WO2011105395A1 - 太陽電池モジュールの製造方法 - Google Patents

太陽電池モジュールの製造方法 Download PDF

Info

Publication number
WO2011105395A1
WO2011105395A1 PCT/JP2011/053907 JP2011053907W WO2011105395A1 WO 2011105395 A1 WO2011105395 A1 WO 2011105395A1 JP 2011053907 W JP2011053907 W JP 2011053907W WO 2011105395 A1 WO2011105395 A1 WO 2011105395A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
flux
cell string
string
connection tab
Prior art date
Application number
PCT/JP2011/053907
Other languages
English (en)
French (fr)
Inventor
健悟 松根
政勝 村木
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2011105395A1 publication Critical patent/WO2011105395A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a solar cell module including a step of connecting a plurality of solar cell strings.
  • Solar cells are expected to be a new energy source because they can directly convert clean and inexhaustible solar energy into electrical energy.
  • the output voltage per solar cell is as low as 0.5 to 1.0V. Therefore, a solar cell string in which solar cells are electrically connected in one direction is formed, and a plurality of solar cell strings are arranged in another direction orthogonal to the one direction, and each solar cell string is arranged.
  • An electrically connected solar cell module is used (for example, Patent Document 1).
  • connection tab that is electrically connected to the outside of the solar cell string.
  • the connection tab is disposed on the main surface of the solar cell.
  • the connection tab extends from the main surface. In general, the connection tab extends in the longitudinal direction of the solar cell string.
  • the connection tab is electrically connected to the outside of the solar cell module by disposing a conductive connection member in the extended portion of the connection tab.
  • connection tab and the connection member are connected by solder. For this reason, the flux was previously applied to the connection tab.
  • connection tab When flux is applied to the connection tab, when the flux is applied to the connection tab by emitting the flux downward using a dispenser, the flux adheres to the connection tab and the flux is surrounded by the connection tab. Scatter. When the scattered flux adheres to the solar cell, there is a possibility that the appearance of the solar cell deteriorates. Moreover, the performance of the solar cell module may be deteriorated.
  • This invention is made
  • a feature of the present invention is that a string forming step of forming a solar cell string in which a plurality of solar cells are electrically connected along the arrangement direction, and a connection tab provided at one end of the solar cell string by a solder, a connecting member Electrically connecting the connection tabs, wherein the connection tab has a protruding portion protruding from the solar cell string along the arrangement direction, and the connection
  • the flux is applied to the projecting portion by injecting flux from an oblique direction toward the projecting portion of the tab, and the connecting member is disposed on the projecting portion to which the flux is applied, and soldering is performed.
  • the gist is to do.
  • the flux is applied to the protruding portion by fluxing from the oblique direction toward the protruding portion of the connection tab. For this reason, since the flux scatters in an oblique direction, the scatter of the flux on the solar cell can be suppressed. For this reason, the deterioration of the external appearance and the conversion efficiency by a flux can be suppressed.
  • FIG. 1 is a schematic plan view of the back side of a solar cell module 1 according to an embodiment of the present invention.
  • FIG. 2 is a flowchart for explaining a method of manufacturing the solar cell module 1 according to the embodiment of the present invention.
  • FIG. 3 is a schematic top view for explaining the flux application step S2.
  • FIG. 4 is a cross-sectional view taken along the line A-A ′ in FIG.
  • FIG. 1 is a schematic plan view of the back side of a solar cell module 1 according to an embodiment of the present invention.
  • the solar cell module 1 includes a front side cover, a back side cover, a frame 5, a solar cell string 10, a connection member 20a, a connection member 20b, a connection member 20c, and a filler.
  • a front side cover for example, transparent glass is used.
  • a back cover for example, a polyethylene terephthalate (PET) resin film is used.
  • a plurality of solar cell strings 10 are arranged side by side between the front surface side cover and the back surface side cover. Each solar cell string 10 is connected to at least one of a connection member 20a, a connection member 20b, and a connection member 20c.
  • a filler is filled between the front side cover and the back side cover.
  • EVA is used as the filler.
  • the frame body 5 supports the laminated body including the front surface side cover, the back surface side cover, the solar cell string 10, the connection member 20a, the connection member 20b, the connection member 20c, and the filler.
  • aluminum is used for the frame 5.
  • each solar cell 100 has electrodes having different polarities.
  • each solar cell 100 has electrodes on the main surface on the front side and the main surface on the back side.
  • the electrodes include, for example, a fine wire electrode 160 and a thick wire electrode (not shown).
  • a plurality of the thin wire electrodes 160 are arranged in parallel to each other on the main surface 105 of the solar cell 100.
  • the thick line electrodes are arranged so as to be orthogonal to the plurality of thin line electrodes 160 and are electrically connected to the respective thin line electrodes 160.
  • two thick line electrodes are arranged on the thin line electrode 160 in parallel with each other.
  • the solar cell 100 is electrically and physically connected by the solar cell 100 and the wiring member 140 adjacent to each other in the arrangement direction x of the solar cell string 10.
  • the wiring member 140 is disposed on the front side thick line electrode of one solar cell 100 and the back side thick line electrode of the other solar cell 100.
  • the arrangement direction x refers to the direction in which the solar cells 100 are arranged in order to form the solar cell string 10.
  • the solar cell 100 at the end of the solar cell string 10 in the arrangement direction x of the solar cell string 10 has a connection tab 120.
  • the connection tab 120 is disposed on the main surface 105. Specifically, the connection tab 120 is disposed on each thick line electrode.
  • the connection tab 120 extends from the main surface 105 in a side view orthogonal to the arrangement direction x. Specifically, the connection tab 120 extends along the arrangement direction x in the direction e away from the solar cell 100 (see FIG. 4). That is, the connection tab 120 has a protruding portion 125 protruding outward from the solar cell 100 at the end of the solar cell string 10 along the arrangement direction x.
  • connection tab 120 is provided with any one of the connection member 20a, the connection member 20b, and the connection member 20c.
  • the connection tab 120 and the connection member 20 are connected by solder. Thereby, the connection tab 120 is electrically connected to the outside of the solar cell string. That is, the electrical output of the solar cell string is taken out from the connection tab 120.
  • the connecting member 20a is an L-shaped thin plate member. One end portion side of the connection member 20a is connected to a connection tab 120 of the outermost solar cell string 10. The other end side of the connecting member 20a is electrically connected to an output terminal in a terminal box (not shown). The output terminal in the terminal box is electrically connected to an output cable led out of the solar cell module 1.
  • the connecting member 20b is an L-shaped thin plate member.
  • the connection member 20b is connected to the connection tab 120 of the most central solar cell string 10.
  • the connection member 20b is also connected to a connection tab 120 included in the solar cell string 10 adjacent to the solar cell string 10 closest to the center.
  • the connection member 20 b is disposed across the connection tab 120 of the solar cell string 10 located closest to the center and the connection tab 120 adjacent to the solar cell string 10. Thereby, the solar cell string 10 closest to the center and the solar cell string 10 adjacent thereto are also electrically connected.
  • One end of the connection member 20b is electrically connected to a bypass diode in a terminal box (not shown).
  • the connecting member 20c is a thin plate member having a longitudinal direction.
