WO2011105324A1 - 光周波数コム発生装置及びそれを用いた光パルス発生装置、並びに光周波数コム発生方法及びそれを用いた光パルス発生方法 - Google Patents

光周波数コム発生装置及びそれを用いた光パルス発生装置、並びに光周波数コム発生方法及びそれを用いた光パルス発生方法 Download PDF

Info

Publication number
WO2011105324A1
WO2011105324A1 PCT/JP2011/053669 JP2011053669W WO2011105324A1 WO 2011105324 A1 WO2011105324 A1 WO 2011105324A1 JP 2011053669 W JP2011053669 W JP 2011053669W WO 2011105324 A1 WO2011105324 A1 WO 2011105324A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
frequency comb
light
optical frequency
output light
Prior art date
Application number
PCT/JP2011/053669
Other languages
English (en)
French (fr)
Inventor
正明 須藤
勝仁 牟禮
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to US13/581,364 priority Critical patent/US9002145B2/en
Priority to EP11747285.2A priority patent/EP2541307A4/en
Publication of WO2011105324A1 publication Critical patent/WO2011105324A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • H04B10/50572Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulating signal amplitude including amplitude distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • H04B10/50575Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulator DC bias
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • H04B10/50577Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the phase of the modulating signal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/58Arrangements comprising a monitoring photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/56Frequency comb synthesizer

Definitions

  • the present invention relates to an optical frequency comb generator, an optical pulse generator using the same, an optical frequency comb generator and an optical pulse generator using the same, and in particular, propagates through two branch waveguides of a Mach-Zehnder optical waveguide.
  • Optical frequency comb generator using an optical modulator having two optical modulators for independently modulating optical waves to be transmitted, and a phase adjusting unit for controlling the phase difference between the optical waves propagating through the two branch waveguides, and the light
  • the present invention relates to an optical pulse generator using a frequency comb generator, an optical frequency comb generator using the optical modulator, and an optical pulse generator using the optical frequency comb generator.
  • a method of generating an optical frequency comb that simultaneously generates a plurality of optical frequency components having a frequency difference of equal intervals has attracted attention.
  • This technique is used as a wavelength-multiplexed light source for an optical wavelength division-division communication system, or a short pulse light source used in ultra-high-speed transmission or optical measurement.
  • Patent Document 1 As an optical frequency comb generator, as shown in Patent Document 1, a so-called dual drive Mach-Zehnder type optical modulator that independently modulates light waves propagating through two branch waveguides of a Mach-Zehnder type optical waveguide is used. What has been proposed.
  • Patent Document 1 discloses a method for providing flat power spectrum characteristics and linear chirp characteristics as the optimum frequency distribution intensity of an optical frequency comb. According to this, it is necessary to satisfy the first condition as shown in the formula (1).
  • ⁇ A ⁇ A 1 -A 2 and ⁇ 1 - ⁇ 2 , A 1 and A 2 indicate the degree of modulation in each branch waveguide, and ⁇ 1 and ⁇ 2 are the optical path lengths in each branch waveguide. And phase advance by bias control.
  • Expression (2) is included in the condition of Expression (1), Expression (2) is the optimum driving condition.
  • Non-Patent Document 1 discloses a method for controlling a driving condition so that the driving condition of the optical modulator satisfies Equation (2) in a long-term and stable manner.
  • FIG. 1 is a diagram showing an outline of the control method shown in Non-Patent Document 1.
  • the optical modulator 4 is provided with a Mach-Zehnder type optical waveguide 44, and optical modulators 41 and 42 that can be driven independently are formed in the two branch waveguides.
  • a phase adjustment unit 43 is provided as means for adjusting the phase difference between the light waves propagating through the two branch waveguides.
  • the optical modulator 4 is inputted with a light wave from a continuous light source 1 such as a semiconductor laser light source whose polarization plane is adjusted by a polarization controller 2.
  • the RF signal supplied from the RF signal source 6 is divided into two by the distributor 7 and supplied to the modulator of the optical modulator. For one RF signal, the signal intensity is adjusted via the attenuator 8 and applied to the light modulator.
  • modulation factor A 1 of the first drive signal, the second modulation factor A 2 of the drive signal, the light output from the power P in and the light modulator of light input to the optical modulator Four power P out are monitored, and the DC bias applied to the phase adjustment unit 43 is controlled by the bias control circuit 10 so as to satisfy the following expressions (3) and (4).
  • the bias control circuit 10 for monitoring the ratio of the power P in and the output light P out of the input light, such as by optical coupler 3, 5 provided in each waveguide, it derives a portion of the light wave, the balanced-receiving element 9 is input.
  • a circuit (not shown) for detecting the intensity of the RF signal applied to each optical modulation unit is provided.
  • Non-Patent Document 1 As described above, in the method shown in Non-Patent Document 1, it is necessary to monitor the four parameters shown in the equations (3) and (4) in order to control the driving conditions. Therefore, in practice, as shown in FIG. 1, a part of the two RF powers input to the MZ modulator, a part of the optical power input to the MZ modulator, and the optical power output from the MZ modulator. Some will be monitored. For this reason, it is necessary to obtain in advance a relationship between parameters to be actually monitored and four parameters corresponding one-to-one with them, that is, calibration.
  • the relationship between the power of the RF signal to be monitored and the degree of modulation (A 1 , A 2 ) can be obtained with relatively high accuracy by a relatively inexpensive method, and is not a particular problem.
  • the input power (P in ) and the output power (P out ) of light have an excessive loss due to the connection structure in the optical modulator and the input / output, and are difficult to obtain accurately.
  • Patent Document 2 discloses a method of obtaining the degree of modulation by measuring a plurality of sideband peak intensities using an optical spectrum analyzer. Calibration can be performed by obtaining the modulation degree and the monitor RF power at several points in actual driving conditions (modulation frequency and power) for each side of the dual drive. All that is required is an optical spectrum analyzer, and it is not necessary to change the wiring and configuration of the apparatus at all. The degree of modulation can be directly measured, so that the relationship between the RF power and the degree of modulation can be obtained very accurately.
  • the input / output light power ratio ⁇ 0.5, which is the control target, is not a singular point. Therefore, if there is an error in the calibration performed first, the error cannot be grasped and becomes an error as it is. There is a problem of causing deterioration of signal quality.
  • the present invention eliminates the above-described problems, can accurately control the driving conditions of the optical frequency comb, and does not complicate the configuration related to control and does not increase the cost. And an optical pulse generator using the same, an optical frequency comb generating method, and an optical pulse generating method using the same.
  • the invention according to claim 1 propagates through two branched waveguides of a substrate having an electro-optic effect, a Mach-Zehnder type optical waveguide formed on the substrate, and the Mach-Zehnder type optical waveguide.
  • Continuous light is input to the two Mach-Zehnder type optical waveguides, two optical modulation units that independently modulate light waves to be transmitted, a phase adjustment unit that controls the phase difference between the light waves propagating through the two branch waveguides,
  • the voltage amplitude of the RF signal applied to at least one optical modulator is Amplitude adjusting means for adjusting, monitor means for monitoring the intensity of the output light, and controlling the amplitude adjusting means to change a difference in voltage amplitude of the RF signal applied to each optical modulation unit
  • a bias control circuit that detects a change in the output light corresponding to the change in the output from the output signal of the monitoring means, and controls the phase adjustment unit based on the detection result to adjust the phase difference.
  • the invention according to claim 2 inputs the optical frequency comb generator according to claim 1 and the output light output from the optical frequency comb generator, and determines the phase and intensity of each frequency component of the output light.
  • An optical pulse generator characterized by having a dispersion compensator to be controlled.
  • the invention according to claim 3 independently modulates a substrate having an electro-optic effect, a Mach-Zehnder type optical waveguide formed on the substrate, and light waves propagating through two branch waveguides of the Mach-Zehnder type optical waveguide.
  • Two optical modulation units a phase adjustment unit that controls the phase difference of light waves propagating through the two branching waveguides, and continuous light is input to the Mach-Zehnder optical waveguide, and an RF signal is input to the two optical modulation units
  • the optical frequency comb generation method using the optical frequency comb generator that outputs the output light as the optical frequency comb from the Mach-Zehnder type waveguide, the voltage amplitude of the RF signal applied to at least one of the optical modulators
  • an amplitude adjustment / output light monitoring step for monitoring the intensity of the output light, and the width of the intensity change of the output light in the amplitude adjustment / output light monitoring step is a predetermined value. So that the, and having a bias control step of controlling the phase
  • the invention according to claim 4 is the optical frequency comb generation method according to claim 3, wherein the predetermined value is a minimum value.
  • the invention according to claim 5 forms the output light generated by the optical frequency comb generation method according to claim 3 or 4 into a predetermined optical pulse by controlling the phase and intensity of each frequency component of the output light.
  • An optical pulse generation method having an optical pulse step.
  • the substrate having the electro-optic effect, the Mach-Zehnder type optical waveguide formed on the substrate, and the light wave propagating through the two branch waveguides of the Mach-Zehnder type optical waveguide are independently modulated.
  • Two optical modulation units a phase adjustment unit that controls the phase difference of light waves propagating through the two branching waveguides, and continuous light is input to the Mach-Zehnder optical waveguide, and an RF signal is input to the two optical modulation units
  • amplitude adjusting means that adjusts the voltage amplitude of the RF signal applied to at least one of the optical modulators
  • Monitor means for monitoring the intensity of the output light
  • controlling the amplitude adjusting means to change the difference in the voltage amplitude of the RF signal applied to each optical modulator, and corresponding to the change in the voltage amplitude difference
  • the optical frequency comb generator according to claim 1 and the output light output from the optical frequency comb generator are input, and the phase and intensity of each frequency component of the output light are controlled. Therefore, the optical frequency comb controlled and driven with high precision by the optical frequency comb generator of claim 1 can be used. This makes it possible to provide an optical pulse generator that controls the waveform of the optical pulse with higher accuracy.
  • a substrate having an electro-optic effect, a Mach-Zehnder type optical waveguide formed on the substrate, and a light wave propagating through two branch waveguides of the Mach-Zehnder type optical waveguide are independently modulated.
  • Two optical modulation units a phase adjustment unit that controls the phase difference of light waves propagating through the two branching waveguides, and continuous light is input to the Mach-Zehnder optical waveguide, and an RF signal is input to the two optical modulation units
  • the optical frequency comb generation method using the optical frequency comb generator that outputs the output light as the optical frequency comb from the Mach-Zehnder type waveguide, the voltage amplitude of the RF signal applied to at least one of the optical modulators And an amplitude adjustment / output light monitoring step for monitoring the intensity of the output light, and a width of the intensity change of the output light in the amplitude adjustment / output light monitoring step is predetermined.
  • drive control can be performed with high accuracy by a simple method.
  • the output light generated by the optical frequency comb generation method according to claim 3 or 4 is shaped into a predetermined optical pulse by controlling the phase and intensity of each frequency component of the output light. Since the optical pulse generation method has the optical pulse step to perform, the optical frequency comb controlled with high accuracy by the optical frequency comb generation method according to claim 2 or 4 is used to easily obtain the high accuracy optical pulse. It becomes possible.
  • optical frequency comb generator of the present invention the optical pulse generator using the same, the optical frequency comb generator and the optical pulse generator using the same will be described in detail below.
  • the same reference numerals as those in FIG. 1 mean the same members.
  • One of the features of the present invention is that it is not necessary to perform calibration, which is a problem in the conventional control method, and employs a control method that does not depend on the absolute value of the optical power to be monitored.
  • the optical frequency comb generator premised on the present invention includes a substrate having an electro-optic effect, a Mach-Zehnder type optical waveguide 44 formed on the substrate, and two Mach-Zehnder type optical waveguides.
  • Continuous light (P in ) is input to the waveguide, an RF signal (RF signal source 6) is applied to the two optical modulators, and output light (P out ) that becomes an optical frequency comb is output from the Mach-Zehnder waveguide.
  • the optical modulator constituting the optical frequency comb generator of the present invention can be manufactured by a technique known in the technical field.
  • a substrate using a material having an electro-optic effect lithium niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate), a quartz-based material, and a substrate combining these materials can be used.
  • a lithium niobate (LN) crystal having a high electro-optic effect is preferably used.
  • Ti can be formed by diffusing Ti or the like on the substrate surface by a thermal diffusion method or a proton exchange method. It is also possible to use a ridge-shaped waveguide having a convex portion corresponding to the optical waveguide, such as etching a substrate other than the optical waveguide or forming grooves on both sides of the optical waveguide.
  • modulation electrodes such as signal electrodes and ground electrodes are formed on the substrate.
  • Such an electrode can be formed by forming a Ti / Au electrode pattern, a gold plating method, or the like.
  • a buffer layer such as a dielectric SiO 2 may be provided on the substrate surface after the optical waveguide is formed, and a modulation electrode may be formed on the buffer layer.
  • the output time waveform of the dual drive Mach-Zehnder optical modulator is given by the following equation (5).
  • Equation (5) E in and ⁇ 0 represent the electric field strength and optical frequency of the input light, respectively. Accordingly, when the optical output power P out is obtained, Expression (6) is obtained, and further, when the time average P ave of the optical output power is obtained, Expression (7) is obtained.
  • amplitude adjusting means 22 for adjusting the voltage amplitude of the RF signal applied to at least one of the optical modulators, and the output light P out from the optical modulator.
  • the monitor means 21 for monitoring the intensity and the amplitude adjusting means are controlled to change the voltage amplitude difference of the RF signal applied to each optical modulator, and the change in the output light corresponding to the change in the voltage amplitude difference Is detected from the output signal of the monitoring means, and the bias control circuit 20 is configured to adjust the phase difference by controlling the phase adjustment unit 43 based on the detection result.
  • the amplitude adjusting means 22 may be an amplitude variable amplifier or attenuator. Since the variable amplitude mechanism may have a low frequency that can be followed by the light receiving element 21 of the monitoring means, it can be used by either an electrical or mechanical mechanism.
  • bias adjustment is performed according to the following procedure.
  • (1) By controlling the amplitude adjusting means 22, the voltage amplitude of the RF signal applied to one of the optical modulators 42 is adjusted, and the intensity P out of the output light from the optical modulator is monitored.
  • Amplitude adjustment / output light monitoring step (2)
  • the bias voltage applied to the phase adjustment unit 43 is controlled so that the width of the intensity change of the output light in the “amplitude adjustment / output light monitoring step” of (1) is a predetermined value.
  • means for monitoring the RF signal applied to the optical modulators 41 and 42 can be added to detect ⁇ A.
  • the values of ⁇ and ⁇ A are both used near ⁇ / 2. For this reason, as shown in FIG. 4, since the power fluctuation of the output light changes almost linearly to ⁇ in the vicinity of ⁇ / 2, the ratio of the maximum value and the minimum value of the intensity of the output light with respect to ⁇ A is By controlling to be a certain value, ⁇ can be easily set.
  • is set to an optimum driving condition or a predetermined condition, and then ⁇ A is set to a necessary value, so that the frequency intensity distribution of the optical frequency comb can be easily flattened, for example. Adjustments can be made. Needless to say, ⁇ A can be controlled with higher accuracy by monitoring the RF signal.
  • a bias point In a light modulator using an LN substrate or the like, which is a substrate having an electro-optic effect, a DC drift phenomenon occurs. Therefore, control of the bias point is indispensable for stable operation over the long term.
  • a bias point In an optical modulator for normal optical communication, a bias point can be easily optimized by superimposing a low frequency signal on a bias voltage and monitoring an optical output corresponding to the low frequency.
  • such a bias control method cannot be used because the bias point is not clear from monitoring the power of the optical output.
  • the conventional optical power monitor can be used for output light from two places for input light and output light.
  • essential calibration becomes unnecessary.
  • the characteristics of the optical modulator change such as an increase in optical loss, the conventional control is impossible. With the present invention, it is possible to perform drive control even if the characteristics change halfway. It becomes.
  • a dispersion compensator that uses the above-described optical frequency comb generator, inputs output light output from the optical frequency comb generator, and controls the phase and intensity of each frequency component of the output light is installed.
  • an optical pulse generator can be configured. Accordingly, since the optical frequency comb that is driven and controlled with high accuracy by the optical frequency comb generator is used, it is possible to provide an optical pulse generator that controls the waveform of the optical pulse with higher accuracy.
  • an optical pulse step for shaping the output light generated by the method into a predetermined optical pulse by controlling the phase and intensity of each frequency component of the output light is possible to provide an optical pulse generation method capable of controlling the pulse waveform with high accuracy only by adding.
  • the present invention it is possible to accurately control the driving condition of the optical frequency comb, and the configuration related to the control is not complicated and the cost is not increased. It is possible to provide an apparatus, an optical pulse generator using the same, an optical frequency comb generating method, and an optical pulse generating method using the same.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 光周波数コムの駆動条件を精確に制御することが可能であり、かつ、制御に係る構成が複雑化せず、高コスト化しない、光周波数コム発生装置及びそれを用いた光パルス発生装置、並びに光周波数コム発生方法及びそれを用いた光パルス発生方法を提供することを目的とする。 マッハツェンダー型光導波路の2つの分岐導波路を伝搬する光波を独立に変調する2つの光変調部41,42と、該2つの分岐導波路を伝搬する光波の位相差を制御する位相調整部43とを有する光周波数コム発生装置において、少なくとも一方の光変調部に印加するRF信号の電圧振幅を調整する振幅調整手段22と、出力光の強度Poutをモニタするモニタ手段21と、該振幅調整手段を制御して各光変調部に印加されるRF信号の電圧振幅の差を変化させ、該電圧振幅差の変化に対応する該出力光の変化を、該モニタ手段の出力信号から検出し、該検出結果に基づき該位相調整部を制御して該位相差を調整するバイアス制御回路20を有することを特徴とする。

Description

光周波数コム発生装置及びそれを用いた光パルス発生装置、並びに光周波数コム発生方法及びそれを用いた光パルス発生方法
 本発明は光周波数コム発生装置及びそれを用いた光パルス発生装置、並びに光周波数コム発生方法及びそれを用いた光パルス発生方法に関し、特に、マッハツェンダー型光導波路の2つの分岐導波路を伝搬する光波を独立に変調する2つの光変調部と、該2つの分岐導波路を伝搬する光波の位相差を制御する位相調整部とを有する光変調器を利用した光周波数コム発生装置及び該光周波数コム発生装置を用いた光パルス発生装置、並びに、該光変調器を用いた光周波数コム発生方法及び該光周波数コム発生方法を用いた光パルス発生方法に関する。
 等間隔の周波数差を有する複数の光周波数成分を同時に生成する光周波数コムの発生方法が注目されている。当該技術は、光波長多重分割通信システムの波長多重光源や、超高速伝送や光計測で使用される短パルス光源として利用される。
 光周波数コム発生装置としては、特許文献1に示すように、マッハツェンダー型光導波路の2つの分岐導波路を伝搬する光波を独立に変調する、所謂、デュアル駆動のマッハツェンダー型光変調器を用いたものが提案されている。
 特許文献1には、光周波数コムの最適な周波数分布強度として、平坦なパワースペクトル特性やリニアなチャープ特性を提供する方法が開示されている。これによると式(1)に示すような第一の条件を満足する必要がある。
Figure JPOXMLDOC01-appb-M000001
 式(1)の条件を満足する時、パワースペクトルが平坦になり、かつチャープがほぼリニアになる。ここでΔA≡A-A及びΔθ≡θ-θであり、A,Aは各分岐導波路での変調度を示し、θ,θは各分岐導波路における光路長やバイアスコントロールによる位相進みを表す。
 さらに、第二の条件として、式(2)の条件を満足することにより、コム信号変換効率が最大となり光パワでの出力/入力比ηが0.5となる。式(2)は式(1)の条件の中に含まれるので式(2)が最適駆動条件となる。
Figure JPOXMLDOC01-appb-M000002
 光変調器の駆動条件が、長期的・安定的に式(2)を満たすための駆動条件の制御方法について、非特許文献1に開示がある。図1は、非特許文献1に示された制御方法の概略を示す図である。
 光変調器4には、マッハツェンダー型光導波路44が設けられ、2つの分岐導波路には、独立して駆動できる光変調部41,42が形成されている。また、2つの分岐導波路を伝搬する光波の位相差を調整する手段として、位相調整部43が設けられている。
 光変調器4には、半導体レーザー光源などの連続光光源1からの光波を偏波コントローラ2で偏波面を調整したものが入力される。光変調器の変調部には、RF信号源6から供給されるRF信号が分配器7で2つに分けられ供給されている。一方のRF信号については、減衰器8を介して、信号強度が調整され、光変調部に印加される。
 この方法では、第1の駆動信号の変調度A、第2の駆動信号の変調度A、光変調器への入力される光のパワーPin及び光変調器からの出力される光のパワーPoutの4つをモニタし、以下の式(3)及び式(4)を満足するように、バイアス制御回路10により、位相調整部43に印加するDCバイアスを制御している。図1では、入力光のパワーPinと出力光Poutの比をモニタするため、各導波路に設けられた光カプラー3,5などにより、光波の一部を導出し、バランスド・受光素子9に入力するよう構成している。また、変調度A,Aをモニタするため、各光変調部に印加されるRF信号の強度を検知する回路(不図示)が設けられる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 このように、非特許文献1に示す方法では、駆動条件を制御するために式(3),(4)に示す4つのパラメータをモニターすることが必要であるが、この4つのパラメータを把握するために実際には、図1に示しているようにMZ変調器へ入力する2つのRFパワの一部、MZ変調器へ入力する光パワの一部、MZ変調器から出力される光パワの一部をモニタすることになる。このため、実際にモニタするパラメータとこれらと1対1で対応する4つのパラメータの関係を予め求めておくこと、即ちキャリブレーションが必要となる。
 モニタするRF信号のパワーと変調度(A,A)との関係は、比較的安価な方法でかなり精度よく求めることが可能であり、特段の問題ではない。しかしながら、光の入力パワー(Pin)と出力パワー(Pout)については、光変調器内および入出射に係る接続構造に起因する過剰損失があり、正確に求めることが難しい。
 例えば、特許文献2では、光スペクトルアナライザを用いて、複数のサイドバンドピーク強度を測定することにより、変調度を求める方法が開示されている。デュアル駆動の片側ずつ、実際の駆動条件(変調周波数、パワー)を何点かにおいて変調度及びモニタRFパワーを求めることにより、キャリブレーションが行なえる。必要なのは光スペクトルアナライザのみで、装置の配線、構成は全く変える必要がなく、直接変調度を測定できるので、極めて正確にRFパワーと変調度の関係を求めることができる。
 しかも、制御目標とする入出力光のパワー比η=0.5は、特異点にもなっていないため、最初に行なったキャリブレーションの誤差がある場合、当該誤差を把握できず、そのまま誤差となり、信号品質の劣化の原因となるという問題がある。
 別のキャリブレーション方法として、出射光の時間波形を見て、最適な駆動条件を求め、その時の入出力に係るモニタ光のパワー比を見て、それを目標制御値とすることは可能であるが、10GHz以上の超高周波で駆動させる場合、キャリブレーション用に高価な測定器が必要という問題がある。さらにキャリブレーションが正確にできたとしても、長期的に変調器での過剰損失が変化して最適制御点が変化した場合、従来の制御方法では、最適制御点の変化を認識しないため、信号劣化に気づかないという問題がある。
特開2007-248660号公報 特開2009-229926号公報
T.Sakamoto,I.Morohashi,T.Kawanishi,"Mach-Zehnder-modulator-based flat comb generator with auto bias control",Microwave Photonics, 2008. Jointly held with the 2008 Asia-Pacific Microwave Photonics Conference (MWP/APMP 2008)
 本発明は、上述した問題を解消し、光周波数コムの駆動条件を精確に制御することが可能であり、かつ、制御に係る構成が複雑化せず、高コスト化しない、光周波数コム発生装置及びそれを用いた光パルス発生装置、並びに光周波数コム発生方法及びそれを用いた光パルス発生方法を提供することである。
 上記課題を解決するため、請求項1に係る発明は、電気光学効果を有する基板と、該基板に形成されたマッハツェンダー型光導波路と、該マッハツェンダー型光導波路の2つの分岐導波路を伝搬する光波を独立に変調する2つの光変調部と、該2つの分岐導波路を伝搬する光波の位相差を制御する位相調整部と、該マッハツェンダー型光導波路に連続光を入力し、該2つの光変調部にRF信号を印加し、該マッハツェンダー型導波路から光周波数コムとなる出力光を出力する光周波数コム発生装置において、少なくとも一方の光変調部に印加するRF信号の電圧振幅を調整する振幅調整手段と、該出力光の強度をモニタするモニタ手段と、該振幅調整手段を制御して各光変調部に印加されるRF信号の電圧振幅の差を変化させ、該電圧振幅差の変化に対応する該出力光の変化を、該モニタ手段の出力信号から検出し、該検出結果に基づき該位相調整部を制御して該位相差を調整するバイアス制御回路を有することを特徴とする。
 請求項2に係る発明は、請求項1に記載の光周波数コム発生装置と、該光周波数コム発生装置から出力される該出力光を入力し、該出力光の各周波数成分の位相及び強度を制御する分散補償器と有することを特徴とする光パルス発生装置である。
 請求項3に係る発明は、電気光学効果を有する基板と、該基板に形成されたマッハツェンダー型光導波路と、該マッハツェンダー型光導波路の2つの分岐導波路を伝搬する光波を独立に変調する2つの光変調部と、該2つの分岐導波路を伝搬する光波の位相差を制御する位相調整部と、該マッハツェンダー型光導波路に連続光を入力し、該2つの光変調部にRF信号を印加し、該マッハツェンダー型導波路から光周波数コムとなる出力光を出力する光周波数コム発生装置を利用する光周波数コム発生方法において、少なくとも一方の光変調部に印加するRF信号の電圧振幅を調整すると共に、該出力光の強度をモニタする振幅調整・出力光モニタステップと、該振幅調整・出力光モニタステップにおける該出力光の強度変化の幅が所定値となるように、該位相調整部を制御するバイアス制御ステップとを有することを特徴とする。
 請求項4に係る発明は、請求項3に記載の光周波数コム発生方法において、該所定値が最小値であることを特徴とする。
 請求項5に係る発明は、請求項3又は4に記載の光周波数コム発生方法で発生させた出力光を、該出力光の各周波数成分の位相及び強度を制御して所定の光パルスに成形する光パルス・ステップとを有する光パルス発生方法である。
 請求項1に係る発明により、電気光学効果を有する基板と、該基板に形成されたマッハツェンダー型光導波路と、該マッハツェンダー型光導波路の2つの分岐導波路を伝搬する光波を独立に変調する2つの光変調部と、該2つの分岐導波路を伝搬する光波の位相差を制御する位相調整部と、該マッハツェンダー型光導波路に連続光を入力し、該2つの光変調部にRF信号を印加し、該マッハツェンダー型導波路から光周波数コムとなる出力光を出力する光周波数コム発生装置において、少なくとも一方の光変調部に印加するRF信号の電圧振幅を調整する振幅調整手段と、該出力光の強度をモニタするモニタ手段と、該振幅調整手段を制御して各光変調部に印加されるRF信号の電圧振幅の差を変化させ、該電圧振幅差の変化に対応する該出力光の変化を、該モニタ手段の出力信号から検出し、該検出結果に基づき該位相調整部を制御して該位相差を調整するバイアス制御回路を有するため、従来の駆動制御に必要なキャリブレーションなどが不要となり、より精確な駆動制御が可能となる。しかも、モニタする対象が出力光の変化のみであるため、装置全体の複雑化や高コスト化を抑制することも可能となる。
 請求項2に係る発明により、請求項1に係る光周波数コム発生装置と、該光周波数コム発生装置から出力される該出力光を入力し、該出力光の各周波数成分の位相及び強度を制御する分散補償器と有することを特徴とする光パルス発生装置であるため、請求項1の光周波数コム発生装置で高精度に駆動制御された光周波数コムを利用できる。これにより、光パルスの波形をより高精度に制御した光パルス発生装置を提供することが可能となる。
 請求項3に係る発明により、電気光学効果を有する基板と、該基板に形成されたマッハツェンダー型光導波路と、該マッハツェンダー型光導波路の2つの分岐導波路を伝搬する光波を独立に変調する2つの光変調部と、該2つの分岐導波路を伝搬する光波の位相差を制御する位相調整部と、該マッハツェンダー型光導波路に連続光を入力し、該2つの光変調部にRF信号を印加し、該マッハツェンダー型導波路から光周波数コムとなる出力光を出力する光周波数コム発生装置を利用する光周波数コム発生方法において、少なくとも一方の光変調部に印加するRF信号の電圧振幅を調整すると共に、該出力光の強度をモニタする振幅調整・出力光モニタステップと、該振幅調整・出力光モニタステップにおける該出力光の強度変化の幅が所定値となるように、該位相調整部を制御するバイアス制御ステップとを有するため、上述した式(1)を満足する光周波数コムを容易に得ることが可能となる。このように、簡便な方法で高精度に駆動制御を行うことができる。
 請求項4に係る発明により、請求項3に記載の光周波数コム発生方法において、該所定値が最小値であるため、上述した式(2)の最適条件を満足する光周波数コムを容易に得ることが可能となる。
 請求項5に係る発明により、請求項3又は4に記載の光周波数コム発生方法で発生させた出力光を、該出力光の各周波数成分の位相及び強度を制御して所定の光パルスに成形する光パルス・ステップとを有する光パルス発生方法であるため、請求項2又は4の光周波数コム発生方法で高精度に制御された光周波数コムを利用し、高精度な光パルスを容易に得ることが可能となる。
従来の光周波数コム発生装置の概略を示す図である。 本発明に係る光周波数コム発生装置の概略を示す図である。 出力光パワー(時間平均)のΔθ及びΔAへの依存性を示すグラフである。 ΔAを変化した際の出力光パワーの変化を示すグラフである。
 本発明の光周波数コム発生装置及びそれを用いた光パルス発生装置、並びに光周波数コム発生方法及びそれを用いた光パルス発生方法について、以下に詳細に説明する。なお、図2において図1と同様の符号は、同一の部材を意味する。
 本発明の特徴の一つは、従来の制御方法における問題点であるキャリブレーションを行う必要が無く、モニタする光パワーの絶対値に依存しない制御方法を採用することである。
 本発明が前提とする光周波数コム発生装置は、図2に示すように、電気光学効果を有する基板と、該基板に形成されたマッハツェンダー型光導波路44と、該マッハツェンダー型光導波路の2つの分岐導波路を伝搬する光波を独立に変調する2つの光変調部41,42と、該2つの分岐導波路を伝搬する光波の位相差を制御する位相調整部43と、該マッハツェンダー型光導波路に連続光(Pin)を入力し、該2つの光変調部にRF信号(RF信号源6)を印加し、該マッハツェンダー型導波路から光周波数コムとなる出力光(Pout)を出力する光周波数コム発生装置である。
 本発明の光周波数コム発生装置を構成する光変調器は、当該技術分野において公知の技術により製造することが可能である。電気光学効果を有する材料を用いた基板としては、ニオブ酸リチウム、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)、及び石英系の材料、並びにこれらの材料を組み合わせた基板が利用可能である。特に、電気光学効果の高いニオブ酸リチウム(LN)結晶が好適に利用される。
 基板に光導波路を形成する方法としては、Tiなどを熱拡散法やプロトン交換法などで基板表面に拡散させることにより形成することができる。また、光導波路以外の基板をエッチングしたり、光導波路の両側に溝を形成するなど、基板に光導波路に対応する部分を凸状としたリッジ形状の導波路を利用することも可能である。
 光変調器の光変調部41,42や位相調整部43では、基板上に信号電極や接地電極などの変調電極が形成される。このような電極は、Ti・Auの電極パターンの形成及び金メッキ方法などにより形成することが可能である。さらに、必要に応じて光導波路形成後の基板表面に誘電体SiO等のバッファ層を設け、バッファ層の上に変調電極を形成することも可能である。
 デュアル駆動のマッハツェンダー型光変調器の出力時間波形は、以下の式(5)で与えられる。
Figure JPOXMLDOC01-appb-M000005
 式(5)において、Ein、ωは、それぞれ入力光の電界強度と光周波数を表している。これにより、光出力パワーPoutを求めると、式(6)が得られ、さらに、光出力パワーの時間平均Paveを求めると式(7)が得られる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 上記の式(7)よりΔθ,ΔAをパラメータとして、Pave/Pinをプロットすると、図3に示すようなグラフとなる。これより式(2)が成立する条件は、極大値、極小値となる特異点ではないため、損失変動などにより最適制御点がずれても判別できないことが分かる。
 ところで、式(2)の条件であるΔθ=π/2となる時、式(7)の第2項は0となりPaveはΔAとは無関係に一定の値になっていることが分かる。つまり、図2の一方の光変調部に印加されるRF信号の振幅値を変動させて、ΔAを変化させても、出力光のパワーは変化しない。
 したがって、ΔAを変化させ、出力光のパワー変動をモニタし、該変動が最小になるようにΔθを調整すれば、Δθ=π/2の最適条件に光変調器をセットすることが可能となる。
 本発明の光周波数コム発生装置では、図2に示すように、少なくとも一方の光変調部に印加するRF信号の電圧振幅を調整する振幅調整手段22と、光変調器からの出力光Poutの強度をモニタするモニタ手段21と、該振幅調整手段を制御して各光変調部に印加されるRF信号の電圧振幅の差を変化させ、該電圧振幅差の変化に対応する該出力光の変化を、該モニタ手段の出力信号から検出し、該検出結果に基づき該位相調整部43を制御して該位相差を調整するバイアス制御回路20を有することを特徴とする。
 振幅調整手段22は、振幅可変のアンプ又はアッテネータを用いることができる。振幅可変機構は、モニタ手段の受光素子21が追従できる程度の低周波で良いため、電気的又は機械的のいずれの機構でも利用可能である。
 図2のバイアス制御回路20では、光周波数コム発生装置に対する駆動制御方法としては、以下のような手順でバイアス調整を行う。
(1)振幅調整手段22を制御することで、一方の光変調部42に印加するRF信号の電圧振幅を調整すると共に、光変調器からの出力光の強度Poutをモニタする。(振幅調整・出力光モニタステップ)
(2)上記(1)の「振幅調整・出力光モニタステップ」における該出力光の強度変化の幅が所定値となるように、該位相調整部43に印加するバイアス電圧を制御する。(バイアス制御ステップ)
(3)上記(2)の「バイアス制御ステップ」において、該所定値を最小の変化値になるよう設定することで、上述したΔθ=π/2の最適条件を満足する光周波数コムを容易に得ることが可能となる。
 本発明の光周波数コム発生装置では、さらに、ΔAを検出するため、光変調部41,42に印加するRF信号をモニタする手段を付加することも可能である。
 さらに、上記式(7)に着目すると、Δθ≠π/2の場合でも、各Δθの点において、ΔAを0~1.2πまで変動させると、図4に示すような出力光のパワー変動が発生する。このグラフから、上記バイアス調整のステップ(2)「バイアス制御ステップ」の所定値を利用し、ΔAを変化させた際の出力光の強度の最大値と最小値の比が、図4のグラフの縦軸のいずれかの値になるように設定することで、その条件を満足するΔθの値に調整することが可能となる。
 特に、光周波数コムでは、ΔθやΔAの値は、共にπ/2に近いところで使用される。このため、図4に示すように、出力光のパワー変動はπ/2の近傍では、Δθにほぼリニアで推移するため、ΔAに対して、出力光の強度の最大値と最小値の比がある値になるように制御することで、容易に、Δθを設定することができる。
 以上のように、Δθを最適駆動条件又は、所定の条件に設定し、その後、ΔAを必要な値に設定することで、容易に光周波数コムの周波数強度分布を、例えば、平坦化するなどの調整を行うことができる。なお、RF信号をモニタするなどにより、より高精度にΔAを制御できることは言うまでもない。
 電気光学効果を有する基板である、LN基板などを利用した光変調器では、DCドリフト現象が発生する。このため、長期的に安定動作をさせるためには、バイアス点の制御は必要不可欠である。通常の光通信用途の光変調器では、低周波信号をバイアス電圧に重畳して、該低周波に対応した光出力をモニタすることで容易にバイアス点を最適化することが可能である。しかしながら、光周波数コム発生装置として使用する場合には、光出力のパワーのモニタからはバイアス点が明らかではないため、このようなバイアス制御方法は利用できない。このため、本発明のような光周波数コム発生装置や光周波数コム発生方法と利用することで、従来のような、光パワーモニタを入力光用と出力光用の2か所から、出力光用の1か所のみとでき、さらに、従来は必須のキャリブレーションが不要となる。しかも、光損失増加など光変調器の特性が変わった場合には、従来のもの制御が不能であったが、本発明のものでは、特性が途中で変化しても駆動制御を行うことが可能となる。
 本発明では、上述した光周波数コム発生装置を利用し、該光周波数コム発生装置から出力される出力光を入力し、該出力光の各周波数成分の位相及び強度を制御する分散補償器を設置することで、光パルス発生装置を構成することが可能である。これにより、光周波数コム発生装置で高精度に駆動制御された光周波数コムを利用するため、光パルスの波形をより高精度に制御した光パルス発生装置を提供することが可能となる。
 当然、上述した光周波数コム発生方法を利用し、当該方法で発生させた出力光を、該出力光の各周波数成分の位相及び強度を制御して所定の光パルスに成形する光パルス・ステップを付加するだけで、高精度にパルス波形を制御可能な光パルス発生方法を提供することが可能となる。
 以上説明したように、本発明によれば、光周波数コムの駆動条件を精確に制御することが可能であり、かつ、制御に係る構成が複雑化せず、高コスト化しない、光周波数コム発生装置及びそれを用いた光パルス発生装置、並びに光周波数コム発生方法及びそれを用いた光パルス発生方法を提供することが可能となる。
1 連続光光源
2 偏波コントローラ
4 光変調器
5 光カプラー
6 RF信号源
7 分配器
20 バイアス制御回路
21 モニタ手段
22 振幅調整手段
41,42 光変調部
43 位相調整部

Claims (5)

  1.  電気光学効果を有する基板と、該基板に形成されたマッハツェンダー型光導波路と、該マッハツェンダー型光導波路の2つの分岐導波路を伝搬する光波を独立に変調する2つの光変調部と、該2つの分岐導波路を伝搬する光波の位相差を制御する位相調整部と、該マッハツェンダー型光導波路に連続光を入力し、該2つの光変調部にRF信号を印加し、該マッハツェンダー型導波路から光周波数コムとなる出力光を出力する光周波数コム発生装置において、
     少なくとも一方の光変調部に印加するRF信号の電圧振幅を調整する振幅調整手段と、
     該出力光の強度をモニタするモニタ手段と、
     該振幅調整手段を制御して各光変調部に印加されるRF信号の電圧振幅の差を変化させ、該電圧振幅差の変化に対応する該出力光の変化を、該モニタ手段の出力信号から検出し、該検出結果に基づき該位相調整部を制御して該位相差を調整するバイアス制御回路を有することを特徴とする光周波数コム発生装置。
  2.  請求項1に記載の光周波数コム発生装置と、該光周波数コム発生装置から出力される該出力光を入力し、該出力光の各周波数成分の位相及び強度を制御する分散補償器と有することを特徴とする光パルス発生装置。
  3.  電気光学効果を有する基板と、該基板に形成されたマッハツェンダー型光導波路と、該マッハツェンダー型光導波路の2つの分岐導波路を伝搬する光波を独立に変調する2つの光変調部と、該2つの分岐導波路を伝搬する光波の位相差を制御する位相調整部と、該マッハツェンダー型光導波路に連続光を入力し、該2つの光変調部にRF信号を印加し、該マッハツェンダー型導波路から光周波数コムとなる出力光を出力する光周波数コム発生装置を利用する光周波数コム発生方法において、
     少なくとも一方の光変調部に印加するRF信号の電圧振幅を調整すると共に、該出力光の強度をモニタする振幅調整・出力光モニタステップと、
     該振幅調整・出力光モニタステップにおける該出力光の強度変化の幅が所定値となるように、該位相調整部を制御するバイアス制御ステップとを有することを特徴とする光周波数コム発生方法。
  4.  請求項3に記載の光周波数コム発生方法において、該所定値が最小値であることを特徴とする光周波数コム発生方法。
  5.  請求項3又は4に記載の光周波数コム発生方法で発生させた出力光を、該出力光の各周波数成分の位相及び強度を制御して所定の光パルスに成形する光パルス・ステップとを有する光パルス発生方法。
PCT/JP2011/053669 2010-02-26 2011-02-21 光周波数コム発生装置及びそれを用いた光パルス発生装置、並びに光周波数コム発生方法及びそれを用いた光パルス発生方法 WO2011105324A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/581,364 US9002145B2 (en) 2010-02-26 2011-02-21 Optical frequency comb generating device and optical pulse generating device using same, and optical frequency comb generating method and optical pulse generating method using same
EP11747285.2A EP2541307A4 (en) 2010-02-26 2011-02-21 DEVICE FOR PRODUCING AN OPTICAL FREQUENCY COMB AND DEVICE FOR GENERATING OPTICAL IMPULSES THEREFOR AND METHOD FOR PRODUCING AN OPTICAL FREQUENCY COMB AND METHOD FOR GENERATING OPTICAL IMPULSES THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010041610A JP4949496B2 (ja) 2010-02-26 2010-02-26 光周波数コム発生装置及びそれを用いた光パルス発生装置、並びに光周波数コム発生方法及びそれを用いた光パルス発生方法
JP2010-041610 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011105324A1 true WO2011105324A1 (ja) 2011-09-01

Family

ID=44506732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053669 WO2011105324A1 (ja) 2010-02-26 2011-02-21 光周波数コム発生装置及びそれを用いた光パルス発生装置、並びに光周波数コム発生方法及びそれを用いた光パルス発生方法

Country Status (4)

Country Link
US (1) US9002145B2 (ja)
EP (1) EP2541307A4 (ja)
JP (1) JP4949496B2 (ja)
WO (1) WO2011105324A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120229886A1 (en) * 2011-03-07 2012-09-13 Alcatel-Lucent, Usa Inc. Tunable optical frequency comb generator
US8970724B2 (en) 2013-03-15 2015-03-03 National Security Technologies, Llc Mach-zehnder based optical marker/comb generator for streak camera calibration
CN104914393A (zh) * 2014-12-30 2015-09-16 北京无线电计量测试研究所 一种用于梳状谱发生器相位谱校准的装置及方法
CN112104426A (zh) * 2019-06-17 2020-12-18 西安电子科技大学 一种基于偏振复用光频疏和集成相干接收机的微波光子信道化接收方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102884738B (zh) * 2011-04-20 2015-04-08 华为技术有限公司 基于微波光子技术的信号接收装置和信号接收方法
US9366937B2 (en) * 2012-01-13 2016-06-14 Sumitomo Osaka Cement Co., Ltd. Optical pulse-generator
JP5370559B2 (ja) * 2012-03-14 2013-12-18 住友大阪セメント株式会社 光パルス発生装置及び光パルス発生方法
WO2013179528A1 (ja) * 2012-05-31 2013-12-05 日本電気株式会社 光信号送信装置、光送信方法、及び光信号送信装置の調整方法
WO2014141337A1 (ja) * 2013-03-15 2014-09-18 日本電気株式会社 光変調器、光送信器、光送受信システム及び光変調器の制御方法
KR20140147321A (ko) * 2013-06-19 2014-12-30 한국전자통신연구원 파장 훑음 광원 장치 및 그것의 작동 방법
JP2016045340A (ja) * 2014-08-22 2016-04-04 富士通オプティカルコンポーネンツ株式会社 光通信装置及び光変調器の制御方法
JP6507524B2 (ja) * 2014-08-22 2019-05-08 富士通オプティカルコンポーネンツ株式会社 光通信装置及び光変調器の制御方法
JP2016099610A (ja) * 2014-11-26 2016-05-30 富士通オプティカルコンポーネンツ株式会社 光通信装置及び光変調器の制御方法
US10209537B2 (en) * 2016-09-09 2019-02-19 Huawei Technologies Canada Co., Ltd. Method and apparatus for monitoring and controlling a photonic switch using phase sweeping
US10401655B2 (en) * 2016-12-16 2019-09-03 Elenion Technologies, Llc Bias control of optical modulators
US10684311B2 (en) * 2017-05-10 2020-06-16 Tektronix, Inc. High input impedance electro-optic sensor
GB201821175D0 (en) * 2018-12-24 2019-02-06 Leonardo Mw Ltd An electro-optical modular
JP6956883B2 (ja) * 2018-12-25 2021-11-02 三菱電機株式会社 光送信装置
EP3706259B1 (en) * 2019-03-07 2022-02-23 Menlo Systems GmbH Optical frequency comb assembly and method
JP2022115726A (ja) * 2021-01-28 2022-08-09 住友電気工業株式会社 光変調器の製造方法、試験方法、および試験プログラム、ならびに光送信装置
CN113281917B (zh) * 2021-05-14 2022-11-04 天津大学 一种光学频率梳生成系统及方法
CN114268373B (zh) * 2021-11-23 2023-04-07 北京理工大学 基于双边带相位差分稳定的光频梳产生装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248660A (ja) 2006-03-15 2007-09-27 National Institute Of Information & Communication Technology 超平坦光周波数コム信号発生器
JP2008197639A (ja) * 2007-01-15 2008-08-28 Fujitsu Ltd 光送信装置およびその制御方法
JP2009175576A (ja) * 2008-01-28 2009-08-06 National Institute Of Information & Communication Technology 超平坦光周波数コム信号発生器
JP2009229926A (ja) 2008-03-24 2009-10-08 Sumitomo Osaka Cement Co Ltd 光変調器の半波長電圧の測定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028659A1 (en) * 1996-12-23 1998-07-02 Dsc Communications A/S A method and an apparatus for modulating light in a modulator circuit comprising a mach-zehnder modulator
US6539038B1 (en) * 2000-11-13 2003-03-25 Jds Uniphase Corporation Reference frequency quadrature phase-based control of drive level and DC bias of laser modulator
WO2006137828A2 (en) * 2004-08-05 2006-12-28 Jds Uniphase Corporation Bias-control for optical mach-zehnder modulators with voltage-induced optical absorption

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248660A (ja) 2006-03-15 2007-09-27 National Institute Of Information & Communication Technology 超平坦光周波数コム信号発生器
JP2008197639A (ja) * 2007-01-15 2008-08-28 Fujitsu Ltd 光送信装置およびその制御方法
JP2009175576A (ja) * 2008-01-28 2009-08-06 National Institute Of Information & Communication Technology 超平坦光周波数コム信号発生器
JP2009229926A (ja) 2008-03-24 2009-10-08 Sumitomo Osaka Cement Co Ltd 光変調器の半波長電圧の測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2541307A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120229886A1 (en) * 2011-03-07 2012-09-13 Alcatel-Lucent, Usa Inc. Tunable optical frequency comb generator
US8760752B2 (en) * 2011-03-07 2014-06-24 Alcatel Lucent Tunable optical frequency comb generator
US8970724B2 (en) 2013-03-15 2015-03-03 National Security Technologies, Llc Mach-zehnder based optical marker/comb generator for streak camera calibration
CN104914393A (zh) * 2014-12-30 2015-09-16 北京无线电计量测试研究所 一种用于梳状谱发生器相位谱校准的装置及方法
CN112104426A (zh) * 2019-06-17 2020-12-18 西安电子科技大学 一种基于偏振复用光频疏和集成相干接收机的微波光子信道化接收方法
CN112104426B (zh) * 2019-06-17 2021-06-01 西安电子科技大学 基于偏振复用光频梳和icr的微波光子信道化接收方法

Also Published As

Publication number Publication date
JP4949496B2 (ja) 2012-06-06
US9002145B2 (en) 2015-04-07
EP2541307A4 (en) 2014-07-30
US20130051723A1 (en) 2013-02-28
EP2541307A1 (en) 2013-01-02
JP2011180192A (ja) 2011-09-15

Similar Documents

Publication Publication Date Title
JP4949496B2 (ja) 光周波数コム発生装置及びそれを用いた光パルス発生装置、並びに光周波数コム発生方法及びそれを用いた光パルス発生方法
US7945173B2 (en) Control apparatus and control method for optical modulator
JP4771216B2 (ja) 超平坦光周波数コム信号発生器
US7853153B2 (en) Fourth harmonic generating system using optical double side-band suppressed carrier modulator
US20130195394A1 (en) Optical modulator
US10498457B2 (en) Optical carrier-suppressed signal generator
JP2018042099A (ja) コヒーレント光受信器の測定方法
EP1956353B1 (en) Light intensity measurement device calibration method and device
US10180617B1 (en) Optical modulating apparatus and method for controlling optical modulator
US20090097795A1 (en) Optical modulation device
CN110411715B (zh) 用于确定amzi相位调制器半波电压的装置和方法
JP2007127745A (ja) 光変調器
JP2006126759A (ja) 光変調器
JP2013210278A (ja) 電界計測装置
US10965377B1 (en) Thermal tuning and quadrature control using active extinction ratio tracking
US20060067601A1 (en) Method of driving mach-zehnder light modulator and light modulating device
WO2023144868A1 (ja) 光パルス生成装置及び生成方法
JP2012078413A (ja) 光周波数コム発生装置、光パルス発生装置、及び光パルス発生装置の制御方法
WO2023233528A1 (ja) 光短パルス生成装置、光短パルス生成方法、及びプログラム
JP2013044991A (ja) 光サブキャリア生成器
JP2010002850A (ja) 光変調器のバイアス制御方法および光変調器
JP4139831B2 (ja) 光信号発生装置
JP2013210522A (ja) Bocdaに用いる光変調器のバイアス制御方法及び装置
JP2017125867A (ja) 光送信装置及び電源電圧制御方法
JP2014098830A (ja) 光周波数コム発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011747285

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011747285

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13581364

Country of ref document: US