WO2011111705A1 - t-ブトキシカルボニルアミン化合物の製造方法 - Google Patents

t-ブトキシカルボニルアミン化合物の製造方法 Download PDF

Info

Publication number
WO2011111705A1
WO2011111705A1 PCT/JP2011/055380 JP2011055380W WO2011111705A1 WO 2011111705 A1 WO2011111705 A1 WO 2011111705A1 JP 2011055380 W JP2011055380 W JP 2011055380W WO 2011111705 A1 WO2011111705 A1 WO 2011111705A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
phosgene
primary
compound
solution containing
Prior art date
Application number
PCT/JP2011/055380
Other languages
English (en)
French (fr)
Inventor
博生 井上
野田 薫
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to JP2012504477A priority Critical patent/JP5603409B2/ja
Priority to EP11753363.8A priority patent/EP2546235B1/en
Priority to US13/583,095 priority patent/US8653269B2/en
Priority to CN201180013214.7A priority patent/CN102791692B/zh
Priority to KR1020127023527A priority patent/KR101406602B1/ko
Publication of WO2011111705A1 publication Critical patent/WO2011111705A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/75Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates

Definitions

  • the present invention relates to a method for producing a t-butoxycarbonylamine compound. More specifically, the present invention provides a high selectivity and low cost t-but even with a low nucleophilic primary or secondary amine compound using phosgene or a phosgene equivalent, t-butanol and an organic base. The present invention relates to a method for producing a butoxycarbonylamine compound. This application claims priority on March 12, 2010 based on Japanese Patent Application No. 2010-056717 for which it applied to Japan, and uses the content for it here.
  • a primary or secondary amine compound and phosgene or a phosgene equivalent are reacted in the presence of an organic base. And then reacting t-butanol. Since the phosgene or phosgene equivalent used in this reaction is available at low cost, this method is an industrially useful method.
  • Non-Patent Document 1 discloses that a solution of a compound represented by formula (D) is added at 0 ° C. by adding triphosgene, then diisopropylethylamine, and finally t-butanol. It is disclosed that the Boc compound represented by the formula (E) was obtained in a yield of 87%.
  • Patent Document 1 A method described in Patent Document 1 or Non-Patent Document 1, that is, a method in which phosgene or a phosgene equivalent is reacted with a primary or secondary amine compound in the presence of an organic base, and then t-butanol is reacted.
  • a compound having an amino group with low nucleophilicity for example, a 2-aminopyridine derivative
  • a large amount of a compound having a urea bond is by-produced, resulting in a low yield of the Boc compound. There was a thing.
  • the present invention provides a t-butoxycarbonylamine that is low in nucleophilicity and is low in selectivity with high selectivity using phosgene or a phosgene equivalent, t-butanol, and an organic base. It aims at providing the method of manufacturing a compound.
  • the present inventor has obtained phosgene or a phosgene equivalent, t-butanol, an organic base, a primary or secondary amine compound, or a primary or secondary ammonium salt. It has been found that by reacting under certain conditions, by-production of a compound having a urea bond can be suppressed, and a t-butoxycarbonylamine compound can be obtained in high yield. The present invention has been completed by further studies based on this finding.
  • the present invention includes the following aspects.
  • (1) In a method for producing a t-butoxycarbonylamine compound using phosgene or a phosgene equivalent, t-butanol, an organic base, and a primary or secondary amine compound or a primary or secondary ammonium salt
  • a method for producing a t-butoxycarbonylamine compound comprising any of the following methods (a) to (f): (A) A method of adding a solution containing a primary or secondary amine compound and an organic base to a solution containing phosgene or a phosgene equivalent and t-butanol.
  • (B) A method of adding a solution containing a primary or secondary amine compound, an organic base and t-butanol to a solution containing phosgene or a phosgene equivalent.
  • (C) A method in which a solution containing a primary or secondary amine compound, a solution containing an organic base, and a solution containing phosgene or a phosgene equivalent are added almost simultaneously to a solution containing t-butanol.
  • (D) A method in which a solution containing a primary or secondary amine compound and a solution containing an organic base are added to a solution containing t-butanol while blowing phosgene gas.
  • (E) A method of adding a solution containing t-butanol, a primary or secondary amine compound, and an organic base while blowing phosgene gas into the reaction solution.
  • (F) A method of adding an organic base to a solution containing phosgene or a phosgene equivalent, t-butanol, and a primary or secondary ammonium salt.
  • (2) The method for producing a t-butoxycarbonylamine compound according to (1), wherein the primary or secondary ammonium salt is a primary or secondary ammonium hydrochloride.
  • (3) The method for producing a t-butoxycarbonylamine compound according to (1) or (2), wherein the reaction is carried out in an organic solvent.
  • (4) The method for producing a t-butoxycarbonylamine compound according to (3), wherein the organic solvent is at least one selected from the group consisting of ethyl acetate, chlorobenzene and chloroform.
  • a Boc group can be introduced into a primary or secondary amine compound at a low cost while suppressing the formation of by-products.
  • the method for producing the t-butoxycarbonylamine compound of the present invention comprises phosgene or a phosgene equivalent, t-butanol, an organic base, a primary or secondary amine compound, or a primary or secondary ammonium salt. Is reacted under certain conditions.
  • the primary amine compound used in the present invention is a compound represented by NH 2 R 0
  • the secondary amine compound is a compound represented by NHR 1 R 2 .
  • R 0 , R 1 , and R 2 are not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and an aralkyl group. Of these, aryl groups and heteroaryl groups are preferred.
  • Examples of primary or secondary amine compounds used in the present invention include aliphatic amine compounds such as methylamine, dimethylamine, ethylamine, diethylamine, propylamine, cyclohexylamine, piperidine, pyrrolidine, and amantadine; aniline, o-toluidine, p -Aromatic amine compounds such as toluidine, catecholamine and phenethylamine; and heterocyclic ring-containing amine compounds such as quinolineamine, pyridineamine and pyrrolamine.
  • aliphatic amine compounds such as methylamine, dimethylamine, ethylamine, diethylamine, propylamine, cyclohexylamine, piperidine, pyrrolidine, and amantadine
  • aniline, o-toluidine, p -Aromatic amine compounds such as toluidine, catecholamine and phenethylamine
  • the present invention is suitable for a compound having a low nucleophilic amino group, suitable for an amine compound having an N-substituted heteroaromatic hydrocarbon group, and particularly suitable for a 2-aminopyridine derivative.
  • 2-aminopyridine derivatives the compound represented by the formula [1] is preferable.
  • R represents a C1-6 alkyl group, a C1-6 haloalkyl group, a C2-6 alkenyl group, a C2-6 alkynyl group, a C3-6 cycloalkyl group, a C1-6 alkoxy group, a C1-6 Alkoxy C1-6 alkyl group, C1-6 alkylthio group, amino group, mono or di C1-6 alkylamino group, C1-6 alkylcarbonyloxy group, aryl group, heteroaryl group, aralkyl group, heteroaralkyl group, aralkyloxy Group, heteroaralkyloxy group, nitro group, cyano group, hydroxy group, halogen atom, —OSO 2 CF 3 , —OSO 2 Me, —OSO 2 Ph or —OSO 2 Ph-p-Me or a formula [a] Represents a group.
  • n represents the number of R substitutions and is an integer of 0 to 4. When n is 2 or more, Rs may be the same or different.
  • the C1-6 alkyl group is a saturated aliphatic hydrocarbon group composed of 1 to 6 carbon atoms.
  • the C1-6 alkyl group may be linear or branched. Specific examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, hexyl group and the like. .
  • the C1-6 haloalkyl group is a group in which a hydrogen atom in the C1-6 alkyl group is substituted with a halogen atom.
  • the C2-6 alkenyl group is an unsaturated hydrocarbon group composed of 2 to 6 carbon atoms having at least one carbon-carbon double bond.
  • the alkenyl group may be linear or branched. Specifically, vinyl group, 1-propenyl group, allyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-methyl-2-propenyl group, 2-methyl-2-propenyl group, 1 -Pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl Group, 4-hexenyl group, 5-hexenyl group and the like.
  • the C2-6 alkynyl group is an unsaturated hydrocarbon group composed of 2 to 6 carbon atoms having at least one carbon-carbon triple bond.
  • the alkynyl group may be linear or branched. Specifically, ethynyl group, 1-propynyl group, propargyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 1-methyl-2-propynyl group, 2-methyl-3-butynyl group, 1 -Pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-methyl-2-butynyl, 2-methyl-3-pentynyl, 1-hexynyl, 1,1-dimethyl-2- A butynyl group etc. can be mentioned.
  • the C3-6 cycloalkyl group is an alkyl group composed of 3 to 6 carbon atoms having a cyclic portion.
  • Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclopropylmethyl group, a 2-cyclopropylethyl group, a cyclopentylmethyl group, and the like.
  • the C1-6 alkoxy group is a group in which a C1-6 alkyl group is bonded to an oxygen atom.
  • C1-6 alkoxy groups include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentyloxy, 1-ethylpropoxy group, n-hexyloxy group, isohexyloxy group, 4-methylpentoxy group, 3-methylpentoxy group, 2-methylpentoxy group, 1-methylpentoxy group, 3,3-dimethyl Butoxy group, 2,2-dimethylbutoxy group, 1,1-dimethylbutoxy group, 1,2-dimethylbutoxy group, 1,3-dimethylbutoxy group, 2,3-dimethylbutoxy group, 1-ethylbutoxy group, 2 -Ethylbutoxy group and the like can be mentioned.
  • the C1-6 alkylthio group is a group in which a C1-6 alkyl group is bonded to a sulfur atom.
  • C1-6 alkylthio groups include methylthio group, ethylthio group, n-propylthio group, i-propylthio group, n-butylthio group, t-butylthio group, pentylthio group, isopentylthio group, 2-methylbutylthio group, neo Pentylthio group, 1-ethylpropylthio group, hexylthio group, isohexylthio group, 4-methylpentylthio group, 3-methylpentylthio group, 2-methylpentylthio group, 1-methylpentylthio group, 3, 3 -Dimethylbutylthio group, 2,2-dimethylbutylthio group, 1,1-dimethylbutylthio group, 1,2-dimethylbuty
  • Examples of the amino group or the mono- or di-C1-6 alkylamino group include an unsubstituted amino group; a methylamino group, an ethylamino group; a dimethylamino group, and a diethylamino group.
  • C1-6 alkylcarbonyloxy groups include acetyloxy group, propionyloxy group, n-propylcarbonyloxy group, i-propylcarbonyloxy group, n-butylcarbonyloxy group, i-butylcarbonyloxy group, pivaloyloxy group and the like. Can be mentioned.
  • the aryl group is a monocyclic or polycyclic aryl group.
  • the polycyclic aryl group as long as at least one ring is an aromatic ring, the remaining ring may be a saturated alicyclic ring, an unsaturated alicyclic ring, or an aromatic ring.
  • the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, an azulenyl group, an indenyl group, an indanyl group, and a tetralinyl group. Of these, a phenyl group is preferred.
  • the heteroaryl group is an aryl group having 1 to 3 nitrogen atoms, oxygen atoms, or sulfur atoms.
  • Examples of the heteroaryl group include a furyl group, a thienyl group, a pyrrolyl group, an oxazolyl group, a pyridyl group, a pyrazyl group, a pyrimidyl group, a quinolinyl group, and a carbazolyl group. Of these, 5- to 10-membered heteroaryl groups are preferred.
  • the aralkyl group is a group in which an aryl group is bonded to an alkyl group.
  • examples of the aralkyl group include benzyl group, phenethyl group, 3-phenylpropyl group, 1-naphthylmethyl group, 2-naphthylmethyl group and the like. Of these, C6-10 aryl C1-6 alkyl groups are preferred.
  • a heteroaralkyl group is a group in which a heteroaryl group is bonded to an alkyl group.
  • Heteroaralkyl groups include 2-pyridylmethyl group, 3-pyridylmethyl group, 4-pyridylmethyl group, 2- (2-pyridyl) ethyl group, 2- (3-pyridyl) ethyl group, 2- (4-pyridyl group) ) Ethyl group, 3- (2-pyridyl) propyl group, 3- (3-pyridyl) propyl group, 3- (4-pyridyl) propyl group, 2-pyrazylmethyl group, 3-pyrazylmethyl group, 2- (2-pyrazyl group) ) Ethyl group, 2- (3-pyrazyl) ) Ethyl group, 2- (3-pyrazyl) ) Ethyl group, 2- (3-pyrazyl) ) Ethyl group, 2- (3-pyrazyl) ethyl group,
  • aralkyloxy group examples include a benzyloxy group, a phenethyloxy group, a 3-phenylpropyloxy group, a 1-naphthylmethyloxy group, and a 2-naphthylmethyloxy group.
  • Heteroaralkyloxy group includes pyridylmethyloxy group, pyridylethyloxy group, pyridylpropyloxy group, pyrazylmethyloxy group, pyrazylethyloxy group, pyrazylpropyloxy group, pyrimidylmethyloxy group, pyrimidyl group
