WO2011111409A1 - 光学素子の製造方法 - Google Patents

光学素子の製造方法 Download PDF

Info

Publication number
WO2011111409A1
WO2011111409A1 PCT/JP2011/050254 JP2011050254W WO2011111409A1 WO 2011111409 A1 WO2011111409 A1 WO 2011111409A1 JP 2011050254 W JP2011050254 W JP 2011050254W WO 2011111409 A1 WO2011111409 A1 WO 2011111409A1
Authority
WO
WIPO (PCT)
Prior art keywords
cut
cutting
substrate
base material
optical element
Prior art date
Application number
PCT/JP2011/050254
Other languages
English (en)
French (fr)
Inventor
博之 新藤
武嗣 白石
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2011111409A1 publication Critical patent/WO2011111409A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the present invention relates to a method for manufacturing an optical element.
  • Patent Document 1 describes a method of manufacturing a minute prism having a side length of less than 1 mm.
  • a plurality of minute prisms are manufactured by cutting a large prism having an inclined surface at a plurality of locations.
  • an optically assisted magnetic recording method has been developed to further increase the recording density.
  • the size of the magnetic head of the optically assisted magnetic recording system is, for example, a length of 0.85 mm, a width of 0.7 mm, and a thickness of 0.23 mm. Since the magnetic head itself is thus small, the optical element used in the magnetic head is also required to have a size of less than 1 mm.
  • a composite microprism for light assist for example, there is a microprism provided with a diffraction grating having a fine pitch of submicron order.
  • a microprism having a fine pitch diffraction grating is obtained.
  • the microprism itself is very small, it is very difficult to handle. Therefore, when a diffraction grating is formed on the microprism, it is very difficult to perform positioning and angle adjustment between the mold for transferring the diffraction grating and the microprism. As a result, it becomes difficult to accurately transfer the shape of the diffraction grating to the microprism.
  • transferring a fine structure other than the diffraction grating there is a similar difficulty.
  • the present invention solves the above-described problems, and an object thereof is to provide a method of manufacturing an optical element that is easy to handle and can form a fine structure with high accuracy.
  • the present invention includes a first step of forming a microstructure on a surface of a rod-shaped base material, and a first step of cutting the base material at a first cut surface that intersects the surface and extends along the longitudinal direction of the base material. Cutting the base material at a second cutting surface that intersects the surface and extends along the longitudinal direction at a predetermined distance from the first cutting surface, and the first cutting surface and the first cutting surface. A second cutting step for obtaining a cut piece sandwiched between two cut surfaces from the base material, and a third cut surface intersecting the first cut surface and the second cut surface, And a third cutting step of producing a plurality of optical elements by cutting the pieces at predetermined intervals.
  • the base is a triangular prism having a triangular bottom surface
  • the microstructure is formed with the first side surface of the triangular prism as the surface
  • the first In the cutting step the base material is cut at the first cutting surface that intersects the second side surface and the first side surface of the triangular prism and extends along the longitudinal direction
  • the substrate may be cut at the second cut surface that intersects the second side surface and the first side surface along the longitudinal direction at the predetermined distance from the first cut surface. Good.
  • the angle formed between the first side surface and the second side surface is 90 ° ⁇ (0 ° ⁇ ⁇ 90 °), and in the first cutting step, the angle is perpendicular to the second side surface.
  • the base material is cut at the first cut surface, and in the second cutting step, the base material is cut at the second cut surface perpendicular to the second side surface.
  • the base material is a triangular prism having an isosceles triangular bottom surface
  • the fine structure is formed with the first side surface including the bottom of the triangular prism as the surface.
  • the first cut piece sandwiched between the first cut surface and the second cut surface is obtained from the base material by cutting the base material at the second cut surface along the line,
  • the first cut piece is cut off at the third cut surface.
  • the plurality of optical elements are manufactured by cutting at regular intervals, intersecting the third side surface including the other two sides of the equal isosceles triangle and the first side surface, respectively, along the longitudinal direction
  • a fifth cut piece sandwiched between the fourth cut surface and the fifth cut surface is obtained from the base material by cutting the base material at a fifth cut surface along the longitudinal direction. Cutting the second cut piece at the predetermined interval at the cutting step and a sixth cut surface intersecting the fourth cut surface and the fifth cut surface. And a sixth cutting step to be produced.
  • the base angle of the isosceles triangle is 90 ° ⁇ (0 ° ⁇ ⁇ 90 °), and in the first cutting step, the first cut surface is perpendicular to the second side surface.
  • the base material is cut, and in the second cutting step, the base material is cut at the second cutting surface perpendicular to the second side surface, and in the fourth cutting step, the third side surface is cut. It is preferable that the base material is cut at the fourth cut surface perpendicular to the substrate, and the base material is cut at the fifth cut surface perpendicular to the third side surface in the fifth cutting step.
  • the fine structure including a first fine structure and a second fine structure having mutually inverted shapes is formed on the first side surface, and the first cutting step and the first fine structure are formed.
  • the first cut surface and the second cut surface intersecting the second side surface and the first microstructure respectively cut the base material to cut the base material.
  • the fourth cut surface and the second cut surface intersecting the third side surface and the second fine structure, respectively are obtained. It is preferable to obtain the second cut piece by cutting the base material with the cut surface of 5.
  • an optical film may be formed on the surface on which the fine structure is formed between the first step and the first cutting step.
  • the optical film is preferably a reflective film.
  • a tip including the surface on which the fine structure is formed and the surface formed by the second cut surface may be chamfered.
  • the first cut surface and the second cut surface may not be parallel.
  • a flowable material is provided between the mold having the microstructure and the base material, and the mold and the base material By sandwiching the flowable material, the shape of the fine structure is transferred to the flowable material, and the flowable material to which the shape of the fine structure has been transferred is cured, so that the surface of the substrate has the fine structure.
  • a structure may be formed.
  • the fluid material is a resin as an example.
  • the fine structure in the first step, is formed in a partial region of the surface, and in the first cutting step and the second cutting step, the fine structure is formed.
  • the substrate may be cut across the position where is formed.
  • the fine structure is formed in a region wider than the effective optical surface of the optical element in a partial region of the surface.
  • the fine structure is a diffraction grating as an example.
  • an optical element is produced by forming a fine structure on a rod-shaped base material and cutting the base material on which the fine structure is formed. Since such a base material is used, handling becomes easy. That is, since the fine structure is formed on the rod-shaped substrate without forming the fine structure on the minute optical element, the handling becomes easy. For example, when forming a fine structure, it is possible to perform alignment and angle alignment of the base material with high accuracy. This makes it possible to form a fine structure on the substrate with high accuracy.
  • FIG. 1st Embodiment It is a perspective view of the optical element produced by the manufacturing method of the optical element which concerns on 1st Embodiment. It is a front view of the metal mold
  • FIG. It is a perspective view of the base material which concerns on 2nd Embodiment of this invention. It is a front view of the metal mold
  • 2nd Embodiment it is a front view of the base material in which the diffraction grating was formed.
  • 2nd Embodiment it is a front view which shows the state which mounted the base material on the process stand.
  • 2nd Embodiment it is a front view which shows the state which mounted the base material on the process stand.
  • FIG. It is a front view of the metal mold
  • FIG. It is a perspective view of the base material which concerns on 3rd Embodiment of this invention. It is a front view of the metal mold
  • FIG. 1 is a perspective view of a base material.
  • the base material 1 is a rod-shaped prism having a triangular cross section.
  • the substrate 1 is a prism (triangular prism) having a triangular bottom surface 2 and a bottom surface 3.
  • the side surface of the substrate 1 includes a surface 4, a surface 5, and a surface 6.
  • the surface 4 and the surface 5 are orthogonal to each other, and the surface 6 is inclined with respect to the surface 4 and the surface 5.
  • the angle formed by the surface 5 and the surface 6 is an angle (90 ° ⁇ ) (0 ° ⁇ ⁇ 90 °).
  • the length of each side of the bottom surface 2 and the bottom surface 3 is preferably about 3 mm to 5 mm.
  • the substrate 1 is a rod-shaped prism (triangular prism) having a long distance between the bottom surface 2 and the bottom surface 3 (distance in the longitudinal direction (X direction in the drawing)).
  • the distance between the bottom surface 2 and the bottom surface 3 (the distance in the longitudinal direction) is preferably about 10 mm to 50 mm.
  • the sides of the surfaces 4, 5, and 6 that are not included in the bottom surface 2 and the bottom surface 3 are preferably about 10 mm to 50 mm in length.
  • the material of the substrate 1 is, for example, glass.
  • a plurality of optical elements are produced by cutting the substrate 1.
  • the optical element corresponds to, for example, a prism formed with a diffraction grating as an example of a fine structure, a diffraction element, or a lens.
  • a prism having a diffraction grating is manufactured will be described.
  • the base material 1 is cut out from the square bar.
  • the surface accuracy of the surface 6 is higher than that of the surface 4 and the surface 5. Therefore, it is preferable to form a diffraction grating on the surface 6.
  • the surface 6 is preferably subjected to surface finishing with high surface accuracy in advance, and a diffraction grating is formed on the surface 6.
  • FIG. 2 is a perspective view of the mold.
  • a transfer structure 12 for transferring a blazed diffraction grating is formed on one surface 11 of the mold 10.
  • the transfer structure 12 has a plurality of grooves along one direction. The cross-sectional shape of the groove is serrated.
  • the pitch of the transfer structure 12 is illustrated in an enlarged manner for the purpose of explanation, but the actual pitch of the transfer structure 12 is a fine pitch on the order of submicrons. As an example, the pitch of the transfer structure 12 is less than 1 ⁇ m.
  • the transfer structure 12 may be formed on the entire surface 11, or may be formed on a part of the surface 11.
  • the mold 10 is manufactured by processing a metal such as nickel (Ni).
  • the mold 10 may be a glass transparent substrate.
  • the mold 10 is manufactured by forming the transfer structure 12 on the surface of the glass substrate by anisotropic etching.
  • a transparent resin is applied to a metal mold having the same shape as the diffraction grating formed on the substrate 1, and the shape of the diffraction grating is transferred to the transparent resin by photocuring or heat curing.
  • a transparent resin to which the shape is transferred may be used as the mold 10.
  • Optical element manufacturing method With reference to FIG. 3 to FIG. 6, a method for manufacturing an optical element according to the first embodiment will be described. (1.
  • a diffraction grating is formed on the surface 6 of the substrate 1 by a nanoimprint method.
  • a method of forming a diffraction grating will be described with reference to FIG.
  • FIG. 3 is a front view of the base material and the mold.
  • (1. Formation of diffraction grating) functions as the first step in the present invention
  • the surface 6 functions as the surface and the first side surface in the present invention
  • the surface 5 corresponds to the second step in the present invention. Acts as a side of (1-A. Application of resin 13) As shown in FIG.
  • a photocurable resin 13 that is an example of a fluid material is applied to the surface 11 of the mold 10 on which the transfer structure 12 is formed, and shown in FIG. As described above, a resin 13 is provided on the transfer structure 12.
  • the material of the photocurable resin is not limited.
  • FIG. 3C the base material 1 that is a prism is pressed against the mold 10. Specifically, the surface 6 (transfer surface) of the substrate 1 is pressed against the transfer structure 12 coated with the resin 13. In this way, the transfer structure 12 of the mold 10 is transferred to the resin 13 by sandwiching the resin 13 between the substrate 1 and the mold 10.
  • the base material 1 attention is paid to the ridge line formed by the surface 5 and the surface 6.
  • the rotation of the substrate 1 is adjusted around the normal of the surface 6 while observing with an observation camera (not shown) so that the ridge line related to the substrate 1 and the boundary line related to the mold 10 are parallel. Since the base material 1 has an elongated rod-like shape, it can be observed over a wide range, and a slight rotational deviation can be detected. Therefore, the ridgeline related to the substrate 1 and the boundary line related to the mold 10 can be matched in parallel. That is, the ridgeline related to the substrate 1 and the direction of the groove of the transfer structure 12 can be matched in parallel.
  • two pins may be provided at a predetermined distance in the vicinity of the transfer structure 12 in the mold 10. While pressing the ridge line of the substrate 1 against the pin, the surface 6 of the substrate 1 is pressed against the transfer structure 12 coated with the resin 13. In this way, positioning and parallel determination may be performed by pins.
  • the transfer structure 12 may be transferred to the resin 13 by applying the resin 13 to the surface 6 of the substrate 1 and pressing the transfer structure 12 of the mold 10 against the resin 13.
  • (1-C. Curing treatment) As shown in FIG. 3C, the resin 13 is cured by irradiating the substrate 14 with ultraviolet rays 14 from the substrate 1 side in a state where the substrate 1 is pressed against the mold 10.
  • ultraviolet rays may be irradiated from the back surface of the mold 10.
  • the back surface is a surface facing the surface 11 on which the transfer structure 12 is formed. Since the mold 10 is a transparent substrate, the ultraviolet light incident from the back surface passes through the mold 10 and is irradiated to the resin 13.
  • the substrate 1 is separated from the mold 10. Through the above steps, a diffraction grating is formed on the surface 6 of the substrate 1.
  • thermosetting resin In the formation of the diffraction grating according to the first embodiment, a photocurable resin is used as the fluid material, but a thermosetting resin may be used. When a thermosetting resin is used, the resin is cured by heating instead of ultraviolet irradiation.
  • a sol-gel glass may be used as the fluid material.
  • the gel-like sol-gel glass is cured by applying a gel-like sol-gel glass to the mold 10 and heating the base material 1 for a predetermined time while being pressed against the mold 10. Thereafter, the base material 1 is released from the mold 10, and the base material 1 on which the diffraction grating is formed is subjected to heat treatment to polymerize and completely solidify the sol-gel glass.
  • SOG spin on glass
  • FIG. 4 shows the substrate 1 on which a diffraction grating is formed.
  • FIG. 4 is a perspective view of the substrate.
  • a fine pitch diffraction grating 7 is formed on the surface 6 of the substrate 1.
  • the pitch of the diffraction grating 7 is illustrated in an enlarged manner for the sake of explanation, but the actual pitch of the diffraction grating 7 is a fine pitch on the order of submicrons.
  • the pitch of the diffraction grating 7 is less than 1 ⁇ m.
  • the diffraction grating 7 may be formed in a partial region of the surface 6 or may be formed on the entire surface 6.
  • a reflective film such as gold (Au) is formed as an example of an optical film on the surface 6 on which the diffraction grating 7 is formed.
  • a film forming method for example, a vapor deposition method or a sputtering method may be used.
  • the base material 1 on which the diffraction grating 7 is formed is cut to produce a plurality of optical elements. With reference to FIG.5 and FIG.6, a cutting process is demonstrated.
  • FIG. 5 is a front view showing a state in which the base material is placed on the processing table.
  • FIG. 6 is a perspective view of a cut piece.
  • the upper surface 21 of the processing table 20 is a surface that fixes the cutting reference surface of the substrate 1.
  • the base material 1 is fixed to the processing table 20 with the cutting reference plane of the base material 1 facing the upper surface 21 of the processing table 20.
  • the substrate 5 is fixed to the processing table 20 with the surface 5 of the substrate 1 as a cutting reference surface and the surface 5 facing the upper surface 21 of the processing table 20.
  • a dicing sheet (dicing tape) 22 is provided on the upper surface 21 of the processing table 20, and the substrate 1 is provided on the dicing sheet 22 by bringing the dicing sheet 22 and the surface 5 into contact with each other.
  • the base material 1 may be fixed to the processing table 20 by a fixing means (not shown) such as a clamp without providing the dicing sheet 22.
  • a fixing means such as a clamp
  • the surface 5 (cutting reference surface) of the substrate 1 is brought into contact with the upper surface 21 of the processing table 20, and the surface 5 is pressed against the upper surface 21, and the substrate 1 is fixed to the processing table 20 by fixing means such as a clamp. Secure to. (2-B. Cutting)
  • the base material 1 is cut at a position where the diffraction grating 7 is formed. Specifically, the base material 1 is cut along the cut surface A (first cut surface) intersecting with the diffraction grating 7 (first cutting step).
  • the cutting plane A is a plane parallel to the longitudinal direction (X direction) of the substrate 1 and perpendicular to the cutting reference plane (plane 5).
  • the cutting plane A is a plane that is parallel to the ridgeline formed by the planes 4 and 5 and is perpendicular to the cutting reference plane (plane 5).
  • the substrate 1 is cut along the cut surface A using a dicing blade 23.
  • the base material 1 is cut along a cutting plane B (second cutting plane) parallel to the cutting plane A and spaced a predetermined distance inside the cutting plane A (second cutting step).
  • the cut surface B intersects the diffraction grating 7. Note that the second cutting step may be performed first, and then the first cutting step may be performed.
  • the cut surface A and the cut surface B may not be perpendicular to the cutting reference surface (surface 5).
  • the substrate 1 can be cut at an angle shifted from a direction perpendicular to the cutting reference plane (plane 5).
  • the substrate 1 may be cut at an angle shifted from a direction perpendicular to the cutting reference plane (surface 5) by providing the dicing blade 23 with a taper.
  • the cut surface A and the cut surface B do not need to be parallel.
  • the dicing sheet 22 may be used as a processing table without using the processing table 20.
  • the processing table used for cutting may or may not include the processing table 20, or may or may not include the dicing sheet 22. That is, as the processing table, the processing table 20 may be used, the dicing sheet 22 may be used, or a configuration including the processing table 20 and the dicing sheet 22 may be used.
  • FIG. 6 shows a cut piece 30.
  • the cut piece 30 is a prism having a substantially trapezoidal surface 31 and a surface 32 as bottom surfaces.
  • the surface 31 corresponds to the bottom surface 2 of the substrate 1.
  • the surface 32 corresponds to the bottom surface 3 of the substrate 1.
  • the side surface of the cut piece 30 includes a surface 33, a surface 34, a surface 35, and a surface 36.
  • the surface 33 corresponds to the cut surface A and includes the upper base of the trapezoid (the surface 31 and the surface 32).
  • the surface 34 corresponds to the cut surface B and includes the lower base of the trapezoid (the surface 31 and the surface 32).
  • the surface 35 corresponds to the surface 6 of the substrate 1 and is inclined with respect to the surface 33 and the surface 34.
  • a diffraction grating 7 is formed on the surface 35 (surface 6).
  • the surface 36 corresponds to the surface 5 of the substrate 1 and is orthogonal to the surface 33 and the surface 34.
  • the surface 33 and the surface 34 may be parallel or may not be parallel. That is, by cutting the substrate 1 with the cut surface A and the cut surface B being parallel, the cut piece 30 in which the surface 33 and the surface 34 are parallel is obtained. By cutting the substrate 1 with the cut surface A and the cut surface B being non-parallel, a cut piece 30 in which the surface 33 and the surface 34 are non-parallel is obtained.
  • FIG. 7 shows an optical element.
  • FIG. 7 is a perspective view of the optical element.
  • the optical element 30A is a prism having a substantially trapezoidal surface 37 and a surface 38 as bottom surfaces. The surface 37 and the surface 38 correspond to the cut surface C.
  • the side surface of the optical element 30 ⁇ / b> A includes a surface 33, a surface 34, a surface 35, and a surface 36.
  • the surface 33 corresponds to the cut surface A and includes the upper base of the trapezoid (the surface 37 and the surface 38).
  • the surface 34 corresponds to the cut surface B and includes the lower base of the trapezoid (the surface 37 and the surface 38).
  • the surface 35 corresponds to the surface 6 of the substrate 1 and is inclined with respect to the surface 33 and the surface 34.
  • the angle formed by the surface 34 and the surface 35 is an angle ⁇ (0 ° ⁇ ⁇ 90 °).
  • a diffraction grating 7 is formed on the surface 35 (surface 6).
  • a reflective film is formed on the surface 35 (surface 6).
  • the surface 36 corresponds to the surface 5 of the substrate 1 and is orthogonal to the surface 33 and the surface 34.
  • the length of each side of the optical element 30A is around 0.5 mm.
  • the optical element 30A when the optical element 30A is used for an optically assisted magnetic head, the optical element 30A is mounted on the magnetic head with the surface 33 facing the disk. It is preferable that the angle formed by the surface 33 and the surface 36 is smaller than 90 ° so that the surface 33 does not protrude to the disk side than the slider. That is, it is preferable to cut the base material 1 by inclining the cutting plane A with respect to the cutting reference plane (plane 5). For example, the surface 33 and the surface 34 are formed non-parallel so that the angle formed by the surface 33 and the surface 36 is less than 90 °.
  • the optical element 30A can be used as a surface reflection type microprism with a diffraction grating.
  • the surface 35 (surface 6) on which the diffraction grating 7 is formed is irradiated with light from the outside of the optical element 30A and reflected by the surface 35.
  • the light reflected by the surface 35 is irradiated onto the disk via an optical waveguide formed inside the slider of the hard disk device, for example.
  • the fine transfer structure 12 is transferred to the large rod-shaped base material 1 by the nanoimprint method, and the base material 1 to which the transfer structure 12 is transferred is cut.
  • Element 30A is fabricated. Since such a large substrate 1 is used, handling becomes easy, and alignment and angle alignment can be performed with high precision between the substrate 1 and the mold 10. Therefore, it becomes possible to transfer the transfer structure 12 to the substrate 1 with high accuracy. As a result, an optical element 30A to which the transfer structure 12 is transferred with high accuracy is obtained.
  • the diffraction grating is formed by the nanoimprint method. Since the viscosity of the resin before curing is relatively low, even a fine structure can be accurately transferred, and as a result, high optical characteristics can be obtained. According to the first embodiment, since the edge portion of the diffraction grating shape can be transferred, high diffraction efficiency can be obtained.
  • the diffraction grating 7 is formed on the entire surface 6 of the substrate 1 and is formed on the entire surface 35 of the optical element 30A.
  • the diffraction grating 7 may be formed only in a range including the effective optical surface of the surface 35 of the optical element 30A.
  • FIG. 8 shows a mold according to the first modification.
  • FIG. 8 is a front view of the mold.
  • On one surface 11 of the mold 10A a transfer structure 12 is formed in a partial region. The range in which the transfer structure 12 is formed is wider than the effective optical surface of the surface 35 of the optical element 30 ⁇ / b> A and narrower than the surface 6 of the substrate 1.
  • a diffraction grating 7 is formed on the surface 6 of the substrate 1 using this mold 10A.
  • the diffraction grating 7 is formed in a partial region of the surface 6 of the substrate 1.
  • an optical element 30A in which the diffraction grating 7 is formed on the effective optical surface of the surface 35 is obtained.
  • FIG. 9 is a perspective view of the base material.
  • the same components as those according to the first embodiment may be denoted by the same reference numerals and description thereof may be omitted.
  • the substrate 1A is a rod-shaped prism having a triangular cross-sectional shape.
  • the substrate 1A is a prism (triangular prism) having an isosceles triangular bottom surface 2 and bottom surface 3 having a base angle of (90 ° ⁇ ).
  • the side surface of the substrate 1 includes a surface 4, a surface 5, and a surface 6.
  • the surface 4 includes one side of two equal sides in the isosceles triangle (the bottom surface 2 and the bottom surface 3).
  • the surface 5 includes the other of the two equal sides in the isosceles triangle (the bottom surface 2 and the bottom surface 3).
  • the surface 6 includes the bases of isosceles triangles (the bottom surface 2 and the bottom surface 3).
  • the length of each side of the bottom surface 2 and the bottom surface 3 is preferably about 3 mm to 5 mm.
  • the material of the base 1A is, for example, glass. Similar to the first embodiment, it is preferable that the surface 6 is preliminarily surface-finished with high surface accuracy. (Mold 10B for transferring diffraction grating) With reference to FIG. 10, the metal mold
  • FIG. 10 is a front view of the mold.
  • a transfer structure 12A and a transfer structure 12B are formed at a predetermined distance.
  • the transfer structure 12A and the transfer structure 12B are structures for transferring a blazed diffraction grating.
  • Each of the transfer structure 12A and the transfer structure 12B has a plurality of grooves along one direction. The cross-sectional shape of the groove is serrated.
  • the shapes of the transfer structure 12A and the transfer structure 12B are inverted from each other (inverted shape). Specifically, the saw blades face in opposite directions in the transfer structure 12A and the transfer structure 12B.
  • the plurality of grooves in the transfer structure 12A and the plurality of grooves in the transfer structure 12B are parallel, and the transfer structure 12A and the transfer structure 12B are formed in parallel.
  • the midpoint between the transfer structure 12A and the transfer structure 12B for example, the center of the mold 10B
  • the structure composed of the transfer structure 12A and the transfer structure 12B is point-symmetric.
  • the pitch of the transfer structure 12 ⁇ / b> A and the transfer structure 12 ⁇ / b> B is illustrated in an enlarged manner for explanation, but the actual pitch is a fine pitch on the order of submicrons.
  • a method for manufacturing an optical element according to the second embodiment will be described with reference to FIGS. (1. Formation of diffraction grating)
  • a diffraction grating is formed on the surface 6 of the substrate 1A by the nanoimprint method.
  • a photocurable resin is applied to the surface 11 of the mold 10B, and the resin is provided on the transfer structure 12A and the transfer structure 12B.
  • FIG. 11 shows a substrate 1A on which a diffraction grating is formed.
  • FIG. 11 is a front view of the substrate.
  • a fine pitch diffraction grating 7A and a diffraction grating 7B are formed on the surface 6 of the substrate 1A.
  • the diffraction grating 7A is a diffraction grating formed by the transfer structure 12A.
  • the diffraction grating 7B is a diffraction grating formed by the transfer structure 12B.
  • the diffraction grating 7A and the diffraction grating 7B are inverted in shape. That is, the diffraction grating 7A and the diffraction grating 7B are in an inverted shape.
  • the blazed shapes of the diffraction grating 7A and the diffraction grating 7B are directed in opposite directions.
  • the diffraction grating 7 ⁇ / b> A is formed from the center of the surface 6 to the surface 5.
  • the diffraction grating 7 ⁇ / b> B is formed from the center of the surface 6 to the surface 4.
  • the structure composed of the diffraction grating 7A and the diffraction grating 7B is point-symmetric.
  • the diffraction grating 7A and the diffraction grating 7B function as the first microstructure and the second microstructure in the present invention.
  • the pitches of the diffraction grating 7A and the diffraction grating 7B are shown enlarged for the sake of explanation, but the actual pitch is a fine pitch on the order of submicrons.
  • FIGS. 12 and 13 are front views showing a state in which the base material is placed on the processing table.
  • FIGS. 12 and 13 are front views showing a state in which the base material is placed on the processing table.
  • 2-A. Fixed As shown in FIG. 12, the base 1 ⁇ / b> A is fixed to the processing table 20 with the cutting reference plane of the base 1 ⁇ / b> A facing the upper surface 21 of the processing table 20.
  • the cutting reference plane of the substrate 1A is the plane 5 at first, and then replaced with the plane 4.
  • the base 5 ⁇ / b> A is fixed to the processing table 20 with the surface 5 of the base 1 ⁇ / b> A as the cutting reference surface and the surface 5 facing the upper surface 21 of the processing table 20.
  • the dicing sheet 22 is provided on the upper surface 21 of the processing table 20
  • the base material 1 ⁇ / b> A is provided on the dicing sheet 22 by bringing the dicing sheet 22 and the surface 5 into contact with each other.
  • the base 1 ⁇ / b> A may be provided on the processing table 20 by a fixing means such as a clamp without providing the dicing sheet 22. (2-B.
  • the substrate 1A is cut at a position where the diffraction grating 7A is formed. Specifically, the substrate 1A is cut along a cut surface D (first cut surface) intersecting with the diffraction grating 7A (first cutting step).
  • the cutting plane D is a plane that is parallel to the longitudinal direction (X direction) of the substrate 1A and perpendicular to the cutting reference plane (plane 5). In other words, the cutting plane D is a plane that is parallel to the ridgeline formed by the planes 4 and 5 and is perpendicular to the cutting reference plane (plane 5).
  • the substrate 1A is cut along a cut surface E (second cut surface) that is parallel to the cut surface D and spaced a predetermined distance inside the cut surface D (second cutting step).
  • the cut surface E intersects the diffraction grating 7A. Note that the cut surface D and the cut surface E may not be perpendicular to the cutting reference surface (surface 5). Moreover, the cut surface D and the cut surface E do not need to be parallel.
  • the second cutting step may be performed first, and then the first cutting step may be performed.
  • the rod-shaped first cut piece 40 has the same shape as the cut piece 30 shown in FIG.
  • a plurality of optical elements are obtained by cutting the first cut pieces 40 at a plurality of locations at predetermined intervals along the cut surface C (third cut surface). Cutting step). Thereby, the optical element 30A shown in FIG. 7 is obtained.
  • 2-C. Fixed Next, as shown in FIG. For example, the base material 1A is rotated to the right by a rotation axis perpendicular to the paper surface so that the surface 4 faces the upper surface 21 of the processing table 20.
  • the base material 1 ⁇ / b> A is fixed to the processing table 20 by bringing the dicing sheet 22 and the surface 4 into contact with each other.
  • the substrate 1A is cut at a position where the diffraction grating 7B is formed. Specifically, the substrate 1A is cut along a cut surface F (fourth cut surface) intersecting with the diffraction grating 7B (fourth cutting step).
  • the cutting surface F is a surface that is parallel to the longitudinal direction (X direction) of the substrate 1A and is perpendicular to the cutting reference surface (surface 4).
  • the cutting plane F is a plane that is parallel to the ridgeline formed by the plane 4 and the plane 5 and is perpendicular to the cutting reference plane (plane 4).
  • the substrate 1A is cut along a cut surface G (fifth cut surface) parallel to the cut surface F and spaced a predetermined distance inside the cut surface F (fifth cutting step).
  • the cut surface G intersects the diffraction grating 7B. Note that the cut surface F and the cut surface G may not be perpendicular to the cutting reference surface (surface 4). Moreover, the cut surface F and the cut surface G do not need to be parallel.
  • the rod-shaped second cut piece 41 has the same shape as the cut piece 30 shown in FIG.
  • a plurality of optical elements are obtained by cutting the second cut pieces 41 at a plurality of locations at predetermined intervals along the cut surface C (sixth cut surface) (sixth cut surface). Cutting step). Thereby, the optical element 30A shown in FIG. 7 is obtained.
  • the same effects as the manufacturing method according to the first embodiment can be obtained. Furthermore, since two cut pieces (the first cut piece 40 and the second cut piece 41) can be obtained from one base material 1A, the material cost can be suppressed. As a result, the manufacturing cost of the optical element can be reduced.
  • Module 2 Also in the second embodiment, like the first modification of the first embodiment, the diffraction grating 7 may be formed only in a range including the effective optical surface of the surface 35 of the optical element 30A.
  • die of the modification 2 is shown.
  • FIG. 14 is a front view of the mold.
  • a transfer structure 12A and a transfer structure 12B are formed in a partial region at a predetermined distance.
  • the shapes of the transfer structure 12A and the transfer structure 12B are inverted from each other (inverted shape).
  • Each of the transfer structure 12A and the transfer structure 12B is wider than the effective optical surface of the surface 35 of the optical element 30A. Further, the combined range of the transfer structure 12A and the transfer structure 12B is narrower than the surface 6 of the substrate 1A.
  • the diffraction grating 7A and the diffraction grating 7B are formed on the surface 6 of the substrate 1A.
  • the diffraction grating 7A and the diffraction grating 7B are formed in a partial region of the surface 6 of the substrate 1A.
  • the first cut piece 40 and the second cut piece 41 are obtained.
  • a plurality of optical elements 30A are obtained.
  • the same effect as the first modification described above can be obtained.
  • FIG. 15 is a perspective view of the substrate.
  • the same components as those according to the first embodiment may be denoted by the same reference numerals and description thereof may be omitted.
  • the base material 1B is a rod-shaped prism having a triangular cross section.
  • the base material 1 ⁇ / b> B is a prism (triangular prism) having a triangular bottom surface 2 and a bottom surface 3.
  • the surface 4 and the surface 5 are orthogonal to each other, and the surface 6 is inclined with respect to the surface 4 and the surface 5.
  • the angle formed by the surface 5 and the surface 6 is an angle (90 ° ⁇ ) (0 ° ⁇ ⁇ 90 °).
  • the length of each side of the bottom surface 2 and the bottom surface 3 is preferably about 3 mm to 5 mm.
  • the material of the substrate 1B is, for example, glass.
  • the surface 5 and the surface 6 are polished into a mirror surface in advance by polishing the surface 5 and the surface 6. Further, it is preferable to form an antireflection film on the surface 5 in advance.
  • the surface 5 corresponds to the incident surface.
  • a diffraction grating is formed on the surface 6. (Mold 10D for transferring diffraction grating)
  • the metal mold die which concerns on 3rd Embodiment is demonstrated.
  • FIG. 16 is a front view of the mold.
  • a transfer structure 12 is formed in a partial area on one surface 11 of the mold 10D.
  • the range in which the transfer structure 12 is formed is narrower than the surface 6 of the substrate 1B and wider than the effective optical surface of the diffraction grating surface of the optical element (microprism) obtained from the substrate 1B.
  • the diffraction grating surface is a surface on which a diffraction grating is formed. Thereby, a diffraction grating is formed in a partial region of the surface 6 of the substrate 1B.
  • the pitch of the transfer structure 12 is shown enlarged, but the actual pitch is a fine pitch on the order of submicrons.
  • a diffraction grating is formed on the surface 6 of the substrate 1B by the nanoimprint method. Specifically, a photocurable resin is applied to the surface 11 of the mold 10 ⁇ / b> D, and the resin is provided on the transfer structure 12. The surface 6 (transfer surface) of the substrate 1B is pressed against the transfer structure 12 coated with the resin, and the resin is cured by irradiating with ultraviolet rays. Thereby, a diffraction grating is formed in a partial region of the surface 6 of the substrate 1B.
  • FIG. 17 shows a substrate 1B on which a diffraction grating is formed.
  • FIG. 17 is a front view showing a state where the base material is placed on the processing table.
  • a fine pitch diffraction grating 7 is formed on a part of the surface 6 of the substrate 1B.
  • the pitch of the diffraction grating 7 is illustrated in an enlarged manner for explanation, but the actual pitch is a fine pitch on the order of submicrons.
  • a reflective film such as gold (Au) is formed on the surface 6 on which the diffraction grating 7 is formed.
  • a plurality of optical elements are manufactured by cutting the base material 1B on which the diffraction grating 7 is formed. The cutting process will be described with reference to FIG. (2-A. Fixed) As shown in FIG. 17, the base 1 ⁇ / b> B is fixed to the processing table 20 with the cutting reference surface of the base 1 ⁇ / b> B facing the upper surface 21 of the processing table 20.
  • the substrate 5 is fixed to the processing table 20 with the surface 5 of the substrate 1 ⁇ / b> B as the cutting reference surface and the surface 5 facing the upper surface 21 of the processing table 20.
  • the dicing sheet 22 is provided on the upper surface 21 of the processing table 20, the dicing sheet 22 is brought into contact with the surface 5, and the base material 1 ⁇ / b> B is provided on the dicing sheet 22.
  • the substrate 1B is cut along the cutting plane H that intersects the diffraction grating 7 (first cutting step).
  • the cutting surface H is a surface that is parallel to the longitudinal direction (X direction) of the base material 1B and is perpendicular to the cutting reference surface (surface 5).
  • the cutting plane H is a plane that is parallel to the ridgeline formed by the planes 4 and 5 and is perpendicular to the cutting reference plane (plane 5).
  • the base material 1B is cut along a cut surface I that is parallel to the cut surface H and spaced a predetermined distance inward from the cut surface H (second cutting step).
  • the cut surface I intersects the diffraction grating 7. Note that the cutting plane H and the cutting plane I do not have to be perpendicular to the cutting reference plane (plane 5). Moreover, the cut surface H and the cut surface I do not need to be parallel.
  • FIG. 18 is a front view of the cut piece.
  • the cut piece 50 is a prism having a substantially trapezoidal surface 51 and a substantially trapezoidal surface (not shown) facing the surface 51 as a bottom surface.
  • the surface 51 corresponds to the bottom surface 2 of the substrate 1.
  • the surface facing the surface 51 corresponds to the bottom surface 3 of the substrate 1.
  • the side surface of the cut piece 50 includes a surface 53, a surface 54, a surface 55, and a surface 56.
  • the surface 53 corresponds to the cut surface H and includes the upper base of the trapezoid (surface 51).
  • the surface 54 corresponds to the cut surface I and includes the lower base of the trapezoid (surface 51).
  • the surface 55 corresponds to the surface 6 of the substrate 1 and is inclined with respect to the surface 53 and the surface 54.
  • a diffraction grating 7 is formed on the surface 55 (surface 6).
  • the surface 56 corresponds to the surface 5 of the substrate 1 and is orthogonal to the surface 53 and the surface 54.
  • the surface 53 and the surface 54 may be parallel or may not be parallel. That is, by cutting the substrate 1B with the cut surface H and the cut surface I parallel, a cut piece 50 in which the surface 53 and the surface 54 are parallel is obtained. By cutting the substrate 1B with the cut surface H and the cut surface I being non-parallel, a cut piece 50 in which the surface 53 and the surface 54 are non-parallel is obtained.
  • FIG. 19 shows the cut piece 50 after chamfering.
  • FIG. 19 is a front view of the cut piece 50 after chamfering.
  • the surface 57 of the cutting piece 50 is a surface formed by chamfering and corresponds to the cutting surface J.
  • a plurality of optical elements are manufactured by cutting the chamfered cut pieces 50 at a plurality of locations at predetermined intervals along the cut surface C (third cutting step).
  • the optical element according to the third embodiment can be used as an internal reflection type microprism with a diffraction grating.
  • light enters the surface 56 from the outside of the optical element, travels inside the optical element, and reaches the surface 55.
  • the light is reflected and diffracted by the surface 55, travels to the surface 56, and exits from the surface 56 to the outside of the optical element.
  • the same effect as that of the manufacturing method according to the first embodiment can be obtained also in the case of producing the internal reflection type microprism with a diffraction grating.
  • the angle formed by the surface 54 and the surface 56 of the optical element is smaller than 90 °. That is, it is preferable to cut the base material 1B by inclining the cutting plane I with respect to the cutting reference plane (plane 5).
  • the surface 53 and the surface 54 are formed non-parallel so that the angle formed by the surface 54 and the surface 56 is less than 90 °.
  • the magnetic head floats with respect to the disk during operation, the magnetic head is tilted by the wind pressure of the disk rotation.
  • the surface 56 of the microprism (the optical element according to the third embodiment) is fixed to the tip of the slider, and the surface 54 faces the disk.
  • FIG. 20 is a perspective view of the base material.
  • the same components as those according to the first embodiment may be denoted by the same reference numerals and description thereof may be omitted.
  • the base material 1C is a rod-shaped prism having a triangular cross-sectional shape.
  • the substrate 1C is a prism (triangular prism) having an isosceles triangular bottom surface 2 and bottom surface 3 having a base angle of (90 ° ⁇ ). Specifically, the angle formed by the surface 4 and the surface 6 is (90 ° ⁇ ) (0 ° ⁇ ⁇ 90 °), and the angle formed by the surface 5 and the surface 6 is (90 ° ⁇ ).
  • the side surface of the substrate 1 includes a surface 4, a surface 5, and a surface 6.
  • the surface 4 includes one side of two equal sides in the isosceles triangle (the bottom surface 2 and the bottom surface 3).
  • the surface 5 includes the other of the two equal sides in the isosceles triangle (the bottom surface 2 and the bottom surface 3).
  • the surface 6 includes the bases of isosceles triangles (the bottom surface 2 and the bottom surface 3).
  • the length of each side of the bottom surface 2 and the bottom surface 3 is preferably about 3 mm to 5 mm.
  • the material of the substrate 1C is, for example, glass.
  • the surface 4, the surface 5 and the surface 6 are polished, so that the surface 4, the surface 5 and the surface 6 are processed into mirror surfaces in advance. Further, it is preferable to form an antireflection film on the surface 4 and the surface 5 in advance.
  • the surface 4 and the surface 5 correspond to the incident surface.
  • FIG. 21 is a front view of the mold.
  • a transfer structure 12A and a transfer structure 12B are formed at a predetermined distance.
  • the transfer structure 12A and the transfer structure 12B are structures for transferring a blazed diffraction grating.
  • the shapes of the transfer structure 12A and the transfer structure 12 are reversed (reverse shape).
  • the transfer structure 12A and the transfer structure 12B are each formed in a partial region.
  • the transfer structure 12A and the transfer structure 12B are each narrower than the surface 6 of the substrate 1C and wider than the effective optical surface of the diffraction grating surface of the optical element (microprism) obtained from the substrate 1C.
  • a diffraction grating is formed on the surface 6 of the substrate 1C.
  • the pitch of the transfer structure 12A and the transfer structure 12B is depicted enlarged for the sake of explanation, but the actual pitch is a fine pitch on the order of submicrons.
  • FIGS. 22-24 the manufacturing method of the optical element which concerns on 4th Embodiment is demonstrated. (1.
  • a diffraction grating is formed on the surface 6 of the substrate 1C by the nanoimprint method. Specifically, a photocurable resin is applied to the surface 11 of the mold 10E, and the resin is provided on the transfer structure 12A and the transfer structure 12B. The surface (transfer surface) of the substrate 1C is pressed against the transfer structure 12A and the transfer structure 12B coated with resin, and the resin is cured by irradiating ultraviolet rays. Thereby, a diffraction grating is formed on the surface 6 of the substrate 1C.
  • FIG. 22 shows a substrate 1C on which a diffraction grating is formed.
  • FIG. 22 is a front view of the substrate.
  • a fine pitch diffraction grating 7A and a diffraction grating 7B are formed in a partial region of the surface 6 of the substrate 1C.
  • the diffraction grating 7A is a diffraction grating formed by the transfer structure 12A.
  • the diffraction grating 7B is a diffraction grating formed by the transfer structure 12B.
  • the diffraction grating 7A and the diffraction grating 7B are inverted in shape (inverted shape).
  • the pitch of the diffraction grating 7A and the diffraction grating 7B is depicted enlarged, but the actual pitch is a fine pitch on the order of submicrons.
  • a reflective film such as gold (Au) is formed on the surface 6 on which the diffraction grating 7A and the diffraction grating 7B are formed. (2.
  • FIG.23 and FIG.24 is a front view which shows the state which mounted the base material on the process stand.
  • 2-A. Fixed As shown in FIG. 23, the base material 1 ⁇ / b> C is fixed to the work table 20 with the cutting reference surface of the base material 1 ⁇ / b> C facing the upper surface 21 of the work table 20.
  • the cutting reference plane of the substrate 1 ⁇ / b> C is the plane 5 at first, and then replaced with the plane 4.
  • the substrate 5 is fixed to the processing table 20 with the surface 5 of the substrate 1 ⁇ / b> C as a reference cut surface and the surface 5 facing the upper surface 21 of the processing table 20.
  • the dicing sheet 22 is provided on the upper surface 21 of the processing table 20, and the substrate 1 ⁇ / b> C is provided on the dicing sheet 22 by bringing the dicing sheet 22 and the surface 5 into contact with each other.
  • the substrate 1C may be provided on the processing table 20 by a fixing means such as a clamp without providing the dicing sheet 22. (2-B. Cutting) After fixing the base material 1C to the processing table 20, the base material 1C is cut at a position where the diffraction grating 7A is formed.
  • the substrate 1C is cut along the cut surface K intersecting the diffraction grating 7A (first cutting step).
  • the cutting plane K is a plane that is parallel to the longitudinal direction (X direction) of the substrate 1C and perpendicular to the cutting reference plane (plane 5).
  • the cutting plane K is a plane that is parallel to the ridgeline formed by the plane 4 and the plane 5 and is perpendicular to the cutting reference plane (plane 5).
  • the substrate 1 ⁇ / b> C is cut along a cutting surface L that is parallel to the cutting surface K and is a predetermined distance inside the cutting surface K (second cutting step).
  • the cut surface L intersects the diffraction grating 7A. Note that the cut surface K and the cut surface L may not be perpendicular to the cutting reference surface (surface 5). Moreover, the cut surface K and the cut surface L do not need to be parallel.
  • the rod-shaped first cut piece 60 is obtained.
  • the rod-shaped first cut piece 60 has substantially the same shape as the cut piece 50 shown in FIG. (2-C. Fixed)
  • the base material 1 ⁇ / b> C is rotated to the right by a rotation axis perpendicular to the paper surface so that the surface 4 faces the upper surface 21 of the processing table 20.
  • the base material 1 ⁇ / b> C is fixed to the processing table 20 by bringing the dicing sheet 22 and the surface 4 into contact with each other. (2-D.
  • the base material 1C is cut at a position where the diffraction grating 7B is formed. Specifically, the substrate 1C is cut along the cut surface M intersecting the diffraction grating 7B (fourth cutting step).
  • the cutting plane M is a plane that is parallel to the longitudinal direction (X direction) of the substrate 1C and perpendicular to the cutting reference plane (plane 4). In other words, the cutting plane M is a plane that is parallel to the ridgeline formed by the planes 4 and 5 and is perpendicular to the cutting reference plane (plane 4).
  • the substrate 1 ⁇ / b> C is cut along a cut surface N that is parallel to the cut surface M and is a predetermined distance inside the cut surface M (fifth cutting step).
  • the cut surface N intersects the diffraction grating 7B. Note that the cutting surface M and the cutting surface N do not have to be perpendicular to the cutting reference surface (surface 4). Moreover, the cut surface M and the cut surface N do not need to be parallel.
  • the rod-shaped second cut piece 61 has the same shape as the cut piece 50 shown in FIG.
  • tip part which has angle (theta) is chamfered.
  • the first cut piece 60 and the second cut piece 61 after chamfering have the same shape as the cut piece 50 after chamfering shown in FIG.
  • a plurality of optical elements are obtained by cutting the first cut piece 60 and the second cut piece 61 after chamfering at a plurality of locations at predetermined intervals along the cut surface C. (Third and sixth cutting steps).
  • an internal reflection type microprism with a diffraction grating is obtained.
  • the manufacturing method which concerns on 4th Embodiment there can exist the same effect as the manufacturing method which concerns on 1st Embodiment. Furthermore, since two cut pieces (the first cut piece 60 and the second cut piece 61) can be obtained from one base material 1C, the material cost can be suppressed. As a result, the manufacturing cost of the optical element can be reduced.
  • the fine structure formed on the substrate 1 is not limited to the diffraction grating, and may be another structure.
  • the shape formed on the substrate 1 by the nanoimprint method is not limited to the shape of the diffraction grating, and may be a spherical or aspherical lens shape or a hologram lens shape.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

 基材1の面6にナノインプリント法により回折格子7を形成する。基材1の長手方向に沿って面6に交差する切断面Aで基材1を切断する。切断面Aから所定距離おいて長手方向に沿う切断面Bで基材1を切断する。これにより、切断面Aと切断面Bとで挟まれた切断片30を基材1から得る。切断面Aと切断面Bとに交差する切断面で、切断片30を所定間隔で切断することで複数の光学素子を作製する。

Description

光学素子の製造方法
 この発明は、光学素子の製造方法に関する。
 微小な光学素子を作製する方法が提案されている。例えば特許文献1には、一辺の長さが1mm未満の微小なプリズムを作製する方法が記載されている。特許文献1に記載されている製造方法では、傾斜面を有する大きなプリズムを複数の箇所で切断することで、複数の微小なプリズム(マイクロプリズム)を作製する。
 また、プリズムの光学面に微細構造が設けられた複合マイクロプリズムが要求されている。微細構造としては、回折格子やレンズが該当する。
 例えばハードディスク装置においては、記録密度をさらに高めるために光アシスト磁気記録方式が開発されている。光アシスト磁気記録方式の磁気ヘッドのサイズは、例えば長さが0.85mm、幅が0.7mm、厚さが0.23mmである。このように磁気ヘッド自体が小さいため、磁気ヘッドに用いられる光学素子も1mm未満のサイズが要求される。光アシスト用の複合マイクロプリズムとして、例えば、サブミクロンオーダーの微細ピッチを有する回折格子が設けられたマイクロプリズムがある。
特開2009-276366号公報
 例えば、特許文献1に記載された方法で製造されたガラス製のマイクロプリズムの光学面にナノインプリント法によって回折格子を形成することで、微細ピッチの回折格子が設けられたマイクロプリズムが得られる。しかしながら、マイクロプリズム自体が非常に小さいため、取り扱いが非常に困難である。そのため、マイクロプリズムに回折格子を形成する場合に、回折格子を転写するための金型とマイクロプリズムとの間で、位置決めや角度合わせを行うことが非常に困難となる。その結果、回折格子の形状をマイクロプリズムに精度良く転写することが困難となる。回折格子以外の微細構造を転写する場合も、同様の困難さがある。
 この発明は上記の問題点を解決するものであり、取り扱いが容易で、精度良く微細構造を形成することが可能な光学素子の製造方法を提供することを目的とする。
 この発明は、棒状の基材の表面に微細構造を形成する第1のステップと、前記表面に交差し前記基材の長手方向に沿う第1の切断面で前記基材を切断する第1の切断工程と、前記第1の切断面から所定距離おいて、前記表面に交差し前記長手方向に沿う第2の切断面で前記基材を切断することで、前記第1の切断面と前記第2の切断面とで挟まれた切断片を前記基材から得る第2の切断工程と、前記第1の切断面と前記第2の切断面とに交差する第3の切断面で、前記切断片を所定間隔で切断することで複数の光学素子を作製する第3の切断工程と、を含む光学素子の製造方法である。
 上記の光学素子の製造方法において、前記基材は、底面が三角形の三角柱であり、前記第1のステップでは、前記三角柱の第1の側面を前記表面として前記微細構造を形成し、前記第1の切断工程では、前記三角柱の第2の側面と前記第1の側面とにそれぞれ交差し前記長手方向に沿う前記第1の切断面で、前記基材を切断し、前記第2の切断工程では、前記第1の切断面から前記所定距離おいて、前記第2の側面と前記第1の側面とにそれぞれ交差し前記長手方向に沿う前記第2の切断面で前記基材を切断してもよい。
 また、前記第1の側面と前記第2の側面とのなす角度が、90°-θ(0°<θ<90°)であり、前記第1の切断工程では、前記第2の側面に垂直な前記第1の切断面で前記基材を切断し、前記第2の切断工程では、前記第2の側面に垂直な前記第2の切断面で前記基材を切断することが好ましい。
 上記の光学素子の製造方法において、前記基材は、二等辺三角形の底面を有する三角柱であり、前記第1のステップでは、前記三角柱の底辺を含む第1の側面を前記表面として前記微細構造を形成し、前記第1の切断工程では、前記二等辺三角形の等しい2辺の一方の辺を含む第2の側面と前記第1の側面とにそれぞれ交差し前記長手方向に沿う前記第1の切断面で、前記基材を切断し、前記第2の切断工程では、前記第1の切断面から前記所定距離おいて、前記第2の側面と前記第1の側面とにそれぞれ交差し前記長手方向に沿う前記第2の切断面で前記基材を切断することで、前記第1の切断面と前記第2の切断面とで挟まれた第1の切断片を前記基材から得て、前記第3の切断工程では、前記第3の切断面で前記第1の切断片を前記所定間隔で切断することで前記複数の光学素子を作製し、前記二等辺三角形の等しい2辺の他方の辺を含む第3の側面と前記第1の側面とにそれぞれ交差し前記長手方向に沿う第4の切断面で、前記基材を切断する第4の切断工程と、前記第4の切断面から前記所定距離おいて、前記第3の側面と前記第1の側面とにそれぞれ交差し前記長手方向に沿う第5の切断面で前記基材を切断することで、前記第4の切断面と前記第5の切断面とで挟まれた第2の切断片を前記基材から得る第5の切断工程と、前記第4の切断面と前記第5の切断面とに交差する第6の切断面で、前記第2の切断片を前記所定間隔で切断することで前記複数の光学素子を作製する第6の切断工程と、を更に含んでいてもよい。
 また、前記二等辺三角形の底角は、90°-θ(0°<θ<90°)であり、前記第1の切断工程では、前記第2の側面に垂直な前記第1の切断面で前記基材を切断し、前記第2の切断工程では、前記第2の側面に垂直な前記第2の切断面で前記基材を切断し、前記第4の切断工程では、前記第3の側面に垂直な前記第4の切断面で前記基材を切断し、前記第5の切断工程では、前記第3の側面に垂直な前記第5の切断面で前記基材を切断することが好ましい。
 また、前記第1のステップでは、互いに反転形状を有する第1の微細構造と第2の微細構造とを含む前記微細構造を前記第1の側面に形成し、前記第1の切断工程と前記第2の切断工程とでは、前記第2の側面と前記第1の微細構造とにそれぞれ交差する前記第1の切断面と前記第2の切断面とで、前記基材を切断することで前記第1の切断片を得て、前記第4の切断工程と前記第5の切断工程とでは、前記第3の側面と前記第2の微細構造とにそれぞれ交差する前記第4の切断面と前記第5の切断面とで、前記基材を切断することで前記第2の切断片を得ることが好ましい。
 上記の光学素子の製造方法において、前記第1のステップと前記第1の切断工程との間で、前記微細構造が形成された前記表面に光学膜を形成してもよい。
 前記光学膜は反射膜であることが好ましい。
 上記の光学素子の製造方法において、前記微細構造が形成された前記表面と、前記第2の切断面で形成された面と、を含む先端部を面取りしてもよい。
 上記の光学素子の製造方法において、前記第1の切断面と前記第2の切断面とは平行でなくてもよい。
 上記の光学素子の製造方法において、前記第1のステップでは、前記微細構造の形状を備えた金型と前記基材との間に流動性材料を設け、前記金型と前記基材とによって前記流動性材料を挟むことで、前記微細構造の形状を前記流動性材料に転写し、前記微細構造の形状が転写された前記流動性材料を硬化させることで、前記基材の前記表面に前記微細構造を形成してもよい。
 前記流動性材料は一例として樹脂である。
 上記の光学素子の製造方法において、前記第1のステップでは、前記表面の一部の領域に前記微細構造を形成し、前記第1の切断工程と前記第2の切断工程とでは、前記微細構造が形成された位置に交差して前記基材を切断してもよい。
 また、前記第1のステップでは、前記表面の一部の領域において、前記光学素子の有効光学面よりも広い領域に前記微細構造を形成することが好ましい。
 上記の光学素子の製造方法において、前記微細構造は一例として回折格子である。
 この発明によると、棒状の基材に微細構造を形成し、微細構造が形成された基材を切断することで光学素子を作製する。このような基材を用いるので、取り扱いが容易となる。すなわち、微小な光学素子に微細構造を形成せずに、棒状の基材に微細構造を形成するため、取り扱いが容易になる。例えば微細構造を形成するときに、基材の位置合わせや角度合わせを精度良く行うことが可能となる。そのことにより、微細構造を基材に精度良く形成することが可能となる。
この発明の第1実施形態に係る基材の斜視図である。 この発明の第1実施形態に係る金型の斜視図である。 この発明の第1実施形態に係る光学素子の製造方法を説明するための図であり、基材及び金型の正面図である。 第1実施形態において、回折格子が形成された基材の斜視図である。 第1実施形態において、基材を加工台に載置した状態を示す正面図である。 この発明の第1実施形態に係る切断片の斜視図である。 第1実施形態に係る光学素子の製造方法によって作製された光学素子の斜視図である。 変形例1に係る金型の正面図である。 この発明の第2実施形態に係る基材の斜視図である。 この発明の第2実施形態に係る金型の正面図である。 第2実施形態において、回折格子が形成された基材の正面図である。 第2実施形態において、基材を加工台に載置した状態を示す正面図である。 第2実施形態において、基材を加工台に載置した状態を示す正面図である。 変形例2に係る金型の正面図である。 この発明の第3実施形態に係る基材の斜視図である。 この発明の第3実施形態に係る金型の正面図である。 第3実施形態において、基材を加工台に載置した状態を示す正面図である。 第3実施形態に係る切断片の正面図である。 第3実施形態に係る切断片の正面図である。 この発明の第4実施形態に係る基材の斜視図である。 この発明の第4実施形態に係る金型の正面図である。 この発明の第4実施形態に係る基材の正面図である。 第4実施形態において、基材を加工台に載置した状態を示す正面図である。 第4実施形態において、基材を加工台に載置した状態を示す正面図である。
[第1実施形態]
(基材1)
 この発明の第1実施形態に係る光学素子の製造方法について説明する。図1を参照して、第1実施形態に係る基材について説明する。図1は、基材の斜視図である。一例として、基材1は、断面の形状が三角形の棒状のプリズムである。具体的には、基材1は、三角形の底面2及び底面3を有する角柱(三角柱)である。基材1の側面は、面4と面5と面6とからなる。一例として面4と面5とが直交し、面6は面4及び面5に対して傾斜している。例えば面5と面6とのなす角度は、角度(90°-θ)(0°<θ<90°)である。底面2及び底面3の各辺の長さは、3mmから5mm程度が好ましい。基材1は、底面2と底面3との間の距離(長手方向(図中のX方向)の距離)が、長い棒状の角柱(三角柱)である。底面2と底面3との間の距離(長手方向の距離)は、10mmから50mm程度であることが好ましい。換言すると、面4、面5、及び面6の辺であって底面2と底面3とに含まれない辺は、長さが10mmから50mm程度であることが好ましい。基材1の材料は例えばガラスである。
 第1実施形態では、基材1を切断することで、複数の光学素子を作製する。光学素子は、例えば微細構造の例としての回折格子が形成されたプリズム、回折素子、又はレンズなどが該当する。一例として、回折格子が形成されたプリズムを作製する場合について説明する。基材1は角材から切り出される。加工の都合上、面4及び面5よりも面6の方が、面精度は高くなる。そのため、面6に回折格子を形成することが好ましい。例えば面6に対して、高い面精度で表面仕上げを予め施しておき、面6に回折格子を形成することが好ましい。
(回折格子を転写するための金型10)
 図2を参照して、第1実施形態に係る金型について説明する。図2は、金型の斜視図である。金型10の一方の面11には、ブレーズ形状の回折格子を転写するための転写構造12が形成されている。転写構造12は、一方の方向に沿った複数の溝を有する。溝の断面の形状は鋸歯状である。図2においては、説明のために転写構造12のピッチを拡大して描写しているが、転写構造12の実際のピッチは、サブミクロンオーダーの微細なピッチである。一例として、転写構造12のピッチは1μm未満である。転写構造12は、面11の全面に形成されていてもよいし、面11の一部の領域に形成されていてもよい。
 金型10は、ニッケル(Ni)などの金属を加工することで作製される。金型10は、ガラス製の透明な基材であってもよい。例えば、ガラス基板の表面に異方性エッチングによって転写構造12を形成することで、金型10を作製する。または、基材1に形成される回折格子と同じ形状が形成された金属の金型に、透明樹脂を塗布し、光硬化や熱硬化によって回折格子の形状を透明樹脂に転写し、回折格子の形状が転写された透明樹脂を、金型10として用いてもよい。または、射出成型によって金型10を作製してもよい。
(光学素子の製造方法)
 図3から図6を参照して、第1実施形態に係る光学素子の製造方法について説明する。
(1.回折格子の形成)
 まず、基材1の面6にナノインプリント法によって回折格子を形成する。図3を参照して、回折格子を形成する方法について説明する。図3は、基材及び金型の正面図である。ここに、(1.回折格子の形成)は、本発明における第1のステップとして機能し、面6は、本発明における表面及び第1の側面として機能し、面5は、本発明における第2の側面として機能する。
(1-A.樹脂13の塗布)
 図3(A)に示すように、金型10において転写構造12が形成されている面11に、流動性材料の一例である光硬化性の樹脂13を塗布し、図3(B)に示すように、転写構造12に樹脂13を設ける。光硬化性の樹脂としては、例えばPAK-02(東洋合成工業株式会社製、nd=1.51)を用いる。この実施形態においては、光硬化性の樹脂の材料は限定されない。
(1-B.転写構造12の転写)
 次に図3(C)に示すように、プリズムである基材1を金型10に押し付ける。具体的には、基材1の面6(転写面)を、樹脂13が塗布された転写構造12に押し付ける。このように基材1と金型10とによって樹脂13を挟むことで、金型10の転写構造12を樹脂13に転写する。
 例えば、基材1については、面5と面6とによって形成される稜線に着目する。また、金型10については、転写構造12と面11の平坦部との境界線に着目する。基材1に係る稜線と金型10に係る境界線とが平行になるように、図示しない観察カメラで観察しながら、面6の法線周りに基材1の回転調整を行う。基材1は細長い棒状の形状を有しているため、広範囲に観察することができ、わずかな回転ずれも検知することができる。従って、基材1に係る稜線と金型10に係る境界線とを、平行に合わせることができる。すなわち、基材1に係る稜線と、転写構造12の溝の方向とを平行に合わせることができる。
 または、金型10において転写構造12の近傍に、所定の距離を置いて2つのピンを設けてもよい。基材1の稜線をピンに押し当てながら、基材1の面6を、樹脂13が塗布された転写構造12に押し付ける。このように、ピンによって位置決めと平行決めを行ってもよい。
 なお、基材1の面6に樹脂13を塗布し、金型10の転写構造12を樹脂13に押し付けることで、転写構造12を樹脂13に転写してもよい。
(1-C.硬化処理)
 図3(C)に示すように、基材1を金型10に押し当てた状態で、基材1側から紫外線14を照射することで、樹脂13を硬化させる。金型10が透明基材によって作製されている場合には、金型10の裏面から紫外線を照射してもよい。裏面は、転写構造12が形成されている面11に対向する面である。金型10は透明基材であるため、裏面から入射した紫外線は、金型10を透過して樹脂13に照射される。
 樹脂13を硬化させた後、基材1を金型10から離す。以上の工程により、基材1の面6に回折格子が形成される。
 なお、第1実施形態に係る回折格子の形成においては、流動性材料として光硬化性の樹脂を用いたが、熱硬化性の樹脂を用いてもよい。熱硬化性樹脂を用いる場合には、紫外線照射に代えて、加熱により樹脂を硬化させる。
 また、流動性材料としてゾルゲルガラスを用いてもよい。この場合、ゲル状のゾルゲルガラスを金型10に塗布し、基材1を金型10に押し付けた状態で一定時間加熱することで、ゲル状のゾルゲルガラスを硬化させる。その後、基材1を金型10から離型し、回折格子が形成された基材1ごと熱処理を施して、ゾルゲルガラスを重合させ完全に固化させる。さらに、流動性材料としてSOG(スピンオングラス)を用いてもよい。
(回折格子が形成された基材1)
 図4に、回折格子が形成された基材1を示す。図4は基材の斜視図である。基材1の面6には、微細ピッチの回折格子7が形成されている。図4においては、説明のために回折格子7のピッチを拡大して描写しているが、回折格子7の実際のピッチは、サブミクロンオーダーの微細なピッチである。一例として、回折格子7のピッチは1μm未満である。なお、回折格子7は、面6の一部の領域に形成されていてもよいし、面6の全面に形成されていてもよい。
 回折格子7が形成された面6に、光学膜の一例として金(Au)などの反射膜を形成する。成膜方法は、例えば蒸着法やスパッタ法を用いればよい。
(2.切断工程)
 次に、回折格子7が形成された基材1を切断することで、複数の光学素子を作製する。図5及び図6を参照して、切断工程について説明する。図5は、基材を加工台に載置した状態を示す正面図である。図6は、切断片の斜視図である。
(2-A.固定)
 図5に示すように、加工台20の上面21が、基材1の切断基準面を固定する面である。基材1の切断基準面を加工台20の上面21に向けて、基材1を加工台20に固定する。例えば基材1の面5を切断基準面とし、面5を加工台20の上面21に向けて、基材1を加工台20に固定する。例えば、加工台20の上面21にダイシングシート(ダイシングテープ)22を設け、ダイシングシート22と面5とを接触させて、基材1をダイシングシート22上に設ける。
 または、ダイシングシート22を設けずに、クランプなどの図示しない固定手段によって、基材1を加工台20に固定してもよい。この場合、基材1の面5(切断基準面)を加工台20の上面21に接触させ、面5を上面21に押さえ付けるようにして、クランプなどの固定手段によって基材1を加工台20に固定する。
(2-B.切断)
 基材1を加工台20に固定した後、回折格子7が形成されている位置で基材1を切断する。具体的には、回折格子7に交差する切断面A(第1の切断面)に沿って基材1を切断する(第1の切断工程)。切断面Aは、基材1の長手方向(X方向)に平行で、切断基準面(面5)に垂直な面である。換言すると、切断面Aは、面4と面5とで形成される稜線に平行で、切断基準面(面5)に垂直な面である。例えばダイシングブレード23を用いて、切断面Aに沿って基材1を切断する。次に、切断面Aに平行で切断面Aよりも内側に所定距離おいた切断面B(第2の切断面)に沿って、基材1を切断する(第2の切断工程)。切断面Bは回折格子7に交差する。なお、第2の切断工程を先に行って、その後、第1の切断工程を行ってもよい。
 切断面A及び切断面Bは、切断基準面(面5)に垂直でなくてもよい。例えば加工台20又はダイシングブレード23を切断基準面(面5)に対して傾けることで、切断基準面(面5)に垂直な方向からずれた角度で基材1を切断することができる。または、ダイシングブレード23にテーパを設けることで、切断基準面(面5)に垂直な方向からずれた角度で基材1を切断してもよい。また、切断面Aと切断面Bとは平行でなくてもよい。
 なお、加工台20の途中まで切断してもよいし、加工台20まで切り込みを入れずに、ダイシングシート22の途中まで切断してもよい。ダイシングシート22の厚さが十分にある場合には、加工台20を用いずに、ダイシングシート22を加工台として用いてもよい。このように切断に用いられる加工台としては、加工台20を含んでいても含んでいなくてもよいし、ダイシングシート22を含んでいても含んでいなくてもよい。すなわち、加工台としては、加工台20を用いてもよいし、ダイシングシート22を用いてよいし、加工台20とダイシングシート22と含む構成を用いてもよい。
 以上の切断により、棒状の切断片30が得られる。図6に、切断片30を示す。切断片30は、略台形状の面31と面32とを底面とする角柱である。面31は、基材1の底面2に相当する。面32は、基材1の底面3に相当する。切断片30の側面は、面33と、面34と、面35と、面36とからなる。面33は切断面Aに対応し、台形(面31及び面32)の上底を含む。面34は切断面Bに対応し、台形(面31及び面32)の下底を含む。面35は、基材1の面6に相当し、面33及び面34に対して傾斜している。面34と面35とのなす角度は、角度θ(0°<θ<90°、例えばθ=45°)である。面35(面6)には、回折格子7が形成されている。面36は、基材1の面5に相当し、面33及び面34に直交している。
 面33と面34とは平行であってもよいし、平行でなくてもよい。すなわち、切断面Aと切断面Bとを平行にして基材1を切断することで、面33と面34とが平行な切断片30が得られる。切断面Aと切断面Bとを非平行にして基材1を切断することで、面33と面34とが非平行な切断片30が得られる。
 そして、切断面C(第3の切断面)に沿って所定間隔で複数の箇所で切断片30を切断する(第3の切断工程)。切断面Cは、面31に平行で、面34に垂直な面である。複数の箇所で切断片30を切断することで、複数の光学素子が得られる。なお、切断面Cは、面31と平行でなくてもよい。
(光学素子)
 図7に、光学素子を示す。図7は、光学素子の斜視図である。光学素子30Aは、略台形状の面37と面38とを底面とする角柱である。面37及び面38は、切断面Cに対応する。光学素子30Aの側面は、面33と、面34と、面35と、面36とからなる。面33は切断面Aに対応し、台形(面37及び面38)の上底を含む。面34は切断面Bに対応し、台形(面37及び面38)の下底を含む。面35は、基材1の面6に相当し、面33及び面34に対して傾斜している。面34と面35とのなす角度は、角度θ(0°<θ<90°)である。面35(面6)には、回折格子7が形成されている。また、面35(面6)には反射膜が形成されている。面36は、基材1の面5に相当し、面33及び面34に直交している。一例として、光学素子30Aの各辺の長さは、0.5mm前後である。
 例えば光学素子30Aを光アシスト式の磁気ヘッドに用いる場合、面33をディスクに対向させて光学素子30Aを磁気ヘッドに搭載する。面33が、スライダーよりもディスク側に突出しないように、面33と面36とのなす角度が、90°よりも小さいことが好ましい。すなわち、切断面Aを切断基準面(面5)に対して傾けて基材1を切断することが好ましい。例えば、面33と面34とを非平行に形成することで、面33と面36とのなす角度を90°未満とする。
 光学素子30Aは、表面反射型の回折格子付きマイクロプリズムとして用いることができる。例えば、回折格子7が形成されている面35(面6)に、光学素子30Aの外部から光が照射され、面35にて反射される。面35にて反射された光は、例えばハードディスク装置のスライダー内部に形成された光導波路を介してディスクに照射される。
 以上のように第1実施形態に係る製造方法によると、棒状の大きな基材1にナノインプリント法によって微細な転写構造12を転写し、転写構造12が転写された基材1を切断することで光学素子30Aを作製する。このように大きな基材1を用いるので、取り扱いが容易となり、基材1と金型10との間で、位置合わせや角度合わせを精度良く行うことができる。そのため、転写構造12を基材1に精度良く転写することが可能となる。その結果、転写構造12が精度良く転写された光学素子30Aが得られる。
 また、微細な転写構造12を基材1に転写した後、切断する前に、転写構造12が転写された面6(回折格子7が形成された面6)に反射膜を形成することで、製造の工程数を減らすことが可能となる。従来においては、個片の複合マイクロプリズム(光学素子)に反射膜を形成していた。この場合、個片の光学素子を成膜用の治具に1つ1つ並べる必要がある。そのため、多くの工数を必要としていた。これに対して第1の実施形態に係る方法によると、棒状の大きな基材1に反射膜を形成するので、配列の工数を大幅に減らすことが可能となる。
 また、微細ピッチの回折格子を有するマイクロプリズムを、樹脂による射出成型又はガラスモールドによって作製する場合、金型に形成されている回折格子の反転形状への転写が不十分となり、所望の光学特性を確保することが困難である。一方、第1実施形態においては、ナノインプリント法によって回折格子を形成する。硬化前の樹脂の粘度が比較的低いため、微細構造であっても正確に転写でき、その結果、高い光学特性を得ることができる。第1実施形態によると、回折格子の形状のエッジ部分を転写することができるため、高い回折効率が得られる。
(変形例1)
 上述した第1実施形態においては、回折格子7は、基材1の面6の全面に形成され、光学素子30Aの面35の全面に形成されている。変形例1として、回折格子7は、光学素子30Aの面35の有効光学面を含む範囲のみに形成されていてもよい。図8に変形例1の金型を示す。図8は、金型の正面図である。金型10Aの一方の面11には、一部の領域に転写構造12が形成されている。転写構造12が形成されている範囲は、光学素子30Aの面35の有効光学面よりも広く、基材1の面6よりも狭い。この金型10Aを用いて、基材1の面6に回折格子7を形成する。これにより、基材1の面6の一部の領域に回折格子7が形成される。一部の領域に回折格子7が形成された基材1を切断することで、面35の有効光学面に回折格子7が形成された光学素子30Aが得られる。このように金型10Aの一部の領域に転写構造12を形成しているため、転写構造12を加工すべき領域が狭くなる。そのことにより、金型10Aの加工時間を減らすことができる。また、加工工具の磨耗を減らすことができ、金型10Aの製造コストを減らすことができる。
[第2実施形態]
(基材1A)
 この発明の第2実施形態に係る光学素子の製造方法について説明する。第2実施形態においては、1つの基材から2つの棒状の切断片を作製する。図9を参照して、第2実施形態に係る基材について説明する。図9は、基材の斜視図である。第1実施形態に係る構成と同じ構成には同じ符号を付して、説明を省略する場合がある。
 基材1Aは、断面の形状が三角形の棒状のプリズムである。基材1Aは、底角が(90°-θ)である二等辺三角形の底面2及び底面3を有する角柱(三角柱)である。基材1の側面は、面4と面5と面6とからなる。面4と面6とのなす角度が、角度(90°-θ)(0°<θ<90°、例えばθ=45°)であり、面5と面6とのなす角度が、角度(90°-θ)である。面4は、二等辺三角形(底面2及び底面3)における等しい2辺の一方の辺を含む。面5は、二等辺三角形(底面2及び底面3)における等しい2辺の他方の辺を含む。面6は、二等辺三角形(底面2及び底面3)の底辺を含む。底面2及び底面3の各辺の長さは、3mmから5mm程度が好ましい。基材1Aの材料は例えばガラスである。第1実施形態と同様に、面6に対して、高い面精度で表面仕上げを予め施しておくことが好ましい。
(回折格子を転写するための金型10B)
 図10を参照して、第2実施形態に係る金型について説明する。図10は、金型の正面図である。金型10Bの一方の面11には、転写構造12Aと転写構造12Bとが所定の距離をおいて形成されている。転写構造12A及び転写構造12Bは、ブレーズ形状の回折格子を転写するための構造である。転写構造12A及び転写構造12Bはそれぞれ、一方の方向に沿った複数の溝を有する。溝の断面の形状は鋸歯状である。転写構造12Aと転写構造12Bとは、形状が互いに反転している(反転形状)。具体的には、転写構造12Aと転写構造12Bとで、鋸歯が互いに反対方向を向いている。また、転写構造12Aにおける複数の溝と、転写構造12Bにおける複数の溝とは平行であり、転写構造12Aと転写構造12Bとは平行に形成されている。例えば、転写構造12Aと転写構造12Bとの間の中点(例えば金型10Bの中心)を基準にした場合に、転写構造12Aと転写構造12Bとからなる構造は、点対称となっている。
 図10においては、説明のために転写構造12A及び転写構造12Bのピッチを拡大して描写しているが、実際のピッチは、サブミクロンオーダーの微細なピッチである。
(光学素子の製造方法)
 図11から図13を参照して、第2実施形態に係る光学素子の製造方法について説明する。
(1.回折格子の形成)
 まず、第1実施形態に係る製造方法と同様に、基材1Aの面6にナノインプリント法によって回折格子を形成する。具体的には、金型10Bの面11に光硬化性の樹脂を塗布し、転写構造12Aと転写構造12Bとに樹脂を設ける。基材1Aの面6(転写面)を、樹脂が塗布された転写構造12Aと転写構造12Bとに押し付けて、紫外線を照射することで樹脂を硬化させる。これにより、基材1Aの面6に回折格子が形成される。ここに、(1.回折格子の形成)は、本発明における第1のステップとして機能し、面6は、本発明における表面及び第1の側面として機能し、面5及び面4は、本発明における第2の側面及び第3の側面として機能する。
(回折格子が形成された基材1A)
 図11に、回折格子が形成された基材1Aを示す。図11は基材の正面図である。基材1Aの面6には、微細ピッチの回折格子7Aと回折格子7Bとが形成されている。回折格子7Aは、転写構造12Aによって形成された回折格子である。回折格子7Bは、転写構造12Bによって形成された回折格子である。回折格子7Aと回折格子7Bとは、互いに形状が反転している。すなわち、回折格子7Aと回折格子7Bとは、互いに反転形状である。具体的には、回折格子7Aと回折格子7Bとで、ブレーズ形状が互いに反対方向を向いている。回折格子7Aは、面6の中心から面5にかけて形成されている。回折格子7Bは、面6の中心から面4にかけて形成されている。例えば、面6の中心を基準にした場合に、回折格子7Aと回折格子7Bとからなる構造は、点対称となっている。ここに、回折格子7A及び回折格子7Bは、本発明における第1の微細構造及び第2の微細構造として機能する。
 図11においては、説明のために回折格子7A及び回折格子7Bのピッチを拡大して描写しているが、実際のピッチは、サブミクロンオーダーの微細なピッチである。
 回折格子7A及び回折格子7bが形成された面6に、金(Au)などの反射膜を形成する。
(2.切断工程)
 次に、回折格子7A及び回折格子7Bが形成された基材1Aを切断することで、複数の光学素子を作製する。図12及び図13を参照して、切断工程について説明する。図12及び図13は、基材を加工台に載置した状態を示す正面図である。
(2-A.固定)
 図12に示すように、基材1Aの切断基準面を加工台20の上面21に向けて、基材1Aを加工台20に固定する。第2実施形態においては、基材1Aの切断基準面は、最初は面5であり、次に置き換えて面4とする。
 例えば基材1Aの面5を切断基準面として、面5を加工台20の上面21に向けて、基材1Aを加工台20に固定する。例えば、加工台20の上面21にダイシングシート22を設け、ダイシングシート22と面5とを接触させて、基材1Aをダイシングシート22上に設ける。または、ダイシングシート22を設けずに、クランプなどの固定手段によって、基材1Aを加工台20に設けてもよい。
(2-B.切断)
 基材1Aを加工台20に固定した後、回折格子7Aが形成されている位置で基材1Aを切断する。具体的には、回折格子7Aに交差する切断面D(第1の切断面)に沿って基材1Aを切断する(第1の切断工程)。切断面Dは、基材1Aの長手方向(X方向)に平行で、切断基準面(面5)に垂直な面である。換言すると、切断面Dは、面4と面5とで形成される稜線に平行で、切断基準面(面5)に垂直な面である。次に、切断面Dに平行で切断面Dよりも内側に所定距離おいた切断面E(第2の切断面)に沿って、基材1Aを切断する(第2の切断工程)。切断面Eは回折格子7Aに交差する。なお、切断面D及び切断面Eは、切断基準面(面5)に垂直でなくてもよい。また、切断面Dと切断面Eとは平行でなくてもよい。第2の切断工程を先に行って、その後、第1の切断工程を行ってもよい。
 以上のように切断面D及び切断面Eに沿って基材1Aを切断することで、棒状の第1の切断片40が得られる。棒状の第1の切断片40は、図6に示す切断片30と同じ形状を有する。
 図6に示す方法と同様に、切断面C(第3の切断面)に沿って所定間隔で複数の箇所で第1の切断片40を切断することで、複数の光学素子を得る(第3の切断工程)。これにより、図7に示す光学素子30Aが得られる。
(2-C.固定)
 次に、図13に示すように、切断基準面を面4とする。例えば面4が加工台20の上面21に向かうように、紙面に垂直な回転軸で基材1Aを右に回転させる。例えばダイシングシート22と面4とを接触させることで、基材1Aを加工台20に固定する。
(2-D.切断)
 基材1Aを加工台20に固定した後、回折格子7Bが形成されている位置で基材1Aを切断する。具体的には、回折格子7Bに交差する切断面F(第4の切断面)に沿って基材1Aを切断する(第4の切断工程)。切断面Fは、基材1Aの長手方向(X方向)に平行で、切断基準面(面4)に垂直な面である。換言すると、切断面Fは、面4と面5とで形成される稜線に平行で、切断基準面(面4)に垂直な面である。次に、切断面Fに平行で切断面Fよりも内側に所定距離おいた切断面G(第5の切断面)に沿って、基材1Aを切断する(第5の切断工程)。切断面Gは回折格子7Bに交差する。なお、切断面F及び切断面Gは、切断基準面(面4)に垂直でなくてもよい。また、切断面Fと切断面Gとは平行でなくてもよい。
 以上のように切断面F及び切断面Gに沿って基材1Aを切断することで、棒状の第2の切断片41が得られる。棒状の第2の切断片41は、図6に示す切断片30と同じ形状を有する。
 図6に示す方法と同様に、切断面C(第6の切断面)に沿って所定間隔で複数の箇所で第2の切断片41を切断することで、複数の光学素子を得る(第6の切断工程)。これにより、図7に示す光学素子30Aが得られる。
 以上のように第2実施形態に係る製造方法によると、第1実施形態に係る製造方法と同じ効果を奏することができる。さらに、1つの基材1Aから2つの切断片(第1の切断片40及び第2の切断片41)が得られるため、材料費を抑えることができる。その結果、光学素子の製造コストを低くすることができる。
(変形例2)
 第2実施形態においても、第1実施形態の変形例1と同様に、回折格子7は、光学素子30Aの面35の有効光学面を含む範囲のみに形成されていてもよい。図14に、変形例2の金型を示す。図14は、金型の正面図である。金型10Cの一方の面11には、転写構造12Aと転写構造12Bとが、所定の距離をおいて一部の領域に形成されている。転写構造12Aと転写構造12Bとは、形状が互いに反転している(反転形状)。転写構造12A及び転写構造12Bはそれぞれ、光学素子30Aの面35の有効光学面よりも広い。また、転写構造12Aと転写構造12Bとを合わせた範囲は、基材1Aの面6よりも狭い。この金型10Cを用いて、基材1Aの面6に回折格子7Aと回折格子7Bとを形成する。これにより、基材1Aの面6の一部の領域に、回折格子7Aと回折格子7Bとが形成される。基材1Aを切断することで、第1の切断片40と第2の切断片41とが得られる。第1の切断片40と第2の切断片41とを切断することで、複数の光学素子30Aが得られる。変形例2によると、上述した変形例1と同じ効果を奏することができる。
[第3実施形態]
(基材1B)
 この発明の第3実施形態に係る光学素子の製造方法について説明する。第1実施形態及び第2実施形態に係る光学素子は、表面反射型の回折格子付きマイクロプリズムとして用いることができる。第3実施形態においては、内面反射型の回折格子付きマイクロプリズムとして用いることができる光学素子を作製する。図15を参照して、第3実施形態に係る基材について説明する。図15は、基材の斜視図である。第1実施形態に係る構成と同じ構成には同じ符号を付して、説明を省略する場合がある。
 基材1Bは、断面の形状が三角形の棒状のプリズムである。具体的には、基材1Bは、三角形の底面2及び底面3を有する角柱(三角柱)である。例えば面4と面5とは直交し、面6は面4及び面5に対して傾斜している。例えば面5と面6とのなす角度は、角度(90°-θ)(0°<θ<90°)である。底面2及び底面3の各辺の長さは、3mmから5mm程度が好ましい。基材1Bの材料は例えばガラスである。例えば面5及び面6を研磨することで、面5及び面6を予め鏡面に加工しておく。また、面5に反射防止膜を予め形成しておくことが好ましい。基材1Bから得られる光学素子において、面5が入射面に相当する。第3実施形態では、面6に回折格子が形成される、
(回折格子を転写するための金型10D)
 図16を参照して、第3実施形態に係る金型について説明する。図16は、金型の正面図である。金型10Dの一方の面11には、一部の領域に転写構造12が形成されている。転写構造12が形成されている範囲は、基材1Bの面6よりも狭く、基材1Bから得ら
れる光学素子(マイクロプリズム)の回折格子面の有効光学面よりも広い。回折格子面は、回折格子が形成される面である。これにより、基材1Bの面6の一部の領域に回折格子が形成される。図16において、説明のために転写構造12のピッチを拡大して描写しているが、実際のピッチは、サブミクロンオーダーの微細なピッチである。
(光学素子の製造方法)
 図17から図19を参照して、第2実施形態に係る光学素子の製造方法について説明する。
(1.回折格子の形成)
 まず、第1実施形態に係る製造方法と同様に、基材1Bの面6にナノインプリント法によって回折格子を形成する。具体的には、金型10Dの面11に光硬化性の樹脂を塗布し、転写構造12に樹脂を設ける。基材1Bの面6(転写面)を、樹脂が塗布された転写構造12に押し付けて、紫外線を照射することで樹脂を硬化させる。これにより、基材1Bの面6の一部の領域に、回折格子が形成される。ここに、(1.回折格子の形成)は、本発明における第1のステップとして機能し、面6は、本発明における表面及び第1の側面として機能し、面5は、本発明における第2の側面として機能する。
(回折格子が形成された基材1B)
 図17に、回折格子が形成された基材1Bを示す。図17は、基材を加工台に載置した状態を示す正面図である。基材1Bの面6には、一部の領域に、微細ピッチの回折格子7が形成されている。図17においては、説明のために回折格子7のピッチを拡大して描写しているが、実際のピッチは、サブミクロンオーダーの微細なピッチである。回折格子7が形成された面6に、金(Au)などの反射膜を形成する。
(2.切断工程)
 次に、回折格子7が形成された基材1Bを切断することで、複数の光学素子を作製する。図17を参照して、切断工程について説明する。
(2-A.固定)
 図17に示すように、基材1Bの切断基準面を加工台20の上面21に向けて、基材1Bを加工台20に固定する。例えば基材1Bの面5を切断基準面として、面5を加工台20の上面21に向けて、基材1Bを加工台20に固定する。例えば、加工台20の上面21にダイシングシート22を設け、ダイシングシート22と面5とを接触させて、基材1Bをダイシングシート22上に設ける。または、ダイシングシート22を設けずに、クランプなどの固定手段によって、基材1Bを加工台20に設けてもよい。
(2-B.切断)
 基材1Bを加工台20に固定した後、回折格子7が形成されている位置で基材1Bを切断する。具体的には、回折格子7に交差する切断面Hに沿って基材1Bを切断する(第1の切断工程)。切断面Hは、基材1Bの長手方向(X方向)に平行で、切断基準面(面5)に垂直な面である。換言すると、切断面Hは、面4と面5とで形成される稜線に平行で、切断基準面(面5)に垂直な面である。次に、切断面Hに平行で切断面Hよりも内側に所定距離おいた切断面Iに沿って、基材1Bを切断する(第2の切断工程)。切断面Iは回折格子7に交差する。なお、切断面H及び切断面Iは、切断基準面(面5)に垂直でなくてもよい。また、切断面Hと切断面Iとは平行でなくてもよい。
 以上のように切断面H及び切断面Iに沿って基材1Bを切断することで、棒状の切断片50が得られる。棒状の切断片50は、図6に示す切断片30と略同じ形状を有する。図18に、切断片50を示す。図18は、切断片の正面図である。切断片50は、略台形状の面51と、面51に対向する略台形状の面(図示しない)とを底面とする角柱である。面51は、基材1の底面2に相当する。面51に対向する面は、基材1の底面3に相当する。切断片50の側面は、面53と、面54と、面55と、面56とからなる。面53は切断面Hに対応し、台形(面51)の上底を含む。面54は切断面Iに対応し、台形(面51)の下底を含む。面55は、基材1の面6に相当し、面53及び面54に対して傾斜している。面54と面55とのなす角度は、角度θ(0°<θ<90°、例えばθ=45°)である。面55(面6)には、回折格子7が形成されている。面56は、基材1の面5に相当し、面53及び面54に直交している。
 面53と面54とは平行であってもよいし、平行でなくてもよい。すなわち、切断面Hと切断面Iとを平行にして基材1Bを切断することで、面53と面54とが平行な切断片50が得られる。切断面Hと切断面Iとを非平行にして基材1Bを切断することで、面53と面54とが非平行な切断片50が得られる。
 そして、角度θを有する先端部(面54と面55とで形成される稜線)を、切断面Jまで面取り(切断)する。図19に、面取り後の切断片50を示す。図19は、面取り後の切断片50の正面図である。切断片50の面57は、面取りによって形成された面であり、切断面Jに対応する。
 第1実施形態と同様に、切断面Cに沿って所定間隔で複数の箇所で、面取り後の切断片50を切断することで、複数の光学素子を作製する(第3の切断工程)。
 第3実施形態に係る光学素子は、内面反射型の回折格子付きマイクロプリズムとして用いることができる。例えば、光学素子の外部から面56に光が入射し、光学素子の内部を進行して面55に到達する。光は面55にて反射回折されて面56に向かい、面56から光学素子の外部に出射する。
 以上のように内面反射型の回折格子付きマイクロプリズムを作製する場合も、第1実施形態に係る製造方法と同じ効果を奏することができる。
 例えば第3実施形態に係る光学素子を光アシスト式の磁気ヘッドに用いる場合、光学素子の面54と面56とのなす角度が、90°よりも小さいことが好ましい。すなわち、切断面Iを切断基準面(面5)に対して傾けて基材1Bを切断することが好ましい。例えば、面53と面54とを非平行に形成することで、面54と面56とのなす角度を90°未満とする。磁気ヘッドは動作中にディスクに対して浮上するが、ディスク回転の風圧によって磁気ヘッドが傾く。磁気ヘッドにおいて、マイクロプリズム(第3実施形態に係る光学素子)の面56がスライダーの先端に固定されており、面54がディスクに対向している。光学素子(マイクロプリズム)の面54と面56とのなす角度を90°よりも小さくすることで、磁気ヘッドが傾いても、光学素子(マイクロプリズム)とディスクとの衝突を回避でき、その結果、信頼性の高いハードディスク装置が得られる。
[第4実施形態]
(基材1C)
 この発明の第4実施形態に係る光学素子の製造方法について説明する。第4実施形態において、第2実施形態に係る製造方法を適用して、第3実施形態に係る内面反射型の回折格子付きマイクロプリズムを作製する。図20を参照して、第4実施形態に係る基材について説明する。図20は、基材の斜視図である。第1実施形態に係る構成と同じ構成には同じ符号を付して、説明を省略する場合がある。
 基材1Cは、断面の形状が三角形の棒状のプリズムである。基材1Cは、底角が(90°-θ)である二等辺三角形の底面2及び底面3を有する角柱(三角柱)である。具体的には、面4と面6とのなす角度が、(90°-θ)(0°<θ<90°)であり、面5と面6とのなす角度が、(90°-θ)である。基材1の側面は、面4と面5と面6とからなる。面4は、二等辺三角形(底面2及び底面3)における等しい2辺の一方の辺を含む。面5は、二等辺三角形(底面2及び底面3)における等しい2辺の他方の辺を含む。面6は、二等辺三角形(底面2及び底面3)の底辺を含む。底面2及び底面3の各辺の長さは、3mmから5mm程度が好ましい。基材1Cの材料は例えばガラスである。例えば面4、面5及び面6を研磨することで、面4、面5及び面6を予め鏡面に加工しておく。また、面4及び面5に反射防止膜を予め形成しておくことが好ましい。基材1Cから得られる光学素子において、面4及び面5が入射面に相当する。第4実施形態では、面6に回折格子が形成される。
(回折格子を形成するための金型10E)
 図21を参照して、第4実施形態に係る金型について説明する。図21は、金型の正面図である。金型10Eの一方の面11には、転写構造12Aと転写構造12Bとが所定の距離をおいて形成されている。転写構造12A及び転写構造12Bは、ブレーズ形状の回折格子を転写するための構造である。転写構造12Aと転写構造12とは、形状が互いに反転している(反転形状)。また、図14に示す第2実施形態の変形例2と同様に、転写構造12A及び転写構造12Bはそれぞれ、一部の領域に形成されている。例えば、転写構造12A及び転写構造12Bはそれぞれ、基材1Cの面6よりも狭く、基材1Cから得られる光学素子(マイクロプリズム)の回折格子面の有効光学面よりも広い。この金型10Eを用いて、基材1Cの面6に回折格子が形成される。図21において、説明のために転写構造12A及び転写構造12Bのピッチを拡大して描写しているが、実際のピッチは、サブミクロンオーダーの微細なピッチである。
(光学素子の製造方法)
 図22から図24を参照して、第4実施形態に係る光学素子の製造方法について説明する。
(1.回折格子の形成)
 まず、第1実施形態に係る製造方法と同様に、基材1Cの面6にナノインプリント法によって回折格子を形成する。具体的には、金型10Eの面11に光硬化性の樹脂を塗布し、転写構造12Aと転写構造12Bとに樹脂を設ける。基材1Cの面(転写面)を、樹脂が塗布された転写構造12Aと転写構造12Bとに押し付けて、紫外線を照射することで樹脂を硬化させる。これにより、基材1Cの面6に回折格子が形成される。ここに、(1.回折格子の形成)は、本発明における第1のステップとして機能し、面6は、本発明における表面及び第1の側面として機能し、面5及び面4は、本発明における第2の側面及び第3の側面として機能する。
(回折格子が形成された基材1C)
 図22に、回折格子が形成された基材1Cを示す。図22は基材の正面図である。基材1Cの面6の一部の領域に、微細ピッチの回折格子7Aと回折格子7Bとが形成されている。回折格子7Aは、転写構造12Aによって形成された回折格子である。回折格子7Bは、転写構造12Bによって形成された回折格子である。回折格子7Aと回折格子7Bとは、互いに形状が反転している(反転形状)。図22においては、説明のために回折格子7A及び回折格子7Bのピッチを拡大して描写しているが、実際のピッチは、サブミクロンオーダーの微細なピッチである。回折格子7A及び回折格子7Bが形成された面6に、金(Au)などの反射膜を形成する。
(2.切断工程)
 次に、回折格子7A及び回折格子7Bが形成された基材1Cを切断することで、複数の光学素子を作製する。図23及び図24を参照して、切断工程について説明する。図23及び図24は、基材を加工台に載置した状態を示す正面図である。
(2-A.固定)
 図23に示すように、基材1Cの切断基準面を加工台20の上面21に向けて、基材1Cを加工台20に固定する。第4実施形態においては、基材1Cの切断基準面は、最初は面5であり、次に置き換えて面4とする。
 例えば基材1Cの面5を基準切断面として、面5を加工台20の上面21に向けて、基材1Cを加工台20に固定する。例えば、加工台20の上面21にダイシングシート22を設け、ダイシングシート22と面5とを接触させて、基材1Cをダイシングシート22上に設ける。または、ダイシングシート22を設けずに、クランプなどの固定手段によって、基材1Cを加工台20に設けてもよい。
(2-B.切断)
 基材1Cを加工台20に固定した後、回折格子7Aが形成されている位置で基材1Cを切断する。具体的には、回折格子7Aに交差する切断面Kに沿って基材1Cを切断する(第1の切断工程)。切断面Kは、基材1Cの長手方向(X方向)に平行で、切断基準面(面5)に垂直な面である。換言すると、切断面Kは、面4と面5とで形成される稜線に平行で、切断基準面(面5)に垂直な面である。次に、切断面Kに平行で切断面Kよりも内側に所定距離おいた切断面Lに沿って、基材1Cを切断する(第2の切断工程)。切断面Lは回折格子7Aに交差する。なお、切断面K及び切断面Lは、切断基準面(面5)に垂直でなくてもよい。また、切断面Kと切断面Lとは平行でなくてもよい。
 以上のように切断面K及び切断面Lに沿って基材1Cを切断することで、棒状の第1の切断片60が得られる。棒状の第1の切断片60は、図18に示す切断片50と略同じ形状を有する。
(2-C.固定)
 次に、図24に示すように、切断基準面を面4とする。例えば面4が加工台20の上面21に向かうように、紙面に垂直な回転軸で基材1Cを右に回転させる。例えばダイシングシート22と面4とを接触させることで、基材1Cを加工台20に固定する。
(2-D.切断)
 基材1Cを加工台20に固定した後、回折格子7Bが形成されている位置で基材1Cを切断する。具体的には、回折格子7Bに交差する切断面Mに沿って基材1Cを切断する(第4の切断工程)。切断面Mは、基材1Cの長手方向(X方向)に平行で、切断基準面(面4)に垂直な面である。換言すると、切断面Mは、面4と面5とで形成される稜線に平行で、切断基準面(面4)に垂直な面である。次に、切断面Mに平行で切断面Mよりも内側に所定距離おいた切断面Nに沿って、基材1Cを切断する(第5の切断工程)。切断面Nは回折格子7Bに交差する。なお、切断面M及び切断面Nは、切断基準面(面4)に垂直でなくてもよい。また、切断面Mと切断面Nとは平行でなくてもよい。
 以上のように切断面M及び切断面Nに沿って基材1Cを切断することで、棒状の第2の切断片61が得られる。棒状の第2の切断片61は、図18に示す切断片50と同じ形状を有する。
 そして、第1の切断片60及び第2の切断片61において、角度θを有する先端部を面取りする。面取り後の第1の切断片60及び第2の切断片61は、図19に示す面取り後の切断片50と同じ形状を有する。そして、第1実施形態と同様に、切断面Cに沿って所定間隔で複数の箇所で、面取り後の第1の切断片60及び第2の切断片61を切断することにより、複数の光学素子を作製する(第3及び第6の切断工程)。これにより、第3実施形態に係る光学素子と同様に、内面反射型の回折格子付きマイクロプリズムが得られる。
 以上のように第4実施形態に係る製造方法によると、第1実施形態に係る製造方法と同じ効果を奏することができる。さらに、1つの基材1Cから2つの切断片(第1の切断片60及び第2の切断片61)が得られるため、材料費を抑えることができる。その結果、光学素子の製造コストを低くすることができる。
 上述した第1実施形態から第4実施形態において、基材1に形成される微細構造は回折格子に限定されず、他の構造であってもよい。例えばナノインプリント法によって基材1に形成される形状は、回折格子の形状に限定されず、球面又は非球面のレンズの形状や、ホログラムレンズの形状であってもよい。
 1、1A、1B、1C 基材
 2、3 底面
 4、5、6、11、31、32、33、34、35、36、37、38、51、53、54、55、56、57 面
 7、7A、7B 回折格子
 10、10A、10B、10C、10D、10E 金型
 12、12A、12B 転写構造
 13 樹脂
 14 紫外線
 20 加工台
 21 上面
 22 ダイシングシート(ダイシングテープ)
 23 ダイシングブレード
 30、40、41、50、60、61 切断片
 30A 光学素子
 A、B、C、D、E、F、G、H、I、J、K、L、M、N 切断面

Claims (15)

  1.  棒状の基材の表面に微細構造を形成する第1のステップと、
     前記表面に交差し前記基材の長手方向に沿う第1の切断面で前記基材を切断する第1の切断工程と、
     前記第1の切断面から所定距離おいて、前記表面に交差し前記長手方向に沿う第2の切断面で前記基材を切断することで、前記第1の切断面と前記第2の切断面とで挟まれた切断片を前記基材から得る第2の切断工程と、
     前記第1の切断面と前記第2の切断面とに交差する第3の切断面で、前記切断片を所定間隔で切断することで複数の光学素子を作製する第3の切断工程と、
     を含むことを特徴とする光学素子の製造方法。
  2.  前記基材は、底面が三角形の三角柱であり、
     前記第1のステップでは、前記三角柱の第1の側面を前記表面として前記微細構造を形成し、
     前記第1の切断工程では、前記三角柱の第2の側面と前記第1の側面とにそれぞれ交差し前記長手方向に沿う前記第1の切断面で、前記基材を切断し、
     前記第2の切断工程では、前記第1の切断面から前記所定距離おいて、前記第2の側面と前記第1の側面とにそれぞれ交差し前記長手方向に沿う前記第2の切断面で前記基材を切断することを特徴とする請求項1に記載の光学素子の製造方法。
  3.  前記第1の側面と前記第2の側面とのなす角度が、90°-θ(0°<θ<90°)であり、
     前記第1の切断工程では、前記第2の側面に垂直な前記第1の切断面で前記基材を切断し、
     前記第2の切断工程では、前記第2の側面に垂直な前記第2の切断面で前記基材を切断することを特徴とする請求項2に記載の光学素子の製造方法。
  4.  前記基材は、二等辺三角形の底面を有する三角柱であり、
     前記第1のステップでは、前記三角柱の底辺を含む第1の側面を前記表面として前記微細構造を形成し、
     前記第1の切断工程では、前記二等辺三角形の等しい2辺の一方の辺を含む第2の側面と前記第1の側面とにそれぞれ交差し前記長手方向に沿う前記第1の切断面で、前記基材を切断し、
     前記第2の切断工程では、前記第1の切断面から前記所定距離おいて、前記第2の側面と前記第1の側面とにそれぞれ交差し前記長手方向に沿う前記第2の切断面で前記基材を切断することで、前記第1の切断面と前記第2の切断面とで挟まれた第1の切断片を前記基材から得て、
     前記第3の切断工程では、前記第3の切断面で前記第1の切断片を前記所定間隔で切断することで前記複数の光学素子を作製し、
     前記二等辺三角形の等しい2辺の他方の辺を含む第3の側面と前記第1の側面とにそれぞれ交差し前記長手方向に沿う第4の切断面で、前記基材を切断する第4の切断工程と、
     前記第4の切断面から前記所定距離おいて、前記第3の側面と前記第1の側面とにそれぞれ交差し前記長手方向に沿う第5の切断面で前記基材を切断することで、前記第4の切断面と前記第5の切断面とで挟まれた第2の切断片を前記基材から得る第5の切断工程と、
     前記第4の切断面と前記第5の切断面とに交差する第6の切断面で、前記第2の切断片を前記所定間隔で切断することで前記複数の光学素子を作製する第6の切断工程と、
     を更に含むことを特徴とする請求項1に記載の光学素子の製造方法。
  5.  前記二等辺三角形の底角は、90°-θ(0°<θ<90°)であり、
     前記第1の切断工程では、前記第2の側面に垂直な前記第1の切断面で前記基材を切断し、
     前記第2の切断工程では、前記第2の側面に垂直な前記第2の切断面で前記基材を切断し、
     前記第4の切断工程では、前記第3の側面に垂直な前記第4の切断面で前記基材を切断し、
     前記第5の切断工程では、前記第3の側面に垂直な前記第5の切断面で前記基材を切断することを特徴とする請求項4に記載の光学素子の製造方法。
  6.  前記第1のステップでは、互いに反転形状を有する第1の微細構造と第2の微細構造とを含む前記微細構造を前記第1の側面に形成し、
     前記第1の切断工程と前記第2の切断工程とでは、前記第2の側面と前記第1の微細構造とにそれぞれ交差する前記第1の切断面と前記第2の切断面とで、前記基材を切断することで前記第1の切断片を得て、
     前記第4の切断工程と前記第5の切断工程とでは、前記第3の側面と前記第2の微細構造とにそれぞれ交差する前記第4の切断面と前記第5の切断面とで、前記基材を切断することで前記第2の切断片を得ることを特徴とする請求項4又は請求項5に記載の光学素子の製造方法。
  7.  前記第1のステップと前記第1の切断工程との間で、前記微細構造が形成された前記表面に光学膜を形成することを特徴とする請求項1から請求項6のいずれかに記載の光学素子の製造方法。
  8.  前記光学膜は反射膜であることを特徴とする請求項7に記載の光学素子の製造方法。
  9.  前記微細構造が形成された前記表面と前記第2の切断面で形成された面とを含む先端部を面取りすることを特徴とする請求項1から請求項8のいずれかに記載の光学素子の製造方法。
  10.  前記第1の切断面と前記第2の切断面とは平行ではないことを特徴とする請求項1から請求項9のいずれかに記載の光学素子の製造方法。
  11.  前記第1のステップでは、前記微細構造の形状を備えた金型と前記基材との間に流動性材料を設け、前記金型と前記基材とによって前記流動性材料を挟むことで、前記微細構造の形状を前記流動性材料に転写し、前記微細構造の形状が転写された前記流動性材料を硬化させることで、前記基材の前記表面に前記微細構造を形成することを特徴とする請求項1から請求項10のいずれかに記載の光学素子の製造方法。
  12.  前記流動性材料は樹脂であることを特徴とする請求項11に記載の光学素子の製造方法。
  13.  前記第1のステップでは、前記表面の一部の領域に前記微細構造を形成し、
     前記第1の切断工程と前記第2の切断工程とでは、前記微細構造が形成された位置に交差する前記第1の切断面と前記第2の切断面とで前記基材を切断することを特徴とする請求項1から請求項12のいずれかに記載の光学素子の製造方法。
  14.  前記第1のステップでは、前記表面の一部の領域において、前記光学素子の有効光学面よりも広い領域に前記微細構造を形成することを特徴とする請求項13に記載の光学素子の製造方法。
  15.  前記微細構造は回折格子であることを特徴とする請求項1から請求項14のいずれかに記載の光学素子の製造方法。
PCT/JP2011/050254 2010-03-09 2011-01-11 光学素子の製造方法 WO2011111409A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010052011 2010-03-09
JP2010-052011 2010-03-09

Publications (1)

Publication Number Publication Date
WO2011111409A1 true WO2011111409A1 (ja) 2011-09-15

Family

ID=44563240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050254 WO2011111409A1 (ja) 2010-03-09 2011-01-11 光学素子の製造方法

Country Status (1)

Country Link
WO (1) WO2011111409A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016173614A (ja) * 2016-07-08 2016-09-29 キヤノン株式会社 反射型回折素子
JP2017506765A (ja) * 2014-01-31 2017-03-09 ザ ジェネラル ホスピタル コーポレイション ナノインプリントリソグラフィを用いた小型内視鏡

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06229825A (ja) * 1993-02-06 1994-08-19 Horiba Ltd 多素子型焦電検出器における分岐・集光素子の製造方法
JPH06250008A (ja) * 1993-03-01 1994-09-09 Asahi Optical Co Ltd グレーティングプリズム
JPH11250715A (ja) * 1998-02-26 1999-09-17 Nitto Denko Corp 導光板、面光源装置及び反射型液晶表示装置
JP2001166117A (ja) * 1999-12-13 2001-06-22 Hoya Corp ガラス光学素子の製造方法
JP2007164013A (ja) * 2005-12-16 2007-06-28 Institute Of Physical & Chemical Research 反射型回折格子およびその製造方法
JP2009276366A (ja) * 2008-05-12 2009-11-26 Konica Minolta Opto Inc 光学素子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06229825A (ja) * 1993-02-06 1994-08-19 Horiba Ltd 多素子型焦電検出器における分岐・集光素子の製造方法
JPH06250008A (ja) * 1993-03-01 1994-09-09 Asahi Optical Co Ltd グレーティングプリズム
JPH11250715A (ja) * 1998-02-26 1999-09-17 Nitto Denko Corp 導光板、面光源装置及び反射型液晶表示装置
JP2001166117A (ja) * 1999-12-13 2001-06-22 Hoya Corp ガラス光学素子の製造方法
JP2007164013A (ja) * 2005-12-16 2007-06-28 Institute Of Physical & Chemical Research 反射型回折格子およびその製造方法
JP2009276366A (ja) * 2008-05-12 2009-11-26 Konica Minolta Opto Inc 光学素子の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017506765A (ja) * 2014-01-31 2017-03-09 ザ ジェネラル ホスピタル コーポレイション ナノインプリントリソグラフィを用いた小型内視鏡
US10261223B2 (en) 2014-01-31 2019-04-16 Canon Usa, Inc. System and method for fabrication of miniature endoscope using nanoimprint lithography
JP2016173614A (ja) * 2016-07-08 2016-09-29 キヤノン株式会社 反射型回折素子

Similar Documents

Publication Publication Date Title
US7113336B2 (en) Microlens including wire-grid polarizer and methods of manufacture
US7329372B2 (en) Method for producing aspherical structure, and aspherical lens array molding tool and aspherical lens array produced by the same method
JP7127116B2 (ja) 回折導光板および回折導光板の製造方法
JP6745516B2 (ja) 光学素子
TWI440833B (zh) 混合式繞射光柵、模具及繞射光柵及其模具的製造方法
US20110002143A1 (en) Light guide plate and a method of manufacturing thereof
US20150029588A1 (en) Control of Light Wavefronts
CN115461651B (zh) 反射光学超表面膜
US20090242110A1 (en) Method for manufacturing polarizer
JP5107313B2 (ja) 偏光性回折素子
WO2011111409A1 (ja) 光学素子の製造方法
WO2007077652A1 (ja) 偏光素子およびその製造方法
CN114994814A (zh) 偏光散射膜及其制作方法、显示面板
EP1672395B1 (en) Polarizing element and optical system including polarizing element
JP5056997B2 (ja) 回折格子の製造方法
JP2001141918A (ja) 回折光学素子及びその製造方法
JP3941589B2 (ja) 光導波路および光導波路の製造方法
JP2004334057A (ja) 光導波路およびその製造方法
TW202129325A (zh) 光波導及用於其生產的方法
JP2000131522A (ja) 偏光子とその製造方法及びこれを用いた導波型光デバイス
JP3778064B2 (ja) 光ファイバアレイの製造方法
JP3812469B2 (ja) 光ファイバ保持体とその製法及び光ファイバ固定板
JP5082421B2 (ja) 回折格子
JP2018055004A (ja) 偏光子
JP4168767B2 (ja) 液晶素子および光減衰器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP