WO2011105321A1 - 電界計測装置 - Google Patents

電界計測装置 Download PDF

Info

Publication number
WO2011105321A1
WO2011105321A1 PCT/JP2011/053659 JP2011053659W WO2011105321A1 WO 2011105321 A1 WO2011105321 A1 WO 2011105321A1 JP 2011053659 W JP2011053659 W JP 2011053659W WO 2011105321 A1 WO2011105321 A1 WO 2011105321A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
light
detection result
output signal
intensity modulator
Prior art date
Application number
PCT/JP2011/053659
Other languages
English (en)
French (fr)
Inventor
徳一 宮崎
猛 坂井
勝仁 牟禮
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to US13/580,725 priority Critical patent/US20130045008A1/en
Priority to KR1020127022045A priority patent/KR20130036175A/ko
Priority to CN2011800107408A priority patent/CN102770773A/zh
Publication of WO2011105321A1 publication Critical patent/WO2011105321A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0871Complete apparatus or systems; circuits, e.g. receivers or amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • G01R29/0885Sensors; antennas; probes; detectors using optical probes, e.g. electro-optical, luminescent, glow discharge, or optical interferometers

Definitions

  • the present invention relates to an electric field measurement device, and in particular, is used for analog optical transmission technology for the field of electromagnetic field measurement, such as measurement of radiated electromagnetic wave noise of electronic equipment, evaluation of electromagnetic wave measurement equipment such as an anechoic chamber, and antenna evaluation.
  • the present invention relates to an electric field measurement device.
  • Measurement of radiated electromagnetic wave noise and the like is performed in a measurement environment in which electromagnetic waves outside the measurement target are suppressed using equipment such as an anechoic chamber. For this reason, the signal received by the receiving antenna in the dark room is transmitted to the adjacent measurement room, and is measured by the measuring device installed there.
  • the noise level emitted by the device to be measured is often an unexpected level, and various measurements are performed using the same equipment. Therefore, the range of the signal level to be transmitted may be very large, and there may be an intensity difference of several tens of dB.
  • optical fiber transmission devices use components such as amplifiers and optical modulators that cause saturation or distortion in the output depending on the input level, it is necessary to pay attention to the input to the transmission device. Therefore, in the past, an appropriate attenuator was installed at the input unit that inputs the signal from the antenna to the transmission device while checking the measurement result of the measurement device for saturation and distortion due to the signal level at each measurement. It was installed and measured.
  • the problem to be solved by the present invention is to solve the above-mentioned problems, and it is easy to check the output saturation and distortion state of the transmission device according to the input signal level from the antenna, and in an installation such as an anechoic chamber. It is an object to provide an electric field measuring device that does not interfere with the electric field measurement of the device due to noise from the measuring device itself.
  • an invention according to claim 1 is an electric field measuring apparatus for measuring the electric field intensity of an electromagnetic wave generated from a device under test installed in an area for detecting an electromagnetic wave.
  • An RF amplifier that amplifies the output signal of the antenna, a signal intensity detector that detects whether or not the intensity of the output signal exceeds a predetermined level, and a detection result signal based on the detection result of the signal intensity detector
  • a signal generator that generates a signal
  • a multiplexer that combines the output signal from the RF amplifier, the detection result signal, and a DC bias voltage
  • a Mach-Zehnder that performs optical modulation based on the output signal of the multiplexer
  • a light intensity modulator having an optical waveguide, and outside the area, a light source unit, a light receiving unit that receives output light from the light intensity modulator, and an intensity change of an output signal from the light receiving unit Based on the light
  • a DC bias control unit for controlling a DC bias voltage supplied to the degree modulator, and a display
  • an electric field measuring apparatus for measuring an electric field intensity of an electromagnetic wave generated from an apparatus to be measured installed in an area for detecting an electromagnetic wave, wherein the area includes an antenna and an output signal of the antenna.
  • An RF amplifier that amplifies the signal
  • a signal intensity detector that detects whether the intensity of the output signal exceeds a predetermined level
  • a signal generator that generates a detection result signal based on the detection result of the signal intensity detector
  • a DC bias control unit for controlling a DC bias
  • an electric field measuring apparatus for measuring an electric field intensity of an electromagnetic wave generated from a device under measurement installed in an area for detecting an electromagnetic wave, wherein the area includes an antenna and an output signal of the antenna.
  • An RF amplifier that amplifies the signal
  • a signal intensity detector that detects whether the intensity of the output signal exceeds a predetermined level
  • a signal generator that generates a detection result signal based on the detection result of the signal intensity detector
  • a battery for driving at least one of a DC bias control unit that controls
  • the invention according to claim 4 is the electric field measurement apparatus according to any one of claims 1 to 3, wherein the detection result signal has a frequency of less than 30 MHz.
  • the invention according to claim 5 is the electric field measurement apparatus according to any one of claims 1 to 4, further comprising an attenuator that attenuates the intensity of the output signal of the antenna based on the result of the signal intensity detector.
  • the invention according to claim 6 is the electric field measurement apparatus according to any one of claims 1 to 4, further comprising an RF amplification control unit that controls an output of the RF amplifier based on a result of the signal intensity detector.
  • an electric field measuring apparatus for measuring the electric field strength of an electromagnetic wave generated from a device to be measured installed in an area for detecting an electromagnetic wave, wherein the area includes an antenna and an output signal of the antenna.
  • An RF amplifier that amplifies the signal
  • a signal intensity detector that detects whether the intensity of the output signal exceeds a predetermined level
  • a signal generator that generates a detection result signal based on the detection result of the signal intensity detector
  • a light source unit a light receiving unit that receives output light from the light intensity modulator, and the light intensity modulator based on a change in intensity of an output signal from the light receiving unit.
  • a DC bias control unit that controls the C bias voltage and a display that detects a signal based on the detection result signal from the output signal from the light receiving unit and displays the detection result are arranged, and a light wave is transmitted from the light source unit.
  • An optical fiber is introduced into the light intensity modulator, a light wave is derived from the light intensity modulator to the light receiving unit through the optical fiber, and a DC bias voltage is supplied from the DC bias control unit to the light intensity modulator through a feeder line. Therefore, output saturation and distortion of a transmission apparatus such as an RF amplifier and an optical modulator due to an excessive input signal level from the antenna can be easily detected.
  • the signal level from the antenna is measured by a head unit (configured with members such as an optical modulator other than the antenna) installed in the area. If the signal level exceeds a certain standard, it is placed outside the area.
  • the controller unit (comprising members such as a light source unit, a light receiving unit, and a DC bias control unit arranged outside the area) performs warning communication of the input level, and the controller unit that receives this performs warning display of the input signal level. It becomes possible.
  • the transmission of the detection result signal for detecting the input signal level can also be shared with the optical transmission system of the RF signal that is the output signal of the antenna, without the addition of large components, and in order to use optical transmission, Does not disturb the electromagnetic field.
  • an electric field measuring apparatus for measuring an electric field intensity of an electromagnetic wave generated from a device under test installed in an area for detecting an electromagnetic wave, wherein the area includes an antenna and an output signal of the antenna.
  • An RF amplifier that amplifies the signal
  • a signal intensity detector that detects whether the intensity of the output signal exceeds a predetermined level
  • a signal generator that generates a detection result signal based on the detection result of the signal intensity detector
  • a DC bias control unit for controlling a DC bias
  • a battery for driving at least one is disposed, and outside the area, from the light source unit, the second light receiving unit that receives the output light from the light intensity modulator, and the second light receiving unit And a display device for detecting a signal based on the detection result signal from the output signal and displaying the detection result.
  • a light wave from the light source unit is introduced into the light intensity modulator by an optical fiber, and the light intensity modulation is performed.
  • output saturation or distortion of a transmission device such as an RF amplifier or an optical modulator due to an excessive input signal level from the antenna Simple detection That.
  • the signal level from the antenna is measured by a head unit (configured with members such as an optical modulator other than the antenna) installed in the area.
  • the controller unit (comprising members such as a light source unit and a light receiving unit arranged outside the area) performs warning communication of the input level, and the controller unit that receives this can perform warning display of the input signal level. .
  • the transmission of the detection result signal that detects the input signal level can also be shared with the optical transmission system of the RF signal that is the output signal of the antenna, no additional components are added, and there is no need to use the optical transmission in the surroundings. Does not disturb the electromagnetic field.
  • a battery for driving at least one of the RF amplifier, the signal intensity detector, the signal generator, the first light receiving unit, and the DC bias control unit is arranged in the area, thereby supplying power from outside the area. It becomes possible to omit an electric wire, and it is also possible to connect the inside and outside of the area with only an optical fiber.
  • an electric field measuring apparatus for measuring the electric field strength of an electromagnetic wave generated from a device under test installed in an area for detecting an electromagnetic wave, wherein the area includes an antenna and an output signal of the antenna.
  • An RF amplifier that amplifies the signal
  • a signal intensity detector that detects whether the intensity of the output signal exceeds a predetermined level
  • a signal generator that generates a detection result signal based on the detection result of the signal intensity detector
  • a DC bias control unit for controlling a DC bias voltage, and for driving at
  • a battery is disposed, outside the area, a light source unit, a second light receiving unit that receives output light from the light intensity modulator, and an output signal from the second light receiving unit to the detection result signal
  • a display for displaying the detection result a light wave from the light source unit is introduced into the light intensity modulator by an optical fiber, and a light wave from the light intensity modulator is transmitted to the light receiving unit. Since it is derived by the fiber, similarly to the invention according to claim 1 or 2, output saturation and distortion of a transmission apparatus such as an RF amplifier and an optical modulator due to an excessive input signal level from the antenna can be easily detected.
  • the signal level from the antenna is measured by a head unit (configured with members such as an optical modulator other than the antenna) installed in the area.
  • the controller unit (comprising members such as a light source unit and a light receiving unit arranged outside the area) performs warning communication of the input level, and the controller unit that receives this can perform warning display of the input signal level. .
  • the transmission of the detection result signal that detects the input signal level can also be shared with the optical transmission system of the RF signal that is the output signal of the antenna, no additional components are added, and there is no need to use the optical transmission in the surroundings. Does not disturb the electromagnetic field.
  • a battery for driving at least one of the RF amplifier, the signal intensity detector, the signal generator, the first light receiving unit, and the DC bias control unit is arranged in the area, thereby supplying power from outside the area. It becomes possible to omit an electric wire, and it is also possible to connect the inside and outside of the area with only an optical fiber.
  • the first light receiving unit is built in the light intensity modulator, the head unit disposed in the area can be configured more compactly and a part of the output light from the light intensity modulator is branched. And the loss of output light can be suppressed.
  • the detection result signal since the detection result signal has a frequency of less than 30 MHz, it is detected as an electromagnetic wave noise received by the antenna by optical modulation at a frequency outside the band of the measured radiated electromagnetic noise (30 MHz or more). Interference with the result signal can be suppressed, and signal transmission to the controller unit can be performed more accurately.
  • the antenna since the antenna has an attenuator that attenuates the strength of the output signal of the antenna based on the result of the signal strength detector, the strength of the output signal of the antenna entering the RF amplifier or the optical modulator is automatically set. It is also possible to suppress the output saturation and distortion of the transmission device.
  • the RF amplification control unit that controls the output of the RF amplifier is provided based on the result of the signal strength detector, the strength of the output signal of the antenna entering the optical modulator is automatically adjusted, It is also possible to suppress output saturation and distortion of the transmission apparatus.
  • FIG. 1 is a diagram showing an outline of an electric field measuring apparatus according to the present invention.
  • the electric field strength of the electromagnetic wave (dashed arrow) generated from the device under test (EUT) 8 set in the area for detecting the electromagnetic wave such as the anechoic chamber 10 is measured.
  • Reference numeral 9 denotes a mounting table on which a device to be measured such as a turntable is mounted.
  • the “area for detecting electromagnetic waves” in the present invention is not limited to an anechoic chamber, and means a space in which the device under measurement is installed in order to detect electromagnetic waves generated by the device under measurement, such as an open site. .
  • “outside the area where electromagnetic waves are detected” means an area that does not become an obstacle when measuring the electromagnetic waves generated by the device under measurement, outside the anechoic chamber, at a location sufficiently away from the device under measurement, May be a space in which the main body and the measuring device are housed and the electromagnetic wave generated from the device is prevented from leaking into the “area for detecting the electromagnetic wave” as in the measurement chamber described later.
  • an anechoic chamber and a measurement chamber will be described as examples.
  • an antenna 1 and a head portion 2 incorporating a light intensity modulator having a Mach-Zehnder type optical waveguide are arranged.
  • the output signal of the antenna 1 is applied to the modulation electrode of the light intensity modulator to change the refractive index of the Mach-Zehnder type optical waveguide. Due to this refractive index change, the phase of the light wave propagating through the optical waveguide is modulated, and the light intensity of the light wave emitted from the Mach-Zehnder type optical waveguide is modulated.
  • Reference numeral 3 denotes antenna positioning means for arranging the antenna 1 at a predetermined position.
  • a traveling wave optical modulator in which an optical waveguide and a modulation electrode are formed on a substrate having an electro-optic effect can be suitably used.
  • the substrate having an electro-optic effect for example, lithium niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate), and a quartz-based material can be used.
  • the Mach-Zehnder type optical waveguide can be formed on a substrate having an electro-optic effect by diffusing Ti or the like on the substrate surface by a thermal diffusion method, a proton exchange method, or the like, or forming a ridge type convex portion.
  • the modulation electrode includes a signal electrode for applying an output signal from the antenna and a ground electrode, and can be formed on the substrate by forming a Ti / Au electrode pattern, a gold plating method, or the like. Furthermore, if necessary, a buffer layer such as dielectric SiO 2 may be provided on the surface of the substrate after the optical waveguide is formed to suppress absorption and scattering of light waves by the electrodes formed on the upper side of the optical waveguide.
  • an electrode for controlling the bias point may be separately incorporated, and a DC bias voltage may be applied to such an electrode.
  • a measurement chamber 11 is adjacent to the outside of the anechoic chamber 10, and a controller unit 6 of a measuring device that controls the head unit 2 and a measuring instrument 7 such as an EMI receiver are installed in the measurement chamber 11.
  • the head unit 2 and the controller unit 6 are joined by a composite wire such as an optical fiber or a feeder line.
  • Reference numeral 5 is a low-pass filter for interrupting an AC signal provided on the power supply line, and is configured so that an AC signal does not enter the anechoic chamber when the controller unit 6 supplies a DC bias voltage or the like to the head unit. Yes.
  • FIG. 2 is a diagram for explaining the configuration of the head unit 2 and the controller unit 6 in more detail.
  • An output signal (30 MHz or more) from the receiving antenna is introduced into the head unit 2, and the output signal is distributed to the amplifier and the RF detector by the RF distributor.
  • the amplifier is an RF amplifier that amplifies the output signal of the antenna.
  • the RF detector detects the intensity of the output signal and introduces the detection signal into a level detection circuit to detect whether or not the intensity of the output signal exceeds a predetermined level.
  • the RF detector and the level detection circuit are combined to constitute a signal intensity detector.
  • a signal generator for generating a detection result signal based on the detection result of the signal intensity detector is provided. For example, in the signal generator, when the optical modulator exceeds a certain level causing distortion, intensity modulation is performed with a low-frequency signal (less than 20 MHz) outside the band of the output signal from the receiving antenna.
  • the output signal from the amplifier that is the RF amplifier, the detection result signal from the signal generator, and the DC bias voltage from the DC bias control circuit described later are combined.
  • the multiplexer is indicated by + in the figure.
  • An optical intensity modulator (MZ modulator) having a Mach-Zehnder optical waveguide that performs optical modulation based on the output signal of the multiplexer is disposed.
  • the controller unit 6 is provided with a semiconductor laser (LD) which is a light source unit and an LD control circuit which is a control circuit for driving the semiconductor laser, and a constant level of continuous (CW) light is output from the semiconductor laser.
  • LD semiconductor laser
  • CW constant level of continuous
  • the controller unit 6 is provided with a light receiving unit (high-speed PD, monitor PD) that receives output light from the MZ type modulator that is a light intensity modulator.
  • the light receiving unit is composed of two light receiving elements (PD).
  • the light receiving unit is composed of one PD, and the output signal from the PD is a high frequency signal of 30 MHz or more and a low frequency signal of less than 30 MHz. It is also possible to separate them.
  • a signal of 30 MHz or higher corresponding to the output signal of the antenna is detected, and the signal that has passed through the high-frequency pass filter (HPF) is amplified by an amplifier and introduced into the measuring instrument 7.
  • HPF high-frequency pass filter
  • the monitor PD signal is a low-frequency signal of less than 30 MHz, and is branched into two by a branch element such as Bias-T, and then output to the DC bias control circuit and the monitor detection circuit, respectively.
  • a transmission filter of a specific frequency band that transmits a signal related to the DC bias control of the optical modulator is provided in the previous stage of the DC bias control circuit, and a detection result signal generated by the signal generator is provided in the previous stage of the monitor detection circuit. It is preferable to insert a transmission filter of another specific frequency band that transmits the light.
  • these transmission filters can be incorporated in a DC bias control circuit or a monitor detection circuit.
  • the DC bias voltage supplied to the light intensity modulator is controlled based on the intensity change of the output signal from the monitor PD serving as the light receiving unit.
  • the DC bias control unit supplies a DC bias voltage to the light intensity modulator via the power supply line.
  • V ⁇ modulation curve the relationship curve (V ⁇ modulation curve) between the drive voltage of the light intensity modulator and the light intensity output is a sine function
  • the half point of the maximum light intensity is the center of the bias point adjustment.
  • the center point of the bias is not limited to such a 1 ⁇ 2 point, and an intensity level lower than the 1 ⁇ 2 point can be adopted in consideration of the shot noise of the monitor PD.
  • the bias point is adjusted as necessary. Specifically, a light wave is introduced from the LD of the light source unit into the light intensity modulator, and a bias voltage applied to the light intensity modulator is applied. , And the value at which the output level of the monitor light is highest is measured, and for example, a bias voltage indicating a value that is 1 ⁇ 2 of the highest value is found.
  • an AC signal such as a low-frequency signal frequently used in bias point control of the conventional optical modulator becomes unnecessary, and noise emission in the anechoic chamber can be further suppressed. It becomes possible.
  • the signal for the DC bias control circuit and the signal for the monitor detection circuit have different frequencies in advance. It is preferable to set so.
  • the detection result signal generated by the signal generator is detected by the monitor detection circuit from the output signal from the monitor PD which is the light receiving unit. For example, a low frequency signal (less than 30 MHz) generated when the output signal from the receiving antenna exceeds a predetermined level is detected, and an over-input state is displayed on the display device based on the detection result.
  • a variable attenuator for attenuating the intensity of the output signal of the receiving antenna is disposed between the receiving antenna and the RF distributor or between the RF distributor and the amplifier as shown in FIG. As in FIG. 2, when the intensity of the output signal of the receiving antenna exceeds a predetermined level, the variable attenuator is controlled based on the result of the signal intensity detector composed of the RF detector and the level detection circuit. In addition, the signal level input to the RF amplifier or the light intensity modulator can be adjusted.
  • a configuration for controlling the output of the RF amplifier based on the result of the signal intensity detector can be provided, and the variable attenuator can be omitted.
  • the head unit 2 is driven by supplying power to a light receiving element (PD) as a first light receiving unit, a bias control circuit as a DC bias control unit, and various components in the head.
  • a battery as the power source.
  • the battery drives an amplifier that is an RF amplifier, an RF detector that constitutes a signal intensity detector, a level detection circuit, a signal generator, and at least one of a first light receiving unit and a DC bias control unit. is doing.
  • DC bias control-related parts are incorporated in the head part, and a power source for driving various parts in the head part is also arranged in the head part. Since only the fiber is connected, a simpler configuration can be achieved and handling of various members is facilitated.
  • a part of the output light from the MZ type modulator is branched by a branching unit and input to a light receiving element (PD) which is a first light receiving unit.
  • the signal from the first light receiving unit is input to the bias control circuit and is used to control the DC bias of the MZ type modulator as in the above-described embodiment of FIG.
  • the MZ type modulator has a module structure housed in a metal casing.
  • the first light receiving section shown in FIG. 4 can be incorporated in an MZ type modulator, which is a light intensity modulator, and accommodated in the same housing.
  • the light receiving unit arranged in a part of the modulator is configured to monitor the radiation mode light from the multiplexing unit of the Mach-Zehnder type waveguide, or monitor the evanescent light of the light wave propagating through the optical waveguide, for example.
  • Various configurations and arrangements can be employed.
  • the size of the head unit can be reduced, and the generation of electromagnetic waves in the periphery can be suppressed, and more accurate measurement can be performed.
  • the present invention it is easy to confirm the output saturation and distortion state of the transmission device according to the level of the input signal from the antenna, and the electric field measurement in the equipment such as the anechoic chamber is a measuring device. It is possible to provide an electric field measuring device that is not disturbed by noise from itself.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Optical Communication System (AREA)

Abstract

 アンテナからの入力信号にレベルによる伝送装置の出力飽和や歪み状態の確認が容易であり、しかも、電波暗室等の設備内での電界計測を計測機器自体からのノイズで妨げることが無い電界計測装置を提供することを目的とする。 アンテナの出力信号の強度が所定のレベルを超えたか否かを検出する信号強度検出器(RF検出器,レベル検出回路)と、該信号強度検出器の検出結果に基づき検出結果信号を発生する信号発生器と、MZ型変調器とを電波暗室内に配置されるヘッド部2に設ける。そして、アンテナの出力信号に該検出結果信号を合波してMZ型変調器を駆動し、電波暗室外のコントローラ部6に設けたモニタPDとモニタ検出回路で、該検出結果信号を検出し、その検出結果を表示装置に表示する。

Description

電界計測装置
 本発明は、電界計測装置に関し、特に、電子機器などの放射電磁波ノイズ測定、電波暗室などの電磁波測定設備評価、アンテナ評価などの、電磁界計測分野のためのアナログ光伝送技術などに利用される電界計測装置に関する。
 放射電磁波ノイズなどの測定は、電波暗室等の設備を利用して測定対象外の電磁波が抑制された測定環境で行われている。このため暗室内の受信アンテナで受信した信号は、隣接する測定室に伝送され、そこに設置された測定器で計測が行われる。
 近年電子機器の高速化に伴い電磁波ノイズが高周波化し、1GHz超、場合によっては10GHz超の周波数で評価する必要がでてきている。本出願人は特許文献1において、マッハツェンダー型光導波路を有する光変調器や光ファイバなどの光ファイバ伝送装置を利用して、受信アンテナで受信した信号を光伝送する方法を提案した。
 さらに、計測の行われる装置の放出するノイズレベルは予想外のレベルの場合も多く、また同一の設備を用いて様々な測定が行われる。そのため、伝送する信号レベルのレンジは非常に大きく数十dBの強度差がある場合もある。
 光ファイバ伝送装置には、増幅器や光変調器などの入力レベルにより出力に飽和あるいは歪を生じる部品が用いられているために、伝送装置への入力に注意する必要がある。そこで従来は測定のたびに、信号のレベルに起因する飽和や歪がないか、測定器の測定結果を確認しながら、アンテナからの信号を伝送装置に入力する入力部に、適切な減衰器を設置して測定を行っていた。
 このような過大な入力信号レベルによる伝送装置の出力飽和や歪みの確認作業は大変煩雑であり、場合によっては飽和や歪みが見落とされて不確かな測定が行われる恐れもあった。
特願2008-303106号(出願日:2008年11月27日)
 本発明が解決しようとする課題は、上述したような問題を解決し、アンテナからの入力信号レベルによる伝送装置の出力飽和や歪み状態の確認が容易であり、しかも、電波暗室等の設備内での電界計測を計測機器自体からのノイズで妨げることが無い電界計測装置を提供することである。
 上記課題を解決するため、請求項1に係る発明は、電磁波を検出するエリア内に設置された被測定装置から発生する電磁波の電界強度を測定する電界計測装置において、該エリア内には、アンテナと、該アンテナの出力信号を増幅するRF増幅器と、該出力信号の強度が所定のレベルを超えたか否かを検出する信号強度検出器と、該信号強度検出器の検出結果に基づき検出結果信号を発生する信号発生器と、該RF増幅器からの出力信号と該検出結果信号とDCバイアス電圧とを合波する合波器と、該合波器の出力信号に基づいて光変調を行うマッハツェンダー型光導波路を有する光強度変調器とが配置され、該エリア外には、光源部と、該光強度変調器からの出力光を受光する受光部と、該受光部からの出力信号の強度変化に基づき該光強度変調器に供給するDCバイアス電圧を制御するDCバイアス制御部と、該受光部からの出力信号から該検出結果信号に基づく信号を検出し、その検出結果を表示する表示器とが配置され、該光源部から光波を該光強度変調器に光ファイバによって導入し、該光強度変調器から光波を該受光部に光ファイバによって導出し、該DCバイアス制御部からDCバイアス電圧を該光強度変調器に給電線で供給することを特徴とする。
 請求項2に係る発明は、電磁波を検出するエリア内に設置された被測定装置から発生する電磁波の電界強度を測定する電界計測装置において、該エリア内には、アンテナと、該アンテナの出力信号を増幅するRF増幅器と、該出力信号の強度が所定のレベルを超えたか否かを検出する信号強度検出器と、該信号強度検出器の検出結果に基づき検出結果信号を発生する信号発生器と、該RF増幅器からの出力信号と該検出結果信号とDCバイアス電圧とを合波する合波器と、該合波器の出力信号に基づいて光変調を行うマッハツェンダー型光導波路を有する光強度変調器と、該光強度変調器からの出力光の一部を分岐する分岐部と、前記分岐部で分岐された分岐光を受光する第1の受光部と、該第1の受光部からの出力信号の強度変化に基づき該光強度変調器に供給するDCバイアス電圧を制御するDCバイアス制御部と、該RF増幅器、該信号強度検出器、該信号発生器、該第1の受光部及び該DCバイアス制御部の内、少なくとも一つを駆動するためのバッテリーが配置され、該エリア外には、光源部と、該光強度変調器からの出力光を受光する第2の受光部と、該第2の受光部からの出力信号から該検出結果信号に基づく信号を検出し、その検出結果を表示する表示器とが配置され、該光源部から光波を該光強度変調器に光ファイバによって導入し、該光強度変調器から光波を該受光部に光ファイバによって導出することを特徴とする。
 請求項3に係る発明は、電磁波を検出するエリア内に設置された被測定装置から発生する電磁波の電界強度を測定する電界計測装置において、該エリア内には、アンテナと、該アンテナの出力信号を増幅するRF増幅器と、該出力信号の強度が所定のレベルを超えたか否かを検出する信号強度検出器と、該信号強度検出器の検出結果に基づき検出結果信号を発生する信号発生器と、該RF増幅器からの出力信号と該検出結果信号とDCバイアス電圧とを合波する合波器と、該合波器の出力信号に基づいて光変調を行うマッハツェンダー型光導波路を有する光強度変調器と、該光強度変調器に内蔵され、該光強度変調器の出力光強度をモニタする第1の受光部と、該第1の受光部からの出力信号の強度変化に基づき該強度変調器に供給するDCバイアス電圧を制御するDCバイアス制御部と、該RF増幅器、該信号強度検出器、該信号発生器、該第1の受光部及び該DCバイアス制御部の内、少なくとも一つを駆動するためのバッテリーが配置され、該エリア外には、光源部と、該光強度変調器からの出力光を受光する第2の受光部と、該第2の受光部からの出力信号から該検出結果信号に基づく信号を検出し、その検出結果を表示する表示器とが配置され、該光源部から光波を該光強度変調器に光ファイバによって導入し、該光強度変調器から光波を該受光部に光ファイバによって導出することを特徴とする。
 請求項4に係る発明は、請求項1乃至3のいずれかに記載の電界計測装置において、該検出結果信号は30MHz未満の周波数であることを特徴とする。
 請求項5に係る発明は、請求項1乃至4のいずれかに記載の電界計測装置において、該信号強度検出器の結果に基づき、該アンテナの出力信号の強度を減衰する減衰器を有することを特徴とする。
 請求項6に係る発明は、請求項1乃至4のいずれかに記載の電界計測装置において、該信号強度検出器の結果に基づき、該RF増幅器の出力を制御するRF増幅制御部を有することを特徴とする。
 請求項1に係る発明により、電磁波を検出するエリア内に設置された被測定装置から発生する電磁波の電界強度を測定する電界計測装置において、該エリア内には、アンテナと、該アンテナの出力信号を増幅するRF増幅器と、該出力信号の強度が所定のレベルを超えたか否かを検出する信号強度検出器と、該信号強度検出器の検出結果に基づき検出結果信号を発生する信号発生器と、該RF増幅器からの出力信号と該検出結果信号とDCバイアス電圧とを合波する合波器と、該合波器の出力信号に基づいて光変調を行うマッハツェンダー型光導波路を有する光強度変調器とが配置され、該エリア外には、光源部と、該光強度変調器からの出力光を受光する受光部と、該受光部からの出力信号の強度変化に基づき該光強度変調器に供給するDCバイアス電圧を制御するDCバイアス制御部と、該受光部からの出力信号から該検出結果信号に基づく信号を検出し、その検出結果を表示する表示器とが配置され、該光源部から光波を該光強度変調器に光ファイバによって導入し、該光強度変調器から光波を該受光部に光ファイバによって導出し、該DCバイアス制御部からDCバイアス電圧を該光強度変調器に給電線で供給するため、アンテナからの過大な入力信号レベルによるRF増幅器や光変調器など伝送装置の出力飽和や歪みが、簡便に検出できる。しかも、エリア内に設置されたヘッド部(アンテナを除く光変調器等の部材で構成)でアンテナからの信号レベルを測定し、ある基準を超えた信号レベルの場合には、エリア外に配置されたコントローラ部(エリア外に配置された光源部、受光部、DCバイアス制御部等の部材で構成)へ入力レベルの警告通信を行い、これを受信したコントローラ部は入力信号レベルの警告表示を行うことが可能となる。
 しかも、入力信号レベルを検出した検出結果信号の伝送も、アンテナの出力信号であるRF信号の光伝送系と共用することができ、大きな構成要素の追加もなく、また光伝送を用いるために周囲の電磁界を乱すこともない。
 請求項2に係る発明により、電磁波を検出するエリア内に設置された被測定装置から発生する電磁波の電界強度を測定する電界計測装置において、該エリア内には、アンテナと、該アンテナの出力信号を増幅するRF増幅器と、該出力信号の強度が所定のレベルを超えたか否かを検出する信号強度検出器と、該信号強度検出器の検出結果に基づき検出結果信号を発生する信号発生器と、該RF増幅器からの出力信号と該検出結果信号とDCバイアス電圧とを合波する合波器と、該合波器の出力信号に基づいて光変調を行うマッハツェンダー型光導波路を有する光強度変調器と、該光強度変調器からの出力光の一部を分岐する分岐部と、前記分岐部で分岐された分岐光を受光する第1の受光部と、該第1の受光部からの出力信号の強度変化に基づき該光強度変調器に供給するDCバイアス電圧を制御するDCバイアス制御部と、該RF増幅器、該信号強度検出器、該信号発生器、該第1の受光部及び該DCバイアス制御部の内、少なくとも一つを駆動するためのバッテリーが配置され、該エリア外には、光源部と、該光強度変調器からの出力光を受光する第2の受光部と、該第2の受光部からの出力信号から該検出結果信号に基づく信号を検出し、その検出結果を表示する表示器とが配置され、該光源部から光波を該光強度変調器に光ファイバによって導入し、該光強度変調器から光波を該受光部に光ファイバによって導出するため、請求項1に係る発明と同様に、アンテナからの過大な入力信号レベルによるRF増幅器や光変調器など伝送装置の出力飽和や歪みが、簡便に検出できる。しかも、エリア内に設置されたヘッド部(アンテナを除く光変調器等の部材で構成)でアンテナからの信号レベルを測定し、ある基準を超えた信号レベルの場合には、エリア外に配置されたコントローラ部(エリア外に配置された光源部、受光部等の部材で構成)へ入力レベルの警告通信を行い、これを受信したコントローラ部は入力信号レベルの警告表示を行うことが可能となる。
 さらに、入力信号レベルを検出した検出結果信号の伝送も、アンテナの出力信号であるRF信号の光伝送系と共用することができ、大きな構成要素の追加もなく、また光伝送を用いるために周囲の電磁界を乱すこともない。特に、RF増幅器、信号強度検出器、信号発生器、第1の受光部及びDCバイアス制御部の内、少なくとも一つを駆動するためのバッテリーをエリア内に配置することで、エリア外からの給電線を省略することが可能となり、エリア内外を光ファイバのみで連結することも可能となる。
 請求項3に係る発明により、電磁波を検出するエリア内に設置された被測定装置から発生する電磁波の電界強度を測定する電界計測装置において、該エリア内には、アンテナと、該アンテナの出力信号を増幅するRF増幅器と、該出力信号の強度が所定のレベルを超えたか否かを検出する信号強度検出器と、該信号強度検出器の検出結果に基づき検出結果信号を発生する信号発生器と、該RF増幅器からの出力信号と該検出結果信号とDCバイアス電圧とを合波する合波器と、該合波器の出力信号に基づいて光変調を行うマッハツェンダー型光導波路を有する光強度変調器と、該光強度変調器に内蔵され、該光強度変調器の出力光強度をモニタする第1の受光部と、該第1の受光部からの出力信号の強度変化に基づき該強度変調器に供給するDCバイアス電圧を制御するDCバイアス制御部と、該RF増幅器、該信号強度検出器、該信号発生器、該第1の受光部及び該DCバイアス制御部の内、少なくとも一つを駆動するためのバッテリーが配置され、該エリア外には、光源部と、該光強度変調器からの出力光を受光する第2の受光部と、該第2の受光部からの出力信号から該検出結果信号に基づく信号を検出し、その検出結果を表示する表示器とが配置され、該光源部から光波を該光強度変調器に光ファイバによって導入し、該光強度変調器から光波を該受光部に光ファイバによって導出するため、請求項1又は2に係る発明と同様に、アンテナからの過大な入力信号レベルによるRF増幅器や光変調器など伝送装置の出力飽和や歪みが、簡便に検出できる。しかも、エリア内に設置されたヘッド部(アンテナを除く光変調器等の部材で構成)でアンテナからの信号レベルを測定し、ある基準を超えた信号レベルの場合には、エリア外に配置されたコントローラ部(エリア外に配置された光源部、受光部等の部材で構成)へ入力レベルの警告通信を行い、これを受信したコントローラ部は入力信号レベルの警告表示を行うことが可能となる。
 さらに、入力信号レベルを検出した検出結果信号の伝送も、アンテナの出力信号であるRF信号の光伝送系と共用することができ、大きな構成要素の追加もなく、また光伝送を用いるために周囲の電磁界を乱すこともない。特に、RF増幅器、信号強度検出器、信号発生器、第1の受光部及びDCバイアス制御部の内、少なくとも一つを駆動するためのバッテリーをエリア内に配置することで、エリア外からの給電線を省略することが可能となり、エリア内外を光ファイバのみで連結することも可能となる。さらに、第1の受光部が光強度変調器に内蔵されているため、エリア内に配置されるヘッド部をよりコンパクトに構成できると共に、光強度変調器からの出力光の一部を分岐する構成も不要となり、出力光の損失を抑制することも可能となる。
 請求項4に係る発明により、検出結果信号は30MHz未満の周波数であるため、計測される放射電磁波ノイズ(30MHz以上)の帯域外の周波数で光変調することにより、アンテナが受信した電磁波ノイズと検出結果信号とが混信することが抑制でき、コントローラ部への信号伝達をより正確に行うことが可能となる。
 請求項5に係る発明により、信号強度検出器の結果に基づき、アンテナの出力信号の強度を減衰する減衰器を有するため、RF増幅器や光変調器に入るアンテナの出力信号の強度が自動的に調整され、伝送装置の出力飽和や歪みを抑制することも可能となる。
 請求項6に係る発明により、信号強度検出器の結果に基づき、RF増幅器の出力を制御するRF増幅制御部を有するため、光変調器に入るアンテナの出力信号の強度が自動的に調整され、伝送装置の出力飽和や歪みを抑制することも可能となる。
本発明に係る電界計測装置を示す概略図である。 図1のヘッド部2とコントローラ部6との構成を示す図である。 図1のヘッド部2とコントローラ部6との構成の応用例を示す図である。 図1のヘッド部に、第1の受光部とDCバイアス制御部とを組み込む例を示す図である。
 以下、本発明を好適例を用いて詳細に説明する。
 図1は、本発明に係る電界計測装置の概略を示す図である。電波暗室10などの電磁波を検出するエリア内に設定された被測定装置(EUT)8から発生する電磁波(波線矢印)の電界強度を測定する。符号9は、ターンテーブルなどの被測定装置を載置する載置台である。
 本発明における「電磁波を検出するエリア」とは、電波暗室に限定されず、オープンサイトなど、被測定装置が発生する電磁波を検出するために、該被測定装置が設置されている空間を意味する。
 また、「電磁波を検出するエリア」の外とは、被測定装置が発生する電磁波を計測する際に障害とならない領域を意味し、電波暗室の外部や、被測定装置から十分離れた場所、さらには、後述する測定室のように、本体部や測定器が収納され、機器から発生する電磁波が「電磁波を検出するエリア」に漏出することを遮断した空間であっても良い。
 以下では、電波暗室及び測定室を例に説明する。
 電波暗室10内には、アンテナ1と、マッハツェンダー型光導波路を有する光強度変調器が組み込まれたヘッド部2とが配置されている。アンテナ1の出力信号は、特許文献1と同様に、光強度変調器の変調電極に印加され、マッハツェンダー型光導波路の屈折率を変化させる。この屈折率変化により、同光導波路を伝搬する光波の位相が変調され、マッハツェンダー型光導波路から出射する光波の光強度が変調される。符号3は、アンテナ1を所定の位置に配置する、アンテナ位置決め手段である。
 光強度変調器は、電気光学効果を有する基板に光導波路及び変調電極を形成した進行波型光変調器が好適に利用可能である。電気光学効果を有する基板としては、例えば、ニオブ酸リチウム、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)、及び石英系の材料などが利用することが可能である。マッハツェンダー型の光導波路は、Tiなどを熱拡散法やプロトン交換法などで基板表面に拡散させたり、リッジ型の凸部を形成することにより、電気光学効果を有する基板上に形成できる。変調電極は、アンテナからの出力信号を印加する信号電極や接地電極から構成され、基板上に、Ti・Auの電極パターンの形成及び金メッキ方法などにより形成することが可能である。さらに、必要に応じて光導波路形成後の基板表面に誘電体SiO等のバッファ層を設け、光導波路の上側に形成した電極による光波の吸収や散乱を抑制することも可能である。
 光強度変調器のバイアス点の調整方法としては、上述した変調電極に、アンテナからの出力電圧にDCバイアス電圧を重畳して印加することにより、光強度変調器のバイアス点を調整することが可能である。また、変調電極以外にバイアス点制御用の電極を別途組込み、このような電極にDCバイアス電圧を印加するように構成することも可能である。
 電波暗室10の外部には、測定室11が隣接され、該測定室11内には、ヘッド部2をコントロールする計測装置のコントローラ部6及び、EMIレシーバーなどの測定器7が設置されている。ヘッド部2とコントローラ部6とは光ファイバや給電線などの複合線で接合されている。符号5は、給電線に設けられた交流信号遮断用のローパスフィルタであり、コントローラ部6からヘッド部にDCバイアス電圧などを給電する際に、交流信号が電波暗室内に入り込まないよう構成されている。
 図2は、ヘッド部2及びコントローラ部6における構成を、より詳細に説明する図である。
 ヘッド部2には、受信アンテナからの出力信号(30MHz以上)を導入し、RF分配器により出力信号がアンプとRF検出器に分配される。アンプは、アンテナの出力信号を増幅するRF増幅器である。また、RF検出器は、該出力信号の強度を検出し、その検出信号をレベル検出回路に導入することで、該出力信号の強度が所定のレベルを超えたか否かを検出している。RF検出器とレベル検出回路とが組み合わさり、信号強度検出器を構成している。該信号強度検出器の検出結果に基づき検出結果信号を発生する信号発生器が設けられている。例えば、信号発生器では、光変調器がひずみを起こすある一定のレベルを超えている場合には、受信アンテナからの出力信号の帯域外の低周波信号(20MHz未満)で強度変調を行う。
 該RF増幅器であるアンプからの出力信号と、該信号発生器からの検出結果信号と、さらに、後述するDCバイアス制御回路からのDCバイアス電圧とが合波される。合波器は、図中に符号+で表示している。該合波器の出力信号に基づいて光変調を行うマッハツェンダー型光導波路を有する光強度変調器(MZ型変調器)とが配置されている。
 コントローラ部6には、光源部である半導体レーザ(LD)や該半導体レーザを駆動する制御回路であるLD制御回路が設けられ、半導体レーザからは一定レベルの連続(CW)光が出力され、光ファイバを伝送してヘッド部2のMZ型変調器に入力される。
 また、コントローラ部6には、光強度変調器であるMZ型変調器からの出力光を受光する受光部(高速PD,モニタPD)が設けられている。受光部は、図2では、2つの受光素子(PD)から構成されているが、一つのPDで構成し、当該PDからの出力信号を30MHz以上の高周波信号と、30MHz未満の低周波信号とに分離することも可能である。
 高速PDでは、アンテナの出力信号に相当する30MHz以上の信号を検出し、高周波通過フィルタ(HPF)を通過した信号を、アンプで増幅し、測定器7に導入する。
 モニタPDの信号は、30MHz未満の低周波信号を出力し、Bias-T等の分岐素子で2分岐された後、DCバイアス制御回路及びモニタ検出回路へそれぞれ出力される。なお、この際に、DCバイアス制御回路の前段には光変調器のDCバイアス制御に関する信号を透過する特定周波数帯の透過フィルタ、モニタ検出回路の前段には信号発生器が発生させた検出結果信号を透過する他の特定周波数帯の透過フィルタを挿入するとよい。また、これらの透過フィルタは、DCバイアス制御回路やモニタ検出回路内に内蔵することも可能である。
 DCバイアス制御部となるバイアス制御回路では、受光部であるモニタPDからの出力信号の強度変化に基づき光強度変調器に供給するDCバイアス電圧が制御される。DCバイアス制御部は、給電線を介してDCバイアス電圧を光強度変調器に供給する。
 光強度変調器の駆動電圧-光強度出力との関係曲線(Vπ変調曲線)は、正弦関数となるため、通常、最大光強度の1/2点がバイアス点調整の中心となる。当然、バイアスの中心点は、このような1/2点に限らず、モニタPDのショットノイズとの兼ね合いで、1/2点より低い強度レベルを採用することも可能である。
 電界計測を行なう前には、必要に応じて、バイアス点調整が行なわれ、具体的には、光源部のLDから光波を光強度変調器に導入し、該光強度変調器に印加するバイアス電圧を掃引し、モニタ光の出力レベルが最高となる値を計測し、例えば、該最高値の1/2の値を示すバイアス電圧を見出す。
 このように、バイアス点を調整した場合、従来の光変調器のバイアス点制御で多用されている低周波信号などの交流信号が不要となり、電波暗室内でのノイズ放射をより一層抑制することが可能となる。勿論、低周波信号などの交流信号を重畳してバイアス点を制御することも可能であるが、この場合はDCバイアス制御回路用の信号と、モニタ検出回路用の信号とは、予め周波数を異なるように設定することが好ましい。
 受光部であるモニタPDからの出力信号から、信号発生器が発生した検出結果信号を、モニタ検出回路により検出する。例えば、受信アンテナからの出力信号が所定のレベルを超えている場合に発生させた低周波信号(30MHz未満)を検知し、当該検出結果に基づき、表示装置に過入力状態を表示する。
 次に、図3に示すように、RF増幅器や光変調器に入るアンテナの出力信号の強度を自動的に調整し、伝送装置の出力飽和や歪みを抑制する方法について説明する。
 受信アンテナとRF分配器との間、又は図3のようにRF分配器とアンプとの間に、受信アンテナの出力信号の強度を減衰する可変減衰器を配置する。そして、図2と同様に、RF検出器及びレベル検出回路から構成される信号強度検出器の結果に基づき、受信アンテナの出力信号の強度が所定レベルを超える際には、当該可変減衰器を制御し、RF増幅器や光強度変調器に入力される信号レベルを調整することが可能である。
 また、RF増幅制御部として、当該信号強度検出器の結果に基づき、RF増幅器の出力を制御する構成を設け、可変減衰器を省略することも可能である。
 上述のようにアンテナの出力信号の強度が自動的に調整された場合、コントローラ部に接続された測定器への出力信号レベルが変化することとなり、測定器側ではその変化が自動調整によるものか、受信電磁波そのもののレベルが下がったのか判別が困難となる。このような不具合を解消するため、可変減衰器やRF増幅器で信号出力を調整した場合には、その調整レベルを示す信号も併せて、信号発生器から検出結果信号の一部として出力し、コントローラ部に送信することも可能である。コントローラ部では、検出結果信号の内、調整レベルに係る信号を抽出し、測定器の出力信号レベルのキャリブレーション等を行うことも可能である。
 さらに、図4に示すように、ヘッド部2に、第1の受光部として受光素子(PD)と、DCバイアス制御部としてバイアス制御回路、さらには、ヘッド内の各種部品に給電し駆動するための電源としてバッテリーを組み込むことも可能である。当該バッテリーは、RF増幅器であるアンプ、信号強度検出器を構成するRF検出器やレベル検出回路、信号発生器、さらには、第1の受光部やDCバイアス制御部の内、少なくとも一つを駆動している。
 図4のように、DCバイアス制御関係の部品をヘッド部に組み込むと共に、ヘッド部内の各種部品を駆動する電源もヘッド部内に配置することで、ヘッド部2とコノトローラ部6との間は、光ファイバのみの接続となるため、よりシンプルな構成とすることができ、各種部材の取り扱いも容易となる。
 図4では、MZ型変調器からの出力光の一部を分岐部により分岐させ、第1の受光部である受光素子(PD)に入力している。第1の受光部からの信号は、バイアス制御回路に入力され、上述した図2又は3の実施例と同様に、MZ型変調器のDCバイアスを制御するのに利用される。
 また、MZ型変調器は、金属製の筐体内に収容されたモジュール構造を有している。このため、図4で示す第1の受光部を、光強度変調器であるMZ型変調器の内部に組み込み、同じ筐体内に収容することも可能である。変調器の一部に配置された受光部は、例えば、マッハツェンダー型導波路の合波部からの放射モード光をモニタするよう構成したり、光導波路を伝搬する光波のエバネッセント光をモニタするなど、各種の構成や配置を採用することが可能である。受光部を変調器のモジュールの内部に内蔵することにより、ヘッド部のサイズを小さくすることができると共に、周辺に電磁波を発生することを抑制し、より高精度の測定が可能となる。
 以上説明したように、本発明によれば、アンテナからの入力信号にレベルによる伝送装置の出力飽和や歪み状態の確認が容易であり、しかも、電波暗室等の設備内での電界計測を計測機器自体からのノイズで妨げることが無い電界計測装置を提供することが可能となる。
1 アンテナ
2 ヘッド部
4 複合線路(光ファイバと給電線)
5 ローパスフィルタ
6 コントローラ部
7 測定器
8 被測定装置

Claims (6)

  1.  電磁波を検出するエリア内に設置された被測定装置から発生する電磁波の電界強度を測定する電界計測装置において、
     該エリア内には、アンテナと、該アンテナの出力信号を増幅するRF増幅器と、該出力信号の強度が所定のレベルを超えたか否かを検出する信号強度検出器と、該信号強度検出器の検出結果に基づき検出結果信号を発生する信号発生器と、該RF増幅器からの出力信号と該検出結果信号とDCバイアス電圧とを合波する合波器と、該合波器の出力信号に基づいて光変調を行うマッハツェンダー型光導波路を有する光強度変調器とが配置され、
     該エリア外には、光源部と、該光強度変調器からの出力光を受光する受光部と、該受光部からの出力信号の強度変化に基づき該光強度変調器に供給するDCバイアス電圧を制御するDCバイアス制御部と、該受光部からの出力信号から該検出結果信号に基づく信号を検出し、その検出結果を表示する表示器とが配置され、
     該光源部から光波を該光強度変調器に光ファイバによって導入し、
     該光強度変調器から光波を該受光部に光ファイバによって導出し、
     該DCバイアス制御部からDCバイアス電圧を該光強度変調器に給電線で供給することを特徴とする電界計測装置。
  2.  電磁波を検出するエリア内に設置された被測定装置から発生する電磁波の電界強度を測定する電界計測装置において、
     該エリア内には、アンテナと、該アンテナの出力信号を増幅するRF増幅器と、該出力信号の強度が所定のレベルを超えたか否かを検出する信号強度検出器と、該信号強度検出器の検出結果に基づき検出結果信号を発生する信号発生器と、該RF増幅器からの出力信号と該検出結果信号とDCバイアス電圧とを合波する合波器と、該合波器の出力信号に基づいて光変調を行うマッハツェンダー型光導波路を有する光強度変調器と、該光強度変調器からの出力光の一部を分岐する分岐部と、前記分岐部で分岐された分岐光を受光する第1の受光部と、該第1の受光部からの出力信号の強度変化に基づき該光強度変調器に供給するDCバイアス電圧を制御するDCバイアス制御部と、該RF増幅器、該信号強度検出器、該信号発生器、該第1の受光部及び該DCバイアス制御部の内、少なくとも一つを駆動するためのバッテリーが配置され、
     該エリア外には、光源部と、該光強度変調器からの出力光を受光する第2の受光部と、該第2の受光部からの出力信号から該検出結果信号に基づく信号を検出し、その検出結果を表示する表示器とが配置され、
     該光源部から光波を該光強度変調器に光ファイバによって導入し、
     該光強度変調器から光波を該受光部に光ファイバによって導出することを特徴とする電界計測装置。
  3.  電磁波を検出するエリア内に設置された被測定装置から発生する電磁波の電界強度を測定する電界計測装置において、
     該エリア内には、アンテナと、該アンテナの出力信号を増幅するRF増幅器と、該出力信号の強度が所定のレベルを超えたか否かを検出する信号強度検出器と、該信号強度検出器の検出結果に基づき検出結果信号を発生する信号発生器と、該RF増幅器からの出力信号と該検出結果信号とDCバイアス電圧とを合波する合波器と、該合波器の出力信号に基づいて光変調を行うマッハツェンダー型光導波路を有する光強度変調器と、該光強度変調器に内蔵され、該光強度変調器の出力光強度をモニタする第1の受光部と、該第1の受光部からの出力信号の強度変化に基づき該強度変調器に供給するDCバイアス電圧を制御するDCバイアス制御部と、該RF増幅器、該信号強度検出器、該信号発生器、該第1の受光部及び該DCバイアス制御部の内、少なくとも一つを駆動するためのバッテリーが配置され、
     該エリア外には、光源部と、該光強度変調器からの出力光を受光する第2の受光部と、該第2の受光部からの出力信号から該検出結果信号に基づく信号を検出し、その検出結果を表示する表示器とが配置され、
     該光源部から光波を該光強度変調器に光ファイバによって導入し、
     該光強度変調器から光波を該受光部に光ファイバによって導出することを特徴とする電界計測装置。
  4.  請求項1乃至3のいずれかに記載の電界計測装置において、該検出結果信号は30MHz未満の周波数であることを特徴とする電界計測装置。
  5.  請求項1乃至4のいずれかに記載の電界計測装置において、該信号強度検出器の結果に基づき、該アンテナの出力信号の強度を減衰する減衰器を有することを特徴とする電界計測装置。
  6.  請求項1乃至4のいずれかに記載の電界計測装置において、該信号強度検出器の結果に基づき、該RF増幅器の出力を制御するRF増幅制御部を有することを特徴とする電界計測装置。
PCT/JP2011/053659 2010-02-23 2011-02-21 電界計測装置 WO2011105321A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/580,725 US20130045008A1 (en) 2010-02-23 2011-02-21 Electric Field Measuring Apparatus
KR1020127022045A KR20130036175A (ko) 2010-02-23 2011-02-21 전계계측장치
CN2011800107408A CN102770773A (zh) 2010-02-23 2011-02-21 电场计测装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010036770A JP4891417B2 (ja) 2010-02-23 2010-02-23 電界計測装置
JP2010-036770 2010-02-23

Publications (1)

Publication Number Publication Date
WO2011105321A1 true WO2011105321A1 (ja) 2011-09-01

Family

ID=44506729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053659 WO2011105321A1 (ja) 2010-02-23 2011-02-21 電界計測装置

Country Status (5)

Country Link
US (1) US20130045008A1 (ja)
JP (1) JP4891417B2 (ja)
KR (1) KR20130036175A (ja)
CN (1) CN102770773A (ja)
WO (1) WO2011105321A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9059189B2 (en) 2011-03-02 2015-06-16 Nokomis, Inc Integrated circuit with electromagnetic energy anomaly detection and processing
US10475754B2 (en) * 2011-03-02 2019-11-12 Nokomis, Inc. System and method for physically detecting counterfeit electronics
US9851386B2 (en) 2012-03-02 2017-12-26 Nokomis, Inc. Method and apparatus for detection and identification of counterfeit and substandard electronics
US9599576B1 (en) 2013-03-06 2017-03-21 Nokomis, Inc. Acoustic—RF multi-sensor material characterization system
KR20150070788A (ko) * 2013-12-17 2015-06-25 한국전자통신연구원 광대역 rf 수신기
US9772363B2 (en) 2014-02-26 2017-09-26 Nokomis, Inc. Automated analysis of RF effects on electronic devices through the use of device unintended emissions
US10395032B2 (en) 2014-10-03 2019-08-27 Nokomis, Inc. Detection of malicious software, firmware, IP cores and circuitry via unintended emissions
US9642014B2 (en) 2014-06-09 2017-05-02 Nokomis, Inc. Non-contact electromagnetic illuminated detection of part anomalies for cyber physical security
JP5980362B1 (ja) * 2015-03-20 2016-08-31 株式会社Pfu 全電波無響室における不要輻射測定方法
CN104777371A (zh) * 2015-04-28 2015-07-15 深圳市南斗星科技有限公司 一种人体可穿戴的微型环境场强预警器
CN105245295B (zh) * 2015-10-10 2018-06-15 广东欧珀移动通信有限公司 一种多天线射频测试装置
CN106572040B (zh) * 2015-10-12 2020-04-21 富士通株式会社 发射端调制器的偏置漂移估计装置、补偿装置以及接收机
US10448864B1 (en) 2017-02-24 2019-10-22 Nokomis, Inc. Apparatus and method to identify and measure gas concentrations
JP6940839B2 (ja) * 2017-03-06 2021-09-29 国立大学法人大阪大学 電磁波測定装置および電磁波測定方法
US11489847B1 (en) 2018-02-14 2022-11-01 Nokomis, Inc. System and method for physically detecting, identifying, and diagnosing medical electronic devices connectable to a network
WO2021020110A1 (ja) * 2019-08-01 2021-02-04 パナソニックIpマネジメント株式会社 電磁波可視化装置
US12111341B2 (en) * 2022-10-05 2024-10-08 Applied Materials, Inc. In-situ electric field detection method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313071A (ja) * 2005-05-06 2006-11-16 Seikoh Giken Co Ltd 異常検知機能付き光電界センサ
JP2008107272A (ja) * 2006-10-27 2008-05-08 Nec Corp 電界センサ装置及び自動バイアス設定装置,バイアス設定方法,バイアス設定用プログラム
JP2009265283A (ja) * 2008-04-23 2009-11-12 Nec Engineering Ltd 光送信機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389782A (en) * 1994-05-13 1995-02-14 The United States Of America As Represented By The Secretary Of The Navy Optically powered amplifier used by an electromagnetic field sensor to amplify an electrical signal from an antenna
JP4935093B2 (ja) * 2006-02-02 2012-05-23 横河電機株式会社 光変調装置
JP5376619B2 (ja) * 2008-02-06 2013-12-25 日本電気株式会社 電磁界計測装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313071A (ja) * 2005-05-06 2006-11-16 Seikoh Giken Co Ltd 異常検知機能付き光電界センサ
JP2008107272A (ja) * 2006-10-27 2008-05-08 Nec Corp 電界センサ装置及び自動バイアス設定装置,バイアス設定方法,バイアス設定用プログラム
JP2009265283A (ja) * 2008-04-23 2009-11-12 Nec Engineering Ltd 光送信機

Also Published As

Publication number Publication date
JP4891417B2 (ja) 2012-03-07
JP2011174709A (ja) 2011-09-08
US20130045008A1 (en) 2013-02-21
CN102770773A (zh) 2012-11-07
KR20130036175A (ko) 2013-04-11

Similar Documents

Publication Publication Date Title
JP4891417B2 (ja) 電界計測装置
JP5218587B2 (ja) 電界計測装置
WO2010061906A1 (ja) 電界計測装置
EP0664460B1 (en) Electric field sensor
US9002145B2 (en) Optical frequency comb generating device and optical pulse generating device using same, and optical frequency comb generating method and optical pulse generating method using same
CN102156221B (zh) 一种基于光子集成回路的微波频率瞬时测量装置及方法
CN110518975B (zh) 频谱侦测系统
CN102472786B (zh) 电磁场测量设备和电磁场测量方法
US7773833B2 (en) Optical modulation device
JP2013210278A (ja) 電界計測装置
JP3169119U (ja) 電界計測装置
JP2011033501A (ja) フィードバック回路を有する電界・磁界・電圧検出装置
JP2003066080A (ja) 電界センシング装置
KR102688931B1 (ko) 고감도 전자파 측정 장치
JP2011191107A (ja) 多チャンネルロータリージョイントを有する光伝送装置
JP2006105660A (ja) ポート延長装置を備えた回路特性測定装置
JP2018142011A (ja) 光変調器
JP2014109441A (ja) 電界センサ
JP2000230956A (ja) 光リモートアンテナ
JPH0954127A (ja) 高感度光電界センサ
JP2014169893A (ja) 光伝送装置
JP2014190803A (ja) 電界計測装置
JPH07260833A (ja) 電界センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010740.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127022045

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13580725

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11747282

Country of ref document: EP

Kind code of ref document: A1