  • the connection member 20c is connected to a connection tab 120 included in one solar cell string 10.
  • the connection member 20 c is also connected to a connection tab 120 included in the solar cell string 10 adjacent to one solar cell string 10.
  • the connection member 20 c is arranged across the connection tab 120 of one solar cell string 10 and the connection tab 120 of another solar cell string 10 adjacent to the one solar cell string 10. As a result, one solar cell string 10 and another solar cell string 10 adjacent thereto are electrically connected.
  • the connection tab 120 included in the solar cell 100 at at least one end of the solar cell string 10 is connected to the connection member 20c.
  • the solar cell string 10 is electrically connected in series by either the connection member 20b or the connection member 20c.
  • FIG. 2 is a flowchart for explaining a method of manufacturing the solar cell module 1 according to the embodiment of the present invention.
  • FIG. 3 is a schematic top view for explaining the flux application step S2.
  • 4 is a cross-sectional view taken along the line AA ′ in FIG.
  • the method for manufacturing the solar cell module 1 includes steps S ⁇ b> 1 to step 4.
  • Step S1 is a string forming step for forming a solar cell string 10 in which a plurality of solar cells 100 are electrically connected in one direction.
  • Process S1 has process S11 and process S12.
  • Step S11 is a solar cell forming step for forming a solar cell.
  • An n-type semiconductor layer and a p-type semiconductor layer are stacked on the main surface of a semiconductor substrate having one conductivity type by a CVD method or a thermal diffusion method.
  • An i-type semiconductor layer may be formed between the semiconductor substrate and the n-type semiconductor layer.
  • An i-type semiconductor layer may be formed between the semiconductor substrate and the p-type semiconductor layer. Thereby, the solar cell 100 is formed.
  • a general semiconductor material including a crystalline semiconductor material such as single crystal Si or polycrystalline Si having n-type or p-type conductivity, or a compound semiconductor material such as GaAs or InP can be used.
  • the n-type semiconductor layer, the p-type semiconductor layer, and the i-type semiconductor layer formed by a CVD method can be formed using an amorphous semiconductor containing hydrogen and containing silicon. Examples of such an amorphous semiconductor include amorphous silicon, amorphous silicon carbide, and amorphous silicon germanium. However, the present invention is not limited to this, and other amorphous semiconductors may be used.
  • a transparent electrode layer having a light transmitting property may be further formed over the n-type semiconductor layer and the p-type semiconductor layer.
  • the transparent electrode layer is formed by, for example, a sputtering method.
  • indium oxide, tin oxide, or zinc oxide can be used for the transparent electrode layer.
  • the thin wire electrode 160 and the thick wire electrode are formed on the main surface of the solar cell 100 thus formed.
  • a conductive paste such as a silver paste is arranged in a predetermined pattern on the solar cell 100 by using a printing method such as a screen printing method or an offset printing method.
  • a printing method such as a screen printing method or an offset printing method.
  • a plurality of fine wire electrodes 160 are arranged in parallel with a direction y orthogonal to the arrangement direction x with an interval therebetween.
  • two thick line electrodes are arranged along the arrangement direction x.
  • the thick line electrode is disposed at the same position as the connection tab 120.
  • the thin wire electrode 160 and the thick wire electrode are formed by drying the conductive paste under predetermined conditions.
  • Step S12 is performed.
  • Step S ⁇ b> 12 is a solar cell string forming step for forming the solar cell string 10. This is a step of forming a plurality of solar cell strings 10 in which a plurality of solar cells 100 are electrically connected along the arrangement direction x.
  • the thick line electrode formed on the main surface of the solar cell 100 is connected to the connection tab 120 and the wiring member 140.
  • As an adhesive used for connection there is a resin adhesive in addition to solder. When a resin adhesive is used, the connection tab 120 and the wiring member 140 are disposed on the thick wire electrode via a tape-like or paste-like resin adhesive.
  • the thick line electrode is connected to the connection tab 120 and the wiring material 140 by heating while pressing the arranged connection tab 120 and the wiring material 140.
  • a resin adhesive having anisotropic conductivity can be suitably used as the resin adhesive.
  • connection tab 120 and the wiring member 140 are formed by coating the surface of a conductive material such as copper formed into a thin plate shape with Pb-free solder.
  • the wiring member 140 is connected not only to the thick line electrode of one solar cell 100 but also to the thick line electrode of another solar cell 100. In order to connect the plurality of solar cells 100 in series, the wiring member 140 disposed on the front side of one solar cell 100 is disposed on the back side of the other solar cell 100.
  • connection tab 120 is disposed only on the solar cell 100 at the end of the solar cell string 10.
  • the connection tab 120 is disposed so as to extend in the direction e away from the solar cell 100.
  • the extended portion of the connection tab 120 extends along the arrangement direction x.
  • the connection tab 120 may be arranged such that the extending portion of the connection tab 120 is inclined from the arrangement direction x.
  • connection tab 120 and the wiring material 140 are arranged so that the connection tab 120 and the wiring material 140 are electrically connected to the thin wire electrode 160.
  • the formed solar cell string 10 is mounted on the mounting table 500A shown in FIG.
  • Step S2 is performed.
  • Step S ⁇ b> 2 is a flux application step for applying the flux 220 to the connection tab 120.
  • the solar cell string 10 is lifted so that the wiring member 140 connecting the solar cells 100 of the solar cell string 10 mounted on the mounting table 500A does not come off.
  • a method of lifting for example, there is a method of attaching a suction cup to the solar cell 100 or using an arm supported from the side surface or the back surface of the solar cell 100. By these methods, the solar cells 100 are lifted together.
  • the raised solar cell string 10 is carried in the direction y where the mounting table 500B is located. As shown in FIG. 3, a dispenser 200 and a flux receiver 250 are installed between the mounting table 500A and the mounting table 500B. As shown in FIG. 4, the solar cell string 10 carried to the mounting table 500 ⁇ / b> B passes below the dispenser 200 and passes above the flux receiver 250.
  • the dispenser 200 has a mechanism for emitting the flux 220 by air pressure.
  • the dispenser 200 is attached with a needle-like dispenser needle having an inner diameter.
  • the emission direction s that emits the flux 220 is inclined in the direction e of the connection tab 120 to which the flux 220 is applied, with respect to the vertical direction z as viewed from the direction y. That is, the flux 220 is injected in a direction away from the solar cell 100 by the dispenser 200. Further, the injection direction s is inclined so as to overlap the extended portion of the connection tab 120, that is, the protruding portion 125 when the solar cell string 10 is carried below the dispenser 200. That is, in the middle of carrying the solar cell string 10, the extended portion of the connection tab 120 is positioned on the extension of the emission direction s.
  • the injection angle ⁇ is preferably 5 degrees or more and 15 degrees or less. By setting the injection angle ⁇ to 15 degrees or less, the surplus flux 220 emitted from the dispenser 200 does not go far away. For this reason, the flux receiver 250 into which the excess flux 220 and the flux 220 that hits the connection tab 120 and scatters can be made compact.
  • the flux 220 is applied to the protruding portion 125 by injecting the flux 220 from an oblique direction toward the protruding portion 125 of the connection tab 120. That is, in the flux application step S2, in the side view orthogonal to the arrangement direction x, the injection direction s of the dispenser 200 that emits the flux 220 is the direction e of the connection tab 120 to which the flux 220 adheres with respect to the vertical direction z. The flux 220 adheres to the extended portion of the connection tab 120. For this reason, since the flux 220 is scattered in the direction e in the side view, the flux 220 can be suppressed from being scattered in the solar cell string 10. Therefore, deterioration of the external appearance of the solar cell 100 due to the adhesion of the flux 220 can be suppressed. Moreover, the fall of the performance of the solar cell module 1 can be suppressed.
  • the flux receiver 250 for example, a box-shaped member having an upper opening is used. Excess flux 220 that has not adhered to the connection tab 120 enters the flux receiver 250.
  • the flux receiver 250 is installed on the extension of the injection direction s. Specifically, it is installed at a position passing through the inside of the flux receiver 250 on the extension of the injection direction s. Since the injection direction s is inclined, the flux 220 is scattered in the direction e. For this reason, it is preferable to arrange the flux receiver 250 on the direction e side. That is, it is preferable to arrange the flux receiver 250 so that the center of the flux receiver 250 is located on the direction e side of the position below the vertical direction z of the dispenser 200.
  • Each dispenser 200 is inclined in the direction e of the connection tab 120 to which the flux 220 is attached. For this reason, as shown in FIG. 4, in the side view of the solar cell string 10, the dispenser 200 is inclined in opposite directions.
  • the dispenser 200 and the flux receiver 250 are installed at two places. For this reason, the flux 220 can be simultaneously attached to the connection tabs 120 at both ends of the solar cell string 10. As a result, the manufacturing time can be shortened.
  • the solar cell string 10 that has finished the flux application process is carried to the mounting table 500B as shown in FIG.
  • the solar cell strings 10 are mounted on the mounting table 500 ⁇ / b> B so as to be arranged in the same manner as the solar cell strings 10 included in the solar cell module 1.
  • the flux application process is performed in the air. For this reason, there is no need to provide a mounting table on which the solar cell string 10 is mounted. Thereby, the manufacturing space can be made compact. Since the flux receiver 250 is installed in the injection direction s, the solar cell module 1 can be manufactured without polluting the manufacturing place. Since the flux application process is performed in the air, the position of the flux receiver 250 can be freely set.
  • Step S3 is a step of electrically connecting the connection member 20 to the connection tab 120 provided at one end of the solar cell string 10 by solder. Specifically, this is a step of arranging the conductive connecting member 20a, connecting member 20b, or connecting member 20c on the portion of the connecting tab 120 where the flux 220 is applied.
  • connection member 20 a, the connection member 20 b, and the connection member 20 c are arranged in a portion where the flux 220 of the connection tab 120 is applied so that the solar cell strings 10 are electrically connected in series. . Subsequently, by performing soldering, the connection member 20a, the connection member 20b, the connection member 20c, and the connection tab 120 are electrically and physically connected. Thereby, one solar cell string 10 and the other solar cell string 10 are connected.
  • an insulating member (not shown) having an insulating property is interposed in a portion where the connecting member 20a and the connecting member 20b overlap.
  • an insulating sheet made of polyethylene terephthalate (PET) is used for the insulating member.
  • Step S4 is a step of forming the solar cell module 1.
  • the filler sheet, each solar cell string 10 connected in step S3, the filler material sheet, and the back surface side cover are sequentially laminated to form a laminate.
  • This laminated body is processed under predetermined conditions.
  • an EVA sheet is used as the filler sheet, the EVA is cured by heating the laminate under predetermined conditions.
  • the solar cell module 1 which is this embodiment is formed.
  • a method for manufacturing a solar cell module 1 comprising: a step S1; and a connection step S3 in which the connection member 20 is electrically connected to the connection tab 120 provided at one end of the solar cell string 10 by soldering.
  • 120 has a protruding portion 125 protruding from the solar cell string 10 along the arrangement direction x.
  • the protruding portion 125 is formed by injecting the flux 220 from the oblique direction toward the protruding portion 125 of the connection tab 120.
  • the flux 220 is applied to the protrusions 125, and the connecting member 20 is disposed on the protruding portion 125 on which the flux 220 is applied. Dadding is performed.
  • the injection direction s of the dispenser 200 that emits the flux 220 is inclined with respect to the vertical direction z in the direction e of the connection tab 120 to which the flux 220 adheres.
  • the flux 220 adheres to the protruding portion 125.
  • the flux 220 can be suppressed from being scattered in the solar cell string 10. Therefore, deterioration of the external appearance of the solar cell 100 due to the adhesion of the flux 220 can be suppressed. Moreover, the fall of the performance of the solar cell module 1 can be suppressed.
  • the emission angle ⁇ of the flux 220 is 5 degrees or more and 15 degrees or less with respect to the vertical direction z of the solar cell string 10.
  • the emission angle ⁇ is 5 degrees or more and 15 degrees or less with respect to the vertical direction z of the solar cell string 10.
  • the solar cell string 10 is transported to the mounting table 500B that connects one solar cell string 10 and another solar cell string 10.
  • the flux application step S2 is performed while the solar cell string 10 is being carried.
  • the scattered flux 220 may adhere to the mounting table 500A or the mounting table 500B.
  • the flux 220 is attached to the back surface side of the solar cell string 10 in contact with the mounting table 500A or the mounting table 500B.
  • the solar cell string 10 and the mounting table 500A or the mounting table 500B may be bonded. Since the flux application step S2 is performed while the solar cell string 10 is being transported to the mounting table 500B, the flux 220 is not scattered on the mounting table 500A or the mounting table 500B. Thus, the solar cell string 10 and the mounting table 500A or the mounting table 500B are not bonded. In addition, since the flux application step S2 is performed when the solar cell string 10 is moved, the manufacturing time can be shortened.
  • the solar cell string 10 is lifted and carried, and the flux application step S2 is performed in the air, and in the injection direction s.
  • a flux receiver 250 into which the surplus flux 220 enters is installed. Since the flux application step S2 is performed in the air, there is no need to provide a mounting table on which the solar cell string 10 is mounted. Thereby, the manufacturing space can be made compact. Since the flux receiver 250 is installed in the injection direction s, the solar cell module 1 can be manufactured without polluting the manufacturing place. Since the flux application process is performed in the air, the position of the flux receiver 250 can be freely set.
  • the solar cell string 10 is moving in the air, but it is not always necessary.
  • the flux application process may be performed while being carried on a belt conveyor.
  • the solar cell string 10 may be mounted on a mounting table and the flux application process may be performed.
  • the solar cell 100 at the end of the solar cell string 10 is located at the end of the mounting table.
  • the manufacturing method of the solar cell module which concerns on this invention can suppress the deterioration of an external appearance and the fall of conversion efficiency by the flux used in order to connect a solar cell string, Useful in the manufacturing field.
  • SYMBOLS 1 ... Solar cell module, 5 ... Frame, 10 ... Solar cell string, 20, 20a, 20b, 20c ... Connection member, 100 ... Solar cell, 105 ... Main surface, 120 ... Connection tab, 125 ... Projection part, 140 ... Wiring material, 160 ... Fine wire electrode, 200 ... Dispenser, 220 ... Flux, 250 ... Flux receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、複数の太陽電池100が配列方向xに沿って電気的に接続された太陽電池ストリング10を複数形成するストリング形成工程S1と、太陽電池ストリング10が一端に備える接続用タブ120に、ハンダによって接続部材20を電気的に接続する接続工程S3と、を備える太陽電池モジュール1の製造方法であって、接続用タブ120は、配列方向xに沿って太陽電池ストリング10から突出する突出部分125を有しており、接続用タブ120の突出部分125に向かって、斜め方向からフラックス220を射出することにより突出部分125にフラックス220を塗布し、フラックス220が塗布された突出部分125上に接続部材20を配し、ハンダ付けを行う。

Description

太陽電池モジュールの製造方法
 本発明は、複数の太陽電池ストリングを接続する工程を有する太陽電池モジュールの製造方法に関する。
 太陽電池は、クリーンで無尽蔵に供給される太陽光エネルギーを直接電気エネルギー変換することができるため、新しいエネルギー源として期待されている。
 太陽電池1つ当たりの出力電圧は、0.5~1.0V程度と小さい。このため、太陽電池を一の方向に電気的に接続した太陽電池ストリングを形成し、さらに、複数の太陽電池ストリングを前記一の方向に直交する他の方向に配列し、それぞれの太陽電池ストリングを電気的に接続した太陽電池モジュールが用いられている(例えば、特許文献1)。
 太陽電池ストリングの端にある太陽電池は、太陽電池ストリング外部と電気的に接続される接続用タブを有する。接続用タブは、太陽電池の主面に配置されている。接続用タブは、主面から延在している。一般的には、接続用タブは、太陽電池ストリングの長手方向に延在している。この接続用タブの延在した部分に、導電性を有する接続部材を配置することによって、接続用タブは、太陽電池モジュール外部と電気的に接続されていた。
 接続用タブと接続部材とは、ハンダによって接続されている。このため、予め接続用タブにフラックスを塗布していた。
特開2006-278904号公報
 接続用タブにフラックスを塗布する場合、ディスペンサを用いてフラックスを下方に出射することによって接続タブにフラックスを塗布しようとすると、フラックスが接続用タブに付着するとともに、フラックスは、接続用タブの周囲に飛散する。飛散したフラックスが、太陽電池に付着した場合、太陽電池の外観が悪化するという問題が生じる可能性がある。また、太陽電池モジュールの性能が低下する可能性もある。
 本発明は、このような状況に鑑みてなされたものであり、太陽電池ストリングを接続するために用いられるフラックスによる、外観の悪化及び性能の低下を抑制する太陽電池モジュールの製造方法を提供することを目的とする。
 上述した課題を解決するため、本発明は、次のような特徴を有している。本発明の特徴は、複数の太陽電池が配列方向に沿って電気的に接続された太陽電池ストリングを形成するストリング形成工程と、前記太陽電池ストリングが一端に備える接続用タブに、ハンダによって接続部材を電気的に接続する工程と、を備える太陽電池モジュールの製造方法であって、前記接続用タブは、前記配列方向に沿って前記太陽電池ストリングから突出する突出部分を有しており、前記接続用タブの前記突出部分に向かって、斜め方向からフラックスを射出することにより前記突出部分に前記フラックスを塗布し、前記フラックスが塗布された前記突出部分上に前記接続部材を配し、ハンダ付けを行うことを要旨とする。
 本発明によれば、接続用タブの突出部分に向かって、斜め方向からフラックスすることにより突出部分にフラックスが塗布される。このため、フラックスは、斜め方向に向かって飛散するため、太陽電池にフラックスが飛散することを抑制することができる。このため、フラックスのよる外観の悪化及び変換効率の低下を抑制することができる。
図1は、本発明の実施形態に係る太陽電池モジュール1の裏面側概略平面図である。 図2は、本発明の実施形態に係る太陽電池モジュール1の製造方法を説明するためのフローチャートである。 図3は、フラックス塗布工程S2を説明するための概略上面図である。 図4は、図3におけるA-A’断面図である。
 本発明の実施形態に係る太陽電池モジュール1の一例について、図面を参照しながら説明する。以下の図面の記載において、同一または類似の部分には、同一又は類似の符号を付している。図面は模式的なのものであり、各寸法の比率などは現実のものとは異なることを留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきものである。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
(1)太陽電池モジュール1の概略構成
 本発明の実施形態に係る太陽電池モジュール1の概略構成について、図1を参照しながら説明する。図1は、本発明の実施形態に係る太陽電池モジュール1の裏面側概略平面図である。
 太陽電池モジュール1は、表面側カバー、裏面側カバー、枠体5、太陽電池ストリング10、接続部材20a、接続部材20b及び接続部材20c、および充填材を備える。表面側カバーには、例えば、透明なガラスが用いられる。裏面側カバーには、例えば、ポリエチレンテレフタラート(PET)の樹脂フィルムが用いられる。表面側カバーと裏面側カバーとの間には、太陽電池ストリング10が複数並んで配置されている。各太陽電池ストリング10には、接続部材20a、接続部材20b及び接続部材20cの少なくとも一つが接続されている。表面側カバーと裏面側カバーとの間は、充填材が充填されている。充填材には、例えば、EVAが用いられる。表面側カバー、裏面側カバー、太陽電池ストリング10、接続部材20a、接続部材20b、接続部材20c及び充填材を含む積層体を、枠体5が支持している。枠体5には、例えば、アルミニウムが用いられる。
 太陽電池ストリング10では、複数の太陽電池100が互いに間隔を空けて一の方向に直線状に配置されている。各太陽電池100は、互いに異なる極性を有する電極を有する。本実施形態では、各太陽電池100は、表側の主面上及び裏側の主面上にそれぞれ電極を有する。電極は、例えば細線電極160と太線電極(不図示)とを備える。細線電極160は、太陽電池100の主面105に複数互いに平行に配置されている。太線電極は、複数の細線電極160と直交するように配置され、各細線電極160と電気的に接続されている。本実施形態における太陽電池100では、太線電極は、細線電極160上に2本互いに平行に配置されている。
 太陽電池100は、太陽電池ストリング10の配列方向xにおいて、互いに隣接する太陽電池100と配線材140によって、電気的及び物理的に接続されている。配線材140は、一の太陽電池100の表側の太線電極及び他の太陽電池100の裏側の太線電極上に配置されている。配列方向xとは、太陽電池ストリング10を形成するために、太陽電池100が配列されている方向をいう。
 太陽電池ストリング10の配列方向xにおいて、太陽電池ストリング10の端にある太陽電池100は、接続用タブ120を有している。接続用タブ120は、主面105に配置されている。具体的には、接続用タブ120は、各太線電極上に配置されている。接続用タブ120は、配列方向xと直交する側面視において、主面105から延在している。具体的には、接続用タブ120は、配列方向xに沿って、太陽電池100から離れる方向eに向かって延在している(図4参照)。すなわち、接続用タブ120は、配列方向xに沿って太陽電池ストリング10の端にある太陽電池100から外方向に突出している突出部分125を有している。一つの接続用タブ120には、接続部材20a、接続部材20b及び接続部材20cのいずれかの接続部材20が配置されている。接続用タブ120と接続部材20とは、半田によって接続されている。これによって、接続用タブ120は、太陽電池ストリング外部と電気的に接続される。すなわち、接続用タブ120から太陽電池ストリングの電気出力が取り出される。
 接続部材20aは、L字状の薄板状部材である。接続部材20aの一端部側は、最も外側の太陽電池ストリング10が有する接続用タブ120と接続されている。接続部材20aの他端部側は、端子ボックス(不図示)内の出力端子と電気的に接続されている。端子ボックス内の出力端子は、太陽電池モジュール1外部に導出される出力ケーブルと電気的に接続されている。
 接続部材20bは、L字状の薄板状部材である。接続部材20bは、最も中心側の太陽電池ストリング10が有する接続用タブ120と接続されている。接続部材20bは、最も中心側の太陽電池ストリング10に隣接する太陽電池ストリング10が有する接続用タブ120とも接続されている。接続部材20bは、最も中心側の太陽電池ストリング10が有する接続用タブ120とその太陽電池ストリング10に隣接する接続用タブ120とに渡らせて配置されている。これによって、最も中心側の太陽電池ストリング10とそれに隣接する太陽電池ストリング10とは、電気的にも接続される。接続部材20bの一端部側は、端子ボックス(不図示)内のバイパスダイオードと電気的に接続されている。
 接続部材20cは、長手方向を有する薄板状部材である。接続部材20cは、一の太陽電池ストリング10が有する接続用タブ120と接続されている。接続部材20cは、一の太陽電池ストリング10に隣接する太陽電池ストリング10が有する接続用タブ120とも接続されている。接続部材20cは、一の太陽電池ストリング10が有する接続用タブ120と一の太陽電池ストリング10に隣接する他の太陽電池ストリング10が有する接続用タブ120とに渡らせて配置されている。これによって、一の太陽電池ストリング10とそれに隣接する他の太陽電池ストリング10とは、電気的に接続される。太陽電池ストリング10の少なくとも一方の端にある太陽電池100が有する接続用タブ120は、接続部材20cと接続されている。
 太陽電池ストリング10は、接続部材20b及び接続部材20cのいずれかによって、電気的に直列接続されている。
(2)太陽電池モジュール1の製造方法
 本発明の実施形態に係る太陽電池モジュール1の製造方法について、図1から図4を参照しながら説明する。図2は、本発明の実施形態に係る太陽電池モジュール1の製造方法を説明するためのフローチャートである。図3は、フラックス塗布工程S2を説明するための概略上面図である。図4は、図3におけるA-A’断面図である。図2に示されるように、太陽電池モジュール1の製造方法は、工程S1から工程4を備える。
 工程S1は、一の方向に複数の太陽電池100が電気的に接続された太陽電池ストリング10を形成するストリング形成工程である。工程S1は、工程S11と工程S12と有する。
 工程S11は、太陽電池を形成する太陽電池形成工程である。一導電型を有する半導体基板の主面に、CVD法或いは熱拡散法によって、n型半導体層及びp型半導体層を積層させる。半導体基板とn型半導体層との間にi型半導体層を形成しても良い。半導体基板とp型半導体層との間にi型半導体層を形成しても良い。これによって、太陽電池100が形成される。
 半導体基板には、n型又はp型の導電型を有する単結晶Si、多結晶Siなどの結晶系半導体材料や、GaAs、InPなどの化合物半導体材料を含む一般的な半導体材料を用いることができる。CVD法によって形成されるn型半導体層、p型半導体層及びi型半導体層は、水素を含み、かつシリコンを含む非晶質半導体によって構成することができる。このような非晶質半導体としては、非晶質シリコン、非晶質シリコンカーバイド、或いは非晶質シリコンゲルマニウムなどが挙げられる。これに限らず他の非晶質半導体を用いてもよい。
 なお、n型半導体層及びp型半導体層上にさらに透光性を有する透明電極層が形成されていても良い。透明電極層は、例えば、スパッタリング法によって形成される。透明電極層には、例えば、酸化インジウム、酸化錫、酸化亜鉛を用いることができる。
 このようにして形成された太陽電池100の主面上に細線電極160及び太線電極が形成される。細線電極160及び太線電極は、スクリーン印刷法、オフセット印刷法等の印刷法を用いて、銀ペーストなどの導電性ペーストを、太陽電池100に所定のパターンで配置する。細線電極160は、例えば、図1に示されるように、配列方向xと直交する方向yと平行に、間隔を空けて複数配置される。太線電極は、例えば、配列方向xに沿って、2本配置される。図1において、太線電極は、接続用タブ120と同位置に配置されている。導電性ペーストを所定条件で乾燥させることによって、細線電極160及び太線電極が形成される。
 次に、工程S12を行う。工程S12は、太陽電池ストリング10を形成する太陽電池ストリング形成工程である。複数の太陽電池100が配列方向xに沿って電気的に接続された太陽電池ストリング10を複数形成する工程である。太陽電池100の主面上に形成された太線電極と接続用タブ120及び配線材140とを接続する。接続するために用いられる接着剤には、半田の他、樹脂接着剤がある。樹脂接着剤を用いる場合には、太線電極上にテープ状あるいはペースト状の樹脂接着剤を介して接続用タブ120及び配線材140を配置する。配置した接続用タブ120及び配線材140を押し付けながら加熱することによって、太線電極と接続用タブ120及び配線材140とは、接続される。尚、樹脂接着剤としては異方性導電性を有する樹脂接着剤を好適に用いることができる。
 接続用タブ120及び配線材140は、例えば、薄板状に成形された銅等の導電材の表面をPbフリー半田によって被覆したものが用いられる。
 配線材140は、一の太陽電池100の太線電極だけでなく、他の太陽電池100の太線電極にも接続される。複数の太陽電池100を直列に接続するため、一の太陽電池100の表側に配置された配線材140を、他の太陽電池100の裏側に配置する。
 接続用タブ120は、太陽電池ストリング10の端にある太陽電池100にのみ配置される。接続用タブ120は、太陽電池100から離れる方向eに向かって延在するように配置される。図1において、接続用タブ120の延在部分は、配列方向xに沿って、延在している。図1に示されるような太陽電池モジュール1の平面視において、接続用タブ120の延在部分が配列方向xから傾斜するように、接続用タブ120を配置しても良い。
 太線電極を形成しない場合は、接続用タブ120及び配線材140と細線電極160とが電気的に接続するようにして、接続用タブ120及び配線材140を配置する。
 形成された太陽電池ストリング10は、図3に示される載置台500Aに載置される。
 次に、工程S2を行う。工程S2は、接続用タブ120にフラックス220を塗布するフラックス塗布工程である。
 載置台500Aに載置された太陽電池ストリング10の太陽電池100をつなぐ配線材140が外れないように、太陽電池ストリング10を持ち上げる。持ち上げる方法には、例えば、太陽電池100に、吸盤を取り付けたり、太陽電池100の側面又は裏面から支持するアームを用いたりする方法がある。これらの方法によって、各太陽電池100を一斉に持ち上げる。
 持ち上げられた太陽電池ストリング10は、載置台500Bがある方向yへと運ばれる。載置台500Aと載置台500Bとの間には、図3に示されるように、ディスペンサ200とフラックス受け250とが設置されている。載置台500Bへと運ばれる太陽電池ストリング10は、図4に示されるように、ディスペンサ200よりも下側を通り、フラックス受け250よりも上側を通る。
 ディスペンサ200は、エア圧によってフラックス220を出射する機構を備えている。ディスペンサ200には、内径を有する針状のディスペンサ針が取り付けられている。フラックス220を出射する射出方向sは、方向yから視て、鉛直方向zに対して、フラックス220が塗布される接続用タブ120の方向eに傾斜している。即ち、フラックス220は、ディスペンサ200によって太陽電池100から遠ざかる方向に射出される。また、射出方向sは、太陽電池ストリング10がディスペンサ200の下側を運ばれるときに、接続用タブ120の延在した部分、すなわち突出部分125に重なるように傾いている。すなわち、太陽電池ストリング10を運んでいる途中において、射出方向sの延長上に、接続用タブ120の延在した部分が位置する。この射出角度θは、5度以上、15度以下が好ましい。射出角度θを15度以下とすることにより、ディスペンサ200から出射された余剰のフラックス220が遠方に向かうことはなくなる。このため、余剰のフラックス220と、接続用タブ120に当たり、飛散するフラックス220とが入るフラックス受け250をコンパクトにすることができる。
 接続用タブ120の突出部分125に向かって、斜め方向からフラックス220を射出することにより突出部分125にフラックス220が塗布される。すなわち、フラックス塗布工程S2では、配列方向xと直交する側面視において、フラックス220を出射するディスペンサ200の射出方向sは、鉛直方向zに対して、フラックス220が付着する接続用タブ120の方向eに傾斜しており、接続用タブ120の延在した部分にフラックス220が付着する。このため、フラックス220は、側面視における方向eに飛散するので、フラックス220が太陽電池ストリング10に飛散することを抑制することができる。従って、フラックス220の付着による太陽電池100の外観の悪化を抑制できる。また、太陽電池モジュール1の性能の低下を抑制できる。
 フラックス受け250には、例えば、上部が開口した箱状の部材が用いられる。フラックス受け250には、接続用タブ120に付着されなかった余剰のフラックス220が入る。フラックス受け250は、射出方向sの延長上に設置される。具体的には、射出方向sの延長上に、フラックス受け250の内部を通る位置に設置される。射出方向sは、傾斜しているため、フラックス220の飛散は、方向eに向かう。このため、フラックス受け250は、方向e側へ配置するのが好ましい。すなわち、フラックス受け250の中心は、ディスペンサ200の鉛直方向z下側の位置よりも方向e側になるように、フラックス受け250を配置するのが好ましい。
 各ディスペンサ200は、フラックス220を付着する接続用タブ120の方向eに傾斜している。このため、図4に示されるように、太陽電池ストリング10の側面視において、ディスペンサ200は、互いに逆方向に傾斜している。ディスペンサ200及びフラックス受け250は、2箇所設置されている。このため、太陽電池ストリング10の両端にある接続用タブ120に、同時にフラックス220を付着することができる。これによって、製造時間の短縮を図ることができる。
 フラックス塗布工程を終えた太陽電池ストリング10は、図3に示されるように、載置台500Bに運ばれる。各太陽電池ストリング10は、太陽電池モジュール1が有する太陽電池ストリング10と同様の並びとなるように、載置台500Bに載置される。
 太陽電池ストリング10は、持ち上げて運ばれるため、フラックス塗布工程は、空中で行われる。このため、太陽電池ストリング10を載置する載置台を設ける必要がない。これによって、製造スペースをコンパクトにすることができる。射出方向sにフラックス受け250が設置されているため、製造場所を汚さずに、太陽電池モジュール1を製造できる。フラックス塗布工程は、空中で行われるため、フラックス受け250の位置を自由に設定できる。
 次に、工程S3を行う。工程S3は、太陽電池ストリング10が一端に備える接続用タブ120に、ハンダによって接続部材20を電気的に接続する工程である。具体的には、接続用タブ120のフラックス220が塗布された部分に、導電性を有する接続部材20a、接続部材20b又は接続部材20cを配置する工程である。
 太陽電池ストリング10が電気的に直列接続となるように、図1に示されるように、接続部材20a、接続部材20b及び接続部材20cを接続用タブ120のフラックス220が塗布された部分に配置する。次いでハンダ付けを行うことによって、接続部材20a、接続部材20b及び接続部材20cと接続用タブ120とが電気的及び物理的に接続される。これによって、一の太陽電池ストリング10と他の太陽電池ストリング10とが接続される。
 図1において、接続部材20aと接続部材20bとが重なる部分には、絶縁性を有する絶縁部材(不図示)を介在させる。絶縁部材には、例えば、ポリエチレンテレフタラート(PET)からなる絶縁シートが用いられる。
 次に、工程S4を行う。工程S4は、太陽電池モジュール1を形成する工程である。表面側カバー上に、充填材シート、工程S3により接続された各太陽電池ストリング10、充填材シート、裏面側カバーを順次積層して積層体とする。この積層体を所定条件で処理する。充填材シートにEVAシートを用いた場合には、積層体を所定条件で加熱することにより、EVAが硬化する。端子ボックス及び枠体5を取り付けることによって、本実施形態である太陽電池モジュール1が形成される。
 (3)作用・効果
 本発明の実施形態に係る太陽電池モジュール1の製造方法において、複数の太陽電池100が配列方向xに沿って電気的に接続された太陽電池ストリング10を複数形成するストリング形成工程S1と、太陽電池ストリング10が一端に備える接続用タブ120に、ハンダによって接続部材20を電気的に接続する接続工程S3と、を備える太陽電池モジュール1の製造方法であって、接続用タブ120は、配列方向xに沿って太陽電池ストリング10から突出する突出部分125を有しており、接続用タブ120の突出部分125に向かって、斜め方向からフラックス220を射出することにより突出部分125にフラックス220を塗布し、フラックス220が塗布された突出部分125上に接続部材20を配し、ハンダ付けを行う。
 フラックス塗布工程S2では、配列方向xと直交する側面視において、フラックス220を出射するディスペンサ200の射出方向sは、鉛直方向zに対して、フラックス220が付着する接続用タブ120の方向eに傾斜しており、突出部分125にフラックス220が付着する。このため、フラックス220は、側面視における方向eに飛散するので、フラックス220が太陽電池ストリング10に飛散することを抑制することができる。従って、フラックス220の付着による太陽電池100の外観の悪化を抑制できる。また、太陽電池モジュール1の性能の低下を抑制できる。
 本発明の実施形態に係る太陽電池モジュール1の製造方法では、フラックス220の射出角度θは、太陽電池ストリング10の鉛直方向zに対し、5度以上、15度以下である。射出角度θを5度以上とすることにより、太陽電池100側へフラックス220が飛散するのをより抑制できる。射出角度θを15度以下とすることにより、ディスペンサ200から出射された余剰のフラックス220が遠方に向かうことはなくなる。このため、余剰のフラックス220と、接続用タブ120に当たり、飛散するフラックス220とが入るフラックス受け250をコンパクトにすることができる。
 本発明の実施形態に係る太陽電池モジュール1の製造方法では、ストリング形成工程の後、太陽電池ストリング10は、一の太陽電池ストリング10と他の太陽電池ストリング10とを接続する載置台500Bまで運ばれ、フラックス塗布工程S2は、太陽電池ストリング10を運ぶ途中に行われる。フラックス塗布工程S2とストリング形成工程又は接続工程S3とを同一位置で行った場合、飛散したフラックス220は、載置台500A又は載置台500Bに付着することもある。フラックス220が付着した箇所に、次の太陽電池ストリング10を移動させると、載置台500A又は載置台500Bと接する太陽電池ストリング10の裏面側にフラックス220が付着する。これによって、太陽電池ストリング10と載置台500A又は載置台500Bとが接着される可能性もある。太陽電池ストリング10を載置台500Bまで運ぶ途中にフラックス塗布工程S2が行われるため、フラックス220は、載置台500A又は載置台500Bに飛散しなくなる。これによって、太陽電池ストリング10と載置台500A又は載置台500Bとが接着されることがなくなる。加えて、太陽電池ストリング10の移動時にフラックス塗布工程S2が行われるため、製造時間の短縮化が図られる。
 本発明の実施形態に係る太陽電池モジュール1の製造方法では、ストリング形成工程の後、太陽電池ストリング10は、持ち上げられて運ばれ、フラックス塗布工程S2は、空中で行われ、射出方向sには、余剰のフラックス220が入るフラックス受け250が設置されている。フラックス塗布工程S2は、空中で行われるため、太陽電池ストリング10を載置する載置台を設ける必要がない。これによって、製造スペースをコンパクトにすることができる。射出方向sにフラックス受け250が設置されているため、製造場所を汚さずに、太陽電池モジュール1を製造できる。フラックス塗布工程は、空中で行われるため、フラックス受け250の位置を自由に設定できる。
(7)その他の実施形態
 上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。
 本発明の実施形態では、太陽電池ストリング10は、空中を移動していたが、必ずしもそうである必要はない。例えば、ベルトコンベアに載せて運びながら、フラックス塗布工程を行っても良い。他にも、太陽電池ストリング10を載置台に載置させて、フラックス塗布工程を行っても良い。この場合、太陽電池ストリング10の端にある太陽電池100が、載置台の端部に位置するのが好ましい。これによって、接続用タブ120の延在部分は、載置台からはみ出しているため、載置台にフラックス220が付着しない。
 このように、本発明はここでは記載していない様々な実施形態を含む。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 なお、日本国特許出願第2010-039207号(2010年2月24日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る太陽電池モジュールの製造方法は、太陽電池ストリングを接続するために用いられるフラックスによる、外観の悪化及び変換効率の低下を抑制することができるため、太陽電池モジュールの製造分野において有用である。
 1…太陽電池モジュール、5…枠体、10…太陽電池ストリング、20,20a,20b,20c…接続部材、100…太陽電池、105…主面、120…接続用タブ、125…突出部分、140…配線材、160…細線電極、200…ディスペンサ、220…フラックス、250…フラックス受け

Claims (4)

  1.  複数の太陽電池が配列方向に沿って電気的に接続された太陽電池ストリングを複数形成するストリング形成工程と、
     前記太陽電池ストリングが一端に備える接続用タブに、ハンダによって接続部材を電気的に接続する工程と、を備える太陽電池モジュールの製造方法であって、
     前記接続用タブは、前記配列方向に沿って前記太陽電池ストリングから突出する突出部分を有しており、
     前記接続用タブの前記突出部分に向かって、斜め方向からフラックスを射出することにより前記突出部分に前記フラックスを塗布し、
     前記フラックスが塗布された前記突出部分上に前記接続部材を配し、ハンダ付けを行う太陽電池モジュールの製造方法。
  2.  前記フラックスの射出角度は、前記太陽電池ストリングの鉛直方向に対し5度以上、15度以下である請求項1に記載の太陽電池モジュールの製造方法。
  3.  前記ストリング形成工程の後、前記太陽電池ストリングは、一の前記太陽電池ストリングと他の前記太陽電池ストリングとを接続する位置まで運ばれ、
     前記フラックスの塗布は、前記太陽電池ストリングを運ぶ途中に行われる請求項1又は2に記載の太陽電池モジュールの製造方法。
  4.  前記ストリング形成工程の後、前記太陽電池ストリングは、持ち上げられて運ばれ、
     前記フラックスの塗布は、空中で行われ、
     前記フラックスが射出される射出方向には、余剰の前記フラックスが入るフラックス受けが設置されている請求項3に記載の太陽電池モジュールの製造方法。
PCT/JP2011/053907 2010-02-24 2011-02-23 太陽電池モジュールの製造方法 WO2011105395A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010039207A JP5502522B2 (ja) 2010-02-24 2010-02-24 太陽電池モジュールの製造方法
JP2010-039207 2010-02-24

Publications (1)

Publication Number Publication Date
WO2011105395A1 true WO2011105395A1 (ja) 2011-09-01

Family

ID=44506801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053907 WO2011105395A1 (ja) 2010-02-24 2011-02-23 太陽電池モジュールの製造方法

Country Status (2)

Country Link
JP (1) JP5502522B2 (ja)
WO (1) WO2011105395A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256733A (ja) * 2011-06-09 2012-12-27 Mitsubishi Electric Corp 太陽電池モジュール製造装置
JP2015012150A (ja) * 2013-06-28 2015-01-19 三洋電機株式会社 太陽電池モジュール及びその製造方法
KR101883757B1 (ko) * 2017-03-23 2018-07-31 엘지전자 주식회사 양면 수광형 태양 전지 모듈

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0857632A (ja) * 1994-08-18 1996-03-05 Mitsubishi Alum Co Ltd 熱交換器の製造方法
JP2003181627A (ja) * 2001-12-11 2003-07-02 Nidec Copal Corp フラックス液塗布装置
JP2005235971A (ja) * 2004-02-19 2005-09-02 Nisshinbo Ind Inc フラックス塗布機能を具備した太陽電池用タブリードのハンダ付け装置
JP2006513865A (ja) * 2003-02-26 2006-04-27 ベール ゲーエムベーハー ウント コー カーゲー 部材の硬蝋付用のフラックスを塗布するための装置および方法
JP2006278904A (ja) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 太陽電池モジュール及びこれを備えた太陽電池装置
JP2008192980A (ja) * 2007-02-07 2008-08-21 Sharp Corp 太陽電池モジュールの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0857632A (ja) * 1994-08-18 1996-03-05 Mitsubishi Alum Co Ltd 熱交換器の製造方法
JP2003181627A (ja) * 2001-12-11 2003-07-02 Nidec Copal Corp フラックス液塗布装置
JP2006513865A (ja) * 2003-02-26 2006-04-27 ベール ゲーエムベーハー ウント コー カーゲー 部材の硬蝋付用のフラックスを塗布するための装置および方法
JP2005235971A (ja) * 2004-02-19 2005-09-02 Nisshinbo Ind Inc フラックス塗布機能を具備した太陽電池用タブリードのハンダ付け装置
JP2006278904A (ja) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 太陽電池モジュール及びこれを備えた太陽電池装置
JP2008192980A (ja) * 2007-02-07 2008-08-21 Sharp Corp 太陽電池モジュールの製造方法

Also Published As

Publication number Publication date
JP5502522B2 (ja) 2014-05-28
JP2011176133A (ja) 2011-09-08

Similar Documents

Publication Publication Date Title
US9054231B2 (en) Method of fabricating semiconductor device using gang bonding and semiconductor device fabricated by the same
JP5094509B2 (ja) 太陽電池モジュール
US20090308427A1 (en) Solar cell module
WO2010122875A1 (ja) 太陽電池モジュール
WO2012002213A1 (ja) 太陽電池モジュール
CN106992224A (zh) 太阳能电池模块及其制造方法
US10141485B1 (en) Vehicle lamp using semiconductor light emitting device
US20090266402A1 (en) Solar cell module
WO2024108996A1 (zh) 分段低温焊带、无主栅ibc电池串、电池组件及其封装方法
WO2011105395A1 (ja) 太陽電池モジュールの製造方法
JP2016096309A (ja) フレキシブルプリント配線板、太陽電池モジュールおよび太陽光発電装置
US10170647B2 (en) Solar cell and method for manufacturing the same
US20120325286A1 (en) Solar cell module
WO2010116914A1 (ja) 太陽電池及び太陽電池モジュール
US8232119B2 (en) Method for manufacturing heat dissipation bulk of semiconductor device
TWI653644B (zh) 導電膠帶、太陽能電池串及太陽能電池模組
KR20150030700A (ko) 태양 전지 모듈의 제조 방법, 태양 전지용 도전성 접착제, 태양 전지 모듈
US8420941B2 (en) Conductive channel of photovoltaic panel and method for manufacturing the same
WO2021189488A1 (zh) 显示面板和显示装置
WO2014086080A1 (zh) Led晶片模组化封装工艺
CN111312886A (zh) 发光二极管组件
JP2005085924A (ja) 光起電力装置およびその製造方法
KR102410785B1 (ko) 슁글드 고출력 모듈 및 그 제조방법
TW201140894A (en) Package of light emitting device and fabrication thereof
US20230088906A1 (en) Solar cell and method for producing solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747356

Country of ref document: EP

Kind code of ref document: A1