WO2011105609A1 - 結晶軸<001>の方位が制御された体心立方(bcc)構造の固溶体である金属材料およびその製造方法 - Google Patents

結晶軸<001>の方位が制御された体心立方(bcc)構造の固溶体である金属材料およびその製造方法 Download PDF

Info

Publication number
WO2011105609A1
WO2011105609A1 PCT/JP2011/054548 JP2011054548W WO2011105609A1 WO 2011105609 A1 WO2011105609 A1 WO 2011105609A1 JP 2011054548 W JP2011054548 W JP 2011054548W WO 2011105609 A1 WO2011105609 A1 WO 2011105609A1
Authority
WO
WIPO (PCT)
Prior art keywords
bcc
solid solution
metal material
centered cubic
crystal
Prior art date
Application number
PCT/JP2011/054548
Other languages
English (en)
French (fr)
Inventor
洋志 福富
和人 岡安
祐介 小貫
Original Assignee
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学 filed Critical 国立大学法人横浜国立大学
Priority to CN201180016355.4A priority Critical patent/CN102869795B/zh
Priority to KR1020127024629A priority patent/KR101433493B1/ko
Priority to US13/580,722 priority patent/US20120312432A1/en
Priority to EP11747563.2A priority patent/EP2540845A4/en
Priority to JP2012501909A priority patent/JP5492975B2/ja
Publication of WO2011105609A1 publication Critical patent/WO2011105609A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Definitions

  • the present invention relates to a metal material that is a solid solution having a body-centered cubic (BCC) structure in which the orientation of the crystal axis ⁇ 001> is controlled in the plane of the plate, and a method for manufacturing the metal material. And a manufacturing method thereof.
  • BCC body-centered cubic
  • An example of a large technical effect obtained by aligning metal crystal axes is a magnetic steel sheet widely used in electrical equipment.
  • a grain-oriented electrical steel sheet with a controlled crystal axis is used.
  • the dotted line 33 indicates the flow of magnetic lines of force, and it is desirable that the easy magnetization direction of the core material 31 is in the plane of the stacked plate material.
  • a single-phase SRM Switchched reluctance motor
  • FIG. 4 has a stator 10 wound with a coil connected to an external power source, and is rotatably installed inside the stator 10.
  • the stator 10 and the rotor 20 that rotates by the electromagnetic force acting on each other are constituted.
  • the stator 10 includes a plurality of yokes 12 having a ring-type structure, and a plurality of ribs protruding in a radial direction from the yoke 12 toward the rotor 20 and spaced apart from each other via predetermined slots 14 along the circumferential direction. It consists of poles 16 and a coil 18 wound around these poles 16 and connected to an external power source.
  • the stator 10 of the motor is obtained by punching out a stator sheet having a planar shape of a yoke 12 and a pole 16 from an extremely thin electromagnetic steel sheet, and stacking the prepared stator sheets at a certain height to form an iron core. It is manufactured by winding a coil 18 around the wire.
  • the magnetization of steel has anisotropy due to the crystal axis.
  • ⁇ 001> is the most easy to magnetize and has little hysteresis loss
  • ⁇ 011> is easy to magnetize and has little hysteresis loss
  • ⁇ 111> has a large value. Therefore, it is desirable to preferentially orient ⁇ 001> in the radial direction in the stator or rotor of the motor to facilitate magnetization and reduce iron loss due to hysteresis loss. That is, an iron core material in which ⁇ 001> is oriented rotationally symmetrically about the motor axis is desired.
  • the crystal plane ⁇ 100 ⁇ is parallel to the steel plate surface, and ⁇ 001>, which is the crystal easy axis of crystal, is in the plane of the steel plate along the steel plate surface. Therefore, it is desired to develop a non-oriented electrical steel sheet having a high magnetic flux density along the surface of the electrical steel sheet (see, for example, Non-Patent Document 1). .
  • a face-centered cubic (FCC) structure metal such as Al
  • uniaxial compression processing is effective in realizing a rotationally symmetric crystal orientation around the compression axis.
  • Compression surface known for the development of fiber texture.
  • a body-centered cubic (BCC) structure metal such as Fe
  • ⁇ 111 ⁇ + ⁇ 100 ⁇ double fiber texture that is, ⁇ 111 ⁇ by uniaxial compression processing (cold compression) at room temperature.
  • a rotationally symmetric orientation in which ⁇ 100 ⁇ and ⁇ 100 ⁇ are parallel to the compression surface is formed as a crystal orientation that is stable against deformation.
  • the conventional uniaxial compression processing for Fe not only allows ⁇ 100 ⁇ to be oriented parallel to the ⁇ 001> steel plate surface having excellent magnetic properties, but also ⁇ 001> cannot be oriented in the plate surface ⁇ 111 ⁇ coexist. Further, in the conventional uniaxial compression process, a state where ⁇ 111 ⁇ is more developed in the plate surface occurs, and therefore, the uniaxial compression process is used as a manufacturing technique of the electrical steel sheet in which ⁇ 001> is oriented in the plate surface. There is no current situation.
  • the present invention has an object to control the metal crystal axis in view of the above-described present situation. For example, it is an object to control the easy axis ⁇ 001> of the iron material along the processed surface. And, by controlling the easy magnetization axis ⁇ 001> along the machining surface, a metal material that can be easily magnetized along the plate surface, has a high magnetic flux density and has low magnetic loss, and a manufacturing method thereof are provided. The challenge is to do.
  • this change in orientation is due to the fact that when the amount of dislocation increases due to deformation, the ⁇ 100 ⁇ -oriented crystal grains move from the ⁇ 110 ⁇ -oriented crystal grains to other crystal orientations by grain boundary movement. It has been experimentally found that it grows preferentially by consumption and occurs.
  • ⁇ 100 ⁇ is a crystal orientation with a small Taylor factor, which is an indicator of the total amount of shear strain in the crystal, which is considered to have a small amount of dislocations introduced along with deformation, and ⁇ 100 ⁇ We focused on being stable and stable.
  • This concept is estimated to be applicable to metal materials with a body-centered cubic (BCC) structure in general. Therefore, as a result of a study on an iron-silicon alloy having a body-centered cubic (BCC) structure, that is, silicon steel, as a metal material that makes use of this idea, the coarsening of the crystal grain size and the plate required to increase the magnetic flux density It was discovered that the ⁇ 001> orientation in the plane can be controlled by processing conditions.
  • BCC body-centered cubic
  • the conventional manufacturing method for non-oriented electrical steel sheets combines the two processes of cold working and heat treatment, or hot working and heat treatment, while hot uniaxial compression or hot working.
  • the present invention has been completed by clarifying that an electrical steel sheet in which the easy axis ⁇ 001> is controlled to be along the machined surface can be produced by only one process of plane strain compression.
  • the present invention relates to a method for producing a metal material that is a solid solution having a body-centered cubic (BCC) structure, and is crystallized along a processed surface of the metal material by hot compression in a temperature range in which the metal material becomes a BCC single-phase solid solution.
  • a method for producing a metal material characterized in that the axis ⁇ 001> is distributed.
  • the present invention can distribute the metal crystallographic axis ⁇ 001> along the processing surface without the need for post-processing heat treatment, and the principle is applied to a metal material that is a solid solution of a body-centered cubic (BCC) structure. Therefore, its application range is wide.
  • BCC body-centered cubic
  • the metal material is an Fe—Si alloy, which is heated to a temperature range where it becomes a BCC single-phase solid solution, the solute atom atmosphere appearing in the BCC single-phase solid solution governs the movement of dislocations, and the crystal grains ⁇ 100 ⁇ is distributed in parallel to the processing surface by compressing the BCC solid solution at a strain rate capable of maintaining a processing state in which the grain boundaries can move using the strain energy accumulated in the driving force as a driving force. It is a manufacturing method of the metal material to perform, for example, an electromagnetic steel plate.
  • the solute atomic atmosphere appearing in the BCC single-phase solid solution controls the dislocation movement, and the strain rate that can maintain the processing state in which the grain boundary can move using the strain energy accumulated in the crystal grains as the driving force.
  • the solid solution having the body-centered cubic (BCC) structure is an Fe—Si alloy, and the Fe—Si alloy is heated to a temperature range in which it becomes a BCC single-phase solid solution, and the strain rate is 1 ⁇ 10 ⁇ 5. 3.
  • the method for producing a metal material for example, a magnetic steel sheet according to claim 1, wherein the metal material is compressed in a range of s ⁇ 1 to 1 ⁇ 10 ⁇ 1 s ⁇ 1 .
  • the solute atomic atmosphere appearing in the BCC single-phase solid solution governs the movement of dislocations, and maintains a working state in which the grain boundaries can move using the strain energy accumulated in the grains as the driving force.
  • the strain rate that can be produced is in the range of 1 ⁇ 10 ⁇ 5 s ⁇ 1 to 1 ⁇ 10 ⁇ 1 s ⁇ 1.
  • ⁇ 100 ⁇ can be distributed parallel to the processing surface.
  • an electrical steel sheet made of an Fe—Si alloy having good characteristics can be obtained.
  • the Fe—Si alloy is preferably an Fe—Si alloy containing 1 to 7% by weight of Si, with the balance being Fe and inevitable impurities.
  • the invention according to claim 4 is characterized in that, in the method for producing the metal material according to claim 3, specifically, the electrical steel sheet, the temperature range is a temperature within a range of 800 to 1300 ° C. .
  • the invention according to claim 5 is the method for producing the metal material according to claim 4, specifically, the electrical steel sheet, wherein at least a total amount of the single-phase solid solution having the body-centered cubic (BCC) structure is obtained by the compression processing. Strain amount-It is characterized by giving a strain of 0.5.
  • a high-quality electrical steel sheet in which ⁇ 001> is reliably controlled within the plate surface can be obtained by applying at least a total strain of -0.5 by uniaxial compression.
  • the crystal orientation with low strain energy is ⁇ 100 ⁇ (compressed surface) in uniaxial compression deformation, and in addition, because this orientation is stable against deformation, grain boundaries move during deformation so that the crystal grains become large. Therefore, if the strain amount is increased, a ⁇ 100 ⁇ fiber texture develops. The larger the strain, the better the result. By increasing the total strain amount, ⁇ 100 ⁇ growth parallel to the machined surface becomes remarkable.
  • the present invention is a metal material which is a solid solution having a body-centered cubic (BCC) structure, and is characterized in that the crystal axis ⁇ 001> is distributed along the processed surface by hot compression processing.
  • BCC body-centered cubic
  • ODF crystal orientation distribution function
  • the present invention has realized a high concentration of orientation density in a specific direction that has not been obtained in the past.
  • the crystal orientation distribution function (ODF) for examining the distribution of ⁇ 001>
  • ODF crystal orientation distribution function
  • the electrical steel sheet made of an Fe—Si alloy in which the distribution of ⁇ 001 ⁇ is controlled so as to be parallel to the machined surface is superior in characteristics to conventional non-oriented electrical steel sheets.
  • a metal material having a controlled crystal axis is obtained, and particularly for an electromagnetic steel sheet, the easy axis of iron ⁇ 001> is controlled so as to follow the processed surface, and the magnetic flux An electrical steel sheet having high density and low iron loss and excellent magnetic properties is provided.
  • One of the phenomena governing the dislocation motion is the drag motion of the solute atomic atmosphere that appears in the solid solution alloy with a combination of temperature and strain rate within a certain range.
  • This refers to a state in which dislocations move by being surrounded by solute atoms.
  • Si which is a solute atom
  • the dislocation is a solute atom atmosphere. Unable to escape from the field, exercise while dragging dislocations. Then, since dislocations drag the solute atomic atmosphere, the movement speed decreases.
  • dislocations are distributed uniformly in the crystal, unlike deformation near normal temperature. That is, dislocations that are in a drag motion of the solute atom atmosphere tend to be uniformly distributed in the crystal.
  • dislocations are lattice defects and have strain energy. Since the amount of dislocations contributing to deformation differs depending on the crystal orientation, even if the same amount of deformation is given, the amount of dislocation differs for each crystal grain, and as a result, the amount of strain energy accumulated for each crystal grain differs. However, since the dislocations are distributed so as to cancel out the strain field with each other under normal processing conditions, the difference in dislocation density for each crystal grain does not reflect the difference in accumulated strain energy.
  • the dislocations are uniformly distributed, so the effect of the dislocations canceling each other's strain is small.
  • the difference in the amount of dislocation is directly reflected in the difference in accumulated strain energy.
  • the crystal orientation with a low strain energy is ⁇ 100 ⁇ (plate surface) in uniaxial compression deformation of a solid solution having a body-centered cubic (BCC) structure, and ⁇ 100 ⁇ (plate surface) in plane strain compression deformation such as rolling, ⁇ 001 > (Extension direction). Therefore, crystal grains having these crystal orientations grow by consuming crystal grains having other crystal orientations.
  • BCC body-centered cubic
  • ⁇ 100 ⁇ represents the processed surface and ⁇ 001> represents the stretching direction.
  • ⁇ 100 ⁇ is oriented parallel to the plate surface in both uniaxial compression deformation and plane strain compression deformation.
  • the crystal plane ⁇ 100 ⁇ is oriented parallel to the plate surface.
  • ⁇ 100> which is the normal line of the crystal surface ⁇ 100 ⁇ , is used as the rotation axis with respect to the compression direction in the plate surface.
  • the crystal direction ⁇ 001> is uniformly distributed densely in the direction perpendicular to 360 degrees.
  • plane strain deformation such as rolling, when the thickness of the plate material is reduced by compression processing, the plate material extends in one direction. In this case, ⁇ 001> is densely distributed in the extending direction.
  • the Fe—Si alloy contains an alloy containing at least Si and the balance of Fe and inevitable impurities as a body-centered cubic ( BCC) Heated to a temperature range where a solid solution of the structure is formed, and in this state, the movement of dislocations that causes the solute atom atmosphere generated in the BCC solid solution becomes the dominant deformation mechanism and drives the strain energy accumulated in the crystal grains.
  • a plane strain compression process such as uniaxial compression or rolling is performed on the solid solution of the body-centered cubic (BCC) structure at a strain rate capable of maintaining a processing state in which the grain boundary can move as a force. 100 ⁇ is distributed with high density.
  • the temperature and strain rate that define the processing conditions are as follows: the temperature range is 800 to 1300 ° C., and the strain rate is 1 ⁇ 10 ⁇ 5 s ⁇ 1 to 1 ⁇ 10 ⁇ 1 s ⁇ 1 . Strain rate.
  • the total amount of strain applied to a solid solution having a body-centered cubic (BCC) structure by compression processing is -0.5 or more in terms of true strain.
  • the target state develops monotonically as the amount of strain increases, and if the amount of strain is small, it becomes an insufficiently developed state.
  • the strain may be applied in multiple steps.
  • Si in the solid solution having a body-centered cubic (BCC) structure is added to increase the specific resistance of the steel sheet, reduce the eddy current, and improve the iron loss value due to the eddy current.
  • the solid solution having a body-centered cubic (BCC) structure may not be a binary alloy as long as it is a BCC single phase, or may be a ternary or higher system containing components other than Si.
  • the Si content is in the composition range of about 1 to 7% by weight. If the Si content is less than 1% by weight, the specific resistance necessary for low iron loss cannot be obtained sufficiently. If the Si content exceeds 7% by weight, cracks increase significantly during compression, and compression processing Therefore, the Si content is desirably 1% by weight at the lower limit and 7% by weight at the upper limit.
  • Inevitable impurities in Fe-Si alloys include C, Mn, P, S, Al, N, etc.
  • fine sulfide MnS reacts with S and precipitates, resulting in marked deterioration of magnetic properties. It is desirable that Mn to be added and P which inhibits workability be less than 0.01% by weight, and S which inhibits crystal grain growth is less than 0.0001% by weight.
  • the temperature for heating it is a temperature in the range of 800 to 1300 ° C. as the temperature range of the BCC single phase.
  • the Fe—Si alloy which is always BCC from the low temperature to the melting point when the Si content is in the range of 2 to 5% by weight, also has a high temperature depending on the content when the Si content is less than 2% by weight.
  • heating is performed on the lower temperature side in the temperature range of 800 to 1300 ° C. as the temperature range in which the Si content is less than 2% by weight and the temperature range becomes the BCC single phase.
  • the strain rate at the time of compression processing of a BCC single-phase solid solution is a so-called processing speed indicating how much strain is given per unit time.
  • the mechanism governing the movement of dislocations contributing to deformation changes depending on whether the processing speed is fast or slow. Therefore, the processing speed can maintain the processing conditions in which the solute atomic atmosphere appearing in the BCC solid solution governs the movement of dislocations in the state where the solid solution of the body-centered cubic (BCC) structure is heated to a temperature in the temperature range that becomes the BCC single phase. Limited to the speed you can.
  • the strain rate is 1 ⁇ 10 ⁇ 5 s ⁇ 1 to 1 ⁇ 10 ⁇ in combination with a temperature in the temperature range of 800 to 1300 ° C. Set within the range of 1 s -1 .
  • This range of strain rate is the range of strain rate from 1 ⁇ 10 ⁇ 5 s ⁇ 1 to 5 ⁇ 10 ⁇ 2 s ⁇ 1 at a temperature of 900 ° C. for an Fe—Si alloy with a Si content of 3% by weight.
  • the temperature changes to the low temperature side
  • the processing speed for obtaining the same orientation will increase, the single content used in combination with the Si content and temperature within the above range will be used. It is determined as the strain rate applied to the Fe—Si alloy by axial compression.
  • Example> The solid solution of the body-centered cubic (BCC) structure that is the material is hot rolled (heating temperature 1100 ° C x 60 minutes, finishing temperature 850 ° C or higher) on a 40 kg ingot produced by vacuum melting. After being cut into a length of 320 mm, a hot rolled product with a finishing thickness of 20 mm (heating temperature 1100 ° C. ⁇ 60 minutes, finishing temperature 850 ° C. or more) was cut to produce a thickness 20 mm, width 140 mm, length It is a columnar steel piece with a circular cross section having a diameter of 12 mm and a height of 18 mm produced from a 290 mm thick plate by an electric discharge machine.
  • BCC body-centered cubic
  • the ingot was prepared by designating Si as 1.5, 3, 4, 5 wt%, inevitable impurities Mn and P as less than 0.01 wt%, and S as less than 0.001 wt%.
  • the four materials A, B, C, and D include, in addition to Mn, P, and S, inevitable impurities other than Mn, P, and S, in terms of weight% C shown in the table. Al, N and the like were contained.
  • an electromagnetic steel sheet manufactured from material B having a Si content of 3% by weight processed at a temperature of 900 ° C. and a strain rate of 5.0 ⁇ 10 ⁇ 5 s ⁇ 1 is divided into two so that the height is halved.
  • a disk-shaped measurement sample having a diameter of 20 mm ⁇ 3.3 mm was prepared, and the orientation distribution of the crystal was measured by an X-ray diffraction method called a Schulz reflection method after polishing the surface of the cut surface.
  • ODF crystal orientation distribution function
  • the ⁇ 100 ⁇ pole figure, ⁇ 110 ⁇ pole figure, ⁇ 211 ⁇ pole figure can be drawn with data obtained by different measurements, and the three pole figures can be explained without contradiction by the Schulz reflection method.
  • a crystal orientation distribution function (ODF) representing a three-dimensional crystal orientation distribution was calculated by a computer.
  • ⁇ 1 , ⁇ , and ⁇ 2 are Euler angles, and the contour lines along the upper and lower sides of the quadrangle represent the distribution of the crystal orientation density in the steel plate surface.
  • the numerical values of the contour lines indicate the azimuth density expressed as a multiple of the average value 1, and in the same figure, the contour lines of the numerical values 18, 16, 14, 12, 10, 8, 6, 4 between the numerical values 20 and 1 are shown. Are drawn in this order.
  • the crystal orientation distribution of the material before processing is not mentioned, but this means that if the strain amount is increased whatever the state before processing, the processed surface is subjected to hot compression processing. This is because a ⁇ 100 ⁇ fiber texture in which ⁇ 100 ⁇ is oriented parallel to the surface is formed. Of course, you may prepare what has the crystal orientation distribution similar to the existing non-oriented electrical steel sheet.
  • the material has a circular cross section, but may be a plate or column having a square shape or a polygonal shape other than a circle.
  • the surface to which the uniaxial compression process is applied may be any shape other than the flat surface for the same reason.
  • the disk-shaped stator material is used by punching the center portion and the slit. Therefore, the characteristics of the pole 16 part of FIG. 4 are important as the stator material.
  • Fig. 12 shows a model of the BCC structure. Since the BCC structure is symmetrical in the vertical and horizontal directions, [100], [010], and [001] displayed in this figure are equivalent, and the three crystal axes are collectively represented as ⁇ 001>. Further, since all the faces of the cube are equivalent, ⁇ 001 ⁇ , ⁇ 100 ⁇ , and ⁇ 010 ⁇ collectively refer to the same contents.
  • FIG. 13A shows the state of the easy magnetization direction of a conventional non-oriented electrical steel sheet for a motor stator.
  • the easy magnetization direction is three-dimensionally directed in various directions.
  • FIG. 13B shows an easy magnetization direction in a substantially ideal electromagnetic steel sheet.
  • FIG. 14 shows the distribution of ⁇ 001> in the easy magnetization direction according to the ⁇ 100 ⁇ pole figure.
  • FIG. 14A shows a conventional non-oriented electrical steel sheet
  • FIG. 14B shows the ⁇ 001> distribution of the electrical steel sheet according to the present invention.
  • the numbers in the figure indicate the degree of density concentration of ⁇ 001> with respect to the average value of 1.
  • the minimum value of the outer peripheral portion that greatly affects the characteristics is 0.8 times the average value or less.
  • the minimum value of the outer peripheral portion is 1.6 times or more of the average value, and the central portion exceeds 19 times of the average value. From this, it can be seen that the ⁇ 001> density of the important outer peripheral portion is significantly higher than the existing material according to the prior art.
  • FIG. 15 shows the magnetic properties of the electrical steel sheet according to the present invention.
  • the dotted line in the figure represents the magnetic characteristics of the conventional non-oriented electrical steel sheet, and the solid line represents the magnetic characteristics of the electrical steel sheet according to the present invention.
  • a large magnetic flux density is obtained with respect to the applied magnetic field, which can be expected to improve the characteristics of electromagnetic devices such as motors.
  • the rolling process shown in FIG. 9 is also possible.
  • ⁇ 100 ⁇ develops parallel to the rolling surface, and ⁇ 001> is distributed in the rolling direction in a large amount.
  • a plate material can be obtained.
  • ⁇ 001> can be distributed in multiple directions in the plane, and the same effect as the uniaxial compression process can be obtained.
  • the strain amount can be increased to obtain a thinner magnetic steel sheet, and the magnetic properties of the magnetic steel sheet thus obtained will be more excellent. Since this processing is performed at a high temperature, the amount of lattice defects remaining after processing is small, but by performing annealing for a short time after processing, it is possible to obtain a non-oriented electrical steel sheet in which the amount of lattice defects is further reduced. .
  • Fe—Si which is an electromagnetic material
  • BCC body-centered cubic
  • a manufacturing method of a metal material for example, an electromagnetic material, whose crystal axis orientation is controlled is clarified, and electromagnetic loss is reduced by providing a good electromagnetic material, thereby reducing the cost of society as a whole. In addition to contributing to environmental problems.

Abstract

金属材料の結晶軸<001>の分布を制御して加工面に沿って結晶軸<001>を分布させた金属材料、例えば電磁材料(電磁鋼板)およびその製造方法を提供する。 体心立方(BCC)構造の固溶体からなる金属材料においてBCC単相固溶体となる温度域での熱間圧縮加工により前記金属材料の加工面に沿って金属の結晶軸<001>を分布させた金属材料及びその製造方法である。例えば、前記金属材料がFe-Si合金でありこれをBCC単相固溶体となる温度域に加熱し、BCC単相固溶体に現れる溶質原子雰囲気が転位の運動を支配し、かつ結晶粒に蓄積されているひずみエネルギーを駆動力として結晶粒界が移動できる加工状態を維持できるひずみ速度で前記のBCC単相固溶体に圧縮加工を行うことで加工面と平行に{100}を分布させることを特徴とする金属材料、例えば電磁材料(電磁鋼板)及びその製造方法である。

Description

結晶軸<001>の方位が制御された体心立方(BCC)構造の固溶体である金属材料およびその製造方法
 本発明は結晶軸<001>の方位が板面内に制御された体心立方(BCC)構造の固溶体である金属材料およびその製造方法に係り、例えば電気機器の鉄心材料に使用される電磁材料及びその製造方法に関するものである。
 金属の結晶軸を揃えることで大きな技術的効果が得られる例として電気機器で幅広く使われている電磁鋼板がある。例えば、図3に示すトランスのように磁界の方位が決まっている場合は結晶軸が制御された方向性電磁鋼板が使われる。図3において点線33が磁力線の流れを示しておりコア材31の磁化容易方向が積層される板材の面内にあることが望ましい。
 またモータのロータやステータには、鉄損を低減させるために、いわゆる無方向性電磁鋼板が使用される。例えば、単相SRM(Switched reluctance motor)は、図4に示すように、外部電源と接続されたコイルが巻かれたステータ10と、ステータ10の内部に回転可能に設置されて、ステータ10に外部電源が供給されると、このステータ10と電磁気力が相互に働いて回転するロータ20とで構成される。
 ステータ10は、リング型の構造を有するヨーク12と、ヨーク12からロータ20に向かって半径方向に突設され、円周方向に沿って所定のスロット14を介して相互に離隔される複数個のポール16と、これらポール16に巻き付けられて外部電源に接続されるコイル18とからなる。
 モータのステータ10は、極薄い電磁鋼板から、ヨーク12とポール16の平面形状を持つステータシートを打ち抜き、このように用意したステータシートを、一定の高さに積層して鉄心を作り、この鉄心にコイル18を巻き付けることで製造される。
 このようなモータでは、そのロータの回転に伴い、ロータの回転軸を中心にして磁界方向が変化する。このため、ステータやロータ用の電磁鋼板としては、いわゆる無方向性のものが使用されている(例えば、特許文献1を参照)。
 鋼の磁化には結晶の軸による異方性があり、<001>がもっとも磁化が容易でヒステリシス損が少なく、次いで<011>が磁化が容易でヒステリシス損が少なく、もっとも磁化が困難でヒステリシス損が大きいのは<111>である。そこで、モータのステータやロータには半径方向に<001>を優先的に配向させ、磁化を容易にするとともにヒステリシス損による鉄損を小さくすることが望ましい。すなわち、モータの軸を中心にして回転対称に<001>が配向した鉄心材料が望まれる。
 しかしながら、現在十分に鋼板の<001>を制御して配向させる技術がないため、次善の策として<111>の半径方向の配向を避け、かつ鋼板の特定方向に<001>が偏った配向を避けることを目的として、図5に示すように、立体的に全く配向のない、ケイ素鋼からなる無方向性電磁鋼板が新日本製鉄(株)、JFEスチール(株)などにより開発され、実用に供されている。例えば新日本製鉄(株)からはハイライトコア、ホームコア(いずれも登録商標)という商品名で販売されている。
 しかし、図5に示す立体的に特定の配向のない無方向性電磁鋼板では、容易磁化方向が鋼板の特定方向に偏っていないものの、結晶の磁化容易軸である<001>が鋼板面に沿っていないものが多いので、鋼板面に沿った磁束密度を高くすることができない。そのためモータの効率向上に限界があった。
 したがって、モータのエネルギー節減の観点から、図6に示すように、結晶面{100}が鋼板面に対して平行で結晶の磁化容易軸である<001>が鋼板面に沿って鋼板の面内に方向的には360度まんべんなく<001>が配向することで、電磁鋼板面に沿った磁束密度を高くした無方向性電磁鋼板の開発が望まれている(例えば、非特許文献1を参照)。
 また、トランスの効率を上げるために磁力線の通過方向に<001>が向いた方向性電磁鋼板の開発が望まれる。
 したがって、モータやトランスなどの電磁機器のエネルギー効率を上げるには電磁材料の結晶軸<001>を制御することが望まれる。
特開2006-87289号公報
NIPPON STEEL MONTHLY 2005 4.P11-14
 従来、Alのような面心立方(FCC)構造の金属においては、圧縮軸の周りに回転対称性のある結晶配向を実現するには単軸圧縮加工が有効であることが、{011}(圧縮面)繊維集合組織の発達で知られている。また、Feのような体心立方(BCC)構造の金属については、常温での単軸圧縮加工(冷間圧縮)によって{111}+{100}の二重繊維集合組織、すなわち、{111}と{100}が圧縮面に平行になる回転対称配向が変形に対して安定な結晶配向として形成されることが知られている。
 しかしながらFeについての従来の単軸圧縮加工では、優れた磁気特性を有する<001>の鋼板面に平行な配向をもたらす{100}だけでなく<001>を板面内に配向させることができない{111}が共存するという問題がある。さらに従来の単軸圧縮加工では板面内で{111}の方がより発達した状態が生ずるので、板面内に<001>を配向させる電磁鋼板の製造技術として単軸圧縮加工は利用されていないのが現状である。
 従来は単軸圧縮加工だけでなく他の加工方法でも、磁化容易軸<001>の方位を制御することが難しかった。そのため磁化容易軸<001>が鋼板の表面に平行になるように制御され、磁束密度が高く、鉄損の低い磁気特性に優れた無方向性電磁鋼板を得る製造方法が存在しなかったと言える。すなわち板面内に磁化容易軸<001>が配向された無方向性電磁鋼板は存在していない。
 よって本発明は、上述した現状に鑑み金属の結晶軸を制御することを課題としている。例えば、鉄材料の磁化容易軸<001>を加工面に沿って制御することを課題としている。そして磁化容易軸<001>を加工面に沿って制御することで、板面に沿った磁化が容易で磁束密度が高く取れると共に鉄損の低い磁気特性に優れた金属材料およびその製造方法を提供することを課題としている。
 従来から、FCC構造であるAl-Mg固溶体合金を高温で単軸圧縮変形すると{110}(圧縮面)を含む結晶配向が形成されることが知られている。しかし、本発明者らは{100}を得るべく研究を進めた結果、変形量を大きくするとひずみの増大とともに{100}が発達し、やがて、{100}のみが存在する結晶配向になることを見出した。
 そのメカニズムについて研究を進めた結果、この配向の変化は、変形により転位の量が増えると{100}方位の結晶粒が、{110}方位をはじめ他の結晶方位の結晶粒を粒界移動によって消費して優先的に成長し、生ずるものであることを実験的に見出した。
 そして、{100}は変形にともなう転位の導入量が少ないと考えられる、結晶の中でのせん断ひずみ量の総和の指標であるTaylor因子の小さい結晶方位であり、かつ{100}が変形に対して安定であることに着目した。
 さらに、この{110}から{100}への変化が純アルミニウム(Al)では見られないことから、Al-Mg合金での圧縮に伴う変形が、溶質原子であるマグネシウム(Mg)雰囲気を引きずる転位の運動が支配的な変形機構である場合に生ずることが推測され、転位の均一分布が{100}方位の粒界移動の優先性をもたらしているとの仮説を提唱するにいたった。
 この仮説から、発明者らは体心立方(BCC)構造の固溶体でも純金属とは異なる結晶配向が生まれるのではないかと考えた。そしてBCC金属の単軸圧縮変形では、FCCとはすべり系が異なるために、室温においてもFCCとは異なって{100}と{111}が共存する状態が形成されること、そして{100}のTaylor因子は{111}のTaylor因子より低いことに着目した。
 そこで、溶質原子雰囲気を引きずる転位運動が支配的な変形機構になり、かつ粒界移動が可能な加工条件を見出すことができれば{111}が消滅する一方{100}が頻度高く板面に配向した材料を製造する技術が開発できるのではないかとの着想を得るに至った。
 この着想は体心立方(BCC)構造の金属材料一般に適用可能と推定される。そこで、この着想を活かす金属材料として体心立方(BCC)構造を持つ鉄-シリコン合金、すなわちケイ素鋼について検討を進めた結果、磁束密度を増大するために必要な結晶粒径の粗大化と板面内の<001>配向を加工条件で制御できることを発見した。
 この発見に基づいて、従来の無方向性電磁鋼板の製造方法が冷間加工と熱処理、あるいは熱間加工と熱処理という二つの処理を組み合わせているのに対し、熱間単軸圧縮加工あるいは熱間平面ひずみ圧縮加工という一つの処理のみで磁化容易軸<001>が加工面に沿うように制御された電磁鋼板を製造できることを明確にして本発明を完成した。
 本発明は、体心立方(BCC)構造の固溶体である金属材料の製造方法において前記金属材料がBCC単相固溶体となる温度域での熱間圧縮加工により前記金属材料の加工面に沿って結晶軸<001>を分布させたことを特徴とする金属材料の製造方法である。
 本発明は、加工後の熱処理を必要としないで加工面に沿って金属の結晶軸<001>を分布させることができ、その原理は体心立方(BCC)構造の固溶体である金属材料で適用が可能であるので、その適用範囲が広い。
 また、本発明は前記金属材料がFe-Si合金でありこれをBCC単相固溶体となる温度域に加熱し、このBCC単相固溶体に現れる溶質原子雰囲気が転位の運動を支配し、かつ結晶粒に蓄積されているひずみエネルギーを駆動力として結晶粒界が移動できる加工状態を維持できるひずみ速度で前記BCC固溶体に圧縮加工を行うことで加工面と平行に{100}を分布させることを特徴とする金属材料、例えば電磁鋼板の製造方法である。
 BCC単相固溶体に現れる溶質原子雰囲気が転位の運動を支配し、かつ結晶粒に蓄積されているひずみエネルギーを駆動力として結晶粒界が移動できる加工状態を維持できるひずみ速度で、BCC単相固溶体を圧縮加工すると加工面と平行に{100}を分布させることができる。すなわち、加工面に沿って<001>が分布することになる。
 また、本発明は、前記体心立方(BCC)構造の固溶体がFe-Si合金であり、前記Fe-Si合金がBCC単相固溶体となる温度域に加熱され、ひずみ速度が1×10-5-1から1×10-1-1の範囲内で圧縮加工されたことを特徴とする請求項1または2に記載の金属材料、例えば電磁鋼板の製造方法である。
 固溶体がFe-Si合金の場合、BCC単相固溶体に現れる溶質原子雰囲気が転位の運動を支配し、かつ結晶粒に蓄積されているひずみエネルギーを駆動力として結晶粒界が移動できる加工状態を維持できるひずみ速度が1×10-5-1から1×10-1-1の範囲内であり、この状態での圧縮加工を行うと加工面と平行に{100}を分布させることができる。例えば、ひずみ速度が1×10-5-1から1×10-1-1の範囲内で単軸圧縮加工すると、特性の良好なFe-Si合金による電磁鋼板が得られる。ここでFe-Si合金は、Siを重量%で1~7%含有し、残部がFeと不可避的不純物からなるFe-Si合金であることが望ましい。
 また請求項4に記載の発明は、請求項3に記載の金属材料、具体的には電磁鋼板の製造方法において前記温度域が800~1300°Cの範囲内の温度であることを特徴とする。
 温度範囲を特定することで、再現性良く特性の良好な電磁鋼板を製造することができる。
 また請求項5に記載の発明は、請求項4に記載の金属材料、具体的には電磁鋼板の製造方法において、前記圧縮加工により前記体心立方(BCC)構造の単相固溶体に、少なくとも総ひずみ量―0.5のひずみを与えることを特徴とする。
 単軸圧縮加工により、少なくとも総ひずみ量―0.5のひずみを加えることで、確実に板面内に<001>を制御した高品質の電磁鋼板が得られる。ひずみエネルギーの低い結晶方位は単軸圧縮変形では{100}(圧縮面)であり、加えてこの方位が変形に対して安定なためにこの結晶粒が大きくなるように変形中に粒界移動するので、ひずみ量を大きくすれば{100}繊維集合組織が発達する。ひずみは大きいほど良い結果が得られる。総ひずみ量を大きくとる事で加工面と平行な{100}の成長が著しくなる。
 また、本発明は、体心立方(BCC)構造の固溶体である金属材料であって熱間圧縮加工により加工面に沿って結晶軸<001>が分布したことを特徴とする金属材料である。特に、体心立方(BCC)構造の固溶体からなる金属材料において加工面に沿う金属の結晶軸<001>の分布を表す結晶方位分布関数(ODF)のφ2=0°断面のΦ=0°線上の方位密度が平均値1に対して14倍以上であることを特徴とする金属材料である。
 本発明により、従来得られなかった特定方向に向いた方位密度の高い集中を実現した。
 体心立方(BCC)構造の固溶体である金属材料において溶質原子雰囲気引きずり運動が支配的な変形機構となる状態での熱間単軸圧縮加工では、固溶体内の転位が一様に分布することから、転位に伴うひずみエネルギの分布に即して粒界移動が起こる。そうすると、ひずエネルギの小さい{100}が板面に平行に成長した状態を作れる。さらに熱間圧延加工または熱間平面ひずみ圧縮加工する場合は伸長方向に<001>が向くことになる。つまり、いずれの場合においても加工面に沿って<001>が制御されている。
 前記体心立方(BCC)構造の固溶体がFe-Si合金である金属材料、具体的には電磁鋼板の熱間単軸圧縮加工では、<001>の分布を調べる結晶方位分布関数(ODF)のφ2=0°断面のΦ=0°線上の方位密度が平均値1に対して14倍以上である電磁鋼板も容易に実現することができる。
 従来の板材では、結晶方位分布関数(ODF)のφ2=0°断面のΦ=0°線上の方位密度が平均値1に対して2以下であった。
 加工面と平行するように{001}の分布が制御されたFe-Si合金による電磁鋼板は、従来の無方向性電磁鋼板に比べ其の特性が優れている。
 本発明の金属材料およびその製造方法によれば、その結晶軸が制御された金属材料が得られ、特に電磁鋼板については鉄の磁化容易軸<001>が加工面に沿うように制御され、磁束密度が高く鉄損の低い磁気特性に優れた電磁鋼板が提供される。
本発明の熱間単軸圧縮加工を用いる製造方法により製造された無方向性電磁鋼板の結晶方位分布関数(ODF)のφ2=0°断面図である。 従来の無方向性電磁鋼板の結晶方位分布関数(ODF)のφ2=0°断面図である。 トランスの電磁鋼板での磁力線の流れを説明する図である。 電磁鋼板を使用したモータの構成図である。 従来のいわゆる無方向性電磁鋼板の結晶分布を示す概略図である。 本発明の製造方法によって製造される無方向性電磁鋼板の結晶分布を示す概略図である。 単軸圧縮加工の様子を説明する図である。(a)圧縮前(b)圧縮後 平面ひずみ圧縮加工する様子を説明する図である。(a)(b)加工ジグ、(c)加工前の試料(d)加工後の試料 圧延加工を説明する図である。 多方向圧延加工を説明する図である。 ダイス加工を説明する断面図である。 体心立方(BCC)構造のモデル図である。 モータのステータにおける容易磁化軸<001>方位の様子を示す図である。(A)従来の無方向性電磁鋼板(B)理想の電磁鋼板 モータのステータにおける{100}極点図を示す図である。(A)従来の無方向性電磁鋼板(B)本発明に掛る電磁鋼板 従来の無方向性電磁鋼板(点線)と本発明に掛る電磁鋼板(実線)の磁気特性を示す図である。
 以下、本発明の電磁鋼板およびその製造方法の実施の形態について説明する。
 高温で金属材料を変形すると、様々な仕組みが変形に寄与する。一般に、金属材料では転位の運動により変形するのが基本的な仕組みである。
 転位の運動を支配する現象の中の一つが、ある範囲の温度とひずみ速度の組み合わせで固溶体合金に現れる溶質原子雰囲気の引きずり運動である。これは、転位が溶質原子に囲まれて運動する状態をいう。例えば、Fe-Si合金においては、溶質原子であるSiが結晶全体の平均濃度よりも高い濃度で転位の周りに存在する溶質原子雰囲気を形成し、ある範囲の変形条件では、転位は溶質原子雰囲気から脱出できず、転位を引きずりながら運動する。そうすると転位は溶質原子雰囲気を引きずるためにその運動速度が低下する。その結果転位は常温付近での変形とは異なり、結晶内で均一に分布するようになる。つまり、溶質原子雰囲気の引きずり運動をしている転位は結晶内で均一に分布するようになり易い。
 ここで、転位は格子欠陥であり、ひずみエネルギーを有する。結晶の方位によって変形に寄与する転位の量が異なるために、同一の変形量を与えても、結晶粒ごとに転位の量は異なり、その結果結晶粒ごとに蓄積されるひずみエネルギー量が異なる。しかし、通常の加工条件では転位が互いにひずみ場を打ち消すように分布するために、結晶粒ごとの転位密度の違いがそのまま蓄積されるひずみエネルギーの差としては反映しない。
 これに対し、本発明での変形条件である、溶質原子雰囲気を引きずる転位の運動が生ずる高温での圧縮加工では、転位が均一に分布するようになるために転位が互いにひずみを打ち消す効果が小さく、転位の量の違いがそのまま蓄積されるひずみエネルギーの違いに反映する。
 このように、溶質原子雰囲気が転位運動を支配するようになると、個々の結晶粒のもつひずみエネルギーの量が、結晶方位に強く依存するようになる。そうすると、ひずみエネルギーの小さい結晶粒が大きくなろうとし、ひずみエネルギーの小さい結晶粒の結晶粒界が優先的に移動する。
 ひずみエネルギーの低い結晶方位は体心立方(BCC)構造の固溶体の単軸圧縮変形では{100}(板面)であり、圧延などの平面ひずみ圧縮変形では{100}(板面)、<001>(伸長方向)である。それゆえこれらの結晶方位の結晶粒が他の結晶方位の結晶粒を消費して成長することになる。
 また{100}の方位が圧縮変形では変形に対して安定なために、この結晶粒が大きくなるように変形中に粒界移動するので、ひずみ量を大きくすれば単軸圧縮変形では{100}繊維集合組織が、平面ひずみ圧縮変形では{100}<001>集合組織が発達する。
 ここで、{100}は加工面、<001>は延伸方向を表す。
 本発明は上述した知見に基づきなされたもので、本発明の方法では、単軸圧縮変形、平面ひずみ圧縮変形のいずれにおいても{100}が板面に平行に配向する。圧縮変形では、板面に平行に結晶面{100}が配向し、特に単軸圧縮加工では結晶面{100}の法線である<100>を回転軸として板面内の圧縮方向に対して直角な方向に360度均一で密に結晶方向<001>が分布する。また、圧延などの平面ひずみ変形においては、板材の厚さが圧縮加工によって減少すると、板材は一方向に伸長する。この場合は伸長方向に密に<001>が分布することになる。
 磁化容易軸<001>が鋼板の表面に平行に分布する電磁鋼板の製造に当たって、Fe-Si合金においては、少なくともSiを含有し、残部がFeと不可避的不純物からなる合金を、体心立方(BCC)構造の固溶体となる温度域に加熱し、この状態で、前記BCC固溶体に生ずる溶質原子雰囲気をひきずる転位の運動が支配的な変形機構となり、かつ結晶粒に蓄積されているひずみエネルギーを駆動力として結晶粒界が移動できる加工状態を維持できるひずみ速度で前記体心立方(BCC)構造の固溶体に単軸圧縮加工もしくは圧延などの平面ひずみ圧縮加工を行いこの加工により加工面と平行に{100}を密度高く分布させる。
 そして、加工条件を定める温度とひずみ速度は、温度域が800~1300℃の範囲内の温度と、ひずみ速度が1×10-5-1から1×10-1-1の範囲内のひずみ速度である。
 圧縮加工により体心立方(BCC)構造の固溶体に加えるひずみ量の合計は真ひずみで-0.5以上である。目的とする状態は、ひずみ量の増大とともに単調に発達し、ひずみ量が少ないと不十分な発達状態となるが、ひずみ量が大きければそれだけより優れた状態が生まれるので、加えるひずみ量には上限がなく、しかも、複数回に分けてひずみを加えてもよい。
 また、成分について説明すると、体心立方(BCC)構造の固溶体中のSiは、鋼板の固有抵抗を増大させ渦電流を低減させ、渦電流による鉄損値を改善するために添加されている。体心立方(BCC)構造の固溶体はBCC単相のものであれば二元系の合金でなくてもよく、Si以外の成分も含有する三元以上の系であってもよい。体心立方(BCC)構造の固溶体がFe-Si合金である場合、Siの含有量は1~7重量%程度の組成範囲である。Siの含有量が、1重量%未満であると、低鉄損に必要な固有抵抗が十分に得られず、その含有量が7重量%を越えると、圧縮時に割れが著しく増加し、圧縮加工が困難になるので、Siの含有量は、下限を1重量%、上限を7重量%とするのが望ましい。
 Fe-Si合金の不可避的不純物としては、C、Mn、P、S、Al、Nなどが挙げられるが、特に、Sと互いに反応して微細な硫化物MnSが析出して磁気特性を著しく劣化させるMnと、加工性を阻害するPについては、0.01重量%未満に、結晶粒の成長を阻害するSについては0.0001重量%未満にそれぞれするのが望ましい。
 体心立方(BCC)構造の固溶体がFe-Si合金である場合、これを加熱する温度はBCC単相となる温度域の温度として800~1300℃の範囲内の温度である。これは、Siの含有量が2~5重量%の範囲では低温から融点まで常にBCCであるFe-Si合金も、Siの含有量が2重量%未満では、その含有量に依存して高温で一旦FCCとなってしまい、{100}繊維集合組織の形成が阻害される恐れがあるからである。そこでSiの含有量が2重量%未満を含む温度域としてBCC単相となる温度域の温度として、800~1300℃の温度範囲内の低い温度側で加熱される。
 BCC単相固溶体の圧縮加工の際のひずみ速度は単位時間当たりにどれだけのひずみを与えるかを示す、いわゆる加工速度である。加工速度が速いか遅いかで、変形に寄与する転位の運動を支配する仕組みが変わる。従って加工速度は、体心立方(BCC)構造の固溶体をBCC単相となる温度域の温度に加熱した状態で、BCC固溶体に現れる溶質原子雰囲気が転位の運動を支配する加工条件を保つことができる速度に制限される。体心立方(BCC)構造の固溶体がFe-Si合金である場合のひずみ速度は、800~1300℃の温度範囲内の温度との組み合わせで、1×10-5-1から1×10-1-1の範囲内で設定される。
 このひずみ速度の範囲は、Siの含有量が3重量%のFe-Si合金について、温度900℃でひずみ速度が1×10-5-1から5×10-2-1の範囲、温度1250℃で1×10-4-1から1×10-2-1の範囲で確認した結果、含有量の増大と共に同じ配向を得るための条件がひずみ速度が同一ならば低温側に変化し、含有量を増大させて温度を一定にした場合、同じ配向を得るための加工速度が増加するとの想定に基づいて、上記範囲内のSiの含有量及び温度との組み合わせで使用される単軸圧縮加工によりFe-Si合金に加えるひずみ速度として定められたものである。
 <実施例>
 材料となる体心立方(BCC)構造の固溶体は、真空溶解して作製した40kgのインゴットに仕上げ厚40mmの熱間圧延(加熱温度1100℃×60分、仕上げ温度850℃以上)を行い、これを長さ320mmに切断した後、さらに仕上げ厚20mmの熱間圧延(加熱温度1100℃×60分、仕上げ温度850℃以上)を行ったものを切断して作製した厚さ20mm、幅140mm、長さ290mmの板から放電加工機により作製した直径12mm、高さ18mmの大きさの断面円形の柱状の鋼片である。
 なお、インゴットは、Siを1.5、3、4、5重量%、不可避的不純物のMn及びPを0.01重量%未満、Sを0.001重量%未満と指定して作製したが、4種類の材料A、B、C及びDには、下表1に示す作製後の分析値から分かるように、Mn、P、S以外に不可避的不純物として、表に示した重量%のC、Al、Nなどが含有されていた。
Figure JPOXMLDOC01-appb-T000001
 上述した組成の各鋼片を加熱炉で900℃又は1250℃に加熱した状態で、1×10-5-1から5×10-2-1の範囲内のひずみ速度で真ひずみ-1.0まで単軸圧縮により直径20mm、高さ6.6mmにそれぞれ加工し、常温大気中で徐冷して鋼板をそれぞれ得た。
 単軸圧縮加工には、図7に示す荷重容量2トンの引っ張り試験機(島津オートグラフ)のクロスヘッドスピード一定の機能を用いた。引っ張り試験機で圧縮加工する際には、上下に円柱状の圧縮治具を取り付け、その間に試料である鋼片を入れ、上下から力を加えるが、圧縮加工中に温度を一定に保つため、上下の圧縮棒と鋼片全体が加熱炉内に入れられている。図7ではモデル化して熱源として記載している。
 得られた鋼板のうち、温度900℃、ひずみ速度5.0×10-5-1で加工したSi含有量3重量%の材料Bから製造した電磁鋼板を高さが半分になるように二分し、直径20mm×3.3mmの円板形状の測定サンプルを作製し、切断した面を対象に、面を研磨した上でSchulzの反射法と呼ばれるX線回折法で結晶の方位分布を測定して結晶方位分布関数(ODF)を得た。具体的には、Schulzの反射法により、{100}極点図、{110}極点図、{211}極点図をそれぞれ別の計測で得たデータで描き、三枚の極点図が矛盾なく説明できる、三次元の結晶方位分布を表す結晶方位分布関数(ODF)をコンピューターで計算した。
 図1は三枚の極点図が矛盾なく説明できるようにコンピューター計算して得たODFのφ2=0°断面図である。同図において、φ1、Φ、φ2はオイラー角であり、四角形の上辺と下辺に沿った等高線は、鋼板面内での結晶方位密度の分布を表している。等高線の数値は平均値1に対する倍数で表した方位密度を示し、同図には、数値20と1の等高線の間に、数値18、16、14、12、10、8、6、4の等高線がこの順番に描かれている。図1の上枠であるΦ=0°の線上では最も低い領域でも14倍を超える高い集積が認められ、先鋭な{100}繊維集合組織が形成されていることが分かる。この値は、図2に示す既存の無方向性電磁鋼板の値を遙かに超える優れた値である。
 図2は従来の方法で得られた現用の無方向性電磁鋼板として多用されているもののφ2=0°断面図であるが、上辺に沿った方位密度は0.5から2.0でほぼ集合組織がない状態であることが分かる。
 なお、実施例では、加工前の材料の結晶方位分布について言及していないが、これは、加工前の状態がどのような状態であれ、ひずみ量を大きくすれば、熱間圧縮加工により加工面と平行に{100}が配向する{100}繊維集合組織が形成されるからである。勿論、既存の無方向性電磁鋼板と同様の結晶方位分布を有するものを用意してもよい。また、上述した実施例では、材料の断面が円形になっているが、円以外の方形状や多角形状の断面の板や柱体であってもよい。さらに、単軸圧縮加工の加えられる面も、同様の理由により、平面以外の任意の形状でよい。
 ここで、電磁鋼板の主な使用先であるモータにおける容易磁化方向の様子を具体的に説明する。円板状のステータ材料は中心部分とスリットを打ち抜かれて使用される。したがって、ステータ材料としては図4のポール16部の特性が重要になる。
 図12にBCC構造のモデルを示す。BCC構造は上下左右の対称性があるので、この図に表示された[100]、[010]、[001]は等価であり、この3本の結晶軸を総称して<001>と表わす。また、立方体の面は全て等価なので面を総称する{001}、{100}、{010}は同じ内容を示している。
 次に、モータのステータ用の従来の無方向性電磁鋼板の容易磁化方向の様子を図13(A)に示す。従来の電磁鋼板では、容易磁化方向は立体的に360度様々な方向を向いている。また、図13(B)には、ほぼ理想的な電磁鋼板での容易磁化方向を示す。
 さらに、{100}極点図による容易磁化方向の<001>の分布の様子を図14に示す。図14(A)は従来の無方向性電磁鋼板、図14(B)は本発明に掛る電磁鋼板の<001>の分布の様子である。図中の数字は、平均値1に対して<001>の密度の集中の程度を示す。
 従来の無方向性電磁鋼板では、特性に大きな影響を与える外周部の最小値は平均値の0.8倍以下である。一方、図14(B)に示す今回開発した電磁鋼板の極点図を見ると外周部の最小値は平均値の1.6倍以上であり、中心部は平均値の19倍を超えていることから、重要な外周部の<001>密度は従来技術による既存の材料に比べ大きく高くなっていることが分かる。
 図15に本発明による電磁鋼板の磁気特性を示す。図中の点線が従来の無方向性電磁鋼板の磁気特性、実線が本発明による電磁鋼板の磁気特性である。明らかに、印加する磁界に対して大きな磁束密度が得られておりモータなどの電磁機器の特性改善につながることが期待できる。
 なお、実施例では、単一の材料を単軸圧縮加工する例を示したが、量産を考慮し、荷重容量の大きな専用の圧縮機によって多数の材料を積層して同時に圧縮加工したり、材料のサイズを大きくするようにしてもよい。
 また、圧縮加工の方法としては、図8に示す平面ひずみ圧縮加工でも上述の加工条件を満たすことで{100}が板面に平行に配向した結果が得られる。
 さらに、量産を行うには図9に示す圧延加工も可能であり、図9に示す一方向の圧延加工では圧延面に平行に{100}が発達し、圧延方向に<001>が多く分布する板材を得ることができる。また図10に示す多方向での圧延加工をすると<001>を面内で多方向に分布させることができ、単軸圧縮加工と同様の効果が得られる。
 また、図11に示すように加熱状態で部材をダイスへ通すと線状の金属材料を得ることができる。材料の<001>が延伸方向に揃うので磁力線を延伸方向に通すと良好な特性が得られる。
 また、ひずみ量を大きくして、さらに薄い電磁鋼板とすることもでき、そのようにして得た電磁鋼板の磁気特性がより優れたものとなることは、上述したことから明らかである。本加工は高温で実施するために、加工後に残留する格子欠陥量は少ないが、加工後短時間の焼鈍を施すことにより、格子欠陥量をさらに低減させた無方向性電磁鋼板とすることができる。
 本発明の実施例としては、電磁材料であるFe-Siを取り上げたが、本発明は体心立方(BCC)構造の状態で熱間圧縮加工が可能な金属材料に適用が可能である。本発明を適用することで熱間圧縮加工により加工面と平行に{100}が成長した金属材料を得ることができる。
 本発明により、結晶軸の方位が制御された金属材料、例えば電磁材料の製造法が明らかになり、良特性の電磁材料が提供されることで電磁気エネルギーの損失が少なくなり、社会全体のコストダウンにつながるとともに環境問題にも資することが大きい。
10 モータのステータ
12 ヨーク
14 スロット
16 ポール
18 コイル
20 モータのロータ
31 コア
32 コイル
33 磁力線

Claims (8)

  1.  体心立方(BCC)構造の固溶体である金属材料の製造方法であって単相固溶体となる温度域での熱間圧縮加工により前記金属材料の加工面に沿って前記金属材料の結晶軸<001>を分布させたことを特徴とする金属材料の製造方法。
  2.  前記金属材料がFe-Si合金でありこれを体心立方(BCC)構造の単相固溶体となる温度域に加熱し、体心立方(BCC)構造の単相固溶体に現れる溶質原子雰囲気が転位の運動を支配し、かつ結晶粒に蓄積されているひずみエネルギーを駆動力として結晶粒界が移動できる加工状態を維持できるひずみ速度で前記体心立方(BCC)構造の固溶体に熱間圧縮加工を行うことで加工面と平行に{100}を分布させたことを特徴とする金属材料の製造方法。
  3.  前記体心立方(BCC)構造の固溶体がFe-Si合金であり、前記Fe-Si合金が単相固溶体となる温度域に加熱され、ひずみ速度が1×10-5-1から1×10-1-1の範囲内で熱間圧縮加工されたことを特徴とする請求項1または2に記載の金属材料の製造方法。
  4.  前記温度域が800~1300°Cの範囲内の温度であることを特徴とする請求項3に記載の金属材料の製造方法。
  5.  前記熱間圧縮加工により前記の体心立方(BCC)構造の単相固溶体に、少なくとも総ひずみ量―0.5のひずみを与えることを特徴とする請求項4に記載の金属材料の製造方法。
  6.  体心立方(BCC)構造の固溶体である金属材料であって熱間圧縮加工により加工面に沿って結晶軸<001>が分布したことを特徴とする金属材料。
  7.  前記金属材料の加工面に沿う金属の結晶軸<001>の分布を表す結晶方位分布関数(ODF)のφ2=0°断面のΦ=0°線上の方位密度が平均値1に対して14倍以上であることを特徴とする請求項6に記載の金属材料。
  8.  前記体心立方(BCC)構造の固溶体がFe-Si合金であることを特徴とする請求項6または請求項7に記載の金属材料。
PCT/JP2011/054548 2010-02-26 2011-02-28 結晶軸<001>の方位が制御された体心立方(bcc)構造の固溶体である金属材料およびその製造方法 WO2011105609A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180016355.4A CN102869795B (zh) 2010-02-26 2011-02-28 作为结晶轴<001>的方位被控制的体心立方(bcc)结构的固溶体的金属材料及其制造方法
KR1020127024629A KR101433493B1 (ko) 2010-02-26 2011-02-28 결정축 〈001〉의 방위가 제어된 체심 입방(bcc) 구조의 고용체인 금속 재료 및 그 제조 방법
US13/580,722 US20120312432A1 (en) 2010-02-26 2011-02-28 Metallic material as a solid solution having a body-centered cubic (bcc) structure, an orientation of crystal axis <001> of which is controlled, and method of manufacturing the same
EP11747563.2A EP2540845A4 (en) 2010-02-26 2011-02-28 METAL MATERIAL AS A SOLID SOLUTION FOR A CUBICALLY CENTERED GRID WITH CONTROLLED CRYSTAL AXLE ALIGNMENT AND METHOD OF MANUFACTURING THEREOF
JP2012501909A JP5492975B2 (ja) 2010-02-26 2011-02-28 結晶軸<001>の方位が制御された体心立方(bcc)構造の固溶体である金属材料およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010042132 2010-02-26
JP2010-042132 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011105609A1 true WO2011105609A1 (ja) 2011-09-01

Family

ID=44507002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054548 WO2011105609A1 (ja) 2010-02-26 2011-02-28 結晶軸<001>の方位が制御された体心立方(bcc)構造の固溶体である金属材料およびその製造方法

Country Status (6)

Country Link
US (1) US20120312432A1 (ja)
EP (1) EP2540845A4 (ja)
JP (1) JP5492975B2 (ja)
KR (1) KR101433493B1 (ja)
CN (1) CN102869795B (ja)
WO (1) WO2011105609A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153521A (ja) * 2015-02-20 2016-08-25 公立大学法人兵庫県立大学 鉄板およびその製造方法
JP2018092979A (ja) * 2016-11-30 2018-06-14 新日鐵住金株式会社 変圧器、変圧器用の板状鉄心及び変圧器用の板状鉄心の製造方法
WO2023112891A1 (ja) * 2021-12-16 2023-06-22 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
WO2023112892A1 (ja) * 2021-12-16 2023-06-22 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10594172B2 (en) * 2015-11-12 2020-03-17 Hamilton Sundstrand Corporation Electric component including custom metal grain orientation
MX2018006851A (es) 2015-12-11 2018-08-01 Nippon Steel & Sumitomo Metal Corp Metodo de produccion de producto moldeado y producto moldeado.
KR102407998B1 (ko) 2018-02-16 2022-06-14 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판 및 무방향성 전자 강판의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226854A (ja) * 1997-02-19 1998-08-25 Kawasaki Steel Corp 磁気特性に優れたけい素鋼熱延板およびその製造方法
JP2000104144A (ja) * 1998-07-29 2000-04-11 Kawasaki Steel Corp L方向及びc方向の磁気特性に優れた電磁鋼板及びその製造方法
JP2006087289A (ja) 2004-09-15 2006-03-30 Lg Electronics Inc モータのステータ及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708682B2 (ja) * 1991-12-27 1998-02-04 新日本製鐵株式会社 磁気特性が極めて優れた無方向性電磁鋼板及びその製造方法
TW476790B (en) * 1998-05-18 2002-02-21 Kawasaki Steel Co Electrical sheet of excellent magnetic characteristics and its manufacturing method
JP4123629B2 (ja) * 1999-04-23 2008-07-23 Jfeスチール株式会社 電磁鋼板およびその製造方法
JP4972767B2 (ja) * 2006-08-25 2012-07-11 Jfeスチール株式会社 高珪素鋼板の製造方法
KR100797895B1 (ko) * 2006-12-22 2008-01-24 성진경 표면 (100) 면 형성 방법, 이를 이용한 무방향성 전기강판의 제조 방법 및 이를 이용하여 제조된 무방향성 전기강판
CN101417292B (zh) * 2008-12-16 2011-05-11 攀钢集团钢铁钒钛股份有限公司 依托常规轧制模型控制中低牌号电工钢轧制的方法
KR101110253B1 (ko) * 2008-12-26 2012-03-13 주식회사 포스코 고객사 가공성이 우수한 무방향성 전기강판 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226854A (ja) * 1997-02-19 1998-08-25 Kawasaki Steel Corp 磁気特性に優れたけい素鋼熱延板およびその製造方法
JP2000104144A (ja) * 1998-07-29 2000-04-11 Kawasaki Steel Corp L方向及びc方向の磁気特性に優れた電磁鋼板及びその製造方法
JP2006087289A (ja) 2004-09-15 2006-03-30 Lg Electronics Inc モータのステータ及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NIPPON STEEL MONTHLY, April 2005 (2005-04-01), pages 11 - 14
See also references of EP2540845A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153521A (ja) * 2015-02-20 2016-08-25 公立大学法人兵庫県立大学 鉄板およびその製造方法
JP2018092979A (ja) * 2016-11-30 2018-06-14 新日鐵住金株式会社 変圧器、変圧器用の板状鉄心及び変圧器用の板状鉄心の製造方法
WO2023112891A1 (ja) * 2021-12-16 2023-06-22 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
WO2023112892A1 (ja) * 2021-12-16 2023-06-22 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP7371815B1 (ja) 2021-12-16 2023-10-31 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP7439993B2 (ja) 2021-12-16 2024-02-28 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法

Also Published As

Publication number Publication date
KR20120127652A (ko) 2012-11-22
CN102869795B (zh) 2015-07-08
CN102869795A (zh) 2013-01-09
KR101433493B1 (ko) 2014-08-22
US20120312432A1 (en) 2012-12-13
EP2540845A4 (en) 2016-03-09
JPWO2011105609A1 (ja) 2013-06-20
EP2540845A1 (en) 2013-01-02
JP5492975B2 (ja) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5492975B2 (ja) 結晶軸<001>の方位が制御された体心立方(bcc)構造の固溶体である金属材料およびその製造方法
JP4855222B2 (ja) 分割コア用無方向性電磁鋼板
JP6651759B2 (ja) 無方向性電磁鋼板およびその製造方法
JP5375559B2 (ja) 無方向性電磁鋼板の剪断方法及びその方法を用いて製造した電磁部品
CA2928605C (en) Ultra-low cobalt iron-cobalt magnetic alloys
JP2017040002A (ja) 高周波用無方向性電磁鋼板およびその製造方法
JP6828816B2 (ja) 無方向性電磁鋼板
JP6604120B2 (ja) 無方向性電磁鋼板、及びその製造方法
JP2535963B2 (ja) 磁気特性の優れた珪素鋼板およびその製造方法
JP6623533B2 (ja) Fe系金属板
JPH0674460B2 (ja) 電磁鋼板の製造法
JP4790537B2 (ja) 全周特性かつ加工性の良好な無方向性電磁鋼板の製造方法
JP2008260996A (ja) 圧延方向の磁気特性に優れる無方向性電磁鋼板およびその製造方法
JP4855221B2 (ja) 分割コア用無方向性電磁鋼板
KR20210083203A (ko) 연자성 합금, 연자성 합금 리본, 연자성 합금 리본의 제조방법, 자성 코어, 및 부품
JP2011184787A (ja) 高周波鉄損の優れた高張力無方向性電磁鋼板
TWI750894B (zh) 轉子鐵芯、轉子及旋轉電機
JP6221406B2 (ja) Fe系金属板及びその製造方法
JP7415137B2 (ja) 積層コアおよび回転電機
JP7343770B2 (ja) 積層コアおよび回転電機
Kustas Shear-based deformation processing and characterization of electrical steel sheet
JP6537131B2 (ja) 鉄板およびその製造方法
TWI769583B (zh) 定子鐵芯、旋轉電機、定子鐵芯之設計方法
JP2014237879A (ja) 固溶体合金の製造方法、固溶体合金、電磁鋼板、及び電磁棒鋼
JP6685491B2 (ja) モータ用無方向性電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016355.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747563

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13580722

Country of ref document: US

Ref document number: 2347/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012501909

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127024629

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011747563

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011747563

Country of ref document: EP