WO2016126053A1 - 발광 장치 - Google Patents

발광 장치 Download PDF

Info

Publication number
WO2016126053A1
WO2016126053A1 PCT/KR2016/000975 KR2016000975W WO2016126053A1 WO 2016126053 A1 WO2016126053 A1 WO 2016126053A1 KR 2016000975 W KR2016000975 W KR 2016000975W WO 2016126053 A1 WO2016126053 A1 WO 2016126053A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
substrate
base
emitting device
Prior art date
Application number
PCT/KR2016/000975
Other languages
English (en)
French (fr)
Inventor
임마이클
네이마사미
김경원
Original Assignee
서울반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울반도체 주식회사 filed Critical 서울반도체 주식회사
Priority to CN201680005563.7A priority Critical patent/CN107112404B/zh
Publication of WO2016126053A1 publication Critical patent/WO2016126053A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body

Definitions

  • the present invention relates to a light emitting device, and more particularly, to a light emitting device having excellent heat dissipation characteristics.
  • the demand for a small high power light emitting device increases, the demand for a large area flip chip type light emitting diode with high heat dissipation efficiency applicable to a high power light emitting device increases.
  • the electrode of the flip chip type light emitting diode is directly bonded to the secondary substrate, and since the wire for supplying external power to the flip chip type light emitting diode is not used, the heat dissipation efficiency is much higher than that of the horizontal type light emitting diode. Therefore, even when a high density current is applied, heat can be effectively conducted to the secondary substrate side, so that the flip chip type light emitting diode is suitable as a light emitting source of a high output light emitting device.
  • the electrode of the flip chip type light emitting diode can function similar to the lead of the package, so that the flip chip type light emitting diode can be applied to the chip scale package.
  • a high density current is applied to the chip scale package.
  • the heat generated from the light emitting chip increases accordingly. This heat generates thermal stresses on the light emitting diodes, and causes stresses and residual stresses generated at the interfaces between materials having different thermal expansion coefficients. Therefore, a light emitting diode applied to a high output light emitting device requires a high heat dissipation efficiency.
  • An object of the present invention is to provide a light emitting device having high heat dissipation efficiency and having a low junction temperature.
  • a light emitting device including: a second substrate including a second base, a conductive pattern positioned on the second base, and an insulating pattern positioned between the second base and the conductive pattern; A first substrate positioned on the second substrate, the first substrate including a first base, a first electrode, and a second electrode; And a light emitting diode positioned on the first substrate, the light emitting diode including a light emitting portion and first and second pad electrodes positioned between the light emitting portion and the first substrate, wherein the second base of the second substrate has an upper portion. And a protrusion protruding from the first substrate, wherein the protrusion is in contact with the first substrate.
  • a light emitting device including a first substrate, a second substrate and a light emitting diode
  • a light emitting device having improved heat dissipation efficiency and improved reliability can be provided.
  • a light emitting device having excellent heat dissipation efficiency a light emitting device having a structure suitable for a high output light emitting device can be implemented.
  • the thickness of the light emitting structure of the light emitting diode may be formed in a predetermined range or more, so that a light emitting device having further improved thermal reliability may be provided.
  • FIG. 1 and 2 are exploded cross-sectional views and cross-sectional views for describing a light emitting device according to an embodiment of the present invention.
  • 3 and 4 are plan views and cross-sectional views for describing a light emitting diode according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view for describing a light emitting device according to still another embodiment of the present invention.
  • the light emitting device according to the embodiments of the present invention can be implemented in various aspects.
  • a light emitting device may include a second substrate including a second base, a conductive pattern positioned on the second base, and an insulating pattern positioned between the second base and the conductive pattern; A first substrate positioned on the second substrate, the first substrate including a first base, a first electrode, and a second electrode; And a light emitting diode positioned on the first substrate, the light emitting diode including a light emitting portion and first and second pad electrodes positioned between the light emitting portion and the first substrate, wherein the second base of the second substrate has an upper portion. And a protrusion protruding from the first substrate, wherein the protrusion is in contact with the first substrate.
  • the first substrate may further include a heat dissipation pad disposed on a lower surface of the first base, and the heat dissipation pad may contact the protrusion.
  • the first electrode may include a first upper electrode and a first lower electrode positioned on upper and lower surfaces of the first base, and a first via electrode connecting the first upper electrode and the first lower electrode.
  • the second electrode may include a second upper electrode and a second lower electrode positioned on upper and lower surfaces of the first base, respectively, and to connect the second upper electrode and the second lower electrode.
  • a second via electrode may be included, and the first and second via electrodes may penetrate the first base.
  • the heat radiating pad may be positioned between the first lower electrode and the second lower electrode.
  • the conductive pattern may include first and second conductive patterns spaced apart from each other, and the first and second conductive patterns may be electrically connected to the first and second electrodes, respectively.
  • the protrusion may be located between the first and second conductive patterns.
  • the first base may include an insulating ceramic, and the second base may include a conductive metal.
  • the light emitting diode may include a light emitting structure including a nitride semiconductor, and the thickness of the light emitting structure may be 20 ⁇ m or more.
  • the thickness of the light emitting structure may be 100 ⁇ m or more.
  • the light emitting structure may further include a nitride based growth substrate.
  • the nitride based growth substrate may be a GaN substrate.
  • the light emitting diode may include a light emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer positioned between the first conductive semiconductor layer and the second conductive semiconductor layer; First and second contact electrodes disposed on the light emitting structure and ohmic contact to the first and second conductivity-type semiconductor layers, respectively; And an insulating layer which insulates the first contact electrode and the second contact electrode and partially covers the first and second contact electrodes, wherein the first pad electrode and the second pad electrode are respectively formed in the first contact electrode. It may be electrically connected to the contact electrode and the second contact electrode.
  • the light emitting structure may include one or more mesas including the second conductive semiconductor layer and the active layer, and an area in which the first conductive semiconductor layer is exposed is formed around the mesa.
  • the first contact electrode and the first conductive semiconductor layer may be in ohmic contact through a region where the first conductive semiconductor layer is exposed.
  • the light emitting structure may have a thickness of 20 ⁇ m or more.
  • the light emitting structure may further include a nitride based growth substrate.
  • the thickness of the light emitting structure may be 100 ⁇ m or more.
  • the light emitting device may further include a wavelength conversion part covering at least part of the surface of the light emitting diode.
  • FIGS. 1 and 2 are exploded cross-sectional views and cross-sectional views for describing a light emitting device according to an embodiment of the present invention.
  • FIG. 1 is an exploded cross-sectional view showing each component of the light emitting device of the present embodiment separately
  • FIG. 2 is a cross-sectional view showing a light emitting device in which the above components are combined.
  • 3 and 4 are plan views and cross-sectional views for describing a light emitting diode 100 according to another embodiment of the present invention.
  • the light emitting diode 100 of the present embodiment may be applied to the light emitting device of FIGS. 1 and 2.
  • the light emitting device includes a light emitting diode 100, a first substrate 200, and a second substrate 300.
  • the first substrate 200 is located on the second substrate 300, and the light emitting diode 100 is located on the first substrate 200.
  • the light emitting diode 100, the first substrate 200, and the second substrate 300 may be electrically connected to each other.
  • the light emitting diode 100, the first substrate 200, and the second substrate 300 will be described in detail.
  • the second substrate 300 may be positioned at the bottom of the light emitting device to support the first substrate 200 and the light emitting diode 100.
  • the second substrate 300 may include a second base 310 and a conductive pattern 330, and further include an insulating pattern 320.
  • the second base 310 may include a protrusion 311.
  • the second base 310 may serve as a support plate of the second substrate 300.
  • the material of the second base 310 is not limited, but may include a material having excellent thermal conductivity.
  • the second base 310 may include a metal material, and may include, for example, Ag, Cu, Au, Al, Mo, or the like, and may be formed of a single layer or multiple layers. Accordingly, the second base 310 may effectively conduct heat generated when the light emitting device is driven, thereby improving heat emission efficiency of the light emitting device.
  • the protrusion 311 of the second base 310 may be formed to protrude from an upper surface of the second base 310.
  • the position at which the protrusion 311 is disposed is not limited, but the position may be determined to be in contact with the first substrate 200 to be described later and to be spaced apart from the electrodes 220 and 230 of the first substrate 200.
  • the protrusion 311 may be located at a generally central portion of the upper surface of the second base 310.
  • the conductive pattern 330 may be located on the second base 310.
  • the conductive pattern 330 may include a first conductive pattern and a second conductive pattern spaced apart from each other and insulated from each other. Therefore, at least two conductive patterns 330 may be formed.
  • the conductive pattern 330 may be electrically connected to the light emitting diode 100 as described below.
  • the conductive pattern 330 may serve as an electrical circuit or may serve as a lead of the light emitting device.
  • the conductive pattern 330 may include a material having electrical conductivity, and may include, for example, a metal material such as Ni, Pt, Pd, Rh, W, Ti, Al, Mg, Ag, Cr, Au, or the like. .
  • the conductive pattern 330 may be formed of a single layer or multiple layers. In addition, the conductive pattern 330 may be spaced apart from the protrusion 311 of the second base 310. An additional insulating material such as solder cream may be further interposed in the space where the conductive pattern 330 and the protrusion 311 are spaced apart from each other.
  • the insulating pattern 320 may be positioned between the base 310 and the conductive pattern 330 to insulate the base 310 and the conductive pattern 330. have.
  • the top surface of the conductive pattern 330 and the top surface of the protrusion 311 may be formed in parallel with substantially the same height. Therefore, the first substrate 200 may be stably mounted on the upper surface of the second substrate 300.
  • the present invention is not limited thereto, and the height of the top surface of the conductive pattern 330 and the height of the top surface of the protrusion 311 may be different from each other.
  • the upper surface of the protrusion 311 may be the upper surface of the conductive pattern 330. May be located lower.
  • the first substrate 200 is located on the second substrate 300.
  • the first substrate 200 includes a first base 210, a first electrode 220, a second electrode 230, and a heat dissipation pad 240.
  • the first substrate 200 is disposed on the second substrate 300. It may be mounted on the second substrate 300 through a method capable of forming an electrical connection, such as solder bonding, process bonding (Eutectic bonding), for example.
  • the first base 210 may include an insulating material, and may also include a material having high thermal conductivity. For example, it may comprise a high thermal conductivity polymer material and / or a ceramic material. In particular, the first base 210 may include AlN ceramic. Accordingly, when the light emitting device is driven, heat generated from the light emitting diode 100 may be effectively conducted to the heat radiation pad 240 through the first base 210, and the heat thus conducted may be transferred through the second base 310. It can be released to the outside.
  • the first electrode 220 and the second electrode 230 may be formed on the upper and lower surfaces of the first base 210, respectively.
  • the first electrode 220 may include a first upper electrode 221, a first via electrode 223, and a first lower electrode 225
  • the second electrode 230 may include a second upper electrode. 231, a second via electrode 233, and a second lower electrode 235.
  • the first upper electrode 221 may be located on an upper surface of the first base 210, and the first lower electrode 225 may be located on a lower surface of the first base 210.
  • the first via electrode 223 may electrically connect the first upper and first lower electrodes 221 and 225 through the first base 210.
  • the area of the first upper electrode 221 may be formed relatively larger than the area of the first lower electrode 225.
  • the second upper electrode 231 may be located on the top surface of the first base 210, and the second lower electrode 235 may be located on the bottom surface of the first base 210.
  • the second via electrode 223 may electrically connect the second upper and second lower electrodes 231 and 235 through the first base 210.
  • the area of the second upper electrode 231 may be formed relatively larger than the area of the second lower electrode 235.
  • the separation distance between the first upper electrode 221 and the second upper electrode 231 may be smaller than the separation distance between the first lower electrode 225 and the second lower electrode 235. Accordingly, the area of the region between the first lower electrode 225 and the second lower electrode 235 may be relatively large, and thus, the region where the heat radiation pad 240 is to be formed may be provided.
  • first lower electrode 225 and the second lower electrode 235 may be electrically connected to the conductive pattern 330 of the second substrate 300.
  • first lower electrode 225 and the second lower electrode 235 may be attached to the conductive pattern 330 of the second substrate 300 through soldering, for example, to form an electrical connection.
  • the heat dissipation pad 240 may be located on the bottom surface of the first base 210.
  • the heat dissipation pad 240 may be in contact with the first base 210 but may be electrically insulated from the first and second electrodes 220 and 230.
  • the heat dissipation pad 240 may be positioned between the first and second lower electrodes 225 and 235.
  • the heat dissipation pad 240 may be in contact with the second substrate 300, and in particular, may be in contact with the protrusion 311.
  • the heat dissipation pad 240 may be physically connected to the protrusion 311 through, for example, soldering.
  • the heat dissipation pad 240 is in direct contact with the base 310 including a metal having excellent thermal conductivity, heat generated when the light emitting diode 100 emits light may be effectively conducted to the base 310. Heat transferred to the base 310 can be effectively released to the outside, the heat emission efficiency of the light emitting device can be improved.
  • the thicknesses of the first lower electrode 225, the second lower electrode 235, and the heat dissipation pad 240 may be substantially the same, and thus, the first substrate 200 may be stably mounted on the second substrate 300. Can be. However, the present disclosure is not limited thereto, and the thicknesses of the first lower electrode 225, the second lower electrode 235, and the heat dissipation pad 240 may be adjusted differently according to the height change of the protrusion 311 of the second substrate 300. Can be. For example, the thickness of the heat radiation pad 240 may be greater than the thickness of the first lower electrode 225 and the second lower electrode 235.
  • the electrodes 220 and 230 may include an electrically conductive material, and may include, for example, metals such as Ni, Pt, Pd, Rh, W, Ti, Al, Ag, Au, Cu, and the like.
  • the heat dissipation pad 240 may include a material having a relatively high thermal conductivity, and in particular, may include Ag, Cu, Au, Al, Mo, or the like.
  • the electrodes 220 and 230 and the heat dissipation pad 240 may be formed of the same material or different materials. When the electrodes 220 and 230 and the heat dissipation pad 240 are formed of the same material, the electrodes 220 and 230 and the heat dissipation pad 240 may be simultaneously formed through the same process.
  • the light emitting diode 100 is positioned on the first substrate 200.
  • the light emitting diode 100 includes a light emitting part 100L, a first pad electrode 171, and a second pad electrode 173.
  • the light emitting unit 100L may have a light emitting structure through a PN junction, and may include a light emitting structure formed of a semiconductor stacked structure including an active layer.
  • the light emitting unit 100L may include a light emitting structure including a nitride semiconductor.
  • the thickness of the light emitting structure may be 20 ⁇ m, and further, may be 100 ⁇ m or more.
  • the light emitting structure may include a nitride based growth substrate, for example, may include a GaN substrate.
  • the light emitting structure includes a nitride-based growth substrate and is formed to have a thickness in the above-described range, thereby improving heat dissipation efficiency and heat distribution efficiency to lower the junction temperature (T j , junction temperature) of the light emitting diode 100.
  • T j junction temperature
  • the first and second pad electrodes 171 and 173 may be disposed under the light emitting part 100L, and may be connected to semiconductor layers having different polarities of the light emitting structure.
  • the light emitting diode 100 of the present exemplary embodiment is not limited as long as it has a structure having pad electrodes formed on the lower portion thereof.
  • the light emitting diode 100 may be a flip chip type light emitting diode.
  • FIG. 3A is a plan view of the LED 100
  • FIG. 3B is a position of the mesa 120m, the contact region 120a of the first contact electrode 130, and the first and second openings 160a. It is a top view for demonstrating the position of 160b.
  • 4 is a cross-sectional view illustrating a cross section of a portion corresponding to line AA ′ of FIG. 3.
  • the light emitting diode 100 includes the light emitting structure 120, the first contact electrode 130, the second contact electrode 140, the insulating layers 150 and 160, and the first and first electrodes. And two pad electrodes 171 and 173.
  • the light emitting structure 120 includes a first conductive semiconductor layer 121, an active layer 123 positioned on the first conductive semiconductor layer 121, and a second conductive semiconductor layer disposed on the active layer 123 ( 125).
  • the first conductive semiconductor layer 121, the active layer 123, and the second conductive semiconductor layer 125 may include a III-V series compound semiconductor, and include, for example, (Al, Ga, In) N and The same nitride-based semiconductor may be included.
  • the first conductive semiconductor layer 121 may include n-type impurities (eg, Si), and the second conductive semiconductor layer 125 may include p-type impurities (eg, Mg). have. It may also be the reverse.
  • the active layer 123 may include a multi-quantum well structure (MQW), and its composition ratio may be determined to emit light of a desired peak wavelength.
  • MQW multi-quantum well structure
  • the light emitting structure 120 may include a region in which the second conductive semiconductor layer 125 and the active layer 123 are partially removed to partially expose the first conductive semiconductor layer 121. As shown in FIG. 4, in the region where the first conductivity type semiconductor layer 121 is partially exposed, the second conductivity type semiconductor layer is partially removed by partially removing the second conductivity type semiconductor layer 125 and the active layer 123. It can be provided by forming a mesa (120m) comprising a 125 and an active layer 123.
  • the light emitting structure 120 may include a plurality of mesas 120m, and the mesas 120m may have an elongated shape extending in the same direction. However, the present invention is not limited thereto.
  • the light emitting structure 120 may further include a nitride based growth substrate 110 positioned below the first conductivity type semiconductor layer 121.
  • the growth substrate may include a gallium nitride substrate and an aluminum nitride substrate.
  • the thickness T of the light emitting structure 120 may have a thickness of a predetermined range or more.
  • the thickness T of the light emitting structure 120 may be about 20 ⁇ m or more, and further, about 100 ⁇ m or more.
  • the thickness T of the light emitting structure 120 is equal to the thickness of the growth substrate 110, the first conductivity type semiconductor layer 121, the active layer 123, and the second conductivity type semiconductor layer 125.
  • the light emitting structure 120 may be formed to have a thickness of about 20 ⁇ m or more by growing the thickness of the first conductivity-type semiconductor layer 121 to a predetermined thickness or more.
  • the growth substrate may be a heterogeneous substrate, such as a sapphire substrate, and the heterogeneous growth substrate may be separated and removed from the first conductivity type semiconductor layer 121.
  • the thickness T of the light emitting structure 120 By forming the thickness T of the light emitting structure 120 in the above-described predetermined range, the heat dissipation efficiency and the heat distribution efficiency can be improved. Thereby, the junction temperature of the light emitting diode 100 can be reduced, and the efficiency fall and reliability fall of the light emitting diode 100 by heat can be prevented.
  • the second contact electrode 140 is positioned on the second conductivity type semiconductor layer 125 and may be in ohmic contact with the second conductivity type semiconductor layer 125.
  • the second contact electrode 140 may at least partially cover the top surface of the second conductivity-type semiconductor layer 125, and may be disposed to cover the entire top surface of the second conductivity-type semiconductor layer 125. have. That is, the second contact electrode 140 may be located on the mesas 120m.
  • the second contact electrode 140 may be formed of a material capable of ohmic contact with the second conductive semiconductor layer 125, and may include, for example, a metallic material and / or a conductive oxide.
  • the second contact electrode 140 may include a reflective layer and a cover layer covering the reflective layer.
  • the second contact electrode 140 may function to reflect light while being in ohmic contact with the second conductivity-type semiconductor layer 125.
  • the reflective layer may include a metal having high reflectivity and capable of forming ohmic contact with the second conductivity-type semiconductor layer 125.
  • the reflective layer may include at least one of Ni, Pt, Pd, Rh, W, Ti, Al, Mg, Ag, and Au.
  • the reflective layer may include a single layer or multiple layers.
  • the cover layer may prevent mutual diffusion between the reflective layer and another material, and prevent other external materials from diffusing into the reflective layer and damaging the reflective layer.
  • the cover layer may be formed to cover the bottom and side surfaces of the reflective layer.
  • the cover layer may be electrically connected to the second conductivity-type semiconductor layer 125 together with the reflective layer, and serve as an electrode together with the reflective layer.
  • the cover layer may include, for example, Au, Ni, Ti, Cr, or the like, and may include a single layer or multiple layers.
  • the reflective layer and the cover layer may be formed using electron beam deposition, plating, or the like.
  • the conductive oxide may be ITO, ZnO, AZO, IZO, or the like.
  • the second contact electrode 140 may cover the upper surface of the second conductive semiconductor layer 125 in a wider area than when the metal includes the conductive oxide. That is, the separation distance from the edge of the region where the first conductivity type semiconductor layer 121 is exposed to the second contact electrode 140 may be formed to be relatively shorter when the second contact electrode 140 is formed of a conductive oxide. have.
  • the shortest distance from the contact portion of the second contact electrode 140 to the second conductivity type semiconductor layer 125 to the contact portion of the first contact electrode 130 and the first conductivity type semiconductor layer 121. Can be made relatively shorter, so that the forward voltage V f of the light emitting diode 100 can be reduced.
  • the second contact electrode 140 includes ITO
  • the first insulating layer 150 includes SiO 2
  • the first contact electrode 130 includes Ag
  • an ITO / SiO 2 / Ag stacking An omnidirectional reflector can be formed that includes the structure.
  • the insulating layers 150 and 160 partially cover the first and second contact electrodes 130 and 140, and cover the first contact electrode 130 and the second contact electrode 140 with each other. Insulate.
  • the insulating layers 150 and 160 may include a first insulating layer 150 and a second insulating layer 160.
  • the first insulating layer 150 will be described first, and contents related to the second insulating layer 160 will be described later.
  • the first insulating layer 150 may partially cover the top surface of the light emitting structure 120 and the second contact electrode 140.
  • the first insulating layer 150 may cover the side surface of the mesa 120m and partially expose the first conductivity-type semiconductor layer 121 exposed to the periphery of the mesa 120m.
  • the first insulating layer 150 may include an opening corresponding to a portion where the first conductive semiconductor layer 121 is partially exposed and an opening that exposes a portion of the second contact electrode 140.
  • An area 120a in which the first conductive semiconductor layer 121 and the first contact electrode 130 are in ohmic contact may be formed through an opening in which the first conductive semiconductor layer 121 is partially exposed.
  • the first insulating layer 150 may include an insulating material and may include, for example, SiO 2 , SiN x , MgF 2, or the like. Furthermore, the first insulating layer 150 may include multiple layers, and may include a distributed Bragg reflector in which materials having different refractive indices are alternately stacked.
  • the first insulating layer 150 may include a distributed Bragg reflector to improve light emission efficiency of the light emitting diode 100.
  • the second contact electrode 140 may include a conductive oxide, and the second contact electrode 140 may be formed of a transparent insulating oxide (eg, SiO 2 ) by forming the first insulating layer 150.
  • the omnidirectional reflector formed by the laminated structure of the first insulating layer 150 and the first contact electrode 130 may be formed.
  • the first contact electrode 130 may be formed to almost cover the entire surface of the first insulating layer 150 except for a region exposing a part of the second contact electrode 140. Accordingly, a part of the first insulating layer 150 may be interposed between the first contact electrode 130 and the second contact electrode 140.
  • the first insulating layer 150 may further cover at least part of the side surface of the light emitting structure 120.
  • the extent to which the first insulating layer 150 covers the side surface of the light emitting structure 120 may vary depending on whether chip isolation is performed in the manufacturing process of the light emitting diode. That is, as shown in the present embodiment, the first insulating layer 150 may be formed to cover only the top surface of the light emitting structure 120. Alternatively, in the manufacturing process of the light emitting diode 100, the wafer may be individualized after the chip unit. When the first insulating layer 150 is formed, the first insulating layer 150 may be covered up to the side surface of the light emitting structure 120.
  • the first contact electrode 130 may partially cover the light emitting structure 120.
  • the first contact electrode 130 is in ohmic contact with the first conductive semiconductor layer 121 through an opening of the first insulating layer 150 exposing the ohmic contact region 120a.
  • the first contact electrode 130 may be formed to cover the entire portion of the first insulating layer 150 except for the partial region. Accordingly, light may be reflected through the first contact electrode 130.
  • the first contact electrode 130 may be electrically insulated from the second contact electrode 140 by the first insulating layer 150.
  • the first contact electrode 130 is formed to cover the entire upper surface of the light emitting structure 120 except for some regions, the current dispersion efficiency may be further improved. In addition, since the first contact electrode 130 may cover a portion not covered by the second contact electrode 140, light may be reflected more effectively to improve the luminous efficiency of the light emitting diode 100.
  • the first contact electrode 130 may serve to reflect the light while making ohmic contact with the first conductivity-type semiconductor layer 121. Therefore, the first contact electrode 130 may include a highly reflective metal layer such as an Al layer. In this case, the first contact electrode 130 may be formed of a single layer or multiple layers. The highly reflective metal layer may be formed on an adhesive layer such as Ti, Cr, or Ni. However, the present invention is not limited thereto, and the first contact electrode 130 may include at least one of Ni, Pt, Pd, Rh, W, Ti, Al, Mg, Ag, and Au.
  • the first contact electrode 130 may be formed to cover the side of the light emitting structure 120.
  • the first contact electrode 130 is also formed on the side surface of the light emitting structure 120, the light emitted to the side from the active layer 123 is reflected upward to increase the proportion of the light emitted to the top surface of the light emitting diode 100.
  • the first insulating layer 150 may be interposed between the side of the light emitting structure 120 and the first contact electrode 130. have.
  • the light emitting diode 100 may further include a connection electrode (not shown).
  • the connection electrode may be positioned on the second contact electrode 140 and may be electrically connected to the second contact electrode 140 through the opening of the first insulating layer 150.
  • the top surface of the connection electrode may be formed at substantially the same height as the top surface of the first contact electrode 130.
  • the connection electrode may be formed in the same process as the first contact electrode 130, and the connection electrode and the first contact electrode 130 may include the same material.
  • the present invention is not limited thereto, and the connection electrode and the first contact electrode 130 may include different materials.
  • the second insulating layer 160 may partially cover the first contact electrode 130, and may include the first opening 160a and the second contact electrode 140 to partially expose the first contact electrode 130. It may include a second opening 160b partially exposed. One or more of the first and second openings 160a and 160b may be formed.
  • the second insulating layer 160 may include an insulating material.
  • the second insulating layer 160 may include SiO 2 , SiN x , and MgF 2 .
  • the second insulating layer 160 may include multiple layers, and may include a distributed Bragg reflector in which materials having different refractive indices are alternately stacked.
  • the uppermost layer of the second insulating layer 160 may be formed of SiN x . Since the uppermost layer of the second insulating layer 160 is formed of SiN x , it is possible to more effectively prevent moisture from penetrating into the light emitting structure 120.
  • the first and second pad electrodes 171 and 173 may be electrically connected to the first and second contact electrodes 130 and 140 through the first and second openings 160a and 160b, respectively.
  • the first and second pad electrodes 171 and 173 may serve to supply external power to the light emitting structure 120.
  • the first and second pad electrodes 171 and 173 may be electrically connected to the first substrate 200.
  • the first and second pad electrodes 171 and 173 may be electrically connected to the first and second electrodes 220 and 230 of the first substrate 200, respectively.
  • the pad electrodes 171 and 173 may be electrically connected to the electrodes 220 and 230 through soldering or process bonding.
  • a light emitting diode 100 having pad electrodes 171 and 173 disposed below is mounted on a first substrate 200, and the first substrate 200 is a second substrate 300.
  • a light emitting device having a structure which is mounted on the. Accordingly, heat generated when the light emitting diode 100 is driven is transferred to the heat dissipation pad 240 and the second substrate 300 of the first substrate 200, in particular, the first substrate 200, in particular the second substrate 300. Through the base 310 of the can be effectively released to the outside.
  • the light emitting structure 120 is formed to have a predetermined thickness or more, heat dissipation efficiency and heat distribution efficiency may be improved. Therefore, the reliability of the light emitting device can be improved, and in particular, a high output light emitting device in which the reliability is not degraded even when a high current is applied can be provided.
  • FIG. 5 is a cross-sectional view for describing a light-emitting device according to still another embodiment of the present invention.
  • the light emitting device of FIG. 5 differs in that it further includes a wavelength converter 190 as compared to the light emitting devices of FIGS. 1 and 2.
  • a wavelength converter 190 as compared to the light emitting devices of FIGS. 1 and 2.
  • the light emitting device of the present embodiment will be described based on differences, and a detailed description of overlapping configurations will be omitted.
  • the light emitting device includes a light emitting diode 100, a first substrate 200, a second substrate 300, and a wavelength converter 190.
  • the first substrate 200 is located on the second substrate 300, and the light emitting diode 100 is located on the first substrate 200.
  • the light emitting diode 100, the first substrate 200, and the second substrate 300 may be electrically connected to each other.
  • the wavelength converter 190 may at least partially cover the light emitting diode 100.
  • the wavelength conversion unit 190 may cover the top surface of the light emitting diode 100, and may further cover at least a portion of the side surface of the light emitting diode 100.
  • Light emitted from the light emitting structure 120 by the wavelength converter 190 may be wavelength-converted to provide a light emitting device capable of realizing light of various colors.
  • the light emitting device may emit white light.
  • the wavelength converter 190 may include a material capable of converting the wavelength of light.
  • the wavelength converter 190 may be provided in a form in which phosphors are dispersed in a carrier, or may be provided in the form of a single crystal phosphor sheet, or may be provided in a form including a quantum dot material.
  • the thickness of the wavelength converter 190 may be substantially constant, for example, it may be manufactured using a method such as conformal coating.
  • the present invention is not limited thereto.
  • a light emitting device including the wavelength converter 190 may be provided to implement a light emitting device emitting various colors, particularly white light.
  • the wavelength converter 190 since the light emitting device has excellent heat dissipation efficiency, the wavelength converter 190 may be prevented from being damaged or degraded by the heat of the light emitting diode 100. Therefore, a decrease in the light emission intensity and a change in the light emission color due to the damage of the wavelength converter 190 are prevented, thereby providing a light emitting device having excellent reliability.
  • the light emitting devices of Examples 1 to 4 and Comparative Examples are all the same as the light emitting devices of FIGS.
  • the light emitting devices of Examples and Comparative Examples were driven at the same current, and at this time, the junction temperature of the light emitting diode was measured and shown in Table 1 below.
  • Example 1 Example 2
  • Example 3 Example 4 Comparative example Thickness of Light Emitting Structure ( ⁇ m) 20 50 100 200 10 Average junction temperature (°C) 83.7 81.9 81 80.5 86.7
  • the thickness of the light emitting structure of the light emitting device is formed to a thickness of about 20 ⁇ m or more, it can be seen that the average junction temperature of the light emitting diode is lowered to 85 °C or less. Therefore, according to embodiments of the present invention, a light emitting device having improved thermal reliability may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

발광 장치가 제공된다. 발광 장치는, 제2 베이스, 제2 베이스 상에 위치하는 도전성 패턴, 및 제2 베이스와 도전성 패턴 사이에 위치하는 절연 패턴을 포함하는 제2 기판; 제2 기판 상에 위치하며, 제1 베이스, 제1 전극, 및 제2 전극을 포함하는 제1 기판; 및 제1 기판 상에 위치하며, 발광부 및 발광부와 제1 기판 사이에 위치하는 제1 및 제2 패드 전극을 포함하는 발광 다이오드를 포함하고, 제2 기판의 제2 베이스는 상부로 돌출된 돌출부를 포함하며, 돌출부는 제1 기판과 접한다.

Description

발광 장치
본 발명은 발광 장치에 관한 것으로, 특히, 방열 특성이 우수한 발광 장치에 관한 것이다.
최근 소형 고출력 발광 장치에 대한 요구가 증가하면서, 고출력 발광 장치에 적용 가능한 고방열 효율의 대면적 플립칩형 발광 다이오드의 수요가 증가하고 있다. 플립칩형 발광 다이오드의 전극은 직접 2차 기판에 접합되며, 또한 플립칩형 발광 다이오드에 외부 전원을 공급하기 위한 와이어를 이용하지 않으므로, 수평형 발광 다이오드에 비해 열 방출 효율이 매우 높다. 따라서 고밀도 전류를 인가하더라도 효과적으로 열을 2차 기판 측으로 전도시킬 수 있어서, 플립칩형 발광 다이오드는 고출력 발광 장치의 발광원으로 적합하다.
또한, 발광 다이오드의 소형화 및 고출력을 위하여, 발광 다이오드를 별도의 하우징 등에 패키징하는 공정을 생략하고, 발광 다이오드 자체를 패키지로서 이용하는 칩 스케일 패키지(Chip Scale Package)에 대한 요구가 증가하고 있다. 특히, 플립칩형 발광 다이오드의 전극은 패키지의 리드와 유사한 기능을 할 수 있어서, 이러한 칩 스케일 패키지에 있어서도 유용하게 플립칩형 발광 다이오드가 적용될 수 있다.
이러한 칩 스케일 패키지 형태의 소자를 고출력 발광 장치로서 이용하는 경우, 상기 칩 스케일 패키지에 고밀도의 전류가 인가된다. 고밀도의 전류가 인가되면, 그만큼 발광 칩으로부터 발생하는 열도 증가한다. 이러한 열은 발광 다이오드에 열적 스트레스를 발생시키고, 열 팽창 계수가 서로 다른 물질들 간의 계면에서 발생하는 응력 및 이로 인한 잔류 응력을 발생시킨다. 따라서 고출력 발광 장치에 적용되는 발광 다이오드는 높은 열 방출 효율이 요구된다.
본 발명이 해결하고자 하는 과제는, 열 방출 효율이 높고, 낮은 접합 온도(junction temperature)를 갖는 발광 장치를 제공하는 것이다.
본 발명의 일 측면에 따른 발광 장치는, 제2 베이스, 상기 제2 베이스 상에 위치하는 도전성 패턴, 및 상기 제2 베이스와 상기 도전성 패턴 사이에 위치하는 절연 패턴을 포함하는 제2 기판; 상기 제2 기판 상에 위치하며, 제1 베이스, 제1 전극, 및 제2 전극을 포함하는 제1 기판; 및 상기 제1 기판 상에 위치하며, 발광부 및 상기 발광부와 제1 기판 사이에 위치하는 제1 및 제2 패드 전극을 포함하는 발광 다이오드를 포함하고, 상기 제2 기판의 제2 베이스는 상부로 돌출된 돌출부를 포함하며, 상기 돌출부는 상기 제1 기판과 접한다.
본 발명에 따르면, 제1 기판, 제2 기판 및 발광 다이오드를 포함하는 발광 장치를 제공함으로써, 열 방출 효율이 향상되어 신뢰성이 향상된 발광 장치가 제공될 수 있다. 또한, 열 방출 효율이 우수한 발광 장치를 제공함으로써, 고출력 발광 장치에 적합한 구조의 발광 장치가 구현될 수 있다. 나아가, 발광 다이오드의 발광 구조체 두께를 소정 범위 이상으로 형성하여, 열적 신뢰성이 더욱 향상된 발광 장치가 제공될 수 있다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 발광 장치를 설명하기 위한 분해 단면도 및 단면도이다.
도 3 및 도 4는 본 발명의 다른 실시예에 따른 발광 다이오드를 설명하기 위한 평면도들 및 단면도이다.
도 5는 본 발명의 또 다른 실시예에 따른 발광 장치를 설명하기 위한 단면도이다.
본 발명의 실시예들에 따른 발광 장치는 다양한 양태로 구현될 수 있다.
다양한 실시예들에 따른 발광 장치는, 제2 베이스, 상기 제2 베이스 상에 위치하는 도전성 패턴, 및 상기 제2 베이스와 상기 도전성 패턴 사이에 위치하는 절연 패턴을 포함하는 제2 기판; 상기 제2 기판 상에 위치하며, 제1 베이스, 제1 전극, 및 제2 전극을 포함하는 제1 기판; 및 상기 제1 기판 상에 위치하며, 발광부 및 상기 발광부와 제1 기판 사이에 위치하는 제1 및 제2 패드 전극을 포함하는 발광 다이오드를 포함하고, 상기 제2 기판의 제2 베이스는 상부로 돌출된 돌출부를 포함하며, 상기 돌출부는 상기 제1 기판과 접한다.
상기 제1 기판은 상기 제1 베이스의 하부면에 위치하는 방열 패드를 더 포함할 수 있고, 상기 방열 패드는 상기 돌출부에 접할 수 있다.
또한, 상기 제1 전극은, 상기 제1 베이스의 상부면 및 하부면에 각각 위치하는 제1 상부 전극 및 제1 하부 전극, 및 상기 제1 상부 전극과 제1 하부 전극을 연결하는 제1 비아 전극을 포함할 수 있고, 상기 제2 전극은, 상기 제1 베이스의 상부면 및 하부면에 각각 위치하는 제2 상부 전극 및 제2 하부 전극, 및 상기 제2 상부 전극과 제2 하부 전극을 연결하는 제2 비아 전극을 포함할 수 있으며, 상기 제1 및 제2 비아 전극은 상기 제1 베이스를 관통할 수 있다.
나아가, 상기 방열 패드는 상기 제1 하부 전극과 제2 하부 전극의 사이에 위치할 수 있다.
또한, 상기 도전성 패턴은 서로 이격된 제1 및 제2 도전성 패턴을 포함할 수 있고, 상기 제1 및 제2 도전성 패턴은 각각 제1 및 제2 전극에 전기적으로 연결될 수 있다.
나아가, 상기 돌출부는 상기 제1 및 제2 도전성 패턴의 사이에 위치할 수 있다.
상기 제1 베이스는 절연성 세라믹을 포함할 수 있고, 상기 제2 베이스는 도전성 금속을 포함할 수 있다.
상기 발광 다이오드는 질화물 반도체를 포함하는 발광 구조체를 포함할 수 있고, 상기 발광 구조체의 두께는 20㎛이상일 수 있다.
상기 발광 구조체의 두께는 100㎛이상일 수 있다.
상기 발광 구조체는 질화물계 성장 기판을 더 포함할 수 있다.
상기 질화물계 성장 기판은 GaN기판일 수 있다.
상기 발광 다이오드는, 제1 도전형 반도체층, 제2 도전형 반도체층 및 상기 제1 도전형 반도체층과 제2 도전형 반도체층의 사이에 위치하는 활성층을 포함하는 발광 구조체; 상기 발광 구조체 상에 위치하며, 상기 제1 및 제2 도전형 반도체층에 각각 오믹 컨택하는 제1 컨택 전극 및 제2 컨택 전극; 및 상기 제1 컨택 전극 및 제2 컨택 전극을 절연시키며, 상기 제1 및 제2 컨택 전극을 부분적으로 덮는 절연층을 포함할 수 있고, 상기 제1 패드 전극과 제2 패드 전극은 각각 상기 제1 컨택 전극 및 제2 컨택 전극에 전기적으로 연결될 수 있다.
나아가, 상기 발광 구조체는 상기 제2 도전형 반도체층 및 상기 활성층을 포함하는 하나 이상의 메사를 포함할 수 있고, 상기 메사의 주변에는 상기 제1 도전형 반도체층이 노출된 영역이 형성되며, 상기 제1 도전형 반도체층이 노출된 영역을 통해 상기 제1 컨택 전극과 상기 제1 도전형 반도체층이 오믹 컨택할 수 있다.
상기 발광 구조체의 두께는 20㎛이상일 수 있다.
상기 발광 구조체는 질화물계 성장 기판을 더 포함할 수 있다.
상기 발광 구조체의 두께는 100㎛이상일 수 있다.
상기 발광 장치는, 상기 발광 다이오드의 적어도 일부 표면을 덮는 파장변환부를 더 포함할 수 있다.
이하, 첨부한 도면들을 참조하여 본 발명의 실시예들을 상세히 설명한다. 다음에 소개되는 실시예들은 본 발명이 속하는 기술분야의 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고, 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 또한, 하나의 구성요소가 다른 구성요소의 "상부에" 또는 "상에" 있다고 기재된 경우 각 부분이 다른 부분의 "바로 상부" 또는 "바로 상에" 있는 경우뿐만 아니라 각 구성요소와 다른 구성요소 사이에 또 다른 구성요소가 개재된 경우도 포함한다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 발광 장치를 설명하기 위한 분해 단면도 및 단면도이다. 구체적으로, 도 1은 본 실시예의 발광 장치의 각 구성요소를 분리하여 도시하는 분해 단면도이고, 도 2는 상기 구성요소들이 결합된 형태의 발광 장치를 도시하는 단면도이다. 또한, 도 3 및 도 4는 본 발명의 다른 실시예에 따른 발광 다이오드(100)를 설명하기 위한 평면도들 및 단면도이다. 본 실시예의 발광 다이오드(100)는 도 1 및 도 2의 발광 장치에 적용될 수 있다.
먼저, 도 1 및 도 2를 참조하면, 상기 발광 장치는 발광 다이오드(100), 제1 기판(200) 및 제2 기판(300)을 포함한다. 제1 기판(200)은 제2 기판(300) 상에 위치하고, 발광 다이오드(100)는 제1 기판(200) 상에 위치한다. 발광 다이오드(100), 제1 기판(200) 및 제2 기판(300)은 서로 전기적으로 연결될 수 있다. 이하, 발광 다이오드(100), 제1 기판(200) 및 제2 기판(300)에 관하여 상세하게 설명한다.
제2 기판(300)은 발광 장치의 저부에 위치하여, 제1 기판(200) 및 발광 다이오드(100)를 지지할 수 있다. 제2 기판(300)은 제2 베이스(310) 및 도전성 패턴(330)을 포함하고, 나아가, 절연 패턴(320)을 더 포함할 수 있다. 또한, 제2 베이스(310)는 돌출부(311)를 포함할 수 있다.
제2 베이스(310)는 제2 기판(300)의 지지판과 같은 역할을 할 수 있다. 제2 베이스(310)의 물질은 제한되지 않으나, 열 전도성이 우수한 물질을 포함할 수 있다. 제2 베이스(310)는 금속 물질을 포함할 수 있고, 예컨대, Ag, Cu, Au, Al, Mo 등을 포함할 수 있고, 단일층 또는 다중층으로 형성될 수 있다. 따라서, 제2 베이스(310)는 발광 장치 구동 시 발생하는 열을 효과적으로 전도시켜, 발광 장치의 열 방출 효율을 향상시킬 수 있다.
제2 베이스(310)의 돌출부(311)는 제2 베이스(310)의 상면으로부터 돌출된 형태로 형성될 수 있다. 돌출부(311)가 배치되는 위치는 제한되지 않으나, 후술하는 제1 기판(200)와 접촉되며, 제1 기판(200)의 전극들(220, 230)과는 이격되도록 위치가 결정될 수 있다. 예를 들어, 돌출부(311)는 제2 베이스(310) 상면의 대체로 중앙 부분에 위치할 수 있다.
도전성 패턴(330)은 제2 베이스(310) 상에 위치할 수 있다. 도전성 패턴(330)은 서로 이격되어 상호 간에 절연된 제1 도전성 패턴 및 제2 도전성 패턴을 포함할 수 있다. 따라서, 도전성 패턴(330) 적어도 2개 이상으로 형성될 수 있다. 도전성 패턴(330)은, 후술하는 바와 같이, 발광 다이오드(100)와 전기적으로 연결될 수 있다. 도전성 패턴(330)은 전기적 회로와 같은 역할을 할 수도 있고, 발광 장치의 리드와 같은 역할을 할 수도 있다. 도전성 패턴(330)은 전기적 도전성을 갖는 물질을 포함할 수 있고, 예를 들어, Ni, Pt, Pd, Rh, W, Ti, Al, Mg, Ag, Cr, Au 등 금속 물질을 포함할 수 있다. 또한, 도전성 패턴(330)은 단일층 또는 다중층으로 이루어질 수 있다. 나아가, 도전성 패턴(330)은 제2 베이스(310)의 돌출부(311)로부터 이격될 수 있다. 도전성 패턴(330)과 돌출부(311)가 이격된 공간에는 솔더 크림 등과 같은 추가적인 절연성 물질이 더 개재될 수 있다.
한편, 제2 베이스(310)가 전기적 도전성을 갖는 경우, 절연 패턴(320)이 베이스(310)와 도전성 패턴(330) 사이에 위치하여, 베이스(310)와 도전성 패턴(330)을 절연시킬 수 있다.
또한, 도전성 패턴(330)의 상면과 돌출부(311)의 상면은 대체로 동일한 높이로 나란하게 형성될 수 있다. 따라서, 제1 기판(200)이 제2 기판(300) 상면에 안정적으로 실장될 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 도전성 패턴(330)의 상면 높이와 돌출부(311)의 상면 높이는 서로 다를 수도 있다. 예를 들어, 제1 기판(200)의 방열 패드(240)의 두께를 하부 전극들(225, 235)의 두께보다 더 두껍게 형성하는 경우, 돌출부(311)의 상면은 도전성 패턴(330)의 상면보다 낮게 위치할 수 있다.
제1 기판(200)은 제2 기판(300) 상에 위치한다. 제1 기판(200)은 제1 베이스(210), 제1 전극(220, 제2 전극(230) 및 방열 패드(240)를 포함한다. 제1 기판(200)은 제2 기판(300) 상에 실장될 수 있으며, 예를 들어, 솔더 본딩, 공정 본딩(Eutectic bonding) 등 전기적 연결을 형성할 수 있는 방법을 통해 제2 기판(300) 상에 실장될 수 있다.
제1 베이스(210)는 절연성 물질을 포함할 수 있고, 또한, 열전도율이 높은 물질을 포함할 수 있다. 예를 들어, 고 열전도성 폴리머 물질 및/또는 세라믹 물질을 포함할 수 있다. 특히, 제1 베이스(210)는 AlN 세라믹을 포함할 수 있다. 따라서, 발광 장치 구동 시, 발광 다이오드(100)에서 발생하는 열이 제1 베이스(210)를 통해 효과적으로 방열 패드(240)로 전도될 수 있고, 이렇게 전도된 열은 제2 베이스(310)를 통해 외부로 방출될 수 있다.
제1 전극(220) 및 제2 전극(230)은 각각 제1 베이스(210)의 상부면 및 하부면 상에 형성될 수 있다. 구체적으로, 제1 전극(220)은 제1 상부 전극(221), 제1 비아 전극(223) 및 제1 하부 전극(225)을 포함할 수 있고, 제2 전극(230)은 제2 상부 전극(231), 제2 비아 전극(233) 및 제2 하부 전극(235)을 포함할 수 있다.
제1 상부 전극(221)은 제1 베이스(210)의 상면 상에 위치할 수 있고, 제1 하부 전극(225)은 제1 베이스(210)의 하면 상에 위치할 수 있다. 이때, 제1 비아 전극(223)은 제1 베이스(210)를 관통하여 제1 상부 및 제1 하부 전극(221, 225)을 전기적으로 연결할 수 있다. 제1 상부 전극(221)의 면적은 제1 하부 전극(225)의 면적에 비해 상대적으로 크게 형성될 수 있다. 이와 유사하게, 제2 상부 전극(231)은 제1 베이스(210)의 상면 상에 위치할 수 있고, 제2 하부 전극(235)은 제1 베이스(210)의 하면 상에 위치할 수 있다. 이때, 제2 비아 전극(223)은 제1 베이스(210)를 관통하여 제2 상부 및 제2 하부 전극(231, 235)을 전기적으로 연결할 수 있다. 제2 상부 전극(231)의 면적은 제2 하부 전극(235)의 면적에 비해 상대적으로 크게 형성될 수 있다.
또한, 제1 상부 전극(221)과 제2 상부 전극(231)의 이격 거리는 제1 하부 전극(225)과 제2 하부 전극(235)의 이격 거리에 비해 작을 수 있다. 따라서, 제1 하부 전극(225)과 제2 하부 전극(235) 사이 영역의 면적은 상대적으로 크게 제공될 수 있고, 이에 따라, 방열 패드(240)가 형성될 영역이 제공될 수 있다.
한편, 제1 하부 전극(225) 및 제2 하부 전극(235)은 제2 기판(300)의 도전성 패턴(330)에 전기적으로 연결될 수 있다. 예컨대, 제1 하부 전극(225) 및 제2 하부 전극(235)은, 예컨대, 솔더링 등을 통해 제2 기판(300)의 도전성 패턴(330)에 접착됨으로써, 전기적 연결을 형성할 수 있다.
방열 패드(240)는 제1 베이스(210)의 하면 상에 위치할 수 있다. 방열 패드(240)는 제1 베이스(210)와 접촉하되, 제1 및 제2 전극(220, 230)과는 이격되어 전기적으로 절연될 수 있다. 또한, 방열 패드(240)는 제1 및 제2 하부 전극(225, 235)의 사이에 위치할 수 있다. 나아가, 방열 패드(240)는 제2 기판(300)과 접촉될 수 있고, 특히, 돌출부(311)에 접촉될 수 있다. 방열 패드(240)는, 예컨대, 솔더링 등을 통해 돌출부(311)에 물리적으로 연결될 수 있다. 방열 패드(240)가 열 전도성이 우수한 금속을 포함하는 베이스(310)와 직접적으로 접촉됨으로써, 발광 다이오드(100)의 발광 시 발생하는 열이 효과적으로 베이스(310)로 전도될 수 있다. 베이스(310)에 전달된 열은 효과적으로 외부로 방출될 수 있고, 발광 장치의 열 방출 효율이 향상될 수 있다.
제1 하부 전극(225), 제2 하부 전극(235) 및 방열 패드(240)의 두께는 대체로 동일할 수 있고, 이에 따라 제1 기판(200)이 제2 기판(300)에 안정적으로 실장될 수 있다. 다만, 이에 한정되지 않고, 제2 기판(300)의 돌출부(311)의 높이 변화에 따라 제1 하부 전극(225), 제2 하부 전극(235) 및 방열 패드(240)의 두께는 서로 다르게 조절될 수 있다. 예컨대, 방열 패드(240)의 두께는 제1 하부 전극(225) 및 제2 하부 전극(235)의 두께보다 클 수 있다.
전극들(220, 230)은 전기적 도전성 물질을 포함할 수 있고, 예를 들어, Ni, Pt, Pd, Rh, W, Ti, Al, Ag, Au, Cu 등과 같은 금속을 포함할 수 있다. 방열 패드(240)는 열전도성이 상대적으로 높은 물질을 포함할 수 있고, 특히, Ag, Cu, Au, Al, Mo 등을 포함할 수 있다. 전극들(220, 230)과 방열 패드(240)는 동일한 물질로 형성되거나, 서로 다른 물질로 형성될 수 있다. 전극들(220, 230)과 방열 패드(240)가 동일한 물질로 형성되는 경우, 전극들(220, 230)과 방열 패드(240)는 동일한 공정을 통해 동시에 형성될 수 있다.
발광 다이오드(100)는 제1 기판(200) 상에 위치한다. 발광 다이오드(100)는 발광부(100L), 제1 패드 전극(171) 및 제2 패드 전극(173)을 포함한다.
발광부(100L)는 P-N 접합을 통한 발광 구조를 가질 수 있고, 활성층을 포함하는 반도체 적층 구조로 형성된 발광 구조체를 포함할 수 있다. 특히, 발광부(100L)는 질화물 반도체를 포함하는 발광 구조체를 포함할 수 있다. 이때, 상기 발광 구조체의 두께는 20㎛일 수 있고, 나아가, 100㎛이상일 수 있다. 또한, 상기 발광 구조체는 질화물계 성장 기판을 포함할 수 있고, 예를 들어, GaN기판을 포함할 수 있다. 이와 같이, 발광 구조체가 질화물계 성장 기판을 포함하고, 상술한 범위의 두께로 형성됨으로써, 열 방출 효율 및 열 분배 효율을 향상시켜 발광 다이오드(100)의 접합 온도(Tj, junction temperature)를 낮출 수 있다. 따라서, 발광 다이오드(100) 및 발광 장치의 열적 신뢰성이 향상될 수 있다.
한편, 제1 및 제2 패드 전극(171, 173)은 발광부(100L)의 하부에 위치할 수 있고, 각각 상기 발광 구조체의 서로 다른 극성의 반도체층에 연결될 수 있다. 이와 같이, 본 실시예의 발광 다이오드(100)는 그 하부에 형성된 패드 전극들을 갖는 구조이면 제한되지 않으며, 예를 들어, 발광 다이오드(100)는 플립칩형 발광 다이오드일 수 있다.
이하, 도 3 및 도 4를 참조하여 발광 다이오드(100)의 구조에 관해 더욱 구체적으로 설명한다. 다만, 본 실시예에서 설명되는 발광 다이오드(100)의 구조는 예시적인 것이며, 본 발명이 이에 한정되는 것은 아니다. 도 3(a)는 발광 다이오드(100)의 평면도이고, 도 3(b)는 메사(120m)의 위치, 제1 컨택 전극(130)의 컨택 영역(120a), 제1 및 제2 개구부(160a, 160b)의 위치를 설명하기 위한 평면도이다. 도 4는 도 3의 A-A'선에 대응하는 부분의 단면을 도시하는 단면도이다.
도 3 및 도 4를 참조하면, 발광 다이오드(100)는 발광 구조체(120), 제1 컨택 전극(130), 제2 컨택 전극(140), 절연층(150, 160), 및 제1 및 제2 패드 전극(171, 173)을 포함한다.
발광 구조체(120)는 제1 도전형 반도체층(121), 제1 도전형 반도체층(121) 상에 위치하는 활성층(123), 및 활성층(123) 상에 위치하는 제2 도전형 반도체층(125)을 포함한다. 제1 도전형 반도체층(121), 활성층(123) 및 제2 도전형 반도체층(125)은 Ⅲ-Ⅴ 계열 화합물 반도체를 포함할 수 있고, 예를 들어, (Al, Ga, In)N과 같은 질화물계 반도체를 포함할 수 있다. 제1 도전형 반도체층(121)은 n형 불순물(예를 들어, Si)을 포함할 수 있고, 제2 도전형 반도체층(125)은 p형 불순물(예를 들어, Mg)을 포함할 수 있다. 또한, 그 반대일 수도 있다. 활성층(123)은 다중양자우물 구조(MQW)를 포함할 수 있고, 원하는 피크 파장의 광을 방출하도록 그 조성비가 결정될 수 있다.
또한, 발광 구조체(120)는 제2 도전형 반도체층(125) 및 활성층(123)이 부분적으로 제거되어 제1 도전형 반도체층(121)이 부분적으로 노출된 영역을 포함할 수 있다. 도 4에 도시된 바와 같이, 제1 도전형 반도체층(121)이 부분적으로 노출된 영역은, 제2 도전형 반도체층(125) 및 활성층(123)을 부분적으로 제거하여 제2 도전형 반도체층(125) 및 활성층(123)을 포함하는 메사(120m)를 형성함으로써 제공될 수 있다. 발광 구조체(120)는 복수의 메사(120m)를 포함할 수 있고, 메사들(120m)은 동일한 방향으로 연장된 기다란 형상을 가질 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
또한, 발광 구조체(120)는 제1 도전형 반도체층(121)의 아래에 위치하는 질화물계 성장 기판(110)을 더 포함할 수 있다. 예를 들어, 상기 성장 기판은 질화갈륨 기판, 질화알루미늄 기판을 포함할 수 있다.
발광 구조체(120)의 두께(T)는 소정 범위 이상의 두께를 가질 수 있다. 발광 구조체(120)의 두께(T)는 약 20㎛이상일 수 있고, 나아가, 약 100㎛이상일 수 있다. 발광 구조체(120)의 두께(T)는 성장 기판(110), 제1 도전형 반도체층(121), 활성층(123) 및 제2 도전형 반도체층(125)의 두께를 모두 더한 것과 같다. 이와 달리, 발광 구조체(120)가 성장 기판을 포함하지 않는 경우, 제1 도전형 반도체층(121)의 두께를 소정 두께 이상으로 성장시킴으로써, 발광 구조체(120)가 약 20㎛이상의 두께를 갖도록 구현할 수 있다. 이 경우, 성장 기판은 사파이어 기판과 같은 이종 기판일 수도 있고, 상기 이종의 성장 기판은 제1 도전형 반도체층(121)으로부터 분리되어 제거될 수도 있다.
발광 구조체(120)의 두께(T)를 상술한 소정 범위로 형성함으로써, 열 방출 효율 및 열 분배 효율을 향상시킬 수 있다. 이에 따라, 발광 다이오드(100)의 접합 온도를 저하시킬 수 있어, 열에 의한 발광 다이오드(100)의 효율 저하 및 신뢰성 저하를 방지할 수 있다.
제2 컨택 전극(140)은 제2 도전형 반도체층(125) 상에 위치하며, 제2 도전형 반도체층(125)과 오믹 컨택할 수 있다. 또한, 제2 컨택 전극(140)은 제2 도전형 반도체층(125)의 상면을 적어도 부분적으로 덮을 수 있으며, 나아가, 제2 도전형 반도체층(125)의 상면을 전반적으로 덮도록 배치될 수 있다. 즉, 제2 컨택 전극(140)은 메사들(120m) 상에 위치할 수 있다.
제2 컨택 전극(140)은 제2 도전형 반도체층(125)에 오믹 컨택할 수 있는 물질로 형성될 수 있고, 예를 들어, 금속성 물질 및/또는 도전성 산화물을 포함할 수 있다.
제2 컨택 전극(140)이 금속성 물질을 포함하는 경우, 제2 컨택 전극(140)은 반사층 및 상기 반사층을 덮는 커버층을 포함할 수 있다. 상술한 바와 같이, 제2 컨택 전극(140)은 제2 도전형 반도체층(125)과 오믹 컨택되는 것과 더불어, 광을 반사시키는 기능을 할 수 있다. 따라서, 상기 반사층은 높은 반사도를 가지면서 제2 도전형 반도체층(125)과 오믹 접촉을 형성할 수 있는 금속을 포함할 수 있다. 예를 들어, 상기 반사층은 Ni, Pt, Pd, Rh, W, Ti, Al, Mg, Ag 및 Au 중 적어도 하나를 포함할 수 있다. 또한, 상기 반사층은 단일층 또는 다중층을 포함할 수 있다. 상기 커버층은 상기 반사층과 다른 물질 간의 상호 확산을 방지할 수 있고, 외부의 다른 물질이 상기 반사층에 확산하여 상기 반사층이 손상되는 것을 방지할 수 있다. 따라서, 상기 커버층은 상기 반사층의 하면 및 측면을 덮도록 형성될 수 있다. 상기 커버층은 상기 반사층과 함께 제2 도전형 반도체층(125)과 전기적으로 연결될 수 있어서, 상기 반사층과 함께 전극 역할을 할 수 있다. 상기 커버층은, 예를 들어, Au, Ni, Ti, Cr 등을 포함할 수 있으며, 단일층 또는 다중층을 포함할 수도 있다. 이러한 반사층 및 커버층은 전자선 증착, 도금 방식 등을 이용하여 형성될 수 있다.
한편, 제2 컨택 전극(140)이 도전성 산화물을 포함하는 경우, 상기 도전성 산화물은 ITO, ZnO, AZO, IZO 등일 수 있다. 제2 컨택 전극(140)이 도전성 산화물을 포함하는 경우, 금속을 포함하는 경우에 비해 더 넓은 영역의 제2 도전형 반도체층(125)의 상면을 커버할 수 있다. 즉, 제1 도전형 반도체층(121)이 노출된 영역의 테두리로부터 제2 컨택 전극(140)까지의 이격 거리는 제2 컨택 전극(140)이 도전성 산화물로 형성된 경우에 상대적으로 더 짧게 형성될 수 있다. 이 경우, 제2 컨택 전극(140)과 제2 도전형 반도체층(125)이 접촉하는 부분에서 제1 컨택 전극(130)과 제1 도전형 반도체층(121)이 접촉하는 부분까지의 최단 거리가 상대적으로 더 짧아질 수 있어서, 발광 다이오드(100)의 순방향 전압(Vf)이 감소될 수 있다.
또한, 제2 컨택 전극(140)이 ITO를 포함하고, 제1 절연층(150)이 SiO2를 포함하며, 제1 컨택 전극(130)이 Ag를 포함하는 경우, ITO/SiO2/Ag 적층 구조를 포함하는 전방위 반사기가 형성될 수 있다.
절연층(150, 160)은 절연층(150, 160)은 제1 및 제2 컨택 전극(130, 140)을 부분적으로 덮고, 제1 컨택 전극(130)과 제2 컨택 전극(140)을 서로 절연시킨다. 절연층(150, 160)은 제1 절연층(150) 및 제2 절연층(160)을 포함할 수 있다. 이하, 제1 절연층(150)에 관하여 먼저 설명하며, 제2 절연층(160)과 관련된 내용은 후술하여 설명한다.
제1 절연층(150)은 발광 구조체(120)의 상면 및 제2 컨택 전극(140)을 부분적으로 덮을 수 있다. 또한, 제1 절연층(150)은 메사(120m)의 측면을 덮고, 메사(120m)의 주변에 노출된 제1 도전형 반도체층(121)을 부분적으로 노출시킬 수 있다. 따라서, 제1 절연층(150)은 제1 도전형 반도체층(121)이 부분적으로 노출된 부분에 대응하는 개구부와 제2 컨택 전극(140)의 일부를 노출시키는 개구부를 포함할 수 있다. 제1 도전형 반도체층(121)이 부분적으로 노출된 개구부를 통해, 제1 도전형 반도체층(121)과 제1 컨택 전극(130)이 오믹 컨택하는 영역(120a)이 형성될 수 있다.
제1 절연층(150)은 절연성의 물질을 포함할 수 있으며, 예를 들어, SiO2, SiNx, MgF2 등을 포함할 수 있다. 나아가, 제1 절연층(150)은 다중층을 포함할 수 있고, 굴절률이 다른 물질이 교대로 적층된 분포 브래그 반사기를 포함할 수도 있다.
제2 컨택 전극(140)이 도전성 산화물을 포함하는 경우, 제1 절연층(150)이 분포 브래그 반사기를 포함하여 발광 다이오드(100)의 발광 효율을 향상시킬 수 있다. 또한, 이와 달리, 제2 컨택 전극(140)이 도전성 산화물을 포함하며, 제1 절연층(150)을 투명 절연 산화물(예를 들어, SiO2)로 형성함으로써, 제2 컨택 전극(140), 제1 절연층(150) 및 제1 컨택 전극(130)의 적층 구조에 의해 형성되는 전방위 반사기를 형성할 수도 있다. 이때, 제1 컨택 전극(130)은 제2 컨택 전극(140)의 일부를 노출시키는 영역을 제외한 제1 절연층(150)의 표면을 거의 전체적으로 덮도록 형성되는 것이 바람직하다. 이에 따라, 제1 절연층(150)의 일부는 제1 컨택 전극(130)과 제2 컨택 전극(140)의 사이에 개재될 수 있다.
나아가, 도시된 바와 달리, 제1 절연층(150)은 발광 구조체(120)의 적어도 일부의 측면을 더 덮을 수 있다. 제1 절연층(150)이 발광 구조체(120)의 측면을 덮는 정도는, 발광 다이오드의 제조 과정에서 칩 단위 개별화(isolation)의 여부에 따라 달라질 수 있다. 즉, 본 실시예와 같이 제1 절연층(150)은 발광 구조체(120)의 상면만 덮도록 형성될 수도 있고, 이와 달리, 발광 다이오드(100)의 제조 과정에서 웨이퍼를 칩 단위로 개별화한 후에 제1 절연층(150)을 형성하는 경우에는 발광 구조체(120)의 측면까지 제1 절연층(150)에 덮일 수 있다.
제1 컨택 전극(130)은 발광 구조체(120)를 부분적으로 덮을 수 있다. 또한, 제1 컨택 전극(130)은 오믹 컨택 영역(120a)을 노출시키는 제1 절연층(150)의 개구부를 통해 제1 도전형 반도체층(121)과 오믹 컨택된다. 본 실시예에 있어서, 제1 컨택 전극(130)은 제1 절연층(150)의 일부 영역을 제외한 다른 부분을 전체적으로 덮도록 형성될 수 있다. 이에 따라, 제1 컨택 전극(130)을 통해 광이 반사될 수 있다. 또한, 제1 컨택 전극(130)은 제1 절연층(150)에 의해 제2 컨택 전극(140)과 전기적으로 절연될 수 있다.
제1 컨택 전극(130)이 일부 영역을 제외하고 발광 구조체(120)의 상면을 전반적으로 덮도록 형성됨으로써, 전류 분산 효율이 더욱 향상될 수 있다. 또한, 제2 컨택 전극(140)에 의해 덮이지 않는 부분을 제1 컨택 전극(130)이 커버할 수 있으므로, 광을 더욱 효과적으로 반사시켜 발광 다이오드(100)의 발광 효율을 향상시킬 수 있다.
상술한 바와 같이, 제1 컨택 전극(130)은 제1 도전형 반도체층(121)과 오믹 컨택함과 아울러, 광을 반사시키는 역할을 할 수 있다. 따라서, 제1 컨택 전극(130)은 Al층과 같은 고반사성 금속층을 포함할 수 있다. 이때, 제1 컨택 전극(130)은 단일층 또는 다중층으로 이루어질 수 있다. 상기 고반사 금속층은 Ti, Cr 또는 Ni 등의 접착층 상에 형성될 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 제1 컨택 전극(130)은 Ni, Pt, Pd, Rh, W, Ti, Al, Mg, Ag 및 Au 중 적어도 하나를 포함할 수도 있다.
또한, 도시된 바와 달리, 제1 컨택 전극(130)은 발광 구조체(120)의 측면까지 덮도록 형성될 수도 있다. 제1 컨택 전극(130)이 발광 구조체(120)의 측면에도 형성되는 경우, 활성층(123)으로부터 측면으로 방출되는 광을 상부로 반사시켜 발광 다이오드(100)의 상면으로 방출되는 광의 비율을 증가시킨다. 제1 컨택 전극(130)의 발광 구조체(120)의 측면까지 덮도록 형성되는 경우, 발광 구조체(120)의 측면과 제1 컨택 전극(130) 사이에는 제1 절연층(150)이 개재될 수 있다.
한편, 상기 발광 다이오드(100)는 연결 전극(미도시)을 더 포함할 수 있다. 연결 전극은 제2 컨택 전극(140) 상에 위치할 수 있고, 제1 절연층(150)의 개구부를 통해 제2 컨택 전극(140)과 전기적으로 연결될 수 있다. 연결 전극의 상면은 제1 컨택 전극(130)의 상면과 대체로 동일한 높이로 형성될 수 있다. 또한, 연결 전극은 제1 컨택 전극(130)과 동일 공정에서 형성될 수 있으며, 연결 전극과 제1 컨택 전극(130)은 서로 동일한 물질을 포함할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 연결 전극과 제1 컨택 전극(130)은 서로 다른 물질을 포함할 수 있다.
제2 절연층(160)은 제1 컨택 전극(130)을 부분적으로 덮을 수 있으며, 제1 컨택 전극(130)을 부분적으로 노출시키는 제1 개구부(160a), 및 제2 컨택 전극(140)을 부분적으로 노출시키는 제2 개구부(160b)를 포함할 수 있다. 제1 및 제2 개구부(160a, 160b) 각각은 하나 이상 형성될 수 있다.
제2 절연층(160)은 절연성의 물질을 포함할 수 있으며, 예를 들어, SiO2, SiNx, MgF2을 포함할 수 있다. 나아가, 제2 절연층(160)은 다중층을 포함할 수 있고, 굴절률이 다른 물질이 교대로 적층된 분포 브래그 반사기를 포함할 수도 있다. 제2 절연층(160)이 다중층으로 이루어진 경우, 제2 절연층(160)의 최상부층은 SiNx로 형성될 수 있다. 제2 절연층(160)의 최상부층이 SiNx로 형성됨으로써, 발광 구조체(120)로 습기가 침투하는 것을 더욱 효과적으로 방지할 수 있다.
제1 및 제2 패드 전극(171, 173)은 각각 제1 및 제2 개구부(160a, 160b)를 통해 제1 및 제2 컨택 전극(130, 140)에 전기적으로 연결될 수 있다. 제1 및 제2 패드 전극(171, 173)은 발광 구조체(120)에 외부 전원을 공급하는 역할을 할 수 있다. 제1 및 제2 패드 전극(171, 173)은 제1 기판(200)에 전기적으로 연결될 수 있다. 제1 및 제2 패드 전극(171, 173)은 각각 제1 기판(200)의 제1 및 제2 전극(220, 230)에 전기적으로 연결될 수 있다. 이때, 패드 전극들(171, 173)은 솔더링 또는 공정 본딩 등을 통해 전극들(220, 230)에 전기적으로 접속될 수 있다.
본 실시예에 따르면, 하부에 위치하는 패드 전극들(171, 173)을 갖는 발광 다이오드(100)가 제1 기판(200)에 실장되고, 상기 제1 기판(200)은 제2 기판(300)에 실장되는 구조를 갖는 발광 장치가 제공된다. 이에 따라, 발광 다이오드(100)의 구동 시 발생하는 열을 제1 기판(200), 특히 제1 기판(200)의 방열 패드(240) 및 제2 기판(300), 특히 제2 기판(300)의 베이스(310)를 통해 효과적으로 외부로 방출시킬 수 있다. 또한, 발광 구조체(120)가 소정 두께 이상으로 형성됨으로써, 열 방출 효율 및 열 분배 효율이 향상될 수 있다. 따라서 발광 장치의 신뢰성이 향상될 수 있고, 특히, 고전류를 인가하여도 신뢰성이 저하되지 않는 고출력 발광 장치가 제공될 수 있다.
도 5는 본 발명의 또 다른 실시예에 따른 발광 장치를 설명하기 위한 단면도이다.
도 5의 발광 장치는, 도 1 및 도 2의 발광 장치와 비교하여 파장변환부(190)를 더 포함하는 점에서 차이가 있다. 이하 차이점을 중심으로 본 실시예의 발광 장치에 관해 설명하며, 중복되는 구성에 대한 상세한 설명은 생략한다.
도 5를 참조하면, 발광 장치는 발광 다이오드(100), 제1 기판(200), 제2 기판(300), 및 파장변환부(190)를 포함한다. 제1 기판(200)은 제2 기판(300) 상에 위치하고, 발광 다이오드(100)는 제1 기판(200) 상에 위치한다. 발광 다이오드(100), 제1 기판(200) 및 제2 기판(300)은 서로 전기적으로 연결될 수 있다.
파장변환부(190)는 발광 다이오드(100)를 적어도 부분적으로 덮을 수 있다. 특히, 파장변환부(190)는 발광 다이오드(100)의 상면을 덮을 수 있고, 나아가, 발광 다이오드(100)의 측면의 적어도 일부를 덮을 수 있다. 파장변환부(190)에 의해 발광 구조체(120)로부터 방출된 광이 파장변환되어 다양한 색의 광을 구현할 수 있는 발광 장치가 제공될 수 있다. 특히, 상기 발광 장치는 백색광을 방출할 수 있다.
파장변환부(190)는 광의 파장을 변환시킬 수 있는 물질을 포함할 수 있다. 예를 들어, 파장변환부(190)는 담지체 내에 형광체가 분산된 형태로 제공될 수 있고, 또는 단결정 형광체 시트 형태로 제공될 수도 있으며, 또는 양자점 물질을 포함하는 형태로 제공될 수도 있다. 또한, 파장변환부(190)의 두께는 대체로 일정할 수 있으며, 예를 들어, 컨포멀 코팅과 같은 방법을 이용하여 제조될 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
본 실시예에 따르면, 파장변환부(190)를 포함하는 발광 장치를 제공하여, 다양한 색, 특히 백색광을 방출하는 발광 장치가 구현될 수 있다. 이때, 발광 장치는 우수한 열 방출 효율을 가지므로, 발광 다이오드(100)의 열에 의해 파장변환부(190)가 손상되거나 열화되는 것이 방지될 수 있다. 따라서 파장변환부(190)의 손상에 의한 발광 강도의 저하 및 발광 색의 변화 등이 방지되어, 신뢰성이 우수한 발광 장치가 제공된다.
이하, 본 발명의 실시예에 따른 발광 장치의 접합 온도를 설명하기 위한 실험예를 설명한다.
본 실험예에서, 실시예 1 내지 4 및 비교예의 발광 장치는 모두 도 1 및 도 2의 발광 장치와 동일하나, 각각의 실시예 및 비교예들의 발광 장치는 다른 발광 구조체의 두께를 갖는다. 본 실험에서, 실시예 및 비교예들의 발광 장치들은 동일한 전류에서 구동되었으며, 이때, 발광 다이오드의 접합 온도를 측정하여 이를 하기 표 1에 나타내었다.
실시예 1 실시예 2 실시예 3 실시예 4 비교예
발광 구조체의 두께 (㎛) 20 50 100 200 10
평균 접합 온도 (℃) 83.7 81.9 81 80.5 86.7
상기 표 1에서 알 수 있듯이, 발광 장치의 발광 구조체 두께가 약 20㎛ 이상의 두께로 형성됨으로써, 발광 다이오드의 평균 접합 온도가 85℃ 이하로 저하됨을 알 수 있다. 따라서, 본 발명의 실시예들에 따르면, 열적 신뢰성이 향상된 발광 장치가 제공될 수 있다.
이상에서, 본 발명의 다양한 실시예들에 대하여 설명하였지만, 상술한 각각의 실시예들 및 특징들에 본 발명이 한정되는 것은 아니다. 실시예들에서 설명하는 기술적 특징들의 결합 및 치환을 통하여 변경된 발명 역시 본 발명의 범위에 모두 포함되며, 본 발명의 특허청구범위에 의한 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변형과 변경이 가능하다.

Claims (17)

  1. 제2 베이스, 상기 제2 베이스 상에 위치하는 도전성 패턴, 및 상기 제2 베이스와 상기 도전성 패턴 사이에 위치하는 절연 패턴을 포함하는 제2 기판;
    상기 제2 기판 상에 위치하며, 제1 베이스, 제1 전극, 및 제2 전극을 포함하는 제1 기판; 및
    상기 제1 기판 상에 위치하며, 발광부 및 상기 발광부와 제1 기판 사이에 위치하는 제1 및 제2 패드 전극을 포함하는 발광 다이오드를 포함하고,
    상기 제2 기판의 제2 베이스는 상부로 돌출된 돌출부를 포함하며, 상기 돌출부는 상기 제1 기판과 접하는 발광 장치.
  2. 청구항 1에 있어서,
    상기 제1 기판은 상기 제1 베이스의 하부면에 위치하는 방열 패드를 더 포함하고,
    상기 방열 패드는 상기 돌출부에 접하는 발광 장치.
  3. 청구항 2에 있어서,
    상기 제1 전극은, 상기 제1 베이스의 상부면 및 하부면에 각각 위치하는 제1 상부 전극 및 제1 하부 전극, 및 상기 제1 상부 전극과 제1 하부 전극을 연결하는 제1 비아 전극을 포함하고,
    상기 제2 전극은, 상기 제1 베이스의 상부면 및 하부면에 각각 위치하는 제2 상부 전극 및 제2 하부 전극, 및 상기 제2 상부 전극과 제2 하부 전극을 연결하는 제2 비아 전극을 포함하며,
    상기 제1 및 제2 비아 전극은 상기 제1 베이스를 관통하는 발광 장치.
  4. 청구항 3에 있어서,
    상기 방열 패드는 상기 제1 하부 전극과 제2 하부 전극의 사이에 위치하는 발광 장치.
  5. 청구항 1에 있어서,
    상기 도전성 패턴은 서로 이격된 제1 및 제2 도전성 패턴을 포함하고,
    상기 제1 및 제2 도전성 패턴은 각각 제1 및 제2 전극에 전기적으로 연결된 발광 장치.
  6. 청구항 5에 있어서,
    상기 돌출부는 상기 제1 및 제2 도전성 패턴의 사이에 위치하는 발광 장치.
  7. 청구항 1에 있어서,
    상기 제1 베이스는 절연성 세라믹을 포함하고, 상기 제2 베이스는 도전성 금속을 포함하는 발광 장치.
  8. 청구항 1에 있어서,
    상기 발광 다이오드는 질화물 반도체를 포함하는 발광 구조체를 포함하고,
    상기 발광 구조체의 두께는 20㎛이상인 발광 장치.
  9. 청구항 8에 있어서,
    상기 발광 구조체의 두께는 100㎛이상인 발광 장치.
  10. 청구항 8에 있어서,
    상기 발광 구조체는 질화물계 성장 기판을 더 포함하는 발광 장치.
  11. 청구항 10에 있어서,
    상기 질화물계 성장 기판은 GaN기판인 발광 장치.
  12. 청구항 1에 있어서,
    상기 발광 다이오드는,
    제1 도전형 반도체층, 제2 도전형 반도체층 및 상기 제1 도전형 반도체층과 제2 도전형 반도체층의 사이에 위치하는 활성층을 포함하는 발광 구조체;
    상기 발광 구조체 상에 위치하며, 상기 제1 및 제2 도전형 반도체층에 각각 오믹 컨택하는 제1 컨택 전극 및 제2 컨택 전극; 및
    상기 제1 컨택 전극 및 제2 컨택 전극을 절연시키며, 상기 제1 및 제2 컨택 전극을 부분적으로 덮는 절연층을 포함하고,
    상기 제1 패드 전극과 제2 패드 전극은 각각 상기 제1 컨택 전극 및 제2 컨택 전극에 전기적으로 연결된 발광 장치.
  13. 청구항 12에 있어서,
    상기 발광 구조체는 상기 제2 도전형 반도체층 및 상기 활성층을 포함하는 하나 이상의 메사를 포함하고,
    상기 메사의 주변에는 상기 제1 도전형 반도체층이 노출된 영역이 형성되며, 상기 제1 도전형 반도체층이 노출된 영역을 통해 상기 제1 컨택 전극과 상기 제1 도전형 반도체층이 오믹 컨택하는 발광 장치.
  14. 청구항 12에 있어서,
    상기 발광 구조체의 두께는 20㎛이상인 발광 장치.
  15. 청구항 14에 있어서,
    상기 발광 구조체는 질화물계 성장 기판을 더 포함하는 발광 장치.
  16. 청구항 14에 있어서,
    상기 발광 구조체의 두께는 100㎛이상인 발광 장치.
  17. 청구항 1에 있어서,
    상기 발광 다이오드의 적어도 일부 표면을 덮는 파장변환부를 더 포함하는 발광 장치.
PCT/KR2016/000975 2015-02-02 2016-01-29 발광 장치 WO2016126053A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680005563.7A CN107112404B (zh) 2015-02-02 2016-01-29 发光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0016163 2015-02-02
KR1020150016163A KR20160094755A (ko) 2015-02-02 2015-02-02 발광 장치

Publications (1)

Publication Number Publication Date
WO2016126053A1 true WO2016126053A1 (ko) 2016-08-11

Family

ID=56564332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000975 WO2016126053A1 (ko) 2015-02-02 2016-01-29 발광 장치

Country Status (3)

Country Link
KR (1) KR20160094755A (ko)
CN (1) CN107112404B (ko)
WO (1) WO2016126053A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282686A1 (ko) * 2021-07-09 2023-01-12 서울반도체 주식회사 발광 장치 및 이를 포함하는 발광모듈
WO2024101951A1 (ko) * 2022-11-11 2024-05-16 서울반도체주식회사 광원 모듈

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107591474A (zh) * 2016-07-08 2018-01-16 比亚迪股份有限公司 Led模组及其制备方法
KR102705092B1 (ko) * 2016-08-30 2024-09-10 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 모듈
KR102577887B1 (ko) * 2018-11-28 2023-09-14 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 패키지
KR102345831B1 (ko) * 2020-02-12 2022-01-03 주식회사 에스엘바이오닉스 반도체 발광소자
WO2021162516A1 (ko) * 2020-02-11 2021-08-19 주식회사 에스엘바이오닉스 반도체 발광소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339559A (ja) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Led部品およびその製造方法
JP2011071554A (ja) * 2010-12-27 2011-04-07 Kyocera Corp 発光素子用配線基板ならびに発光装置
KR20110114494A (ko) * 2010-04-13 2011-10-19 박재순 발광 모듈 및 발광 모듈의 제조 방법
KR20120001460A (ko) * 2010-06-29 2012-01-04 삼성엘이디 주식회사 발광모듈 및 그를 이용한 헤드 램프 모듈
KR20140047871A (ko) * 2012-10-15 2014-04-23 서울바이오시스 주식회사 반도체 소자 및 및 그것을 제조하는 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339559A (ja) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Led部品およびその製造方法
KR20110114494A (ko) * 2010-04-13 2011-10-19 박재순 발광 모듈 및 발광 모듈의 제조 방법
KR20120001460A (ko) * 2010-06-29 2012-01-04 삼성엘이디 주식회사 발광모듈 및 그를 이용한 헤드 램프 모듈
JP2011071554A (ja) * 2010-12-27 2011-04-07 Kyocera Corp 発光素子用配線基板ならびに発光装置
KR20140047871A (ko) * 2012-10-15 2014-04-23 서울바이오시스 주식회사 반도체 소자 및 및 그것을 제조하는 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282686A1 (ko) * 2021-07-09 2023-01-12 서울반도체 주식회사 발광 장치 및 이를 포함하는 발광모듈
WO2024101951A1 (ko) * 2022-11-11 2024-05-16 서울반도체주식회사 광원 모듈

Also Published As

Publication number Publication date
CN107112404B (zh) 2019-09-24
CN107112404A (zh) 2017-08-29
KR20160094755A (ko) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2016126053A1 (ko) 발광 장치
KR101142965B1 (ko) 웨이퍼 레벨 발광 다이오드 패키지 및 그것을 제조하는 방법
JP5973693B2 (ja) 発光素子及び発光素子パッケージ
KR101303168B1 (ko) 반도체 발광부 연결체
JP5458044B2 (ja) 発光素子および発光素子の製造方法
WO2009154383A2 (ko) 반도체 발광소자
WO2014178583A1 (ko) 솔더 페이스트를 통해 접착된 발광 다이오드를 갖는 발광 다이오드 모듈 및 발광 다이오드
WO2011126248A2 (en) Light emitting diode and method of fabricating the same
WO2018080224A1 (ko) 반도체 소자 패키지
KR101138945B1 (ko) 복수개의 발광셀들을 갖는 발광 소자 및 그것을 탑재한패키지
WO2015190722A1 (ko) 발광 소자 및 조명 장치
WO2016204482A1 (ko) 복수의 파장변환부를 포함하는 발광 소자 및 그 제조 방법
WO2017014512A1 (ko) 발광 소자
CN104377218A (zh) 发光二极管
KR20170142054A (ko) 전극 구조를 갖는 수직형 발광 다이오드 및 그것을 갖는 발광 다이오드 패키지
KR20160025456A (ko) 발광 다이오드 및 그 제조 방법
KR20190024331A (ko) 반도체 소자 및 이를 포함하는 헤드 램프
WO2015190735A1 (ko) 발광소자 및 이를 구비한 발광소자 패키지
WO2019045435A1 (en) LIGHT EMITTING DIODE APPARATUS AND METHOD FOR MANUFACTURING THE SAME
WO2017116094A1 (ko) 발광 소자
KR20120031472A (ko) 웨이퍼 레벨 발광 다이오드 패키지 및 그것을 제조하는 방법
WO2014193109A1 (en) Light emitting diode having plurality of light emitting elements and method of fabricating the same
WO2016159694A1 (ko) 발광 소자
KR101115540B1 (ko) 발광다이오드 패키지
WO2018030680A1 (ko) 반도체 발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746794

Country of ref document: EP

Kind code of ref document: A1