  • Examples include an ethyloxy group, a pyrimidylpropyloxy group, a furylmethyloxy group, a furylethyloxy group, and a furylpropyloxy group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • amine compound represented by the formula [1] examples include 2-aminopyridine, 2-amino-3-picoline, 2-amino-6-picoline, 2-amino-6-bromopyridine, 2-amino- 6-chloropyridine, 2-amino-6-chloromethylpyridine, 2-amino-6-ethylpyridine, 2-amino-6-propylpyridine, (1-methyl-1H-tetrazol-5-yl) -phenyl-methanone And O- (6-amino-pyridin-2-ylmethyl) -oxime.
  • the phosgene equivalent used in the present invention decomposes in the reaction system to produce phosgene. Specific examples include diphosgene and triphosgene. Phosgene or a phosgene equivalent may be dissolved in an organic solvent and added to the reaction system, or may be blown into the reaction system as a gas.
  • the phosgene gas used in the present invention includes not only a gas containing phosgene but also a gas containing a phosgene equivalent.
  • organic base used in the present invention examples include tertiary amines such as trimethylamine, triethylamine and N, N-diisopropylethylamine, and pyridine optionally substituted with a lower alkyl group such as methyl and ethyl. it can. Of these, tertiary amines are preferable, and triethylamine and N, N-diisopropylethylamine are more preferable.
  • the amount of phosgene used from the start of the reaction to the end of the reaction is preferably 0.8 to 10 mol with respect to 1 mol of the primary or secondary amine compound used from the start of the reaction to the end of the reaction. More preferably, it is 0.85 to 8.5 mol, still more preferably 0.9 to 7 mol, and particularly preferably 1 to 5 mol.
  • the amount of the phosgene equivalent is set so that the amount of phosgene generated by the decomposition falls within the above range.
  • the amount of t-butanol used from the start of the reaction to the end of the reaction is preferably from 1 mol to 20 per 1 mol of the primary or secondary amine compound used from the start of the reaction to the end of the reaction.
  • the amount of the organic base used from the start of the reaction to the end of the reaction is preferably 1 with respect to 1 mol of the compound having a primary or secondary amino group used from the start of the reaction to the end of the reaction. It is from mol to 10 mol, more preferably from 1 to 8.5 mol, still more preferably from 1.25 to 7 mol, particularly preferably from 1.5 mol to 5 mol.
  • the reaction according to the present invention is preferably performed in an organic solvent.
  • organic solvents include esters such as ethyl acetate and methyl acetate; halogenated hydrocarbons such as chloroform, methylene chloride and carbon tetrachloride; ethers such as tetrahydrofuran; ethers such as acetone and methyl isobutyl ketone; toluene and chlorobenzene And aromatic hydrocarbons.
  • esters such as ethyl acetate and methyl acetate
  • halogenated hydrocarbons such as chloroform, methylene chloride and carbon tetrachloride
  • ethers such as tetrahydrofuran
  • ethers such as acetone and methyl isobutyl ketone
  • toluene and chlorobenzene and aromatic hydrocarbons.
  • a primary or secondary amine compound or a primary or secondary ammonium salt is reacted with phosgene or a phosgene equivalent.
  • the production method in the present invention includes (A) a method of adding a solution containing a primary or secondary amine compound and an organic base to a solution containing phosgene or a phosgene equivalent and t-butanol, or (B) phosgene or A method of adding a solution containing a primary or secondary amine compound, an organic base, and t-butanol to a solution containing a phosgene equivalent; (C) adding a primary or secondary amine compound to a solution containing t-butanol; A solution containing an organic base, a solution containing an organic base, and a solution containing phosgene or a phosgene equivalent, and (D) a primary solution while blowing a gas of phosgene or a phosgene equivalent into
  • a method of adding a solution containing a secondary amine compound and a solution containing an organic base (E) phosgene gas is blown into the reaction solution A method of adding a solution containing t-butanol, a primary or secondary amine compound and an organic base, and (F) a solution containing phosgene or a phosgene equivalent, t-butanol and a primary or secondary ammonium salt And a method of adding an organic base.
  • Each solution used in the methods (A) to (F) is not particularly limited depending on the preparation method.
  • a solution containing a primary or secondary amine compound and an organic base is added instead of adding a solution containing a primary or secondary amine compound and a solution containing an organic base. It may be added.
  • the solution containing phosgene or a phosgene equivalent should not be mixed with the solution containing the primary or secondary amine compound before being added to the solution containing t-butanol. Is preferred.
  • the primary or secondary ammonium salt used in the method (F) includes a primary or secondary amine compound, an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, and carbonic acid; and tartaric acid, maleic acid, citric acid, and the like.
  • a salt composed of an acid such as an organic acid. Of these, hydrochloride is preferred.
  • Primary or secondary ammonium salts are difficult to react with phosgene or phosgene equivalents.
  • an organic base is added according to the above method (F)
  • the primary or secondary ammonium salt is converted into a primary or secondary amine compound.
  • the primary or secondary amine compound produced by the conversion reacts with phosgene or a phosgene equivalent.
  • the amount of the primary or secondary amine compound can be adjusted by the balance between the solution addition rate and the rate at which the primary or secondary amine compound is consumed by the reaction in the methods shown in the above (A) to (E). . If the rate of addition is faster than the rate of consumption, the primary or secondary amine compound will remain in the system and side reactions will easily occur. Therefore, the addition rate of the free primary or secondary amine compound is preferably 0.31 mol / mol of phosgene molecule or less, more preferably 0.26 mol / mol of phosgene molecule or less, more preferably in the system. Is set to 0.22 mol / mol of phosgene molecule or less, particularly preferably 0.19 mol / mol of phosgene molecule or less.
  • the by-product of the bisurea compound is suppressed.
  • the phosgene or phosgene equivalent is reacted with the primary or secondary amine compound in a state where the amount of the primary or secondary amine compound in the reaction system is small, thereby selecting the t-butoxycarbonylamine compound.
  • the rate can be increased.
  • Example 1 14.8 g (200 mmol) of t-butanol and 29 mL of ethyl acetate were charged, and 9.9 g (100 mmol) of phosgene was blown in. To this solution, a mixed solution of 5.48 g (50.7 mmol) of 2-amino-6-picoline, 12.5 g (97.0 mmol) of N, N-diisopropylethylamine and 32 mL of ethyl acetate was brought to ⁇ 15 to ⁇ 5 ° C. It was added dropwise over 1.5 hours while maintaining the internal temperature. After completion of the dropwise addition, the mixture was stirred for 1 hour.
  • the yield of the urea compound was calculated based on 2-amino-6-picoline as a raw material, and the yield was calculated with 1 molecule of urea compound as 2 molecules of 2-amino-6-picoline (also in the following examples and comparative examples). Calculated similarly.)
  • Example 2 After charging 462 mL of ethyl acetate and cooling to ⁇ 15 ° C., 114.4 g (1.16 mol) of phosgene was blown in over 1.8 hours. To this phosgene solution was added 50.2 g (0.462 mol) of 2-amino-6-picoline, 131.8 g (1.02 mol) of N, N-diisopropylethylamine, 85.7 g (1.16 mol) of t-butanol and A mixed solution of 231 mL of ethyl acetate was added dropwise over 2.8 hours while maintaining the internal temperature at ⁇ 15 to 0 ° C. It stirred for 1.7 hours after completion
  • Example 3 Charge 55.6 g (0.75 mol) of t-butanol and 450 mL of chloroform, and blow in with 65.3 g (0.66 mol) of phosgene over 2.5 hours while maintaining the internal temperature at -5 to 0 ° C. Using a pump, a mixed solution of 32.4 g (0.30 mol) of 2-amino-6-picoline, 133.5 g (1.32 mol) of triethylamine and 300 mL of chloroform was fed into the system over 2.5 hours. (Supply speed 3 mL / min). After completion of the feeding, the mixture was stirred at 0 ° C. for 1 hour.
  • Example 4 Charge 34 mL of ethyl acetate and 5.42 g (50.1 mmol) of 2-amino-6-picoline, and blow in 2.2 g (60.3 mmol) of hydrochloric acid gas to form hydrochloride of 2-amino-6-picoline I let you. To this, 14.8 g (200 mmol) of t-butanol was added, and 10.0 g (101.1 mmol) of phosgene was blown in over 40 minutes while maintaining the internal temperature at ⁇ 5 to ⁇ 10 ° C.
  • the target (6-methyl-pyridin-2-yl) -carbamic acid tert-butyl ester was obtained in a yield of 84%.
  • the yield of 1,3-bis- (6-methyl-pyridin-2-yl) -urea (urea compound) was 14%.
  • Example 5 5.61 g (75.7 mmol) of t-butanol and 22 mL of ethyl acetate were charged, and 3.8 g (38.4 mmol) of phosgene was blown. To this solution was added a mixed solution of 1.95 g (13.7 mmol) of 2-amino-6-chloromethylpyridine, 4.86 g (37.6 mmol) of N, N-diisopropylethylamine and 19 mL of ethyl acetate at ⁇ 15 to ⁇ 5. The solution was added dropwise over 1 hour while maintaining the internal temperature at ° C. It stirred for 1 hour after completion
  • Example 6 After charging 20 mL of ethyl acetate and cooling to about ⁇ 15 ° C., 1.19 g (12.0 mmol) of phosgene was blown in. To this phosgene solution was added 1.31 g (purity 95%, 4.0 mmol) of (1-methyl-1H-tetrazol-5-yl) -phenyl-methanone 0- (6-amino-pyridin-2-ylmethyl) -oxime, A mixed solution of 1.04 g (8.0 mmol) of N, N-diisopropylethylamine, 1.19 g (16.1 mmol) of t-butanol and 60 mL of ethyl acetate was kept at ⁇ 15 to ⁇ 5 ° C.
  • Example 7 After 87 mL of ethyl acetate was charged and cooled to ⁇ 15 ° C., 14.3 g (144.5 mmol) of phosgene was blown in. To this phosgene solution, 10.0 g (57.8 mmol) of 2-amino-6-bromopyridine, 14.9 g (115.6 mmol) of N, N-diisopropylethylamine, 8.57 g (115.6 mmol) of t-butanol Then, a mixed solution of 58 mL of ethyl acetate was added dropwise over 1.8 hours while maintaining the internal temperature at ⁇ 15 to ⁇ 5 ° C.
  • Example 8 After charging 64 mL of ethyl acetate and cooling to about ⁇ 15 ° C. with a salt ice bath, 10.6 g (107 mmol) of phosgene was blown in. To this phosgene solution, 5.5 g (42.8 mmol) of 2-amino-6-chloropyridine, 11.1 g (85.6 mmol) of N, N-diisopropylethylamine, 6.34 g (85.5 mmol) of t-butanol Then, a mixed solution of 43 mL of ethyl acetate was added dropwise over 2.5 hours while maintaining the internal temperature at ⁇ 15 to ⁇ 5 ° C.
  • Example 9 After charging 295.7 g (199 mL) of chloroform and cooling to 0 ° C., 43.08 g (0.436 mol) of phosgene was blown in over 0.5 hours. To this phosgene solution was added 21.66 g (0.200 mol) of 2-amino-6-picoline, 20.26 g (0.200 mol) of triethylamine, 37.02 g (0.499 mol) of t-butanol and 89.6 g of chloroform ( 60 mL) was added dropwise over 1.0 hour while maintaining the internal temperature at -3 to 2 ° C. After completion of dropping, the mixture was stirred for 1.4 hours.
  • Example 11 After feeding 1702 mL of chloroform and cooling to ⁇ 15 ° C., 218.60 g (2.21 mol) of phosgene was blown in over 3.7 hours. A mixed solution of 108.19 g (1.00 mol) of 2-amino-6-picoline, 101.13 g (1.00 mol) of triethylamine, 185.18 g (2.50 mol) of t-butanol and 295 mL of chloroform was added to this phosgene solution. Was added dropwise over 2.8 hours while maintaining the internal temperature at -15 to -5 ° C. After completion of dropping, the mixture was stirred for 1.4 hours.
  • the aqueous phase was extracted with ethyl acetate.
  • the organic phases were mixed together. A part of the organic phase was sampled and quantitatively analyzed by HPLC.
  • the yield of 1,3-bis- (6-methyl-pyridin-2-yl) -urea (urea compound) was 47%, which was significantly increased.
  • the yield of the desired (6-methyl-pyridin-2-yl) -carbamic acid tert-butyl ester was 47%.
  • the organic phases were mixed together. A part of the organic phase was sampled and quantitatively analyzed by HPLC. The yield of the desired (6-methyl-pyridin-2-yl) -carbamic acid tert-butyl ester was 46%. 1,3-bis- (6-methyl-pyridin-2-yl) -urea (urea compound) was by-produced in a large amount of 31%.
  • the Boc group can be introduced into a primary or secondary amine compound at a low cost while suppressing the formation of by-products, and thus the present invention is extremely useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本発明により、低求核性の1級若しくは2級アミン化合物であっても、ホスゲン若しくはホスゲン等価体とt-ブタノールと有機塩基とを用いて、高選択率で安価にt-ブトキシカルボニルアミン化合物を製造する方法が提供される。本発明の製造方法では、ホスゲン若しくはホスゲン等価体とt-ブタノールと、有機塩基と、1級若しくは2級アミン化合物とまたは1級若しくは2級アンモニウム塩とを用いて、t-ブトキシカルボニルアミン化合物を得る。

Description

t-ブトキシカルボニルアミン化合物の製造方法
 本発明は、t-ブトキシカルボニルアミン化合物の製造方法に関する。より詳細には、本発明は、低求核性の1級若しくは2級アミン化合物であっても、ホスゲン若しくはホスゲン等価体とt-ブタノールと有機塩基とを用いて高選択率で安価にt-ブトキシカルボニルアミン化合物を製造する方法に関する。
 本願は、2010年3月12日に、日本に出願された特願2010-056717号に基づき優先権を主張し、その内容をここに援用する。
 1級若しくは2級アミノ基にt-ブトキシカルボニル(以下Bocということがある)基を導入する方法として、1級若しくは2級アミン化合物とホスゲン若しくはホスゲン等価体とを、有機塩基の存在下に反応させ、次いでt-ブタノールを反応させる方法が知られている。この反応で使用されるホスゲン若しくはホスゲン等価体は安価に入手可能であるので、この方法は工業的に有用な方法である。
 例えば、特許文献1には、トルエン溶媒中、式(A)で表されるアニリン化合物とトリホスゲンの存在下、トリエチルアミンを添加して式(B)で表されるイソシアネート化合物へと変換し、次いで、式(B)で表されるイソシアネート化合物のトルエン溶液中にt-ブタノールとトリエチルアミンを添加することによって、式(C)で表されるBoc化合物が得られたことが記載されている。
Figure JPOXMLDOC01-appb-I000001
 非特許文献1には、式(D)で表される化合物のテトラヒドロフラン溶液に、0℃にて、トリホスゲンを添加し、次いでジイソプロピルエチルアミンを添加し、最後にt-ブタノールを添加することによって、目的の式(E)で表されるBoc化合物が収率87%で得られたことが開示されている。
Figure JPOXMLDOC01-appb-I000002
WO2005-23814号
ヨーロピアン ジャーナル オブ オーガニック ケミストリー 2008年 3141頁~3148頁
 特許文献1や非特許文献1に記載されている方法、すなわち、有機塩基の存在下に、ホスゲン若しくはホスゲン等価体と1級若しくは2級アミン化合物とを反応させ、次いでt-ブタノールを反応させる方法を、求核性の低いアミノ基を有する化合物(例えば、2-アミノピリジン誘導体など)に適用すると、ウレア結合を有する化合物が多量に副生してしまい、Boc化合物の収率が低くなってしまうことがあった。
 そこで、本発明は、低求核性の1級若しくは2級アミン化合物であっても、ホスゲン若しくはホスゲン等価体とt-ブタノールと有機塩基とを用いて高選択率で安価にt-ブトキシカルボニルアミン化合物を製造する方法を提供することを目的とする。
 本発明者は、前記目的を達成するために鋭意検討した結果、ホスゲン若しくはホスゲン等価体と、t-ブタノールと、有機塩基と、1級若しくは2級アミン化合物または1級若しくは2級アンモニウム塩とを一定の条件で反応させることによって、ウレア結合を有する化合物の副生が抑制でき、且つt-ブトキシカルボニルアミン化合物が高収率で得られることを見出した。本発明は、この知見に基づいてさらに検討したことによって、完成するに至ったものである。
 すなわち、本発明は、以下の態様を含む。
(1)ホスゲン若しくはホスゲン等価体と、t-ブタノールと、有機塩基と、1級若しくは2級アミン化合物または1級若しくは2級アンモニウム塩とを用いて、t-ブトキシカルボニルアミン化合物を製造する方法において、下記(a)~(f)いずれかの方法を含む、t-ブトキシカルボニルアミン化合物の製造方法。
(a)ホスゲン若しくはホスゲン等価体とt-ブタノールとを含む溶液に、1級若しくは2級アミン化合物と有機塩基とを含む溶液を添加する方法。
(b)ホスゲン若しくはホスゲン等価体を含む溶液に、1級若しくは2級アミン化合物と有機塩基とt-ブタノールとを含む溶液を添加する方法。
(c)t-ブタノールを含む溶液に、1級若しくは2級アミン化合物を含む溶液、有機塩基を含む溶液、およびホスゲン若しくはホスゲン等価体を含む溶液を、略同時に添加する方法。
(d)t-ブタノールを含む溶液に、ホスゲンガスを吹き込みながら、1級若しくは2級アミン化合物を含む溶液および有機塩基を含む溶液を添加する方法。
(e)反応溶液に、ホスゲンガスを吹き込みながら、t-ブタノール、1級若しくは2級アミン化合物および有機塩基を含む溶液を添加する方法。
(f)ホスゲン若しくはホスゲン等価体とt-ブタノールと1級若しくは2級アンモニウム塩とを含む溶液に、有機塩基を添加する方法。
(2)1級若しくは2級アンモニウム塩が、1級若しくは2級アンモニウム塩酸塩である、(1)に記載のt-ブトキシカルボニルアミン化合物の製造方法。
(3)前記反応を有機溶媒中で行う、(1)または(2)に記載のt-ブトキシカルボニルアミン化合物の製造方法。
(4)有機溶媒が酢酸エチル、クロロベンゼンおよびクロロホルムからなる群から選ばれる少なくとも1種である、(3)に記載のt-ブトキシカルボニルアミン化合物の製造方法。
(5)1級若しくは2級アミン化合物が、N置換ヘテロ芳香族炭化水素基を有するアミン化合物である、(1)~(4)のいずれか1項に記載のt-ブトキシカルボニルアミン化合物の製造方法。
(6)N置換ヘテロ芳香族炭化水素基を有するアミン化合物が、2-アミノピリジン誘導体である、(5)に記載のt-ブトキシカルボニルアミン化合物の製造方法。
(7)有機塩基が三級アミンである、(1)~(6)のいずれか1項に記載のt-ブトキシカルボニルアミン化合物の製造方法。
(8)三級アミンがN,N-ジイソプロピルエチルアミンまたはトリエチルアミンである、(7)に記載のt-ブトキシカルボニルアミン化合物の製造方法。
(9)反応開始時から反応終了時までの温度が40℃以下である、(1)~(8)のいずれか1項に記載のt-ブトキシカルボニルアミン化合物の製造方法。
 本発明の製造方法によれば、1級若しくは2級アミン化合物に、Boc基を、副生物の生成を抑えて、安価に導入することができる。
 本発明のt-ブトキシカルボニルアミン化合物の製造方法は、上記の通り、ホスゲン若しくはホスゲン等価体と、t-ブタノールと、有機塩基と、1級若しくは2級アミン化合物または1級若しくは2級アンモニウム塩とを一定の条件で反応させることを含むものである。
 本発明に用いられる1級アミン化合物はNH20で表される化合物であり、2級アミン化合物はNHR12で表される化合物である。R0、R1、およびR2としては、特に限定されず、例えば、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アラルキル基などを挙げることができる。これらのうち、アリール基、ヘテロアリール基が好ましい。
 本発明に用いられる1級若しくは2級アミン化合物としては、メチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン、プロピルアミン、シクロヘキシルアミン、ピペリジン、ピロリジン、アマンタジン等の脂肪族アミン化合物;アニリン、o-トルイジン、p-トルイジン、カテコールアミン、フェニチルアミン等の芳香族アミン化合物;キノリンアミン、ピリジンアミン、ピロールアミン等のヘテロ環含有アミン化合物などを挙げることができる。これらのうち、本発明は、低求核性アミノ基を有する化合物に適しており、N置換ヘテロ芳香族炭化水素基を有するアミン化合物に好適であり、2-アミノピリジン誘導体に特に好適である。2-アミノピリジン誘導体のうち式〔1〕で表わされる化合物が好ましい。
Figure JPOXMLDOC01-appb-I000003
(式〔1〕中、Rは、C1~6アルキル基、C1~6ハロアルキル基、C2~6アルケニル基、C2~6アルキニル基、C3~6シクロアルキル基、C1~6アルコキシ基、C1~6アルコキシC1~6アルキル基、C1~6アルキルチオ基、アミノ基、モノ若しくはジC1~6アルキルアミノ基、C1~6アルキルカルボニルオキシ基、アリール基、ヘテロアリール基、アラルキル基、ヘテロアラルキル基、アラルキルオキシ基、ヘテロアラルキルオキシ基、ニトロ基、シアノ基、ヒドロキシ基、ハロゲン原子、-OSO2CF3、-OSO2Me、-OSO2Ph又は-OSO2Ph-p-Meまたは式〔a〕で表される基を示す。
Figure JPOXMLDOC01-appb-I000004
(式〔a〕中、*は、式〔1〕中のピリジン環への結合部位を示す。)
 nはRの置換数を示し且つ0~4の整数である。nが2以上のとき、Rは同一であってもよいし、相異なっていてもよい。)
 C1~6アルキル基は、炭素原子1~6個で構成される飽和脂肪族炭化水素基である。C1~6アルキル基は、直鎖であってもよいし、分岐鎖であってもよい。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、ヘキシル基等を挙げることができる。
 C1~6ハロアルキル基は、C1~6アルキル基中の水素原子がハロゲン原子で置換された基である。具体的には、フルオロメチル基、クロロメチル基、ブロモメチル基、ジフルオロメチル基、ジクロロメチル基、ジブロモメチル基、トリフルオロメチル基、トリクロロメチル基、トリブロモメチル基、2,2,2-トリフルオロエチル基、2,2,2-トリクロロエチル基、ペンタフルオロエチル基、4-フルオロブチル基、4-クロロブチル基、3,3,3-トリフルオロプロピル基、2,2,2-トリフルオロ-1-トリフルオロメチルエチル基、パーフルオロヘキシル基、パークロロヘキシル基、2,4,6-トリクロロヘキシル基等を挙げることができる。
 C2~6アルケニル基は、少なくとも1つ炭素-炭素二重結合を有する炭素原子2~6個で構成される不飽和炭化水素基である。該アルケニル基は直鎖であってもよいし、分岐鎖であってもよい。具体的には、ビニル基、1-プロペニル基、アリル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-メチル-2-プロペニル基、2-メチル-2-プロペニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-メチル-2-ブテニル基、2-メチル-2-ブテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基等を挙げることができる。
 C2~6アルキニル基は、少なくとも1つ炭素-炭素三重結合を有する炭素原子2~6個で構成される不飽和炭化水素基である。該アルキニル基は直鎖であってもよいし、分岐鎖であってもよい。具体的には、エチニル基、1-プロピニル基、プロパルギル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-メチル-2-プロピニル基、2-メチル-3-ブチニル基、1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基、1-メチル-2-ブチニル基、2-メチル-3-ペンチニル基、1-ヘキシニル基、1,1-ジメチル-2-ブチニル基等を挙げることができる。
 C3~6シクロアルキル基は、環状部分を有する炭素原子3~6個で構成されるアルキル基である。該シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、2-シクロプロピルエチル基、シクロペンチルメチル基等を挙げることができる。
 C1~6アルコキシ基は、C1~6アルキル基が酸素原子に結合した基である。C1~6アルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、1-エチルプロポキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基、4-メチルペントキシ基、3-メチルペントキシ基、2-メチルペントキシ基、1-メチルペントキシ基、3,3-ジメチルブトキシ基、2,2-ジメチルブトキシ基、1,1-ジメチルブトキシ基、1,2-ジメチルブトキシ基、1,3-ジメチルブトキシ基、2,3-ジメチルブトキシ基、1-エチルブトキシ基、2-エチルブトキシ基等を挙げることができる。
 C1~6アルキルチオ基は、C1~6アルキル基が硫黄原子に結合した基である。C1~6アルキルチオ基としては、メチルチオ基、エチルチオ基、n-プロピルチオ基、i-プロピルチオ基、n-ブチルチオ基、t-ブチルチオ基、ペンチルチオ基、イソペンチルチオ基、2-メチルブチルチオ基、ネオペンチルチオ基、1-エチルプロピルチオ基、ヘキシルチオ基、イソヘキシルチオ基、4-メチルペンチルチオ基、3-メチルペンチルチオ基、2-メチルペンチルチオ基、1-メチルペンチルチオ基、3,3-ジメチルブチルチオ基、2,2-ジメチルブチルチオ基、1,1-ジメチルブチルチオ基、1,2-ジメチルブチルチオ基、1,3-ジメチルブチルチオ基、2,3-ジメチルブチルチオ基、2-エチルブチルチオ基等を挙げることができる。
 アミノ基またはモノ若しくはジC1~6アルキルアミノ基としては、無置換のアミノ基;メチルアミノ基、エチルアミノ基;ジメチルアミノ基、ジエチルアミノ基等を挙げることができる。
 C1~6アルキルカルボニルオキシ基としては、アセチルオキシ基、プロピオニルオキシ基、n-プロピルカルボニルオキシ基、i-プロピルカルボニルオキシ基、n-ブチルカルボニルオキシ基、i-ブチルカルボニルオキシ基、ピバロイルオキシ基等を挙げることができる。
 アリール基は、単環又は多環のアリール基である。なお、多環アリール基は、少なくとも一つの環が芳香環であれば、残りの環が飽和脂環、不飽和脂環または芳香環のいずれであってもよい。アリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、アズレニル基、インデニル基、インダニル基、テトラリニル基等を挙げることができる。これらのうち、フェニル基が好ましい。
 ヘテロアリール基は、窒素原子、酸素原子、又は硫黄原子を1~3個有するアリール基である。ヘテロアリール基としては、フリル基、チエニル基、ピロリル基、オキサゾリル基、ピリジル基、ピラジル基、ピリミジル基、キノリニル基、カルバゾリル基等を挙げることができる。これらのうち、5~10員へテロアリール基が好ましい。
 アラルキル基は、アリール基がアルキル基に結合した基である。アラルキル基としては、ベンジル基、フェネチル基、3-フェニルプロピル基、1-ナフチルメチル基、2-ナフチルメチル基等を挙げることができる。これらのうち、C6~10アリールC1~6アルキル基が好ましい。
 ヘテロアラルキル基は、ヘテロアリール基がアルキル基に結合した基である。ヘテロアラルキル基としては、2-ピリジルメチル基、3-ピリジルメチル基、4-ピリジルメチル基、2-(2-ピリジル)エチル基、2-(3-ピリジル)エチル基、2-(4-ピリジル)エチル基、3-(2-ピリジル)プロピル基、3-(3-ピリジル)プロピル基、3-(4-ピリジル)プロピル基、2-ピラジルメチル基、3-ピラジルメチル基、2-(2-ピラジル)エチル基、2-(3-ピラジル)エチル基、3-(2-ピラジル)プロピル基、3-(3-ピラジル)プロピル基、2-ピリミジルメチル基、4-ピリミジルメチル基、2-(2-ピリミジル)エチル基、2-(4-ピリミジル)エチル基、3-(2-ピリミジル)プロピル基、3-(4-ピリミジル)プロピル基、2-フリルメチル基、3-フリルメチル基、2-(2-フリル)エチル基、2-(3-フリル)エチル基、3-(2-フリル)プロピル基、3-(3-フリル)プロピル基等を挙げることができる。これらのうち、5~10員へテロアリールC1~6アルキル基が好ましい。
 アラルキルオキシ基としては、ベンジルオキシ基、フェネチルオキシ基、3-フェニルプロピルオキシ基、1-ナフチルメチルオキシ基、2-ナフチルメチルオキシ基等を挙げることができる。
 ヘテロアラルキルオキシ基としては、ピリジルメチルオキシ基、ピリジルエチルオキシ基、ピリジルプロピルオキシ基、ピラジルメチルオキシ基、ピラジルエチルオキシ基、ピラジルプロピルオキシ基、ピリミジルメチルオキシ基、ピリミジルエチルオキシ基、ピリミジルプロピルオキシ基、フリルメチルオキシ基、フリルエチルオキシ基、フリルプロピルオキシ基などを挙げることができる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができる。
 式〔1〕で表されるアミン化合物の具体例としては、2-アミノピリジン、2-アミノ-3-ピコリン、2-アミノ-6-ピコリン、2-アミノ-6-ブロモピリジン、2-アミノ-6-クロロピリジン、2-アミノ-6-クロロメチルピリジン、2-アミノ-6-エチルピリジン、2-アミノ-6-プロピルピリジン、(1-メチル-1H-テトラゾール-5-イル)-フェニル-メタノン O-(6-アミノ-ピリジン-2-イルメチル)-オキシム等を挙げることができる。
 本発明に用いられるホスゲン等価体は、反応系内で分解してホスゲンを生成するものである。具体的には、ジホスゲン、トリホスゲンなどを挙げることができる。ホスゲン若しくはホスゲン等価体は、有機溶媒に溶解して反応系に添加してもよいし、ガスとして反応系に吹き込んでもよい。なお、本発明に用いられるホスゲンガスには、ホスゲンを含有するガスだけでなく、ホスゲン等価体を含有するガスも含まれる。
 本発明に用いられる有機塩基の具体例としては、トリメチルアミン、トリエチルアミン、N,N-ジイソプロピルエチルアミン等の3級アミン、メチル、エチル等の低級アルキル基で置換されていてもよいピリジン等を挙げることができる。これらのうち、3級アミンが好ましく、トリエチルアミン、N,N-ジイソプロピルエチルアミンがより好ましい。
 反応開始時から反応終了時までに使用されるホスゲンの量は、反応開始時から反応終了時までに使用される1級若しくは2級アミン化合物1モルに対して、好ましくは0.8~10モル、より好ましくは0.85~8.5モル、さらに好ましくは0.9~7モル、特に好ましくは1~5モルである。ホスゲン等価体の量は分解で発生するホスゲンの量が上記範囲となるようにする。
 反応開始時から反応終了時までに使用されるt-ブタノールの量は、反応開始時から反応終了時までに使用される1級若しくは2級アミン化合物1モルに対して、好ましくは1モル~20モル、より好ましくは1~15モル、さらに好ましくは1~10モル、特に好ましくは1モル~5モルである。
 反応開始時から反応終了時までに使用される有機塩基の量は、反応開始時から反応終了時までに使用される1級若しくは2級のアミノ基を有する化合物1モルに対して、好ましくは1モル~10モル、より好ましくは1~8.5モル、さらに好ましくは1.25~7モル、特に好ましくは1.5モル~5モルである。
 本発明に係る反応は、有機溶媒中で行うのが好ましい。有機溶媒としては、酢酸エチル、酢酸メチルなどのエステル類;クロロホルム、塩化メチレン、四塩化炭素などのハロゲン化炭化水素類;テトラヒドロフランなどのエーテル類;アセトン、メチルイソブチルケトンなどのエーテル類;トルエン、クロロベンゼンなどの芳香族炭化水素類などを挙げることができる。これらのうち、酢酸エチル、クロロホルム、塩化メチレン、トルエン、クロロベンゼンが好ましく、酢酸エチル、クロロホルムおよびクロロベンゼンからなる群から選ばれる少なくとも1種が好ましい。また、反応開始時から反応終了時までの温度は、40℃以下とすることが好ましく、20℃以下とすることがより好ましい。
 本発明においては、1級若しくは2級アミン化合物または1級若しくは2級アンモニウム塩と、ホスゲン若しくはホスゲン等価体とを反応させる。
 本発明における製造方法としては、(A)ホスゲン若しくはホスゲン等価体とt-ブタノールとを含む溶液に、1級若しくは2級アミン化合物と有機塩基とを含む溶液を添加する方法、(B)ホスゲン若しくはホスゲン等価体を含む溶液に、1級若しくは2級アミン化合物と有機塩基とt-ブタノールとを含む溶液を添加する方法、(C)t-ブタノールを含む溶液に、1級若しくは2級アミン化合物を含む溶液、有機塩基を含む溶液、およびホスゲン若しくはホスゲン等価体を含む溶液を、略同時に添加する方法、(D)t-ブタノールを含む溶液に、ホスゲン若しくはホスゲン等価体のガスを吹き込みながら、1級若しくは2級アミン化合物を含む溶液および有機塩基を含む溶液を添加する方法、(E)反応溶液に、ホスゲンガスを吹き込みながら、t-ブタノール、1級若しくは2級アミン化合物および有機塩基を含む溶液を添加する方法、および(F)ホスゲン若しくはホスゲン等価体とt-ブタノールと1級若しくは2級アンモニム塩とを含む溶液に、有機塩基を添加する方法などを挙げることができる。
 上記(A)~(F)の方法において使用される各溶液は、その調製方法によって特に限定されない。
 上記(C)または(D)の方法において、1級若しくは2級アミン化合物を含む溶液と有機塩基を含む溶液とを添加する代わりに、1級若しくは2級アミン化合物と有機塩基とを含む溶液を添加してもよい。
 なお、上記(C)の方法において、ホスゲン若しくはホスゲン等価体を含む溶液は、t-ブタノールを含む溶液に添加する前に、1級若しくは2級アミン化合物を含む溶液と混ざり合わないようにすることが好ましい。
 また、上記(D)の方法においては、ホスゲンガスの吹き込みを、1級若しくは2級アミン化合物を含む溶液の添加よりも先に開始することが好ましい。
 上記(F)の方法に用いられる、1級若しくは2級アンモニウム塩は、1級若しくは2級アミン化合物と、塩酸、硫酸、硝酸、炭酸等の無機酸や;酒石酸、マレイン酸、クエン酸等の有機酸などの酸とからなる塩である。これらのうち塩酸塩が好ましい。1級若しくは2級アンモニウム塩はホスゲン若しくはホスゲン等価体と反応し難い。上記(F)の方法にしたがって、有機塩基を加えると、1級若しくは2級アンモニウム塩が、1級若しくは2級アミン化合物に変換される。そして、変換によって生成した1級若しくは2級アミン化合物がホスゲン若しくはホスゲン等価体と反応する。
 1級若しくは2級アミン化合物の量は、上記(A)~(E)に示した方法における溶液の添加速度と、1級若しくは2級アミン化合物が反応によって消費される速度とのバランスによって調整できる。添加速度が消費速度よりも速いと、1級若しくは2級アミン化合物が系内に余ってきて、副反応を生じやすくなる。したがって、添加速度は、フリーの1級若しくは2級アミン化合物が、系内に、好ましくは0.31モル/ホスゲン分子1モル 以下、より好ましくは0.26モル/ホスゲン分子1モル 以下、さらに好ましくは0.22モル/ホスゲン分子1モル 以下、特に好ましくは0.19モル/ホスゲン分子1モル 以下となるように設定する。
 ホスゲン若しくはホスゲン等価体と1級若しくは2級アミン化合物とが反応すると、カルバモイルクロリド化合物が生成し、さらに塩化水素が脱離してイソシアネート化合物が生成する。脱離した塩化水素は系内に存在する有機塩基が捕捉する。生成したカルバモイルクロリド化合物若しくはイソシアネート化合物は系内に存在するt-ブタノールと反応して、t-ブトキシカルボニルアミン化合物が生成する。本発明では、1級若しくは2級アミン化合物の反応系における量が少ない状態にあるので、生成したカルバモイルクロリド化合物若しくはイソシアネート化合物が1級若しくは2級アミン化合物と反応し難い。その結果として、ビスウレア化合物の副生が抑制される。
 このように、1級若しくは2級アミン化合物の反応系における量が少ない状態にて、ホスゲン若しくはホスゲン等価体と1級若しくは2級アミン化合物とを反応させることによって、t-ブトキシカルボニルアミン化合物の選択率を高くすることができる。
 以下に、実施例および比較例を示して、本発明をより具体的に説明する。なお、本発明は、下記の実施例によって限定されるものではない。
(実施例1)
 t-ブタノール14.8g(200ミリモル)と酢酸エチル29mLを仕込み、ホスゲン9.9g(100ミリモル)を吹き込んだ。この溶液に2-アミノ-6-ピコリン5.48g(50.7ミリモル)、N,N-ジイソプロピルエチルアミン12.5g(97.0ミリモル)および酢酸エチル32mLの混合溶液を-15~-5℃に内温を保って1.5時間かけて滴下した。滴下終了後1時間撹拌した。次いで、内温0℃以下を保って水50mL、および28%苛性ソーダ5.1gを順次加えた。分液操作した後、水相を酢酸エチルで抽出した。有機相をまとめて混合した。有機相の一部をサンプリングしてHPLCで定量分析した。目的の(6-メチル-ピリジン-2-イル)-カルバミン酸 tert-ブチルエステルが収率89%で得られていた。1,3-ビス-(6-メチル-ピリジン-2-イル)-ウレア(ウレア化合物)の収率は8%であった。なお、ウレア化合物の収率は原料の2-アミノ-6-ピコリンを基準とし、ウレア化合物1分子は2-アミノ-6-ピコリン2分子として収率を算出した(以下の実施例、比較例でも同様に算出した。)。
(実施例2)
 酢酸エチル462mLを仕込み、-15℃に冷却した後、ホスゲン114.4g(1.16モル)を1.8時間かけて吹き込んだ。このホスゲン溶液に2-アミノ-6-ピコリン50.2g(0.462モル)、N,N-ジイソプロピルエチルアミン131.8g(1.02モル)、t-ブタノール85.7g(1.16モル)および酢酸エチル231mLの混合溶液を-15~0℃に内温を保って2.8時間かけて滴下した。滴下終了後1.7時間撹拌した。次いで、内温0℃以下を保って水300mL、および28%苛性ソーダ200mLを順次加えた。水相を酢酸エチル300mLで抽出した。有機相をまとめて混合し、それを減圧濃縮した。得られた粗生成物にメタノールと水の混合液を添加した。析出した結晶を吸引ろ過し、減圧乾燥して、目的の(6-メチル-ピリジン-2-イル)-カルバミン酸 tert-ブチルエステル93.4gを得た(収率94%)。1,3-ビス-(6-メチル-ピリジン-2-イル)-ウレア(ウレア化合物)の収率は3%であった。
(実施例3)
 t-ブタノール55.6g(0.75モル)およびクロロホルム450mLを仕込み、-5~0℃に内温を保って2.5時間かけてホスゲン65.3g(0.66モル)を吹き込み、同時に定量ポンプを用いて2-アミノ-6-ピコリン32.4g(0.30モル)とトリエチルアミン133.5g(1.32モル)とクロロホルム300mLとの混合溶液を2.5時間かけて系内に供給した(供給速度3mL/min)。供給終了後、0℃で1時間撹拌した。次いで、内温0℃以下を保って、水、および28%苛性ソーダを順次加えた。分液操作後、水相をクロロホルムで抽出し、有機相をまとめて混合した。有機相の一部をサンプリングしてHPLCで定量分析した。目的の(6-メチル-ピリジン-2-イル)-カルバミン酸 tert-ブチルエステルが収率98%で得られていた。1,3-ビス-(6-メチル-ピリジン-2-イル)-ウレア(ウレア化合物)はわずかしか存在していなかった。
(実施例4)
 酢酸エチル34mL、および2-アミノ-6-ピコリン5.42g(50.1ミリモル)を仕込み、塩酸ガス2.2g(60.3ミリモル)を吹き込んで2-アミノ-6-ピコリンの塩酸塩を形成させた。これに、t-ブタノール14.8g(200ミリモル)を添加し、-5~-10℃に内温を保って40分間かけてホスゲン10.0g(101.1ミリモル)を吹き込んだ。このスラリー溶液にN,N-ジイソプロピルエチルアミン19.5g(150.7ミリモル)と酢酸エチル溶液(34mL)とを-5~-10℃に内温を保って1.5時間かけて滴下した。滴下終了後、内温0℃以下を保って水、および28%苛性ソーダを順次加えた。分液操作後、水相を酢酸エチルで抽出した。有機相をまとめて混合した。有機相の一部をサンプリングしてHPLCで定量分析した。目的の(6-メチル-ピリジン-2-イル)-カルバミン酸 tert-ブチルエステルが収率84%で得られていた。1,3-ビス-(6-メチル-ピリジン-2-イル)-ウレア(ウレア化合物)の収率は14%であった。
(実施例5)
 t-ブタノール5.61g(75.7ミリモル)と酢酸エチル22mLを仕込み、ホスゲン3.8g(38.4ミリモル)を吹き込んだ。この溶液に2-アミノ-6-クロロメチルピリジン1.95g(13.7ミリモル)、N,N-ジイソプロピルエチルアミン4.86g(37.6ミリモル)および酢酸エチル19mLの混合溶液を-15~-5℃に内温を保って1時間かけて滴下した。滴下終了後、1時間撹拌した。次いで内温0℃以下を保って水、および28%苛性ソーダを順次加えた。分液操作後、水相を酢酸エチルで抽出した。有機相をまとめて混合した。有機相の一部をサンプリングしてHPLCで定量分析した。目的の(6-クロロメチル-ピリジン-2-イル)-カルバミン酸 tert-ブチルエステルが収率74%で得られていた。1,3-ビス-(6-クロロメチル-ピリジン-2-イル)-ウレア(ウレア化合物)の収率は10%であった。
(実施例6)
 酢酸エチル20mLを仕込み、-15℃程度に冷却した後、ホスゲン1.19g(12.0ミリモル)を吹き込んだ。このホスゲン溶液に(1-メチル-1H-テトラゾール-5-イル)-フェニル-メタノン 0-(6-アミノ-ピリジン-2-イルメチル)-オキシム1.31g(純度95%、4.0ミリモル)、N,N-ジイソプロピルエチルアミン1.04g(8.0ミリモル)、t-ブタノール1.19g(16.1ミリモル)、および酢酸エチル60mLの混合溶液を-15~-5℃に内温保って1.5時間かけて滴下した。滴下終了後、同温度範囲で3時間撹拌した。次いで内温0℃以下を保って水20mLおよび少量の28%苛性ソーダを順次加えた。分液した水相を酢酸エチルで抽出した。有機相を水洗した。有機相をHPLCで定量分析した。目的の{6-[1-(1-メチル-1H-テトラゾール-5-イル)-1-フェニル-メチリデンアミノオキシムエチル]-ピリジン-2-イル}-カルバミン酸 tert-ブチルエステルが収率88%で得られていた。原料の(1-メチル-1H-テトラゾール-5-イル)-フェニル-メタノン 0-(6-アミノ-ピリジン-2-イルメチル)-オキシムが9%残存していた。ウレア化合物はほとんど生成していなかった。
(実施例7)
 酢酸エチル87mLを仕込み、-15℃に冷却した後、ホスゲン14.3g(144.5ミリモル)を吹き込んだ。このホスゲン溶液に2-アミノ-6-ブロモピリジン10.0g(57.8ミリモル)、N,N-ジイソプロピルエチルアミン14.9g(115.6ミリモル)、t-ブタノール8.57g(115.6ミリモル)および酢酸エチル58mLの混合溶液を-15~-5℃に内温保って1.8時間かけて滴下した。滴下終了後、同温度範囲で1時間撹拌した。次いで、内温0℃以下を保って水60mLおよび28%苛性ソーダ39.6gを順次加えた。水相を酢酸エチルで抽出した。有機相を水洗し、減圧濃縮した。得られた粗結晶をHPLCで定量分析した。目的の(6-ブロモ-ピリジン-2-イル)-カルバミン酸 tert-ブチルエステルが収率81%で得られていた。ウレア化合物はほとんど生成していなかった。
(実施例8)
 酢酸エチル64mLを仕込み、塩氷バスで-15℃程度に冷却した後、ホスゲン10.6g(107ミリモル)を吹き込んだ。このホスゲン溶液に2-アミノ-6-クロロピリジン5.5g(42.8ミリモル)、N,N-ジイソプロピルエチルアミン11.1g(85.6ミリモル)、t-ブタノール6.34g(85.5ミリモル)および酢酸エチル43mLの混合溶液を-15~-5℃に内温を保って2.5時間かけて滴下した。滴下終了後、同温度範囲で3時間撹拌した。次いで、内温0℃以下を保って水50mL、および28%苛性ソーダ23.2gを順次加えた。水相を酢酸エチルで抽出した。有機相を水洗し、減圧濃縮した。得られた粗結晶をHPLCで定量分析した。目的の(6-クロロ-ピリジン-2-イル)-カルバミン酸 tert-ブチルエステルが収率93%で得られた。ウレア化合物はほとんど生成していなかった。
(実施例9)
 クロロホルム295.7g(199mL)を仕込み、0℃に冷却した後、ホスゲン43.08g(0.436モル)を0.5時間かけて吹き込んだ。このホスゲン溶液に2-アミノ-6-ピコリン21.66g(0.200モル)、トリエチルアミン20.26g(0.200モル)、t-ブタノール37.02g(0.499モル)およびクロロホルム89.6g(60mL)の混合溶液を-3~2℃に内温を保って1.0時間かけて滴下した。滴下終了後、1.4時間撹拌した。次いで、0~5℃に内温を保ってトリエチルアミン20.30g(0.201モル)とクロロホルム59.4g(40mL)を0.8時間かけて滴下した。滴下終了後、1.0時間撹拌した。次いでクロロホルム122.5g(82mL)を加えた。反応液をHPLCで定量分析した。目的の(6-メチル-ピリジン-2-イル)-カルバミン酸 tert-ブチルエステルが収率94%で得られた。1,3-ビス-(6-メチル-ピリジン-2-イル)-ウレア(ウレア化合物)の収率は2%であった。
(実施例10)
 モノクロロベンゼン556.0g(500mL)を仕込み、-10~-5℃にて、ホスゲン107.8g(1.09モル)を1時間かけて吹き込んだ。このホスゲン溶液に2-アミノ-6-ピコリン54.07g(0.5モル)、トリエチルアミン107g(1.06モル)、t-ブタノール92.7g(1.25モル)、およびモノクロロベンゼン333g(300mL)の混合溶液を-11~-8℃に内温を保って4.5時間かけて滴下した。滴下終了後、0.5時間撹拌した。次いで、-10~-5℃に内温を保ってトリエチルアミン120g(1.19モル)をモノクロロベンゼン217.4g(200mL)に溶解させた混合液を1時間かけて滴下した。滴下終了後、0.2時間撹拌した。次いで、水300mLを加えた。有機相を水150mLで洗浄した。該有機相をHPLCで定量分析した。目的の(6-メチル-ピリジン-2-イル)-カルバミン酸 tert-ブチルエステルが収率92%で得られていた。1,3-ビス-(6-メチル-ピリジン-2-イル)-ウレア(ウレア化合物)の収率は4%であった。原料の2-アミノ-6-ピコリンが4%残存していた。
(実施例11)
 クロロホルム1702mLを仕込み、-15℃に冷却した後、ホスゲン218.60g(2.21モル)を3.7時間かけて吹き込んだ。このホスゲン溶液に2-アミノ-6-ピコリン108.19g(1.00モル)、トリエチルアミン101.13g(1.00モル)、t-ブタノール185.18g(2.50モル)およびクロロホルム295mLの混合溶液を-15~-5℃に内温を保って2.8時間かけて滴下した。滴下終了後、1.4時間撹拌した。次いで、-15~2℃に内温を保ってトリエチルアミン343.7g(3.40モル)を2.6時間かけて滴下した。滴下終了後、0.2時間撹拌した。次いで、水238mL、および28%苛性ソーダ931mLを順次加えた。水相をクロロホルム50mLで抽出した。有機相をまとめてHPLCで定量分析した。目的の(6-メチル-ピリジン-2-イル)-カルバミン酸 tert-ブチルエステルが収率96%で得られた。1,3-ビス-(6-メチル-ピリジン-2-イル)-ウレア(ウレア化合物)の収率は3%であった。
(比較例1)
 酢酸エチル100mLを仕込み、-15℃程度に冷却した後、ホスゲン24.7g(0.25モル)を0.3時間かけて吹き込んだ。このホスゲン溶液に2-アミノ-6-ピコリン11.0g(0.102モル)、N,N-ジイソプロピルエチルアミン71.3g(0.552モル)および酢酸エチル20mLの混合溶液を-15~-5℃に内温を保って1.5時間かけて滴下した。滴下終了後、同温度範囲で30分間撹拌した。次いで、t-ブタノール11.1g(0.15モル)の酢酸エチル溶液(30mL)を添加し、添加終了後、4時間撹拌した。次いで、内温0℃以下を保って水、および28%苛性ソーダを順次加えた。分液操作後、水相を酢酸エチルで抽出した。有機相をまとめて混合した。有機相の一部をサンプリングしてHPLCで定量分析した。多種多量の不純物が生成していた。目的の(6-メチル-ピリジン-2-イル)-カルバミン酸 tert-ブチルエステルの収率は20%、1,3-ビス-(6-メチル-ピリジン-2-イル)-ウレア(ウレア化合物)の収率は20%であった。
(比較例2)
 t-ブタノール14.8g(200ミリモル)、酢酸エチル67mL、N,N-ジイソプロピルエチルアミン12.9g(100ミリモル)、および2-アミノ-6-ピコリン5.41g(50ミリモル)を仕込み、-5~0℃に内温を保ってホスゲン9.1g(92.0ミリモル)を1時間かけて吹き込んだ。吹き込み終了後、2.5時間撹拌した。次いで、内温0℃以下を保って水、および28%苛性ソーダを順次加えた。分液操作後、水相を酢酸エチルで抽出した。有機相をまとめて混合した。有機相の一部をサンプリングしてHPLCで定量分析した。1,3-ビス-(6-メチル-ピリジン-2-イル)-ウレア(ウレア化合物)の収率は47%で、顕著に多く生成していた。目的の(6-メチル-ピリジン-2-イル)-カルバミン酸 tert-ブチルエステルの収率は47%であった。
(比較例3)
 酢酸エチル34mL、および2-アミノ-6-ピコリン5.41g(50.0ミリモル)を仕込み、塩酸ガス3.6g(98.7ミリモル)を吹き込んで2-アミノ-6-ピコリンの塩酸塩を形成させた。これに、t-ブタノール14.8g(200ミリモル)を添加し、-5~-10℃に内温を保って1.7時間かけてホスゲン14.0g(141.5ミリモル)を吹き込んだ。吹き込み終了後、同温度範囲で1.5時間撹拌した。窒素ガスを吹き込んで残存ホスゲンを除去した。その後、内温0℃以下を保って水、および28%苛性ソーダを順次加えた。分液操作後、水相を酢酸エチルで抽出した。有機相をまとめて混合した。有機相の一部をサンプリングしてHPLCで定量分析した。原料の2-アミノ-6-ピコリンが66%残存していた。目的の(6-メチル-ピリジン-2-イル)-カルバミン酸 tert-ブチルエステルの収率は13%であった。1,3-ビス-(6-メチル-ピリジン-2-イル)-ウレア(ウレア化合物)の収率は4%であった。
(比較例4)
 2-アミノ-6-ピコリン 1.08g(10ミリモル)、酢酸エチル(30mL, 3L/mol)、ジイソプロピルエチルアミン5.17g(40ミリモル)、およびトリホスゲン2.37g(8ミリモル、0.8倍モル)を仕込み、50℃で2時間撹拌した。この溶液にt-ブタノール10mL(1L/mol)を加え50℃で2時間撹拌した。内温0℃以下を保って、水、および28%苛性ソーダを順次加えた。分液操作後、水相を酢酸エチルで抽出した。有機相をまとめて混合した。有機相の一部をサンプリングしてHPLCで定量分析した。目的の(6-メチル-ピリジン-2-イル)-カルバミン酸 tert-ブチルエステルの収率は46%であった。1,3-ビス-(6-メチル-ピリジン-2-イル)-ウレア(ウレア化合物)が収率31%と多量に副生した。
(比較例5)
 2-アミノ-6-クロロメチルピリジン 2.43g(10ミリモル)、酢酸エチル(30mL)、N,N-ジイソプロピルエチルアミン3.88g(30ミリモル)、およびトリホスゲン1.48g(5ミリモル)を仕込み、60℃で1時間撹拌した。この溶液にt-ブタノール10mLを加え60℃で1時間撹拌した。内温0℃以下を保って、水、および28%苛性ソーダを順次加えた。分液した後、水相を酢酸エチルで抽出した。有機相をまとめて混合した。有機相の一部をサンプリングしてHPLCで定量分析した。目的の(6-クロロメチル-ピリジン-2-イル)-カルバミン酸 tert-ブチルエステルの収率は41%であった。1,3-ビス-(6-クロロメチル-ピリジン-2-イル)-ウレア(ウレア化合物)が60%と多量に副生した。
(比較例6)
 2-アミノ-6-クロロメチルピリジン2.43g(10ミリモル)、トルエン(30mL)、t-ブチルアルコール10mL、およびトリホスゲン1.48g(5ミリモル)を仕込み、1時間還流させた。内温0℃以下を保って、水、および28%苛性ソーダを順次加えた。分液した後、水相を酢酸エチルで抽出した。有機相をまとめて混合した。有機相の一部をサンプリングしてHPLCで定量分析した。目的の(6-クロロメチル-ピリジン-2-イル)-カルバミン酸 tert-ブチルエステルは全く生成していなかった。1,3-ビス-(6-クロロメチル-ピリジン-2-イル)-ウレア(ウレア化合物)が主生成物であった。
(比較例7)
 (1-メチル-1H-テトラゾール-5-イル)-フェニル-メタノン 0-(6-アミノ-ピリジン-2-イルメチル)-オキシム2.05g(5ミリモル)、酢酸エチル(35mL,7L/mol)、N,N-ジイソプロピルエチルアミン3.88g(30ミリモル、6倍モル)、およびトリホスゲン1.19g(4ミリモル)を仕込み、50℃で1時間撹拌した。この溶液にt-ブタノール5mLを加え50℃で1時間撹拌した。内温0℃以下を保って、水、および28%苛性ソーダを順次加えた。分液した後、水相を酢酸エチルで抽出した。有機相をまとめて混合した。有機相の一部をサンプリングしてHPLCで定量分析した。目的の{6-[1-(1-メチル-1H-テトラゾール-5-イル)-1-フェニル-メチリデンアミノオキシムエチル]-ピリジン-2-イル}-カルバミン酸 tert-ブチルエステルは全く生成していなかった。1,3-ビス-{6-[1-(1-メチル-1H-テトラゾール-5-イル)-1-フェニル-メチリデンアミノオキシムエチル]-ピリジン-2-イル}-ウレア(ウレア化合物)が67%と多量に副生していた。
 本発明の製造方法によれば、1級若しくは2級アミン化合物に、Boc基を、副生物の生成を抑えて、安価に導入することができるため、本発明は産業上きわめて有用である。

Claims (9)

  1.  ホスゲン若しくはホスゲン等価体と、t-ブタノールと、有機塩基と、1級若しくは2級アミン化合物または1級若しくは2級アンモニウム塩とを用いて、t-ブトキシカルボニルアミン化合物を製造する方法において、下記(a)~(f)いずれかの方法を含む、t-ブトキシカルボニルアミン化合物の製造方法。
    (a)ホスゲン若しくはホスゲン等価体とt-ブタノールとを含む溶液に、1級若しくは2級アミン化合物と有機塩基とを含む溶液を添加する方法。
    (b)ホスゲン若しくはホスゲン等価体を含む溶液に、1級若しくは2級アミン化合物と有機塩基とt-ブタノールとを含む溶液を添加する方法。
    (c)t-ブタノールを含む溶液に、1級若しくは2級アミン化合物を含む溶液、有機塩基を含む溶液、およびホスゲン若しくはホスゲン等価体を含む溶液を、略同時に添加する方法。
    (d)t-ブタノールを含む溶液に、ホスゲンガスを吹き込みながら、1級若しくは2級アミン化合物を含む溶液および有機塩基を含む溶液を添加する方法。
    (e)反応溶液に、ホスゲンガスを吹き込みながら、t-ブタノール、1級若しくは2級アミン化合物および有機塩基を含む溶液を添加する方法。
    (f)ホスゲン若しくはホスゲン等価体とt-ブタノールと1級若しくは2級アンモニウム塩とを含む溶液に、有機塩基を添加する方法。
  2.  1級若しくは2級アンモニウム塩が、1級若しくは2級アンモニウム塩酸塩である、請求項1に記載のt-ブトキシカルボニルアミン化合物の製造方法。
  3.  前記反応を有機溶媒中で行う、請求項1または2に記載のt-ブトキシカルボニルアミン化合物の製造方法。
  4.  有機溶媒が酢酸エチル、クロロベンゼンおよびクロロホルムからなる群から選ばれる少なくとも1種である、請求項3に記載のt-ブトキシカルボニルアミン化合物の製造方法。
  5.  1級若しくは2級アミン化合物が、N置換ヘテロ芳香族炭化水素基を有するアミン化合物である、請求項1~4のいずれか1項に記載のt-ブトキシカルボニルアミン化合物の製造方法。
  6.  N置換ヘテロ芳香族炭化水素基を有するアミン化合物が、2-アミノピリジン誘導体である、請求項5に記載のt-ブトキシカルボニルアミン化合物の製造方法。
  7.  有機塩基が三級アミンである、請求項1~6のいずれか1項に記載のt-ブトキシカルボニルアミン化合物の製造方法。
  8.  三級アミンがN,N-ジイソプロピルエチルアミンまたはトリエチルアミンである、請求項7に記載のt-ブトキシカルボニルアミン化合物の製造方法。
  9.  反応開始時から反応終了時までの温度が40℃以下である、請求項1~8のいずれか1項に記載のt-ブトキシカルボニルアミン化合物の製造方法。
PCT/JP2011/055380 2010-03-12 2011-03-08 t-ブトキシカルボニルアミン化合物の製造方法 WO2011111705A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012504477A JP5603409B2 (ja) 2010-03-12 2011-03-08 t−ブトキシカルボニルアミン化合物の製造方法
EP11753363.8A EP2546235B1 (en) 2010-03-12 2011-03-08 PROCESS FOR PREPARATION OF t-BUTOXYCARBONYLAMINE COMPOUNDS
US13/583,095 US8653269B2 (en) 2010-03-12 2011-03-08 Process for preparation of t-butoxycarbonylamine compounds
CN201180013214.7A CN102791692B (zh) 2010-03-12 2011-03-08 叔丁氧基羰基胺化合物的制造方法
KR1020127023527A KR101406602B1 (ko) 2010-03-12 2011-03-08 t-부톡시카르보닐아민 화합물의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010056717 2010-03-12
JP2010-056717 2010-03-12

Publications (1)

Publication Number Publication Date
WO2011111705A1 true WO2011111705A1 (ja) 2011-09-15

Family

ID=44563505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055380 WO2011111705A1 (ja) 2010-03-12 2011-03-08 t-ブトキシカルボニルアミン化合物の製造方法

Country Status (6)

Country Link
US (1) US8653269B2 (ja)
EP (1) EP2546235B1 (ja)
JP (1) JP5603409B2 (ja)
KR (1) KR101406602B1 (ja)
CN (1) CN102791692B (ja)
WO (1) WO2011111705A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023814A1 (en) 2003-09-11 2005-03-17 Spirogen Limited Synthesis of protected pyrrolobenzodiazepines
JP2010056717A (ja) 2008-08-27 2010-03-11 Gmo Global Sign Kk サーバ証明書発行システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659113A1 (en) * 2004-11-08 2006-05-24 Evotec AG Inhibitors of 11beta-hydroxy steroid dehydrogenase type 1 (11beta-HSD1)
FR2878247B1 (fr) 2004-11-19 2008-10-03 Galderma Res & Dev Nouveaux composes modulateurs des recepteurs de type ppary et leur utilisation dans des compositions cosmetiques ou pharmaceutiques
WO2008042353A1 (en) 2006-09-29 2008-04-10 Northwestern University Potent and highly selective heteroaromatic inhibitors of neuronal nitric oxide synthase
DE102007012645A1 (de) 2007-03-16 2008-09-18 Bayer Healthcare Ag Substituierte Imidazo- und Triazolopyrimidine
EP2205599B1 (de) 2007-10-18 2012-06-06 Boehringer Ingelheim International GmbH Cgrp-antagonisten

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023814A1 (en) 2003-09-11 2005-03-17 Spirogen Limited Synthesis of protected pyrrolobenzodiazepines
JP2010056717A (ja) 2008-08-27 2010-03-11 Gmo Global Sign Kk サーバ証明書発行システム

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHEM. PHARM. BULL., vol. 16, no. 1, 1968, pages 182 - 184 *
EUR. J. ORG. CHEM., 2008, pages 3141 - 3148 *
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2008, pages 3141 - 3148
J. AM. CHEM. SOC., vol. 79, 1957, pages 4686 - 4690 *
See also references of EP2546235A4
TETRAHEDRON LETT., vol. 45, 2004, pages 6831 - 6834 *

Also Published As

Publication number Publication date
US8653269B2 (en) 2014-02-18
US20130005981A1 (en) 2013-01-03
CN102791692B (zh) 2015-05-27
EP2546235A1 (en) 2013-01-16
KR20120120959A (ko) 2012-11-02
CN102791692A (zh) 2012-11-21
JPWO2011111705A1 (ja) 2013-06-27
EP2546235B1 (en) 2019-05-22
JP5603409B2 (ja) 2014-10-08
KR101406602B1 (ko) 2014-06-11
EP2546235A4 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
Levallet et al. The HgCl2-promoted guanylation reaction: The scope and limitations
US10040778B2 (en) Anhydrous lenalidomide form-I
TWI539951B (zh) 製備4-{4-〔({〔4-氯-3-(三氯甲基)-苯基〕胺基}羰基)胺基〕-3-氟苯氧基}-n-甲基吡啶-2-甲醯胺、其鹽及單水合物之方法
EP3456721A2 (en) Method of producing compounds having hiv integrase inhivitory activity
EP2980067B1 (en) Processes for preparing optically active diamine derivatives
BRPI0515944B1 (pt) Processo para a preparação de 4-{4-[({[4-cloro-3-(trifluorometil)fe-nil]amino}carbonil) amino]fenóxi}nmetilpiridina-2-carboxamida
GB2398565A (en) Imatinib preparation and salts
WO2014020555A2 (en) An improved process for the preparation of dabigatran etexilate mesylate
JP4268871B2 (ja) ピリミジノン化合物及びその薬剤として許容される塩の製造方法
CN110818631A (zh) 一种吡啶硫脲衍生物及其制备方法和应用
CN103025715A (zh) 用于制备凝血酶特异性抑制剂的中间体和方法
EP2248810A1 (en) Method for producing phenoxypyridine derivative
JP5603409B2 (ja) t−ブトキシカルボニルアミン化合物の製造方法
US20100234607A1 (en) Process for preparing 2-amino-4- (haloalkyl) pyridine derivatives by cyclizing suitable nitrile precursors with nitrogen compounds
EP2189455A1 (en) Process for production of hydrazine compound, intermediate for production of hydrazine compound, and process for production of the intermediate
CN110423215B (zh) 一种查尔酮吡啶盐及其制备方法和应用
CN112119058A (zh) 制备哌马色林碱的方法
CN114315710B (zh) 一种制备或纯化瑞戈非尼的方法
CN105037374A (zh) N-丁基-9H-嘧啶并[4,5-b]吲哚-2-甲酰胺的制备方法
JPWO2006080484A1 (ja) セフカペンピボキシルのメタンスルホン酸塩
Shtamburg et al. Decarbamoylation of N-alkoxy-N-(4-dimethylaminopyridin-1-ium-1-yl) urea chlorides in dimethylsulfoxide as a route to 1-alkoxyamino-4-dimethylaminopyridinium chlorides
WO2024089702A1 (en) An improved process for the preparation of tucatinib and its salt & polymorphs thereof
WO2012176140A1 (en) Process for the preparation of dexlansoprazole
Santhosh et al. A convenient synthesis of enantiomerically pure α-isocyano esters and N β-Fmoc-amino alkyl isonitriles derived from α-amino acids employing PPh 3/I 2 under mild conditions
WO2020031040A1 (en) Process and intermediates for the preparation of boc-linagliptin

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013214.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753363

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504477

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011753363

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 221789

Country of ref document: IL

Ref document number: 7677/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13583095

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127023527

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE