WO2011110111A1 - 无线传输装置及其自检的方法 - Google Patents

无线传输装置及其自检的方法 Download PDF

Info

Publication number
WO2011110111A1
WO2011110111A1 PCT/CN2011/072083 CN2011072083W WO2011110111A1 WO 2011110111 A1 WO2011110111 A1 WO 2011110111A1 CN 2011072083 W CN2011072083 W CN 2011072083W WO 2011110111 A1 WO2011110111 A1 WO 2011110111A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
self
test signal
processing unit
wireless transmission
Prior art date
Application number
PCT/CN2011/072083
Other languages
English (en)
French (fr)
Inventor
于国斌
林红勇
王仪财
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to RU2012148915/08A priority Critical patent/RU2516623C1/ru
Priority to EP11752854.7A priority patent/EP2458792B1/en
Priority to AU2011226572A priority patent/AU2011226572B2/en
Priority to CA2795272A priority patent/CA2795272C/en
Priority to ES11752854T priority patent/ES2421742T3/es
Publication of WO2011110111A1 publication Critical patent/WO2011110111A1/zh
Priority to US13/685,098 priority patent/US8665938B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/14Monitoring; Testing of transmitters for calibration of the whole transmission and reception path, e.g. self-test loop-back
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/19Self-testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • the present invention relates to the field of communication transmission, and in particular, to a wireless transmission apparatus and a self-test method thereof. Background technique
  • the wireless transmission device needs to be installed on a roof or a tower, and needs to be treated with water resistance, etc. Installation and disassembly are very complicated.
  • the wireless transmission device in order to reduce the operation of disassembling and installing the wireless transmission device, the wireless transmission device usually needs to establish an independent loopback channel or an external loopback device for self-test.
  • the installation of a separate loopback channel inside the wireless transmission device requires additional cost and design complexity.
  • the external loopback device requires the engineer to arrive at the site for operation, and the operability is poor.
  • a wireless transmission device and a self-test method thereof are provided, and the wireless transmission device locates a fault by using a loopback service signal.
  • a wireless transmission device includes a service processing unit, a duplexer, a radio frequency receiving unit, a frequency synthesizer, and a controller.
  • the controller starts the self-test function, reduces the TR interval to the preset range, and controls the frequency synthesizer to adjust the frequency of the local oscillator signal output to the RF receiving unit according to the reduced TR interval.
  • the service processing unit continues to transmit the service signal as a self-test signal. After the self-test signal is modulated into a radio frequency signal, part of the self-test signal is leaked to the radio frequency receiving unit through the duplexer. After the RF receiving unit mixes the received signal with the local oscillator signal, the frequency of the self-test signal included in the output signal falls within the passband range of the intermediate frequency receiving unit.
  • a method for self-checking of a wireless transmission device comprising: starting a self-test function and reducing a TR interval to a preset range; controlling a frequency synthesizer to adjust a local oscillator signal outputted to the RF receiving unit according to the reduced TR interval
  • the control service processing unit continues to transmit the service signal as a self-test signal; modulating the self-test signal to become a radio frequency signal, wherein part of the self-test signal leaks to the radio frequency receiving unit through the duplexer; and the control radio frequency receiving unit receives The received signal is mixed with the local oscillator signal, wherein the frequency of the self-test signal included in the output signal falls within the passband range of the intermediate frequency receiving unit.
  • the wireless transmission device controls the frequency synthesizer to adjust the frequency of the local oscillator signal outputted to the radio frequency receiving unit by reducing the frequency interval of the transceiving signal, so that the self leakage through the duplexer is caused by the reduced frequency interval
  • the frequency after the detection signal is mixed with the local oscillator signal falls within the passband range of the intermediate frequency receiving unit, and the self-test signal can be looped back to the service processing unit to determine whether the transmission channel of the self-detection channel is faulty.
  • FIG. 1 is a schematic diagram showing the functional architecture of a wireless transmission apparatus according to Embodiment 1 of the present invention, in which all functional units in the wireless transmission apparatus are integrated.
  • FIG. 2 is a schematic diagram showing the functional architecture of a wireless transmission device according to Embodiment 2 of the present invention. All functional units in the wireless transmission device are divided into two parts, an outdoor device and an indoor device, and an interface between the outdoor device and the indoor device. The units are connected to each other.
  • Fig. 3 is a flow chart showing the method of self-test of the wireless transmission device in Embodiment 3 of the present invention.
  • FIG. 1 The illustrative embodiments of the present invention and the description thereof are intended to explain the present invention, but are not intended to limit the invention.
  • FIG. 1 it is a schematic diagram of the functional architecture of the wireless transmission device 100 in Embodiment 1 of the present invention. All functional units of the wireless transmission device 100 are integrated, including a service processing unit 11, a modem (MODEM) 12, an intermediate frequency transmitting unit 14, a radio frequency transmitting unit 16, a duplexer 20, a radio frequency receiving unit 22, and an intermediate frequency receiving unit which are sequentially connected. Unit 25, intermediate frequency receiving unit 25 is also coupled to modem 12.
  • a service processing unit 11 a modem (MODEM) 12
  • MODEM modem
  • Unit 25 intermediate frequency receiving unit 25 is also coupled to modem 12.
  • the wireless transmission device 100 also includes a gain controller 18, a frequency synthesizer 26, a controller 28, a memory 30, and a feedback unit 32.
  • the frequency synthesizer 26 is connected to the intermediate frequency transmitting unit 14, the radio frequency transmitting unit 16, the radio frequency receiving unit 22, and the intermediate frequency receiving unit 25.
  • the modulation channel; the radio frequency receiving unit 22, the intermediate frequency receiving unit 25, and the modem 12 constitute a receiving channel of the wireless transmission device 100.
  • the memory 30 is coupled to the controller 28 and stores various parameter values of the wireless transmission device 100.
  • the parameter values include a frequency interval of the transceiving signal (hereinafter referred to as TR interval), a modulation mode of the modem 12, a rated maximum transmission power of the radio frequency signal output by the radio frequency transmitting unit 16, and the like.
  • TR interval a frequency interval of the transceiving signal
  • modulation mode of the modem 12 a modulation mode of the modem 12
  • the frequency synthesizer 26 is configured to generate a local oscillator signal, and the intermediate frequency transmitting unit 14, the radio frequency transmitting unit 16, the radio frequency receiving unit 22, and the intermediate frequency receiving unit 25 perform mixing processing on the transceiving signal and the local oscillator signal.
  • the local oscillator signal supplied from the frequency synthesizer 26 to the intermediate frequency transmitting unit 14 and the intermediate frequency receiving unit 25 is referred to as a first local oscillator signal
  • the frequency synthesizer 26 is supplied to the local oscillator of the radio frequency transmitting unit 16.
  • the local oscillation signal supplied from the frequency synthesizer 26 to the radio frequency receiving unit 22 is referred to as a third local oscillation signal.
  • the frequencies of the first local oscillator signal and the second local oscillator signal have been fixed at the time of design, and the frequency synthesizer 26 cannot be adjusted according to the change of the TR interval.
  • the frequency synthesizer 26 can adjust the frequency of the third local oscillator signal in accordance with the change in the TR interval.
  • the modem 12 adapts the service signal transmitted by the service processing unit 11 to the first intermediate frequency signal according to a preset modulation mode, or demodulates the received second intermediate frequency signal into a service signal and transmits it to the service processing unit 11.
  • the intermediate frequency transmitting unit 14 mixes the received first intermediate frequency signal with the first local oscillation signal to output the first medium high frequency signal.
  • the RF transmitting unit 16 mixes the received first medium and high frequency signals with the second local oscillator signal to output a radio frequency signal, and adjusts the power of the radio frequency signal, and then transmits the radio frequency signal through the duplexer 20 and the antenna 34. Go out.
  • the duplexer 20 is composed of two sets of filters of different frequencies, and is used for isolating the transmitting signal and the receiving signal, so as to prevent the transmitting signal from being transmitted to the receiving channel of the local end, and ensuring that the signal transmitting and receiving work can be performed normally.
  • the duplexer 20 also incorporates an antenna 32.
  • the RF receiving unit 22 mixes the received signal with the third local oscillator signal and outputs a second medium high frequency signal.
  • the signal received by the radio frequency receiving unit 22 includes the radio frequency signal leaked through the duplexer 20 and the signal transmitted by the opposite end.
  • the intermediate frequency receiving unit 25 has a passband range centered on a certain frequency, and is used for filtering the second medium and high frequency signals output by the radio frequency receiving unit 22, filtering out the noise signal falling outside the passband range, and reducing the noise signal.
  • the generated interference; and the filtered second high frequency signal is mixed with the first local oscillator signal to output a second intermediate frequency signal.
  • Controller 28 is used to control modem 12, gain controller 18, and frequency synthesizer 26 to operate.
  • the controller 28 controls the modem 12 to set the modulation mode, controls the frequency synthesizer 26 to adjust the frequency of the third local oscillation signal according to the TR interval, and controls the power of the radio frequency signal output from the radio frequency transmission unit 16 through the gain controller 18.
  • the feedback unit 32 is connected between the RF transmitting unit 16 and the controller 28 to feed back the RF signal to
  • the controller 28 compares the power of the fed back RF signal with a preset power to determine whether it is necessary to further control the RF transmitting unit 16 to adjust the power of the RF signal through the gain controller 18.
  • the controller 28 when testing whether a fault occurs inside the wireless transmission device 100, the controller 28 activates the self-test function and reduces the TR interval to a preset range, and controls the frequency synthesizer 26 to adjust according to the reduced TR interval.
  • the frequency of the third local oscillator signal Preferably, the above predetermined range is 0 Hz to 10 kHz.
  • the service processing unit 11 continues to transmit the traffic signal as a self-test signal.
  • controller 28 cannot control the frequency synthesizer 26 to adjust the frequency of the first local oscillator signal and the second local oscillator signal according to the reduced TR interval.
  • the controller 28 controls the modem 12, the intermediate frequency transmitting unit 14 and the radio frequency transmitting unit 16 to modulate the self-test signal; wherein, after the self-test signal is modulated into a radio frequency signal by the radio frequency transmitting unit 16, a part of the self-checking signal It will leak to the radio frequency receiving unit 22 through the duplexer 20.
  • the RF receiving unit 22 mixes the received signal with the third local oscillator signal, and outputs a second medium and high frequency signal; wherein the frequency of the self-test signal included in the second medium high frequency signal falls into the intermediate frequency receiving unit 25 Within the passband range, the self-test signal can be transmitted to the modem 12 via the intermediate frequency receiving unit 25.
  • the RF receiving unit 22 mixes the received signal with the third local oscillator signal, and the frequency of the signal sent by the opposite end falls into the intermediate frequency.
  • the receiving unit 25 is out of the range of the passband, and is filtered by the intermediate frequency receiving unit 25 to prevent the signal transmitted by the opposite end from interfering with the self-test signal.
  • the intermediate frequency receiving unit 25 filters and modulates the second medium and high frequency signals output from the radio frequency receiving unit 22, and outputs a second intermediate frequency signal.
  • the modem 12 demodulates the second intermediate frequency signal output from the intermediate frequency receiving unit 22 into a traffic signal.
  • the service processing unit 11 determines whether the self-test signal is included in the service signal received by the service; if the service processing unit 11 determines that the self-test signal is not included in the service signal received by the service processing unit 11, it indicates that the wireless transmission device 100 transmits internally. The channel is not smooth, thereby reminding the network administrator to further check the specific cause of the failure; if the service processing unit 11 determines that the service signal received by the service processing unit 11 includes the self-test signal, it indicates that the transmission channel inside the wireless transmission device 100 is unobstructed, thereby Remind the network administrator to further test whether the transmission channel and communication link of the opposite end are unobstructed.
  • the service processing unit 11 may further determine whether the error rate of the self-test signal received by the service processing unit 11 exceeds a normal range; if the service processing unit 11 determines that the error rate of the self-test signal received by the service processing unit 11 is out of a normal range, It means that although the transmission channel inside the wireless transmission device 100 is unobstructed, There is a fault, thereby reminding the network administrator to further check the specific cause of the fault; if the service processing unit 11 determines that the error rate of the self-test signal received by the service processing unit 11 is within the normal range, it indicates that the transmission channel inside the wireless transmission device 100 is There is no fault, and the network administrator is reminded to further test whether the transmission channel and communication link of the opposite end are faulty.
  • the controller 28 can also control the modulation mode set by the modem 12 to a modulation order of not higher than 7, such as QPSK, 16QAM, 64QAM, etc., thereby reducing the sensitivity of the modem 12 and ensuring that the modem 12 can correctly demodulate the self. Check the signal.
  • the controller 28 can also control the radio frequency transmitting unit 16 to increase the power of the self-test signal outputted by the RF controller 16, for example, increasing the power of the self-test signal to the rated maximum transmit power, thereby increasing The signal-to-noise ratio of the self-test signal leaked by the duplexer 20 satisfies the signal-to-noise ratio requirement of the modem 12 for the demodulated signal.
  • the wireless transmission device 100 sets the following parameter values:
  • the transmission power of the self-test signal output by the radio frequency transmitting unit 16 is 12 dBm
  • the TR interval is 196 MHz
  • the isolation of the duplexer is 70 dB
  • the intermediate frequency receiving unit The passband range of 25 is 2.14 GHz 50 MHz, the service bandwidth is 28 MHz, the system noise figure (NF sys ) is 5 dB
  • the modulation mode of the modem 12 is set to 256 QAM;
  • the frequency of the self-test signal modulated by the modem 12 Is 0.35 GHz
  • the frequency of the first local oscillation signal supplied from the frequency synthesizer 26 to the intermediate frequency transmitting unit 14 is 2 GHz
  • the frequency of the second local oscillation signal supplied to the radio frequency transmitting unit 16 is 5 GHz, which is supplied to the radio frequency receiving unit 22
  • the frequency of the three local oscillator signals is 5.406 GHz.
  • the intermediate frequency transmitting unit 14 modulates the self-test signal after the modem 12 (the frequency is
  • the frequency after mixing is 2.35 GHz;
  • the frequency of the self-detection signal (frequency is 2.35 GHz) modulated by the intermediate frequency transmitting unit 14 and the second local oscillation signal (frequency is 5 GHz) is 7.35 GHz;
  • the RF receiving unit 22 mixes the self-test signal (the frequency is 7.35 GHz) leaked through the duplexer 20 with the third local oscillator signal (the frequency is 5.406 GHz), and the frequency is 1.944 GHz;
  • the frequency of the signal received by the RF receiving unit 22 from the opposite end is 7.546 GHz, which is equal to the frequency of the local frequency signal (7.35 GHz) plus a TR interval (0.196 GHz);
  • the frequency at which the radio frequency receiving unit 22 mixes the signal received from the opposite end (the frequency is 7.546 GHz) and the third local oscillation signal (the frequency is 5.406 GHz) is 2.14 GHz. Therefore, when the wireless transmission device 100 is working normally, the signal received from the opposite end is mixed by the radio frequency receiving unit 22 (the frequency is 2.14 GHz) and falls into the passband range of the intermediate frequency receiving unit 25 ( 2.14 GHz 50 MHz). Therefore, it is not filtered out by the intermediate frequency receiving unit 25. However, the self-test signal is mixed by the RF receiving unit 22 (the frequency is 1.944 GHz) and falls within the passband range of the intermediate frequency receiving unit 25 (2.14 GHz, 50 MHz), and therefore is filtered by the intermediate frequency receiving unit 25. If it is lost, it cannot be looped back to the service processing unit 11.
  • the controller 28 starts the self-test function and reduces the TR interval to zero.
  • the controller 28 adjusts the frequency of the third local oscillation signal according to the reduced TR interval control frequency synthesizer 26, and the frequency of the third local oscillation signal (hereinafter referred to as the fourth local oscillation signal) is 5.21 GHz.
  • the radio frequency receiving unit 22 mixes the self-test signal (the frequency is 7.35 GHz) leaked through the duplexer 20 with the fourth local oscillation signal (the frequency is 5.21 GHz), and the frequency is 2.14 GHz, which falls into the intermediate frequency.
  • the passband range of the receiving unit 25 (2.14 GHz 50 MHz) is therefore not filtered by the intermediate frequency receiving unit 25, and can be looped back to the service processing unit 11.
  • the RF receiving unit 22 can receive the signal transmitted by the opposite end, the frequency of the signal transmitted by the opposite end (the frequency is 7.546 GHz) and the fourth local oscillation signal (the frequency is 5.21 GHz) are mixed. 2.336 GHz, which falls outside the passband range of the intermediate frequency receiving unit 25 (2.14 GHz 50 MHz), and therefore is filtered out by the intermediate frequency receiving unit 25, thereby preventing the signal transmitted by the opposite end from interfering with the self-test signal, ensuring The self-test signal can be looped back to the service processing unit 11.
  • the modem 12 is capable of correctly demodulating the self-test signal only when the signal-to-noise ratio of the self-test signal transmitted to the modem 12 is not less than the minimum signal-to-noise ratio that the modem 12 can correctly demodulate. Since the degree of deterioration of the self-test signal by the receiving channel of the wireless transmission device 100 is fixed, the signal-to-noise ratio of the self-test signal leaked by the duplexer 20 can determine whether the self-test signal can be Modem 12 is properly demodulated.
  • the greater the power of the self-test signal output by the radio frequency transmitting unit 16 the larger the signal-to-noise ratio of the self-test signal leaked through the duplexer 20, and therefore, the leakage through the duplexer 20 can be utilized.
  • the magnitude of the difference between the power of the self-test signal and the sensitivity of the modem 12 is determined to determine if the modem 12 can properly demodulate the self-test signal.
  • the sensitivity of the modem 12 is calculated to be -65.5 dBm based on the sensitivity calculation formula.
  • the difference between the power of the self-test signal and the sensitivity of the modem 12 can be increased in the following two ways: the first way is to lower the sensitivity of the modem 12; the second way is to increase the height The power of the self-test signal.
  • the first way is to lower the sensitivity of the modem 12
  • the second way is to increase the height The power of the self-test signal.
  • the controller 28 sets the modulation mode of the modem 12 to a modulation order of 2
  • the QPSK correspondingly, the minimum signal to noise ratio that modem 12 can correctly demodulate is -2.3 dB.
  • the sensitivity of the modem 12 is calculated to be -85.5 dBm.
  • the controller 28 controls the RF transmitting unit 16 to increase the power of the self-test signal output by the RF controller 16, for example, increasing the power of the self-test signal output by the RF transmitting unit 16 to the rated value.
  • the difference between the power of the self-test signal leaked by the duplexer 20 and the sensitivity of the modem 12 is greater than 10 dBm, thereby reducing the possibility of the residual error of the modem 12.
  • the modem 12 is guaranteed to correctly demodulate the self-test signal such that the self-test signal can be looped back to the service processing unit 11.
  • FIG. 2 it is a schematic diagram of the functional architecture of the wireless transmission device 200 in Embodiment 2 of the present invention.
  • the outdoor device 102 includes an intermediate frequency transmitting unit 14, a radio frequency transmitting unit 16, a gain controller 18, a duplexer 20, a radio frequency receiving unit 22, an intermediate frequency receiving unit 25, a frequency synthesizer 26, and a feedback unit 32.
  • the indoor unit 104 includes a service processing unit 11, a modem (MODEM) 12.
  • the outdoor device 102 and the indoor device 104 are connected by the interface unit 13.
  • the interface unit 13 may include a multiplexer 132 located at the outdoor device 102 and a combined interface unit 134 located at the indoor device 104.
  • the function of the controller 28 in Embodiment 1 is performed by the outdoor device 102.
  • the first controller 282 and the second controller 284 in the indoor device 104 are collectively executed.
  • the first controller 282 is used to control the gain controller 18 and the frequency synthesizer 26 to operate.
  • the first controller 282 controls the frequency synthesizer 26 to adjust the frequency of the third local oscillator signal according to the TR interval, and controls the radio frequency transmitting unit 16 to increase the power of its output signal by the gain controller 18.
  • the second controller 284 is used to control the modem 12 to operate.
  • the second controller 284 controls the modem 12 to adjust its modulation mode.
  • the various parameter values stored in the memory 30 in Embodiment 1 are stored in the first memory 302 in the outdoor device 102 and the second memory 304 in the indoor device 104, respectively.
  • the first storage unit 302 stores the TR interval, the rated maximum transmission power of the output signal of the radio frequency transmitting unit 16, and the like.
  • the second storage unit 304 stores the modulation mode of the modem 12 and the like.
  • the first storage unit 302 is coupled to the first controller 282 and the second storage unit 304 is coupled to the second controller 284.
  • Embodiment 3 of the present invention further provides a method for self-test of a wireless transmission device, where the method includes:
  • S502 Start a self-test function and reduce the TR interval to a preset range; preferably, the preset range is 0 to 10 KHz.
  • the control service processing unit 11 continues to transmit the service signal as a self-test signal.
  • the control modem 12, the intermediate frequency transmitting unit 14 and the radio frequency transmitting unit 16 modulate the self-test signal; wherein, after the self-test signal is modulated into a radio frequency signal by the radio frequency transmitting unit 16, a part of the self-test signal will be The duplexer 20 leaks to the radio frequency receiving unit 22.
  • the control radio frequency receiving unit 22 mixes the received signal with the third local oscillator signal, and outputs a second medium and high frequency signal.
  • the frequency of the self-test signal included in the second medium and high frequency signal falls into the intermediate frequency.
  • the receiving unit 25 is within the passband range such that the self-test signal can be transmitted to the modem 12 via the intermediate frequency receiving unit 25.
  • the RF receiving unit 22 mixes the received signal with the third local oscillator signal, and the opposite end sends the signal.
  • the frequency of the signal falls outside the passband range of the intermediate frequency receiving unit 25, and is filtered by the intermediate frequency receiving unit 25 to prevent the signal transmitted by the opposite end from interfering with the self-test signal.
  • control intermediate frequency receiving unit 25 inputs the second medium and high frequency signals output by the radio frequency receiving unit 22. Line filtering and modulation, outputting a second intermediate frequency signal.
  • control modem 12 demodulates the second intermediate frequency signal output by the intermediate frequency receiving unit 22 into a traffic signal.
  • the service processing unit 11 determines whether the self-test signal is included in the service signal received by the service processing unit. If the service processing unit 11 determines that the self-test signal is not included in the service signal received by the service processing unit 11, it indicates that the wireless transmission device 100 internally The transmission channel is not smooth, thereby reminding the network administrator to further check the specific cause of the failure; if the service processing unit 11 determines that the service signal received by the service processing unit includes the self-test signal, it indicates that the transmission channel inside the wireless transmission device 100 is unobstructed. Therefore, the network administrator is reminded to further test whether the transmission channel and the communication link of the opposite end are unobstructed.
  • the service processing unit 11 may further determine whether the error rate of the self-test signal received by the service processing unit 11 exceeds a normal range; if the service processing unit 11 determines that the error rate of the self-test signal received by the service processing unit 11 is out of a normal range, It means that although the transmission channel inside the wireless transmission device 100 is unobstructed, there is a fault, thereby reminding the network administrator to further check the specific cause of the failure; if the service processing unit 11 determines that the error rate of the self-test signal received by the service processing unit is normal. In the range, it indicates that the transmission channel inside the wireless transmission device 100 is both smooth and there is no fault, thereby reminding the network administrator to further test whether the transmission channel and the communication link of the opposite end are faulty.
  • the controller 28 can also control the modulation mode set by the modem 12 to a modulation order of not higher than 7, such as QPSK, 16QAM, 64QAM, etc., to satisfy the signal-to-noise ratio requirement of the modem 12 for the demodulated signal.
  • the controller 28 can also control the radio frequency transmitting unit 16 to increase the power of the self-test signal outputted by the RF controller 16, for example, increasing the power of the self-test signal to the rated maximum transmit power, thereby increasing The difference between the power of the self-test signal received by the modem 12 and its sensitivity reduces the likelihood of residual error, ensuring that the modem 12 can properly demodulate the self-test signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transceivers (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Rehabilitation Tools (AREA)

Description

无线传输装置及其自检的方法 本申请要求于 2010 年 8 月 16 日提交中国专利局、 申请号为 201010254178.0、 发明名称为"无线传输装置及其自检的方法"的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信传输领域,尤其涉及一种无线传输装置及其自检的方法。 背景技术
由于应用场景需求, 无线传输装置需要安装在屋顶或高塔上, 而且需要 采取防水等处理, 安装和拆卸非常复杂。 当无线传输装置发生系统故障时, 为了减少拆卸和安装无线传输装置的操作, 无线传输装置通常需要在内部搭 建独立的环回通道或者外接环回设备进行自检。 然而, 在无线传输装置内部 搭建独立的环回通道需要增加额外成本和设计复杂度, 外接环回设备需要工 程人员到达现场进行作业, 可操作性较差。
发明内容
本发明实施例中提供了一种无线传输装置及其自检的方法, 无线传输装 置通过环回业务信号定位故障。
一种无线传输装置, 包括业务处理单元、 双工器、 射频接收单元、 频率 合成器和控制器。 控制器启动自检功能, 减小 TR间隔到预设范围内, 根据减 小后的 TR间隔控制频率合成器调整其输出给射频接收单元的本振信号的频 率。 业务处理单元继续发送业务信号作为自检信号, 所述自检信号被调制成 射频信号后, 部分所述自检信号会通过双工器泄漏到射频接收单元。 射频接 收单元将接收到的信号与所述本振信号混频后, 输出信号中所包含的所述自 检信号的频率落入中频接收单元的通带范围内。
一种无线传输装置自检的方法, 包括: 启动自检功能并减小 TR间隔到预 设范围内; 根据减小后的 TR间隔控制频率合成器调整其输出给射频接收单元 的本振信号的频率; 控制业务处理单元继续发送业务信号作为自检信号; 调 制所述自检信号成为射频信号, 其中, 部分所述自检信号会通过双工器泄漏 到射频接收单元; 控制射频接收单元将接收到的信号与所述本振信号混频, 其中, 输出信号中所包含的所述自检信号的频率落入中频接收单元的通带范 围内。 无线传输装置通过减小收发信号的频率间隔, 并才艮据减小后的频率间隔 控制频率合成器调整其输出给射频接收单元的本振信号的频率, 使得通过双 工器泄漏的所述自检信号与所述本振信号混频后的频率落入中频接收单元的 通带范围内, 保证所述自检信号能够环回到业务处理单元, 从而确定自身的 传输通道是否发生故障。
附图说明
下面的附图用于理解本发明实施例, 不构成对本发明的限定:
图 1示出了本发明实施例 1中无线传输装置的功能架构示意图, 所述无线 传输装置中的所有功能单元被整合在一起。
图 2示出了本发明实施例 2中无线传输装置的功能架构示意图, 所述无线 传输装置中的所有功能单元被切分到室外设备和室内设备两部分, 室外设备 与室内设备之间通过接口单元相互连接。
图 3示出了本发明实施例 3中无线传输装置自检的方法流程图。
具体实施方式
为了便于本领域一般技术人员理解和实现本发明, 现结合附图描述本发 明的实施例。 在此, 本发明的示意性实施例及其说明用于解释本发明, 但并 不作为对本发明的限定。
如图 1所示, 是本发明实施例 1中无线传输装置 100的功能架构示意图。 无 线传输装置 100的所有功能单元被整合在一起, 包括依次连接的业务处理单元 11、 调制解调器(MODEM ) 12、 中频发射单元 14、 射频发射单元 16、 双工器 20、 射频接收单元 22和中频接收单元 25, 中频接收单元 25还耦合于调制解调 器 12。
无线传输装置 100还包括增益控制器 18、 频率合成器 ( frequency synthesizer ) 26, 控制器 28、 存储器 30和反馈单元 32。 频率合成器 26连接于中 频发射单元 14、 射频发射单元 16、 射频接收单元 22和中频接收单元 25。 调制 道; 射频接收单元 22、 中频接收单元 25和调制解调器 12构成无线传输装置 100 的接收通道。
存储器 30连接于控制器 28, 存储有无线传输装置 100的各种参数值。 所述 参数值包括收发信号的频率间隔(下称 TR间隔)、 调制解调器 12的调制模式、 射频发射单元 16输出的射频信号的额定最大发射功率等。 频率合成器 26用于产生本振信号, 中频发射单元 14、 射频发射单元 16、 射频接收单元 22和中频接收单元 25将收发信号与所述本振信号进行混频处 理。 为了区分不同的本振信号, 将频率合成器 26提供给中频发射单元 14和中 频接收单元 25的本振信号称为第一本振信号, 将频率合成器 26提供给射频发 射单元 16的本振信号成为第二本振信号, 而将频率合成器 26提供给射频接收 单元 22的本振信号称为第三本振信号。 其中, 第一本振信号和第二本振信号 的频率在设计时已经被固定下来, 频率合成器 26不能够根据 TR间隔的改变而 调整。 然而, 频率合成器 26可以根据 TR间隔的改变调整第三本振信号的频率。
调制解调器 12根据预设的调制模式将业务处理单元 11发送的业务信号调 制成第一中频信号, 或者将接收到的第二中频信号解调成业务信号并传送给 业务处理单元 11。
中频发射单元 14将接收到的第一中频信号与第一本振信号混频后输出第 一中高频信号。
射频发射单元 16将接收到的第一中高频信号与第二本振信号混频后输出 射频信号, 并调整所述射频信号的功率, 然后经过双工器 20和天线 34将所述 射频信号发射出去。
双工器 20由两组不同频率的滤波器组成, 用于隔离发射信号和接收信号, 避免发射信号传输到本端的接收通道, 保证信号收发工作能正常进行。 双工 器 20还輛合一个天线 32。
射频接收单元 22将接收到的信号与第三本振信号混频, 并输出第二中高 频信号。 射频接收单元 22接收到的信号中包括通过双工器 20泄漏的所述射频 信号和对端发送的信号。
中频接收单元 25具有以某一频率为中心的通带范围, 用于过滤射频接收单 元 22输出的第二中高频信号, 滤除掉落入所述通带范围外的噪声信号, 减小 噪声信号产生的干扰; 并将过滤后的第二中高频信号与第一本振信号混频后 输出第二中频信号。
控制器 28用于控制调制解调器 12、 增益控制器 18和频率合成器 26进行工 作。 例如, 控制器 28控制调制解调器 12设置调制模式, 根据 TR间隔控制频率 合成器 26调整第三本振信号的频率, 以及通过增益控制器 18控制射频发射单 元 16输出的射频信号的功率。
反馈单元 32连接于射频发射单元 16与控制器 28之间, 将射频信号反馈给 控制器 28, 控制器 28将反馈的射频信号的功率与预设功率比较, 确定是否需 要进一步通过增益控制器 18控制射频发射单元 16调整所述射频信号的功率。
本发明的技术方案中, 在测试无线传输装置 100内部是否发生故障时, 控 制器 28启动自检功能并减小 TR间隔到预设范围内, 根据减小后的 TR间隔控制 频率合成器 26调整第三本振信号的频率。 优选地, 上述预设范围是 0Hz到 10KHz。 业务处理单元 11继续发送业务信号作为自检信号。
值得说明的是, 控制器 28无法根据减小后的 TR间隔控制频率合成器 26调 整第一本振信号和第二本振信号的频率。
控制器 28控制调制解调器 12、 中频发射单元 14和射频发射单元 16对所述 自检信号进行调制; 其中, 所述自检信号经过射频发射单元 16调制成射频信 号后, 其中一部分所述自检信号会通过双工器 20泄漏到射频接收单元 22。
射频接收单元 22将接收到的信号与第三本振信号混频, 并输出第二中高 频信号; 其中, 第二中高频信号中所包含的所述自检信号的频率落入中频接 收单元 25的通带范围内, 从而所述自检信号可以通过中频接收单元 25传送到 调制解调器 12。
值得说明的是, 即使接收到的信号中包含有对端发送的信号, 射频接收 单元 22将接收到的信号与第三本振信号混频后, 所述对端发送的信号的频率 落入中频接收单元 25的通带范围外, 从而被中频接收单元 25过滤掉, 避免所 述对端发送的信号干扰所述自检信号。
中频接收单元 25对射频接收单元 22输出的第二中高频信号进行过滤和调 制, 输出第二中频信号。
调制解调器 12将中频接收单元 22输出的第二中频信号解调成业务信号。 业务处理单元 11确定其接收到的业务信号中是否包含所述自检信号; 如 果业务处理单元 11确定其接收到的业务信号中没有包含所述自检信号, 则表 示无线传输装置 100内部的传输通道不通畅, 从而提醒网管人员进一步排查发 生故障的具体原因; 如果业务处理单元 11确定其接收到的业务信号中包含有 所述自检信号, 则表示无线传输装置 100内部的传输通道通畅, 从而提醒网管 人员进一步测试对端的传输通道和通信链路是否通畅。
进一步, 业务处理单元 11还可以确定其接收到的所述自检信号的误码率 是否超出正常范围; 如果业务处理单元 11确定其接收到的所述自检信号的误 码率超出正常范围, 则表示无线传输装置 100内部的传输通道虽然通畅, 但是 存在故障, 从而提醒网管人员进一步排查发生故障的具体原因; 如果业务处 理单元 11确定其接收到的所述自检信号的误码率处于正常范围内, 则表示无 线传输装置 100内部的传输通道既通畅, 也不存在故障, 从而提醒网管人员进 一步测试对端的传输通道和通信链路是否存在故障。
再者, 控制器 28还可以控制调制解调器 12设置为调制阶数不高于 7的调制 模式, 例如 QPSK、 16QAM、 64QAM等, 从而减小调制解调器 12的灵敏度, 保证调制解调器 12能够正确解调所述自检信号。
再进一步, 控制器 28还可以通过增益控制器 18控制射频发射单元 16增大 其输出的所述自检信号的功率, 例如增大所述自检信号的功率到额定最大发 射功率, 从而增大通过双工器 20泄漏的所述自检信号的信噪比, 满足调制解 调器 12对解调信号的信噪比的要求。
下面举例说明, 本发明实施例 1中通过设定无线传输装置 100的相关参数 实现业务处理单元 11发送的所述自检信号能够环回的技术方案。
本实施例 1中, 无线传输装置 100设定如下参数值: 射频发射单元 16输出 的所述自检信号的发射功率是 12dBm, TR间隔是 196MHz, 双工器的隔离度是 70dB , 中频接收单元 25的通带范围是 2.14GHz士 50MHz, 业务带宽是 28MHz, 系统噪声系数(NFsys )是 5dB, 调制解调器 12的调制模式设定为 256QAM; 另 外, 调制解调器 12调制后的所述自检信号的频率是 0.35GHz, 频率合成器 26提 供给中频发射单元 14的第一本振信号的频率是 2GHz, 提供给射频发射单元 16 的第二本振信号的频率是 5GHz, 提供给射频接收单元 22的第三本振信号的频 率是 5.406GHz。 通过计算可以得到如下结果:
中频发射单元 14将调制解调器 12调制后的所述自检信号 (频率是
0.35GHz )与第一本振信号 (频率是 2GHz ) 混频后的频率是 2.35GHz;
射频发射单元 16将中频发射单元 14调制后的自检信号 (频率是 2.35GHz ) 与第二本振信号 (频率是 5GHz ) 混频后的频率是 7.35GHz;
射频接收单元 22将通过双工器 20泄漏的所述自检信号 (频率是 7.35GHz ) 与第三本振信号 (频率是 5.406GHz ) 混频后的频率是 1.944GHz;
射频接收单元 22从对端接收到的信号的频率是 7.546GHz, 等于本端的射 频信号的频率 (7.35GHz )加上一个 TR间隔 (0.196GHz ) ;
射频接收单元 22将从对端接收到的信号 (频率是 7.546GHz )与第三本振 信号 (频率是 5.406GHz ) 混频后的频率是 2.14GHz。 由此可知, 无线传输装置 100正常工作时, 所述从对端接收到的信号经过 射频接收单元 22混频后 (频率是 2.14GHz ) 落入中频接收单元 25的通带范围 ( 2.14GHz士 50MHz ) 内, 因此, 不会被中频接收单元 25滤除掉。 然而, 所述 自检信号经过射频接收单元 22混频后 (频率是 1.944GHz ) 落入中频接收单元 25的通带范围 (2.14GHz士 50MHz )夕卜, 因此, 会被中频接收单元 25滤除掉, 无法环回到业务处理单元 11。
当业务处理单元 11接收不到业务信号或者接收到的业务信号的误码率超 出正常范围时, 控制器 28启动自检功能并减小 TR间隔为 0。 相应地, 控制器 28 根据减小后的 TR间隔控制频率合成器 26调整第三本振信号的频率, 第三本振 信号 (下称第四本振信号) 的频率为 5.21GHz。
基于此, 射频接收单元 22将通过双工器 20泄漏的所述自检信号(频率是 7.35GHz )与第四本振信号 (频率是 5.21GHz ) 混频后的频率是 2.14GHz, 落 入中频接收单元 25的通带范围 (2.14GHz士 50MHz ) 内, 因此, 不会被中频接 收单元 25滤除掉, 能够环回到业务处理单元 11。
值得说明的是, 即使射频接收单元 22能够接收到对端发送的信号, 所述 对端发送的信号(频率是 7.546GHz )与第四本振信号(频率是 5.21GHz )混频 后的频率是 2.336GHz, 落入中频接收单元 25的通带范围 ( 2.14GHz士 50MHz ) 外, 因此, 会被中频接收单元 25滤除掉, 从而避免所述对端发送的信号干扰 所述自检信号, 保证所述自检信号能够环回到业务处理单元 11。
进一步, 只有当发送到调制解调器 12的所述自检信号的信噪比不小于调 制解调器 12能正确解调的最小信噪比时, 调制解调器 12才能够正确解调所述 自检信号。 由于无线传输装置 100的接收通道对所述自检信号的劣化程度是固 定的, 因此, 通过双工器 20泄漏的所述自检信号的信噪比便可以确定所述自 检信号能否被调制解调器 12正确解调。
另外, 射频发射单元 16输出的所述自检信号的功率越大, 通过双工器 20 泄漏的所述自检信号的信噪比也越大, 因此, 可以利用通过双工器 20泄漏的 所述自检信号的功率与调制解调器 12的灵敏度之间的差值大小来确定调制解 调器 12能否正确解调所述自检信号。
例如,调制模式设定为 256QAM时,调制解调器 12能正确解调的最小信噪 比是 17.7dB; 另外, 通过双工器 20泄漏的所述自检信号的功率为: 12dBm - 70dBm = -58dBm。 基于上述参数值, 根据灵敏度的计算公式, 计算得到调制解调器 12的灵 敏度是 -65.5dBm。 具体为: 灵敏度(dBm ) = -174+101g(B)+NFsys+S/N = -174+10*lg(28*106)+5+17.7 = -174+86.8 (省略值) +5+17.7 = -65.5dBmc 由于 所述自检信号的功率 (-58dBm ) 与调制解调器的灵敏度 ( -65.5dBm )之间的 差值小于 10dBm, 因此调制解调器 12可能产生残留误码, 从而导致无法正确 解调所述自检信号。
本实施例 1可以采取下面两种方式增大所述自检信号的功率与调制解调 器 12的灵敏度之间的差值: 第一种方式是调低调制解调器 12的灵敏度; 第二 种方式是调高所述自检信号的功率。 下面举例说明上述两种方式:
第一种方式中, 由于调制模式的调制阶数越低, 调制解调器 12能正确解 调的最小信噪比也越低, 因此, 控制器 28将调制解调器 12的调制模式设定为 调制阶数为 2的 QPSK, 相应地, 调制解调器 12能正确解调的最小信噪比是 -2.3dB。 根据所述灵敏度的计算公式, 计算得到调制解调器 12的灵敏度是 -85.5dBm。
第二种方式中, 控制器 28通过增益控制器 18控制射频发射单元 16增大其 输出的所述自检信号的功率, 例如增大射频发射单元 16输出的所述自检信号 的功率到额定最大发射功率 (20dBm ) , 由此, 通过双工器 20泄漏的所述自 检信号的功率为: 20dBm - 70dBm = -50dBm。
由此可知, 通过上述任一种方式, 通过双工器 20泄漏的所述自检信号的 功率与调制解调器 12的灵敏度之间的差值均大于 10dBm, 从而减小调制解调 器 12产生残留误码的可能性, 保证调制解调器 12能够正确解调所述自检信号, 使得所述自检信号能够环回到业务处理单元 11。
如图 2所示, 是本发明实施例 2中无线传输装置 200的功能架构示意图。 为 了方便安装, 所述无线传输装置 100中的所有功能单元通常被切分成两部分, 即室外设备 102和室内设备 104。 其中, 室外设备 102包括中频发射单元 14、 射 频发射单元 16、 增益控制器 18、 双工器 20、 射频接收单元 22、 中频接收单元 25、 频率合成器 26、 反馈单元 32。 室内设备 104包括业务处理单元 11、 调制解 调器(MODEM ) 12。
本实施例 2中,室外设备 102和室内设备 104通过接口单元 13相连接,例如, 接口单元 13可以包括位于室外设备 102的多路复用器 132和位于室内设备 104 的合路接口单元 134。 另外, 实施例 1中的控制器 28的功能由室外设备 102中的 第一控制器 282和室内设备 104中的第二控制器 284共同执行。
第一控制器 282用于控制增益控制器 18和频率合成器 26进行工作。 例如, 第一控制器 282根据 TR间隔控制频率合成器 26调整第三本振信号的频率,以及 通过增益控制器 18控制射频发射单元 16增大其输出信号的功率。
第二控制器 284用于控制调制解调器 12进行工作, 例如, 第二控制器 284 控制调制解调器 12调整其调制模式。
实施例 1中的存储器 30中存储的各种参数值, 被分别存储于室外设备 102 中的第一存储器 302和室内设备 104中的第二存储器 304。 第一存储单元 302存 储有 TR间隔、 射频发射单元 16输出信号的额定最大发射功率等。 第二存储单 元 304存储有调制解调器 12的调制模式等。 第一存储单元 302连接于第一控制 器 282, 第二存储单元 304连接于第二控制器 284。
如图 3所示, 本发明实施例 3还提供了一种无线传输装置自检的方法, 该 方法包括:
S502 , 启动自检功能并减小 TR间隔到预设范围内; 优选地, 所述预设范 围是 0到 10KHz。
S504, 根据减小后的 TR间隔控制频率合成器 26调整其输出给射频接收单 元的第三本振信号的频率; 值得说明的是, 控制器 28无法根据减小后的 TR间 隔控制频率合成器 26调整第一本振信号和第二本振信号的频率。
S506, 控制业务处理单元 11继续发送业务信号作为自检信号。
S508 , 控制调制解调器 12、 中频发射单元 14和射频发射单元 16对所述自 检信号进行调制; 其中, 所述自检信号经过射频发射单元 16调制成射频信号 后, 其中一部分所述自检信号会通过双工器 20泄漏到射频接收单元 22。
S510, 控制射频接收单元 22将接收到的信号与第三本振信号混频, 并输 出第二中高频信号; 其中, 第二中高频信号中所包含的所述自检信号的频率 落入中频接收单元 25的通带范围内, 从而所述自检信号可以通过中频接收单 元 25传送到调制解调器 12。
值得说明的是, 即使射频接收单元 22接收到的信号中包含有对端发送的 信号, 射频接收单元 22将接收到的信号与所述第三本振信号混频后, 所述对 端发送的信号的频率落入中频接收单元 25的通带范围外, 从而被中频接收单 元 25过滤掉, 避免所述对端发送的信号干扰所述自检信号。
S512, 控制中频接收单元 25对射频接收单元 22输出的第二中高频信号进 行过滤和调制, 输出第二中频信号。
S514, 控制调制解调器 12将中频接收单元 22输出的第二中频信号解调成 业务信号。
S516, 业务处理单元 11确定其接收到的业务信号中是否包含所述自检信 号; 如果业务处理单元 11确定其接收到的业务信号中没有包含所述自检信号, 则表示无线传输装置 100内部的传输通道不通畅, 从而提醒网管人员进一步排 查发生故障的具体原因; 如果业务处理单元 11确定其接收到的业务信号中包 含有所述自检信号, 则表示无线传输装置 100内部的传输通道通畅, 从而提醒 网管人员进一步测试对端的传输通道和通信链路是否通畅。
进一步, 业务处理单元 11还可以确定其接收到的所述自检信号的误码率 是否超出正常范围; 如果业务处理单元 11确定其接收到的所述自检信号的误 码率超出正常范围, 则表示无线传输装置 100内部的传输通道虽然通畅, 但是 存在故障, 从而提醒网管人员进一步排查发生故障的具体原因; 如果业务处 理单元 11确定其接收到的所述自检信号的误码率处于正常范围内, 则表示无 线传输装置 100内部的传输通道既通畅, 也不存在故障, 从而提醒网管人员进 一步测试对端的传输通道和通信链路是否存在故障。
再者, 控制器 28还可以控制调制解调器 12设置为调制阶数不高于 7的调制 模式, 例如 QPSK、 16QAM、 64QAM等, 从而满足调制解调器 12对解调信号 的信噪比的要求。
再进一步, 控制器 28还可以通过增益控制器 18控制射频发射单元 16增大 其输出的所述自检信号的功率, 例如增大所述自检信号的功率到额定最大发 射功率, 从而增大调制解调器 12接收到的所述自检信号的功率与其灵敏度之 间的差值, 减小产生残留误码的可能性, 保证调制解调器 12能够正确解调所 述自检信号。
其他实施例中, 为了保证所述自检信号能够环回到业务处理单元 11, 本 领域技术人员还可以通过配置其他相关参数来实现, 例如射频信号的频率、 业务带宽等, 上述变化仍属于本发明所要求保护的范围。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应该以权利要求书的保护范围为准。

Claims

权利要求
1、 一种无线传输装置, 包括业务处理单元、 双工器、 射频接收单元、 频 率合成器和控制器; 其特征在于:
控制器启动自检功能, 减小 TR间隔到预设范围内, 根据减小后的 TR间隔 控制频率合成器调整其输出给射频接收单元的本振信号的频率;
业务处理单元继续发送业务信号作为自检信号, 所述自检信号被调制成 射频信号后, 部分所述自检信号会通过双工器泄漏到射频接收单元;
射频接收单元将接收到的信号与所述本振信号混频后, 输出信号中所包 含的所述自检信号的频率落入中频接收单元的通带范围内;
业务处理单元确定其接收到的业务信号中是否包含所述自检信号; 如果 业务处理单元确定其接收到的业务信号中没有包含所述自检信号, 则表示无 线传输装置内部的传输通道不通畅; 如果业务处理单元确定其接收到的业务 信号中包含有所述自检信号, 则表示无线传输装置内部的传输通道通畅。
2、 如权利要求 1所述的无线传输装置, 其特征在于, 还包括调制解调器, 控制器还控制调制解调器设置为调制阶数不高于 7的调制模式, 根据重新设置 的调制模式将所述自检信号解调成业务信号, 并将所述业务信号发送到业务 处理单元。
3、 如权利要求 1所述的无线传输装置, 其特征在于, 还包括增益控制器 和射频发射单元, 控制器还通过增益控制器控制射频发射单元增大其输出的 所述自检信号的功率。
4、 如权利要求 3所述的无线传输装置, 其特征在于, 控制器通过增益控 制器控制射频发射单元增大其输出的所述自检信号的功率到额定最大发射功 率。
5、 如权利要求 1至 4任意一项所述的无线传输装置, 其特征在于, 如果业 务处理单元确定其接收到的业务信号中包含有所述自检信号, 业务处理单元 还进一步确定其接收到的所述自检信号的误码率是否超出正常范围; 如果业 务处理单元确定其接收到的所述自检信号的误码率超出正常范围, 则表示无 线传输装置内部的传输通道虽然通畅, 但是存在故障; 如果业务处理单元确 定其接收到的所述自检信号的误码率处于正常范围内, 则表示无线传输装置 内部的传输通道既通畅, 也不存在故障。
6、 如权利要求 1至 4任意一项所述的无线传输装置, 其特征在于, 所述预 设范围是 0到 10KHz。
7、 一种无线传输装置自检的方法, 其特征在于, 该方法包括: 启动自检功能并减小 TR间隔到预设范围内;
根据减小后的 TR间隔控制频率合成器调整其输出给射频接收单元的本振 信号的频率;
控制业务处理单元继续发送业务信号作为自检信号;
调制所述自检信号成为射频信号, 其中, 部分所述自检信号会通过双工 器泄漏到射频接收单元;
控制射频接收单元将接收到的信号与所述本振信号混频, 其中, 输出信 号中所包含的所述自检信号的频率落入中频接收单元的通带范围内;
确定其接收到的业务信号中是否包含所述自检信号; 如果确定其接收到 的业务信号中没有包含所述自检信号, 则表示无线传输装置内部的传输通道 不通畅; 如果确定其接收到的业务信号中包含有所述自检信号, 则表示无线 传输装置内部的传输通道通畅。
8、 如权利要求 7所述的方法, 其特征在于, 还包括: 控制调制解调器将 设置为调制阶数不高于 7的调制模式, 根据重新设置的调制模式将所述自检信 号解调成业务信号, 将所述业务信号发送到业务处理单元。
9、 如权利要求 7所述的方法, 其特征在于, 还包括: 通过增益控制器控 制射频发射单元增大其输出的所述自检信号的功率。
10、 如权利要求 9所述的方法, 其特征在于, 通过增益控制器控制射频发 射单元增大其输出的所述自检信号的功率到额定最大发射功率。
11、 如权利要求 7至 10任意一项所述的方法, 其特征在于, 如果确定其接 收到的业务信号中包含有所述自检信号, 还进一步确定其接收到的所述自检 信号的误码率是否超出正常范围; 如果确定其接收到的所述自检信号的误码 率超出正常范围, 则表示无线传输装置内部的传输通道虽然通畅, 但是存在 故障; 如果确定其接收到的所述自检信号的误码率处于正常范围内, 则表示 无线传输装置内部的传输通道既通畅, 也不存在故障。
12、如权利要求 7至 10任意一项所述的方法, 其特征在于, 所述预设范 围是 0到 10KHz。
PCT/CN2011/072083 2010-08-16 2011-03-23 无线传输装置及其自检的方法 WO2011110111A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2012148915/08A RU2516623C1 (ru) 2010-08-16 2011-03-23 Аппаратура беспроводной связи и способ самопроверки аппаратуры беспроводной связи
EP11752854.7A EP2458792B1 (en) 2010-08-16 2011-03-23 Wireless transmission device and self-checking method thereof
AU2011226572A AU2011226572B2 (en) 2010-08-16 2011-03-23 Wireless transmission device and self-checking method thereof
CA2795272A CA2795272C (en) 2010-08-16 2011-03-23 Wireless transmission apparatus and self-checking method of wireless transmission apparatus
ES11752854T ES2421742T3 (es) 2010-08-16 2011-03-23 Dispositivo de transmisión inalámbrica y su método de autocontrol
US13/685,098 US8665938B2 (en) 2010-08-16 2012-11-26 Wireless transmission apparatus and self-checking method of wireless transmission apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010254178.0 2010-08-16
CN2010102541780A CN101908994B (zh) 2010-08-16 2010-08-16 无线传输装置及其自检的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/685,098 Continuation US8665938B2 (en) 2010-08-16 2012-11-26 Wireless transmission apparatus and self-checking method of wireless transmission apparatus

Publications (1)

Publication Number Publication Date
WO2011110111A1 true WO2011110111A1 (zh) 2011-09-15

Family

ID=43264319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072083 WO2011110111A1 (zh) 2010-08-16 2011-03-23 无线传输装置及其自检的方法

Country Status (8)

Country Link
US (1) US8665938B2 (zh)
EP (1) EP2458792B1 (zh)
CN (1) CN101908994B (zh)
AU (1) AU2011226572B2 (zh)
CA (1) CA2795272C (zh)
ES (1) ES2421742T3 (zh)
RU (1) RU2516623C1 (zh)
WO (1) WO2011110111A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8954803B2 (en) * 2010-02-23 2015-02-10 Mosys, Inc. Programmable test engine (PCDTE) for emerging memory technologies
CN101908994B (zh) 2010-08-16 2012-06-27 华为技术有限公司 无线传输装置及其自检的方法
TWI556597B (zh) * 2011-03-31 2016-11-01 Panasonic Corp Wireless communication device
CN102833012B (zh) * 2011-06-17 2014-11-26 鼎桥通信技术有限公司 多载波发射系统中的下行和上行数字中频自检方法
US9341503B2 (en) * 2013-08-27 2016-05-17 Crystal Instruments Corporation Cross-path phase calibration for high dynamic range data acquisition
CN105375990A (zh) * 2014-08-27 2016-03-02 国民技术股份有限公司 一种移动终端声波自检方法及装置
CN112671688B (zh) * 2015-07-23 2024-04-05 三星电子株式会社 发送方法和接收方法
US9673847B1 (en) * 2015-11-25 2017-06-06 Analog Devices, Inc. Apparatus and methods for transceiver calibration
US9979408B2 (en) 2016-05-05 2018-05-22 Analog Devices, Inc. Apparatus and methods for phase synchronization of phase-locked loops
JP2017212594A (ja) * 2016-05-25 2017-11-30 富士通株式会社 無線通信装置及びキャリブレーション方法
FR3052311B1 (fr) * 2016-06-06 2019-08-02 Airbus Ds Slc Dispositif et procede pour le traitement d'un signal recu par un recepteur perturbe par un emetteur
US9847802B1 (en) * 2016-08-16 2017-12-19 Xilinx, Inc. Reconfiguration of single-band transmit and receive paths to multi-band transmit and receive paths in an integrated circuit
EP3306817B8 (en) * 2016-10-07 2021-04-21 Rohde & Schwarz GmbH & Co. KG Predistortion system and method
CN108230943A (zh) * 2016-12-21 2018-06-29 重庆博之翰科技有限公司 拉环信息投放系统
CN106804044B (zh) * 2016-12-29 2020-03-31 海能达通信股份有限公司 通信故障检测方法、装置以及射频拉远电路
JP2018164183A (ja) * 2017-03-24 2018-10-18 富士通株式会社 通信装置および歪補償方法
US10374838B2 (en) * 2017-06-30 2019-08-06 Futurewei Technologies, Inc. Image distortion correction in a wireless terminal
CN110350928B (zh) * 2018-04-03 2021-05-25 海能达通信股份有限公司 一种接收通路自检电路及终端
US11082051B2 (en) 2018-05-11 2021-08-03 Analog Devices Global Unlimited Company Apparatus and methods for timing offset compensation in frequency synthesizers
US10897318B2 (en) * 2019-04-16 2021-01-19 Qualcomm Incorporated Method and apparatus for maximum permissible exposure proximity sensor fault detection
TWI703813B (zh) * 2019-04-23 2020-09-01 瑞昱半導體股份有限公司 訊號補償裝置
GB201907717D0 (en) * 2019-05-31 2019-07-17 Nordic Semiconductor Asa Apparatus and methods for dc-offset estimation
CN112671681B (zh) * 2020-02-03 2022-03-01 腾讯科技(深圳)有限公司 边带抑制方法、装置、计算机设备和存储介质
CN111416787B (zh) * 2020-04-16 2022-10-25 航天恒星科技有限公司 调制解调器和基带板卡
US11496254B2 (en) * 2020-08-28 2022-11-08 Rockwell Automation Technologies, Inc. System and method for testing filters in redundant signal paths
CN112217536B (zh) * 2020-11-30 2024-03-08 成都泰格微电子研究所有限责任公司 一种卫星地面站的射频前端及其自检方法
CN113259026B (zh) * 2021-04-19 2023-03-14 中国电子科技集团公司第二十九研究所 一种降低移动基站影响电子接收设备机内自检的方法及电子接收设备
CN114124130B (zh) * 2021-08-25 2023-09-26 闻泰通讯股份有限公司 射频收发系统、射频通路检测方法和终端设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2819658Y (zh) * 2005-06-09 2006-09-20 沈阳奥维通信技术有限公司 移动通信移频直放站
CN201044447Y (zh) * 2007-02-26 2008-04-02 京信通信系统(中国)有限公司 实现模块备份的直放站
CN100403685C (zh) * 2005-07-19 2008-07-16 上海华为技术有限公司 具有保护功能的通讯链路系统及其方法
CN101478320A (zh) * 2008-11-17 2009-07-08 华为技术有限公司 微波设备射频电路及微波设备射频电路收发间隔调整方法
CN101908994A (zh) * 2010-08-16 2010-12-08 华为技术有限公司 无线传输装置及其自检的方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1014783B (zh) * 1985-12-20 1991-11-20 武汉钢铁公司技术部 氟石固体水玻璃矿渣水泥的生产方法
US5835850A (en) * 1996-08-12 1998-11-10 At&T Corp Self-testing transceiver
GB9720152D0 (en) * 1996-12-18 1997-11-26 Mayup Limited Communications system and method
US7035281B1 (en) * 2000-09-13 2006-04-25 Wp Media, Inc. Wireless provisioning device
US6819910B2 (en) * 2002-03-08 2004-11-16 Broadcom Corp. Radio employing a self calibrating transmitter with reuse of receiver circuitry
US7181168B2 (en) * 2002-04-02 2007-02-20 Northrop Grumman Corporation Radio frequency integrated circuit for loopback self-test
US7158586B2 (en) * 2002-05-03 2007-01-02 Atheros Communications, Inc. Systems and methods to provide wideband magnitude and phase imbalance calibration and compensation in quadrature receivers
US7248625B2 (en) * 2002-09-05 2007-07-24 Silicon Storage Technology, Inc. Compensation of I-Q imbalance in digital transceivers
US7187916B2 (en) * 2003-02-07 2007-03-06 Broadcom Corporation Method and system for measuring receiver mixer IQ mismatch
DE102004005130B3 (de) * 2004-02-02 2005-04-14 Infineon Technologies Ag Sende-/Empfangsanordnung und Verfahren zur Reduktion von Nichtlinearitäten in Ausgangssignalen einer Sende-/Empfangsanordnung
KR100656196B1 (ko) * 2004-08-12 2006-12-12 삼성전자주식회사 송수신 모드를 동시에 활용하는 시분할 복신 송수신 장치및 이를 이용한 자체 진단 방법
US7564893B2 (en) * 2005-03-22 2009-07-21 Agilent Technologies, Inc. Test system and method for parallel modulation error measurement of transceivers
US7379716B2 (en) 2005-03-24 2008-05-27 University Of Florida Research Foundation, Inc. Embedded IC test circuits and methods
KR100735366B1 (ko) * 2005-08-23 2007-07-04 삼성전자주식회사 무선 송수신장치에서 자가 보상장치 및 방법
KR100648269B1 (ko) * 2005-10-13 2006-11-23 (주)래디안트 자기 학습 알고리즘을 통한 측위 향상을 위한 이동 통신단말기의 위치 결정 시스템 및 방법
US7733949B2 (en) * 2005-12-07 2010-06-08 Cisco Technology, Inc. Wireless communications system with reduced sideband noise and carrier leakage
US7856048B1 (en) * 2006-11-20 2010-12-21 Marvell International, Ltd. On-chip IQ imbalance and LO leakage calibration for transceivers
CN201150060Y (zh) 2007-12-07 2008-11-12 北京天瑞星际技术有限公司 18GHz PDH数字微波室外单元的射频单元
CN101252368A (zh) 2008-04-08 2008-08-27 上海杰盛无线通讯设备有限公司 微波通信系统室外单元的频率复用电路
US8606193B2 (en) * 2008-11-13 2013-12-10 Qualcomm Incorporated RF transceiver IC having internal loopback conductor for IP2 self test
US8780959B2 (en) * 2009-01-13 2014-07-15 Intel Mobile Communications GmbH Integrated transceiver loop back self test by amplitude modulation
CN101986580B (zh) * 2009-07-29 2013-08-14 澜起科技(上海)有限公司 测量及补偿接收机参数的方法及装置
CN101801122A (zh) 2009-12-30 2010-08-11 华为技术有限公司 基带信号处理装置、方法及多模基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2819658Y (zh) * 2005-06-09 2006-09-20 沈阳奥维通信技术有限公司 移动通信移频直放站
CN100403685C (zh) * 2005-07-19 2008-07-16 上海华为技术有限公司 具有保护功能的通讯链路系统及其方法
CN201044447Y (zh) * 2007-02-26 2008-04-02 京信通信系统(中国)有限公司 实现模块备份的直放站
CN101478320A (zh) * 2008-11-17 2009-07-08 华为技术有限公司 微波设备射频电路及微波设备射频电路收发间隔调整方法
CN101908994A (zh) * 2010-08-16 2010-12-08 华为技术有限公司 无线传输装置及其自检的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2458792A4 *

Also Published As

Publication number Publication date
EP2458792B1 (en) 2013-05-08
AU2011226572B2 (en) 2014-02-06
EP2458792A4 (en) 2012-05-30
EP2458792A1 (en) 2012-05-30
CA2795272C (en) 2016-11-15
RU2516623C1 (ru) 2014-05-20
CA2795272A1 (en) 2011-09-15
AU2011226572A1 (en) 2012-11-01
US8665938B2 (en) 2014-03-04
US20130077665A1 (en) 2013-03-28
RU2012148915A (ru) 2014-05-27
ES2421742T3 (es) 2013-09-05
CN101908994B (zh) 2012-06-27
CN101908994A (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
WO2011110111A1 (zh) 无线传输装置及其自检的方法
US9215024B2 (en) Base station subsystem, a RBS part and a TMA part and methods thereof for synchronizing the RBS part and the TMA part
EP2037599B1 (en) Booster, monitoring, apparatus, booster system, control method and monitoring method
JP3241672B2 (ja) 干渉波検出装置及び干渉波検出方法
WO2014014689A1 (en) Systems and methods for a self-optimizing distributed antenna system
KR100346184B1 (ko) 안테나의 귀환 손실을 특정하기 위한 시스템 및 방법
US5754949A (en) Transmitter-receiver apparatus
CN102377471B (zh) 直放站开站系统、开站方法及直放站
JP5171529B2 (ja) 中継送受信装置
JP3815313B2 (ja) 無線通信装置およびこれを用いた折り返し試験方法
JP2010109546A (ja) 無線機及びその制御方法
KR100560924B1 (ko) 고장 진단 시스템 및 방법
JP2003218811A (ja) 自己診断機能を有する無線通信装置
JP2009038689A (ja) 無線装置
JP2004040282A (ja) 無線周波信号受信装置
JP2008199219A (ja) 放送波中継装置及び放送波中継装置の監視システム
KR100400904B1 (ko) 디지털 티브이용 중계기 시스템의 인터페이스 오류 검출장치 및 방법
KR20060019633A (ko) 발진 방지기능 및 무가입자시 역방향 출력 자동 차단기능을 갖는 중계기 시스템
KR20080038868A (ko) 통신 시스템에서 신호 송신 장치 및 방법
KR20010008369A (ko) 이동 통신용 중계기 감시 시스템 장치
JP2002374215A (ja) 衛星通信装置
JPH11177467A (ja) 無線送受信装置の折り返し方法及び回路
JP2002118521A (ja) 受信装置とその異常監視方法
KR20150071380A (ko) 역방향 신호 과입력 방지 방법 및 이를 적용한 중계기
KR20050001303A (ko) 고립도 검사 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11752854

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011752854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 8295/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2795272

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2011226572

Country of ref document: AU

Date of ref document: 20110323

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012148915

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE