WO2011111937A2 - 투명 엘이디 웨이퍼 모듈 및 그 제조방법 - Google Patents
투명 엘이디 웨이퍼 모듈 및 그 제조방법 Download PDFInfo
- Publication number
- WO2011111937A2 WO2011111937A2 PCT/KR2011/001354 KR2011001354W WO2011111937A2 WO 2011111937 A2 WO2011111937 A2 WO 2011111937A2 KR 2011001354 W KR2011001354 W KR 2011001354W WO 2011111937 A2 WO2011111937 A2 WO 2011111937A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- layer
- algalnn
- allngap
- transparent
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 75
- 238000005253 cladding Methods 0.000 claims description 38
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 14
- 239000012212 insulator Substances 0.000 claims description 14
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 9
- 238000010030 laminating Methods 0.000 claims description 8
- 229910005540 GaP Inorganic materials 0.000 claims description 6
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 claims description 6
- 239000012528 membrane Substances 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims 1
- 239000011521 glass Substances 0.000 abstract description 24
- 239000012780 transparent material Substances 0.000 abstract description 9
- 239000004020 conductor Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 description 9
- 230000012010 growth Effects 0.000 description 9
- 238000000407 epitaxy Methods 0.000 description 7
- 229910052738 indium Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000004943 liquid phase epitaxy Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
- H01L33/42—Transparent materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
- H01L33/56—Materials, e.g. epoxy or silicone resin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
- H01L27/153—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
Definitions
- the present invention relates to a transparent LED wafer module and a method of manufacturing the same, and more particularly, to grow a plurality of LED (Light Emitting Diode) epitaxial on a transparent material substrate at regular intervals and to make a plurality of laminated structure, each epi
- the present invention relates to a transparent LED wafer module and a method for manufacturing the same, which have a structure in which a plurality of epitaxial layers are stacked even though the amount of current applied to the text is very small.
- the present invention relates to a transparent LED wafer module and a method of manufacturing the same, which allow a plurality of epitaxial layers to be installed on a transparent wafer and ensure a high amount of light through a stacked structure.
- a high voltage is not imposed on each LED device.
- the compounds used to make the LED and determine the color of the LED include gallium arsenide (GaAs), gallium arsenide phosphide (GaAsP), gallium phosphide (GaP), gallium nitride (GaN).
- GaAs gallium arsenide
- GaAsP gallium arsenide phosphide
- GaP gallium phosphide
- GaN gallium nitride
- Indium gallium nitride which has a short wavelength, is used in the manufacture of blue and green LEDs.
- the term ingen is the first letter of a few elements. Indium, gallium And nitrogen material.
- AlInGaP aluminum gallium arsenide
- Allingap uses aluminum, indium, gallium, and phosphorus. do.
- AlInGaP aluminum indium gallium phosphide
- GaAs gallium arsenide
- Gallium arsenide absorbs visible light and often removes the gallium arsenide (GaAs) substrate and replaces it with a transparent gallium phosphide (0% Al and In) substrate at the end of the growth process.
- GaP-based materials have a relatively high refractive index (approximately 3.5).
- the LED chip Since the LED chip is substantially straight, there is a problem that the light inside becomes weak as the reflected light is repeatedly reflected at its angle of incidence even after several reflections.
- the present invention is grown on a transparent material wafer in an epitaxial process, and then grown on both sides of the transparent material, and then a laminated structure is secured to secure a light amount, and the LED module is completed in an epitaxial step.
- the present invention provides a transparent LED wafer module and a method of manufacturing the same, which can reduce the processing process and secure a high amount of light.
- the present invention is to grow a plurality of epitaxy (epi taxy) in a transparent glass substrate in the LED chip device, so that only a small amount of epitaxy to grow so that heat from the epitaxy heat dissipated on the glass substrate and the second glass back It is to provide a transparent LED wafer module and a method of manufacturing the same to grow a minimum epitaxy on the substrate to solve the heat dissipation problem in the glass substrate.
- the space between the transparent substrates creates a space between the minimal epitaxy in the first grown glass substrate.
- the thermal growth of the second grown glass substrate is prevented, and the heat generation of epitaxy mounted on the several transparent substrates affects only the glass substrates.
- the present invention provides a transparent LED wafer module and a method of manufacturing the same.
- a plurality of epitaxial films and epitaxial films that are coated on the lower transparent substrate, the lower transparent substrate that is coated on the lower transparent substrate, and are applied to the lower transparent electrode, and are spaced apart by a predetermined distance from the lower transparent electrode. Stacked on the transparent insulator interposed between the spaced space of the epitaxial film, the upper transparent electrode in contact with the p-electrode, and the upper transparent electrode to block the polarity between the n-electrode and the p-electrode formed as it is formed. It provides a transparent LED wafer module comprising an upper transparent substrate,
- the present invention described above has the effect of securing a high amount of light by growing on a transparent material wafer in a semiconductor LED device epitaxial process but growing both sides on a transparent material and then stacking the transparent glass substrate again.
- the present invention has the effect of increasing the amount of light by applying a low current to each epi wafer through a plurality of epitaxial growth process, the plurality of chip elements emit light and again stacked structure.
- the present invention can improve the light transmitting effect by using transparent glass materials, as well as the n, p electrodes to be brought into contact with both sides of the thick quartz glass substrate has the effect of having a heat radiation effect in synchronization.
- the glass substrate of the present invention is not higher than the number of heat radiation, but because the amount of current applied to a single wafer is very low, very low heat is generated, the heat conduction can be radiated through a glass substrate coated with a transparent electrode semiconductor There is an effect that the LED device can be easily applied to high current operation.
- the present invention has the effect of producing a high-brightness led module by attaching a transparent glass substrate laminated by attaching the structure between the glass substrate, complete the LED module in the epitaxial growth stage, and reduce the process of the process and actually high light quantity There is an effect that can be secured.
- the present invention has the effect of emitting a high light by growing a plurality of epitaxial in the horizontal direction on the transparent substrate, and also a plurality of epitaxial growth in the vertical direction.
- the present invention can minimize the volume of the package, and has a structure to exclude molding the chip with an epoxy molding resin has an effect that can easily implement a semiconductor LED device using UV.
- FIG. 1 is a flowchart illustrating a method of manufacturing a transparent LED module according to the present invention
- FIG. 2 is a view for explaining a process of forming a transparent LED module
- FIG. 3 is a specific flowchart of the step of forming an epitaxial film according to the present invention.
- FIG. 4 is a view showing the structure of a transparent LED module according to the present invention.
- FIG. 5 is a view showing that a plurality of epitaxial films are formed in a horizontal direction of the transparent LED wafer module according to the present invention.
- FIG. 6 is a view illustrating stacking of a transparent LED wafer module having a plurality of epitaxial films formed in a vertical direction;
- FIG. 7 is a view illustrating a plurality of epitaxial films formed in rows and columns in a horizontal and vertical direction according to the present invention.
- AlGalnN active layer 350 p-AlGalnN clad film
- GaAs substrate 100b GaAs substrate 100b: p-AllnGaP cladding layer
- active layer 100d n-AllnGAP cladding layer
- n-GAP layer 100f metal electrical contact
- metal electrical contact 200a n-AllnGaP layer
- Transparent LED wafer module cloud for achieving the above object
- the n-electrode 310 is formed by receiving the lower portion of the lower transparent electrode 200 by a predetermined depth
- a p-electrode 370 formed as a metal is deposited and etched on the p-contact layer 360 formed at the top of the plurality of layers constituting the epitaxial film 300;
- an upper transparent substrate 500 having a light transmitting property and stacked on the upper transparent electrode 400 is stacked on the upper transparent electrode 400.
- the transparent LED module includes a lower transparent substrate 100, a lower transparent electrode 200, an n-electrode 310, a p-electrode 370, an epitaxial film quality 300, The transparent insulator 600, the upper transparent electrode 400, and the upper transparent substrate 500 are included.
- the lower transparent substrate 100 is made of quartz glass having excellent light transmittance and dissipates heat generated when light is emitted.
- the lower transparent electrode 200 is also a component having excellent light transmittance, and is coated on the lower transparent substrate 100. In this case, since the lower transparent electrode 200 has a large resistance value, the lower transparent electrode 200 is thickly coated to reduce the resistance value.
- the n-electrode 310 is formed by depositing a metal on the lower transparent electrode 200 and then etching the lower electrode.
- the lower end of the n-electrode 310 is formed to be accommodated in the lower transparent electrode 200 by a predetermined depth, and the upper end thereof.
- the silver is formed to be in contact with the n-AlGalnN film 330 of the epitaxial film (300).
- the epitaxial film quality 300 is formed of a plurality of layers deposited on the n-electrode 310 and then etched to emit light upon application of power.
- the p-electrode 370 is formed as a metal is deposited and etched on the p-contact layer 360 formed at the top of the plurality of layers constituting the epitaxial film quality 300.
- the transparent insulator 600 is filled between the lower transparent electrode 200 and the upper transparent electrode 400 connected to the n-electrode 310 and the p-electrode 370, respectively, so that the positive and negative polarities generated when the power is applied. To block.
- the upper transparent electrode 400 is stacked to be in contact with the p-electrode 370 so that the applied power may be transferred to the epitaxial film quality 300, and the upper transparent substrate 500 may be connected to the lower transparent substrate 200.
- it is made of quartz glass with excellent light transmittance and dissipates heat generated when light is emitted.
- the epitaxial layer 300 includes an AlGalnN buffer 320, an n-AlGalnN layer 330, an AlGalnN active layer 340, a p-AlGalnN cladding layer 350, and a p-contact layer 360.
- the AlGalnN buffer 320 is laminated on one side of the n-electrode 310 and the lower transparent electrode 200 at the same height as the top of the n-electrode 310 and then etched and stacked.
- the n-AlGalnN film 330 is stacked on the n-electrode 310 and the AlGalnN buffer 320.
- the AlGalnN active layer 340 is stacked on the n-AlGalnN film 330 and emits light by applying power.
- the p-AlGalnN cladding film 350 is formed by stacking on the AlGalnN active layer 340, and the p-contact layer layer ⁇ p-ohmic contact layer> 360 is formed by stacking on the AlGalnN active layer 340.
- the n-electrode 310 is an n-AllnGaP layer 200a
- the n-AlGalnN film 330 of the epitaxial film 300 is also an n-AllnGaP layer 200a
- an AlGalnN active layer 340 Is the AllnGaP active layer 200b, the p-AlGalnN cladding film 350 and the p-contact layer 360 are the p-AllnGaP layer 200c, and the p-electrode 370 is the p-Gap layer 200d. Can be carried out.
- the above implementation is for the implementation of the p-Gap layer 200d, and the implementation to the p-GaP layer 200d is for applying superiority to the diffusion of the current.
- At least one p-AllnGaP cladding layer 100b is grown on the GaAs substrate 100a, and the active layer 100c is formed on the p-AllnGaP cladding layer 100b.
- the n-AllnGAP cladding layer 100d and the n-GAP layer 100e are grown on top.
- the light emitted from the active layer 100c is emitted immediately through the p-AllnGaP cladding layer 100b and the n-GAP layer 100e or after being reflected on one or more of the inner surfaces of the LED die.
- p-AllnGaP cladding layer 100b is formed to allow light to escape through the top.
- the GaAs substrate 100a in contact with the p-AllnGaP cladding layer 100b is removed to form a metal electrical contact portion 100f in the p-AllnGaP cladding layer 100b.
- the metal electrical contact portion 100g is formed on the uppermost n-GAP layer 100e, and then the transparent insulator 600 is formed by forming a window, and finally, the upper transparent electrode 400 is mounted and then the upper transparent.
- the substrate 500 is mounted.
- FIG. 1 is a flowchart illustrating a method of manufacturing a transparent LED module according to the present invention
- Figure 2 is a view for explaining the process of forming a transparent LED module.
- step S810 a metal is deposited and etched on the lower transparent electrode 200 coated to form an n-electrode 310 (S820).
- step S820 a lower portion of the n-electrode 310 is deposited and etched so as to be accommodated in the lower transparent electrode 200 by a predetermined depth, and an upper portion of the n-electrode 310 is n of the epitaxial layer 300 described later. It is formed to be exposed to contact the AlGalnN film quality (330).
- the epitaxial film 300 formed of the plurality of layers is formed through deposition and etching (S830).
- the p-electrode 370 may be deposited and etched by the same process as in S820 in which the n-electrode 310 is formed on the p-contact layer 360 of the epitaxial layer 300 formed in step S830. To form a step (S840).
- the transparent insulator 600 is filled between the lower transparent electrode 200 and the upper transparent electrode 400, which are connected to each of the plurality of surfaces 370.
- the upper transparent electrode 400 is stacked on the p-electrode formed as it is cooled, and the upper transparent substrate 500 is grown thereon (S860).
- the lower transparent electrode 200 and the upper transparent electrode 400 are coated on the lower transparent substrate 100 and the upper transparent substrate 500, respectively, but the lower transparent substrate 100 and the upper transparent Since the lower transparent electrode 200 and the upper transparent electrode 400 coated on the substrate 500 have a large resistance value, they are thickly coated to reduce the resistance value.
- FIG. 3 is a detailed flowchart of the step of forming the epitaxial film quality according to the present invention.
- the above-mentioned 'S830' step is one side with the same height as the exposed upper portion of the n-electrode 310 formed by being deposited and etched on the lower transparent electrode 200 coated on the lower transparent substrate 100 in step 'S820'.
- MOCVD metalorganic chemical vapor deposition
- n-AlGalnN film 330 having a thickness of 1 ⁇ m to 10 ⁇ m is deposited on the n-electrode 310 and the AIGalnN buffer 320 by deposition and etching. (S822) and a plurality of quantum wells thereon, through a power source applied through the n-electrode 310 and the p-electrode 370 formed in the above-described steps S820 and S840, respectively.
- the stacking of AlGalnN active layers 340 emitting light is performed (S823).
- step S824 p-AIGalnN clad film 350 of 5 nm to 500 nm is deposited on the AlGalnN active layer 340 by using metalorganic chemical vapor deposition (MOCVD) (S824), and metalorganic chemical vapor deposition (MOCVD) on it.
- MOCVD metalorganic chemical vapor deposition
- MOCVD metalorganic chemical vapor deposition
- the upper and lower glass substrates 100 and 500 in which the above-described process is performed deposit a plurality of epitaxial layers on a substrate divided into individual modules having a predetermined area.
- the n-electrode 310 and the p-electrode 370 are stacked to be in contact with the bottom surface of the lower transparent electrode 200 and the upper transparent electrode 400 formed of lapping and polishing, respectively.
- the transparent LED wafer module manufactured as described above when current is supplied to the upper and lower transparent electrodes 400 and 200, the light emitted from the active layer 340 is directly transmitted through the upper and lower transparent glass substrates 500 and 100. Release on both sides.
- the upper and lower transparent substrates 100 and 500 described above have a constant area by going through a sawing process after the entire process is completed.
- FIG. 5 illustrates that a plurality of epitaxial films of a transparent LED wafer module according to the present invention are formed in a horizontal direction
- FIG. 6 illustrates that the transparent LED wafer modules having a plurality of epitaxial films are stacked in a vertical direction.
- the plurality of epitaxial films 300 may be horizontally grown on the glass substrate 100 coated with the transparent electrode 200, and a plurality of growths having a stacked structure in a vertical direction may be made.
- the current is supplied, light emitted from the epitaxial active layer 340 grown in a stacked structure is emitted through the glass substrates 100 and 500.
- a high amount of light may be secured from the active layer 340 that emits light by receiving a current supplied from the epitaxial film quality 300, and at this time, the amount of heat emitted from the epitaxial film quality 300 may be The glass substrate 100 is absorbed and radiated.
- the forming of the n-electrode 310 and the n-AlGalnN film may include growing the n-AllnGaP layer 200a having a thickness of 1.5 microns, and forming the active layer having a thickness of 0.5 microns.
- the step of growing the AllnGaP active layer 200b, the p-electrode formation step and the cladding film formation step may be performed by growing a 1.0-micron-thick p-AllnGaP layer 200c on the AllnGaP active layer 200b, and the p-electrode formation step.
- the 30-micron-thick p-Gap layer 200d may be grown by vapor-phase epitaxy (VPE) or by liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE).
- growing the p-Gap layer to a relatively thick thickness is to improve the spread of the current.
- MOCVD metalorganic chemical vapor deposition
- Each layer called a confiniglayer or cladding layer, aims to reduce stress, change bandgap and spread current.
- At least one p-AllnGaP cladding layer 100b is grown on the GaAs substrate 100a, and the active layers 100c and n ⁇ are formed on the p-AllnGaP cladding layer 100b.
- An All-GAP cladding layer 100d and an n-GAP layer 100e are grown on top.
- the light emitted from the active layer 100c is emitted immediately through the p-AllnGaP cladding layer 100b and the n-GAP layer 100e or after being reflected by one or more of the inner surfaces of the LED die.
- p-AllnGaP cladding layer 100b is formed to allow light to escape through the top.
- the GaAs substrate 100a dl in contact with the p-AllnGaP cladding layer 100b is removed and a metal electrical contact portion 100f is formed in the p-AllnGaP cladding layer 100b.
- the metal electrical contact portion 100g is formed on the uppermost n-GAP layer 100e, and then the transparent insulator 600 is formed by forming a window, and finally, the upper transparent electrode 400 is mounted and then the upper transparent.
- the substrate 500 is mounted.
- the metal electrical contact (100g) on the n-GAP layer (100e) may be of another type that can provide a suitable current spreading for the active layer (100c) while allowing the light to emit, the upper and lower transparent electrodes (200, 400) It is connected to the power supply for the LED die and is powered by the LED chip, which depends on how much current can flow to the specific surface area between the upper and lower transparent electrodes 200 and 400 and the chip. .
- the current is 1mA
- the specific surface area the chip is slightly impregnated
- the current is calculated and the current shortage occurs, it should be smaller than 1mA. If enough current, it should be larger than 1mA.
- the chip spacing is calculated by setting the brightness and size of the light source of the final product and dividing the brightness by the number of chips.
- the number of chips can be determined by multiplying the backlight aperture area by 5 and dividing by the chip spacing.
- the present invention discloses a transparent LED wafer module and a method of manufacturing the same. In the process of conductor LED device epitaxial growth, it grows on the transparent material wafer, but the both sides are grown on the transparent material, and then the transparent glass substrate is laminated again to secure a high amount of light.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
- Formation Of Insulating Films (AREA)
- Led Device Packages (AREA)
Abstract
Description
Claims (10)
- 투광성을 갖는 하부 투명기판(100);상기 하부 투명기판(100)에 코팅되어 전원을 인가받는 하부 투명전극(200);메탈이 증착되고 식각된 후, 하단이 상기 하부 투명전극(200)에 소정의 깊이만큼 수용되어 형성된 n-전극(310);복수의 층으로 구성되며, 상기 n-전극(310) 상에 증착된 후 식각되어, 전원인가시 빛을 발광시키는 에피텍셜 막질(300);상기 에피텍셜 막질(300)을 구성하는 복수의 층 중, 최상단에 형성되는 p-컨택트층(360)상에 메탈이 증착되어 식각됨에 따라 형성된 p-전극(370);상기 n-전극(310)과 상기 p-전극(370)에 각각 연결되는 하부 투명전극(200)과 상부 투명전극(400) 사이에 채워져, 전원인가시 발생하는 포지티브와 네거티브 극성을 차단하는 투명 부도체(600);상기 투명 부도체(600)와 상기 p-전극(370)상에 적층되는 상부 투명전극(400); 및투광성을 가지며, 상기 상부 투명전극(400)상에 적층되는 상부 투명기판(500);를 포함하는 것을 특징으로 하는 투명 엘이디 웨이퍼 모듈.
- 제 1항에 있어서,상기 에피텍셜 막질(300)은상기 하부 투명전극(200)에 증착된 후, 식각되어 형성되되, 상기 n-전극(310)의 상단과 동일한 높이로 상기 n-전극(310)의 일측에 성장하는 AlGalnN<알루미늄-갈륨-인듐 인화물> 버퍼(320);상기 n-전극(310)과 상기 AlGalnN 버퍼(320)상에 적층되는 n-AlGalnN 막질(330);상기 n-AlGalnN 막질(330) 상에 적층되며, 여러 개의 퀀툼 웰(Qumntum Well)로 구성어 전원이가시 빛을 발광하는 AlGalnN 활성층(340);상기 AlGalnN 활성층(340)상에 적층되는 p-AIGalnN 클래드 막질(350); 및상기 p-AIGalnN 클래드 막질(350)에 적층되는 p-컨택트층<p-ohmic contact layer>(360);을 포함하는 것을 특징으로 하는 투명 엘이디 웨이퍼 모듈.
- 제 1항에 있어서,상기 n-전극(310)과 상기 p-전극(370)을 각각 n-AllnGaP<알루미늄-갈륨-아세나이드>층(200a)과 p-Gap<갈륨 포스파이드>층(200d)으로 성장시키되,상기 에피텍셜 막질(300)은상기 n-AllnGaP<알루미늄-갈륨-아세나이드>층(200a)으로 성장된 상기 n-전극(310)상에 적층되는 n-AlGalnN 막질(330)을 n-AllnGaP<알루미늄-갈륨-아세나이드>층(200a)으로 성장시키고,상기 AlGalnN막질(330)상의 AlGalnN 활성층(340)을 AllnGaP 활성층(200c)으로 성장시키며,상기 AlGalnN 활성층(340)상에 순차적으로 적층되는 p-AlGalnN 클래드 막질(350)과 p-컨택트층(360)을 p-AllnGaP층(200c)으로 성장시키는 것을 특징으로 하는 투명 엘이디 웨이퍼 모듈.
- 제 1항에 있어서,상기 n-전극(310)과 상기 p-전극(370)을 각각 금속 전기 접촉부(100f, 100g)로 성장시키되,상기 에피텍셜 막질(300)은상기 금속 전기 접촉부(100f)상에 성장된 하나 이상의 p-AllnGaP 크래딩층(100b);상기 p-AllnGaP 크래딩층(100b)상에 성장된 AllnGaP 활성층(100c);상기 AllnGaP 활성층(100c) 상에 성장된 n-AllnGaP 클래딩층(100d); 및상기 n-AllnGaP 클래딩층(100d)상에 성장된 n-Gap층(100e);을 포함하는 것을 특징으로 하는 투명 엘이디 웨이퍼 모듈 제조방법.
- 제 1항에 있어서,상기 상·하부 투명전극(400, 200)을 통해 전원이 인가되어 상기 AlGalnN 활성층(340)으로부터 발생되는 열이 상기 상·하부 투명기판(500, 100)을 통해 방열되는 것을 특징으로 하는 투명 엘이디 웨이퍼 모듈 제조방법.
- (a) 투광성의 하부 투명기판(100)에 하부 투명전극(200)을 코팅시키는 단계;(b) 상기 (a)단계에서 코팅된 하부 투명전극(200) 위에 메탈을 증착시키고 식각하여 n-전극(310)을 형성시키는 단계;(c) 복수의 층으로 이루어져 상기 n-전극(310)상에 증착된 후 식각되어 형성되며, 전원인가시 빛을 발광시키는 에피텍셜 막질(300);(d) 상기 에피텍셜 막질(300)의 최상단에 형성되는 p-컨택층(360)상에 메탈을 증착시키고 식각하여 p-전극(370)을 형성시키는 단계;(e) 전원인가시, 상기 (b)단계와 상기 (d)단계에서 형성된 n-전극(310)과 p-전극(370)에 각각 연결되는 하부 투명전극(200)과 상부 투명전극(400) 사이에 포지티브와 네거티브 극성을 차단하기 위해 투명 부도체(600)를 채우는 단계; 및(f) 상기 p-전극(370)과 상기 투명 부도체 상에 상부 투명전극(400)을 적층시키고 그 위에 상부 투명기판(500)을 적층시키는 단계;를 포함하는 것을 특징으로 하는 투명 엘이디 웨이퍼 모듈 제조방법.
- 제 6항에 있어서,상기 (c)단계는(c-1) 상기 (b)단계에서 형성된 상기 n-전극(310)의 노출된 상단의 높이와 동일한 높이로 일측에 AlGalnN 버퍼(320)를 증착 및 식각하여 성장시키는 단계;(c-2) `S821`단계 이후, n-전극(310)과 AlGalnN 버퍼(320)상에 n-AlGalnN 막질(330)이 증착과 식각공정을 통해 적층되고(S822), 그 위로 복수의 퀀툼 웰(Qumntum Well)로 구성되어 상기 (a)단계와 (f)단계에서 각각 형성된 하부 투명전극(200)과 상부 투명전극(400)을 통해 전원을 인가받아 빛을 발광하는 AlGalnN 활성층(340)이 적층되는 단계; 및(c-3) 상기 AlGalnN 활성층(340)상에 p-AIGalnN 클래드 막질(350)을 적층시키고(S824) p-컨택트층<p-ohmic contact layer>(360)을 적층시키는 단계;를 포함하는 것을 특징으로 하는 투명 엘이디 웨이퍼 모듈 제조방법.
- 제 6항에 있어서상기 (b)단계와 상기 (d)단계에서상기 n-전극(310)과 상기 p-전극(370)을 각각 n-AllnGaP<알루미늄-갈륨-아세나이드>층(200a)과 p-Gap<갈륨 포스파이드>층(200d)으로 성장시키되,상기 (c)단계는(c-4) 상기 n-AllnGaP<알루미늄-갈륨-아세나이드>층(200a)으로 성장된 상기 n-전극(310)상에 적층되는 n-AlGalnN 막질(330)을 n-AllnGaP<알루미늄-갈륨-아세나이드>층(200a)으로 성장시키는 단계;(c-5) 상기 AlGalnN막질(330)상의 AlGalnN 활성층(340)을 AllnGaP 활성층(200c)으로 성장시키는 단계; 및(c-6) 상기 AlGalnN 활성층(340)상에 순차적으로 적층되는 p-AlGalnN 클래드 막질(350)과 p-컨택트층(360)을 p-AllnGaP층(200c)으로 성장시키는 단계;를 포함하는 것을 특징으로 하는 투명 엘이디 웨이퍼 모듈 제조방법.
- 제 6항에 있어서,상기 상·하부 투명전극(400, 200)을 통해 전원이 인가되어 상기 AlGalnN 활성층(340)으로부터 발생되는 열은 상기 상·하부 투명기판(500, 100)을 통해 방열되는 것을 특징으로 하는 투명 엘이디 웨이퍼 모듈 제조방법.
- (a`) GaAs<갈륨 아세나이드> 기판(100a) 위에 하나 이상의 p-AllnGaP 클래딩층(100b)을 성장시키는 단계;(b`) 상기 p-AllnGaP 클래딩층(100b) 상에 AllnGaP 활성층(100c)을 성장시키는 단계;(c`) 상기 활성층(100c) 상에 n-AllnGAP 클래딩층(100d)을 성장시키는 단계;(d`) 상기 n-AllnGAP 클래딩층(100d)상에 n-GAP층(100e)을 성장시키는 단계;(e`) 상기 GaAs 기판(100a)을 제거하고 p-AllnGaP 클래딩층(100b)에 금속 전기 접촉부(100f)를 성장시켜 하부 투명기판(100)에 코팅된 하부 투명전극(200)에 적층시키는 단계; 및(f`) 상기 n-GAP층(100e)상에 금속 전기 접촉부(100g)를 성장시키고 상기 금속 전기 접촉부(100g)에 상부 투명전극(400)과 상부 투명기판(500)을 순차적으로 적층시키는 단계;를 포함하는 것을 특징으로 하는 투명 엘이디 웨이퍼 모듈 제조방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800129163A CN102792469A (zh) | 2010-03-09 | 2011-02-25 | 透明发光二极管晶片组件及其制造方法 |
JP2012556961A JP2013522871A (ja) | 2010-03-09 | 2011-02-25 | 透明ledウエハモジュール及びその製造方法 |
US13/583,625 US9041045B2 (en) | 2010-02-05 | 2011-02-25 | Transparent LED wafer module and method for manufacturing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2010-0020997 | 2010-03-09 | ||
KR1020100020997A KR101159782B1 (ko) | 2010-02-05 | 2010-03-09 | 투명 엘이디 웨이퍼 모듈 및 그 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011111937A2 true WO2011111937A2 (ko) | 2011-09-15 |
WO2011111937A3 WO2011111937A3 (ko) | 2012-01-12 |
Family
ID=44563958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/001354 WO2011111937A2 (ko) | 2010-02-05 | 2011-02-25 | 투명 엘이디 웨이퍼 모듈 및 그 제조방법 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2013522871A (ko) |
CN (1) | CN102792469A (ko) |
WO (1) | WO2011111937A2 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105513502B (zh) * | 2014-09-22 | 2018-12-21 | 无锡极目科技有限公司 | 一种单色磊晶led显示模组的复合玻璃基板的制造方法 |
WO2020141861A1 (ko) * | 2018-12-31 | 2020-07-09 | 주식회사 나노엑스 | 양면 발광 led 칩 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080074899A (ko) * | 2005-10-21 | 2008-08-13 | 쌩-고벵 글래스 프랑스 | 하나 이상의 발광 다이오드를 포함하는 발광 구조체, 그제조 방법 및 사용방법 |
US20080191220A1 (en) * | 2004-03-29 | 2008-08-14 | Articulated Technologies, Llc | Roll-to-roll fabricated light sheet and encapsulated semiconductor circuit devices |
KR20090013218A (ko) * | 2006-05-03 | 2009-02-04 | 오스람 옵토 세미컨덕터스 게엠베하 | 지지 기판을 포함하는 복사-방출 반도체 몸체 및 이의 제조방법 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002026438A (ja) * | 2000-07-05 | 2002-01-25 | Sanyo Electric Co Ltd | 窒化物系半導体素子およびその製造方法 |
TWI230473B (en) * | 2003-03-10 | 2005-04-01 | Sanken Electric Co Ltd | Semiconductor light emitting device and manufacturing method thereof |
KR100624448B1 (ko) * | 2004-12-02 | 2006-09-18 | 삼성전기주식회사 | 반도체 발광소자 및 그 제조방법 |
KR100714589B1 (ko) * | 2005-10-05 | 2007-05-07 | 삼성전기주식회사 | 수직구조 발광 다이오드의 제조 방법 |
JP5146817B2 (ja) * | 2008-03-24 | 2013-02-20 | スタンレー電気株式会社 | 半導体発光素子の製造方法 |
-
2011
- 2011-02-25 CN CN2011800129163A patent/CN102792469A/zh active Pending
- 2011-02-25 JP JP2012556961A patent/JP2013522871A/ja active Pending
- 2011-02-25 WO PCT/KR2011/001354 patent/WO2011111937A2/ko active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080191220A1 (en) * | 2004-03-29 | 2008-08-14 | Articulated Technologies, Llc | Roll-to-roll fabricated light sheet and encapsulated semiconductor circuit devices |
KR20080074899A (ko) * | 2005-10-21 | 2008-08-13 | 쌩-고벵 글래스 프랑스 | 하나 이상의 발광 다이오드를 포함하는 발광 구조체, 그제조 방법 및 사용방법 |
KR20090013218A (ko) * | 2006-05-03 | 2009-02-04 | 오스람 옵토 세미컨덕터스 게엠베하 | 지지 기판을 포함하는 복사-방출 반도체 몸체 및 이의 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
WO2011111937A3 (ko) | 2012-01-12 |
CN102792469A (zh) | 2012-11-21 |
JP2013522871A (ja) | 2013-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5237566B2 (ja) | 発光素子パッケージ及びその製造方法 | |
WO2014092448A1 (ko) | 광추출 효율이 향상된 발광다이오드 | |
WO2021085935A1 (ko) | 디스플레이용 발광 소자 및 그것을 갖는 led 디스플레이 장치 | |
US7714341B2 (en) | Sub-mount for mounting light emitting device and light emitting device package | |
WO2015190722A1 (ko) | 발광 소자 및 조명 장치 | |
CN105977232B (zh) | 在基板中安装器件的方法、安装有器件的基板结构和电子装置 | |
WO2015194804A1 (ko) | 발광 소자 및 이를 포함하는 발광소자 패키지 | |
JP2020508582A (ja) | 垂直に積層された多色発光ダイオード(led)ディスプレイのための方法および装置 | |
KR102475924B1 (ko) | 반도체 소자 및 이를 포함하는 헤드 램프 | |
WO2013015551A2 (ko) | 반도체 발광부 연결체 | |
WO2017014512A1 (ko) | 발광 소자 | |
WO2016137197A1 (ko) | 발광 소자 및 이를 구비한 라이트 유닛 | |
WO2016195286A1 (ko) | 발광 다이오드 | |
WO2013015472A1 (ko) | 반도체 발광소자 및 그 제조방법 | |
WO2021054702A1 (ko) | 디스플레이용 발광 소자 및 그것을 가지는 발광 패키지 | |
WO2020055143A1 (ko) | 발광 소자 | |
CN109148652A (zh) | 无机发光二极管显示面板及其制作方法和显示装置 | |
WO2016126053A1 (ko) | 발광 장치 | |
WO2016064216A1 (ko) | 반도체 소자용 지지 기판, 이를 포함하는 반도체 장치 및 이를 제조하는 방법 | |
US12113151B2 (en) | Unit pixel having light emitting device and displaying apparatus | |
WO2021137654A1 (ko) | 발광 소자 및 그것을 갖는 led 디스플레이 장치 | |
WO2013165127A1 (ko) | 발광 다이오드 소자 및 그의 제조 방법 | |
Ou et al. | P‐125: Monochromatic Active Matrix Micro‐LED Micro‐displays with> 5,000 dpi Pixel Density Fabricated using Monolithic Hybrid Integration Process | |
KR101159782B1 (ko) | 투명 엘이디 웨이퍼 모듈 및 그 제조방법 | |
WO2013141421A1 (ko) | 수평형 파워 led 소자 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180012916.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11753542 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012556961 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13583625 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11753542 Country of ref document: EP Kind code of ref document: A2 |