SOC14。
则SOC1=(SOC11+SOC12+SOC13+SOC14)/4。
其次,储能监控系统层按照公式(6)进行放电功率的分配,其中,与功率控制指令对应的放电功率为P2,为第i个电池箱系统分配的放电功率为P2i:P2i=[SOCi/(SOC1+SOC2+SOCi+...SOCM)]*P2(6)。
在本实施例中,假设电池箱系统层有4个中电池箱系统,分别为第1个电池箱系统、第2个电池箱系统、第3个电池箱系统和第4个电池箱系统。
则电池箱系统分配放电功率:
P21=[SOC1/(SOC1+SOC2+SOC3+SOC4)]*P2;
P22=[SOC2/(SOC1+SOC2+SOC3+SOC4)]*P2;
P23=[SOC3/(SOC1+SOC2+SOC3+SOC4)]*P2;
P24=[SOC4/(SOC1+SOC2+SOC3+SOC4)]*P2。
最后,本实施例根据公式(6)为第i个电池箱系统自动分配放电功率为P2i,致使功率分配更加合理。
本实施例根据每一个电池管理系统对应的SOC值,实施箱内功率均衡策略,以达到每一个电池箱系统内的N个电池管理系统的SOC值达到均衡的目的,至此,本发明根据SOC值自动实施箱内功率均衡策略,从而既提升了均衡效果,也提升了均衡自动性能。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上对发明的具体实施方式进行了详细说明,但其只作为范例,本发明并不限制与以上描述的具体实施方式。对于本领域的技术人员而言,任何对该发明进行的等同修改或替代也都在本发明的范畴之中,因此,在不脱离本发明的精神和原则范围下所作的均等变换和修改、改进等,都应涵盖在本发明的范围内。

Claims (5)

1.一种电池箱系统内的SOC均衡控制方法,其特征在于,其包括如下步骤:
获取电池管理系统BMSij的SOCij,其中,所述电池管理系统BMSij为第i个电池箱系统中的第j个电池管理系统BMS,1≤i≤M,1≤j≤N,其中,M为电池箱系统的个数,N为每一个电池箱系统中电池管理系统的个数;
当接收到的功率控制指令非满功率指令时,根据所述SOCij执行箱内功率均衡策略,致使所述第i个电池箱系统内的N个电池管理系统的SOC值达到均衡。
2.根据权利要求1所述的电池箱系统内的SOC均衡控制方法,其特征在于,所述根据所述SOCij执行箱内功率均衡策略,致使所述第i个电池箱系统内的N个电池管理系统的SOC值达到均衡的步骤,包括:
判断所述功率控制指令是充电功率指令还是放电功率指令;
当所述功率控制指令为充电功率指令时,按照公式(1)进行充电功率的分配,其中,第i个电池箱系统分配的充电功率为P1i,为第i个电池箱系统中第j个电池管理系统BMS分配的充电功率为P1ij:
P1ij={(1-SOCij)/[(1-SOCi1)+(1-SOCi2)...+(1-SOCij)+...(1-SOCiN)]}*P1i(1),其中,N为电池箱系统中电池管理系统BMS的个数,重复执行该步骤,直至每一个电池箱系统内的N个电池管理系统的SOC值达到均衡。
3.根据权利要求2所述的电池箱系统内的SOC均衡控制方法,其特征在于,所述第i个电池箱系统按照公式(1)进行充电功率的分配的步骤之前,还包括:
确认与所述第i个电池箱系统对应的充电功率P1i。
4.根据权利要求2所述的电池箱系统内的SOC均衡控制方法,其特征在于,所述判断所述功率控制指令是充电功率指令还是放电功率指令的步骤之后,还包括:
当所述功率控制指令为充电功率指令时,按照公式(2)进行放电功率的分配,其中,第i个电池箱系统分配的放电功率为P2i,为第i个电池箱系统中第j个电池管理系统BMS分配的放电功率为P2ij:
P2ij=[SOCij/(SOCi1+SOCi2+SOCij+...SOCiN)]*P2i(2),重复执行该步骤,直至每一个电池箱系统内的多个电池管理系统的SOC值达到均衡。
5.根据权利要求4所述的电池箱系统内的SOC均衡控制方法,其特征在于,所述按照公式(2)进行放电功率的分配的步骤之前,还包括:
确认与所述第i个电池箱系统对应的放电功率P2i。
CN201811056950.0A 2018-09-11 2018-09-11 电池箱系统内的soc均衡控制方法 Pending CN109120035A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811056950.0A CN109120035A (zh) 2018-09-11 2018-09-11 电池箱系统内的soc均衡控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811056950.0A CN109120035A (zh) 2018-09-11 2018-09-11 电池箱系统内的soc均衡控制方法

Publications (1)

Publication Number Publication Date
CN109120035A true CN109120035A (zh) 2019-01-01

Family

ID=64859158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811056950.0A Pending CN109120035A (zh) 2018-09-11 2018-09-11 电池箱系统内的soc均衡控制方法

Country Status (1)

Country Link
CN (1) CN109120035A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101526587A (zh) * 2009-03-20 2009-09-09 惠州市亿能电子有限公司 串联电池组荷电状态的测量方法
CN101777784A (zh) * 2010-03-17 2010-07-14 北汽福田汽车股份有限公司 均衡充电装置及均衡充电方法
CN103187733A (zh) * 2011-12-31 2013-07-03 中国电力科学研究院 兆瓦级液流电池储能电站实时功率控制方法及其系统
CN103187806A (zh) * 2011-12-31 2013-07-03 中国电力科学研究院 用于调频的电池储能电站功率控制方法及其系统
CN103296722A (zh) * 2013-05-30 2013-09-11 中国南方电网有限责任公司调峰调频发电公司 应用于h桥级联型电池储能系统相内soc均衡控制方法
CN104753076A (zh) * 2013-12-31 2015-07-01 比亚迪股份有限公司 用于削峰填谷的电池储能系统及其控制方法
CN106655526A (zh) * 2017-01-19 2017-05-10 湖南省德沃普储能有限公司 一种大规模全钒液流电池储能电站及其控制方法
CN108037464A (zh) * 2017-12-21 2018-05-15 湖南宏迅亿安新能源科技有限公司 一种基于imm-ekf的电池组soc估算的方法
CN108448586A (zh) * 2018-04-04 2018-08-24 东北大学 一种微电网供电质量评估及其模拟负荷均衡控制系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101526587A (zh) * 2009-03-20 2009-09-09 惠州市亿能电子有限公司 串联电池组荷电状态的测量方法
CN101777784A (zh) * 2010-03-17 2010-07-14 北汽福田汽车股份有限公司 均衡充电装置及均衡充电方法
CN103187733A (zh) * 2011-12-31 2013-07-03 中国电力科学研究院 兆瓦级液流电池储能电站实时功率控制方法及其系统
CN103187806A (zh) * 2011-12-31 2013-07-03 中国电力科学研究院 用于调频的电池储能电站功率控制方法及其系统
CN103296722A (zh) * 2013-05-30 2013-09-11 中国南方电网有限责任公司调峰调频发电公司 应用于h桥级联型电池储能系统相内soc均衡控制方法
CN104753076A (zh) * 2013-12-31 2015-07-01 比亚迪股份有限公司 用于削峰填谷的电池储能系统及其控制方法
CN106655526A (zh) * 2017-01-19 2017-05-10 湖南省德沃普储能有限公司 一种大规模全钒液流电池储能电站及其控制方法
CN108037464A (zh) * 2017-12-21 2018-05-15 湖南宏迅亿安新能源科技有限公司 一种基于imm-ekf的电池组soc估算的方法
CN108448586A (zh) * 2018-04-04 2018-08-24 东北大学 一种微电网供电质量评估及其模拟负荷均衡控制系统及方法

Similar Documents

Publication Publication Date Title
US11387654B2 (en) Battery energy storage control systems and methods for a grid tie inverter coupled to a photovoltaic system
CN110912235B (zh) 储能系统及其均流方法
CN109713740A (zh) 一种电池管理系统的主动均衡架构及主动均衡方法
CA2955152A1 (en) Energy storage balancing system
Costinett et al. Active balancing system for electric vehicles with incorporated low voltage bus
US10312693B2 (en) Power generation system that couples a photovoltaic array to a DC energy storage source
Adhikari et al. A battery/supercapacitor hybrid energy storage system for DC microgrids
CN103390916A (zh) 储能链式功率转换系统阶梯波调制相内soc均衡方法
Sun et al. A unified modeling and control of a multi-functional current source-typed converter for V2G application
JP2012043623A (ja) 電池容量取得装置
CN104682490A (zh) 一种控制电池充放电电流的方法和装置
CN109193776A (zh) 一种适用于梯次电池储能的功率分配方法
CN109212420A (zh) 基于agc调频储能系统的soc修正方法
CN109066894A (zh) 基于agc调频储能系统的多级soc均衡控制方法
CN110445389A (zh) 具备真双极低压直流端口的固态变压器装置及其控制方法
Friansa et al. Battery module performance improvement using active cell balancing system based on Switched-Capacitor Boost Converter (S-CBC)
JP2010119186A (ja) 充電式リチウム電池の充電システム
CN109149610A (zh) 储能系统多级soc均衡控制系统
Zeng et al. Modeling and control of a three-port DC-DC converter for PV-battery systems
CN109120035A (zh) 电池箱系统内的soc均衡控制方法
CN108376997A (zh) 一种考虑分布式电源不确定性的有源配电网孤岛划分方法
CN109167404A (zh) 电池箱系统间的soc均衡控制方法
CN109066895A (zh) 基于调频储能系统的多级功率限制保护方法
Ma et al. An online SOH testing method of MMC battery energy storage system
CN109149698A (zh) 基于调频储能系统的双重多级功率限制保护方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190101