WO2011102648A2 - 기판 처리 시스템 및 기판 반송 방법 - Google Patents

기판 처리 시스템 및 기판 반송 방법 Download PDF

Info

Publication number
WO2011102648A2
WO2011102648A2 PCT/KR2011/001048 KR2011001048W WO2011102648A2 WO 2011102648 A2 WO2011102648 A2 WO 2011102648A2 KR 2011001048 W KR2011001048 W KR 2011001048W WO 2011102648 A2 WO2011102648 A2 WO 2011102648A2
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
bidirectional
transfer
sliding
rotating
Prior art date
Application number
PCT/KR2011/001048
Other languages
English (en)
French (fr)
Other versions
WO2011102648A3 (ko
Inventor
이규환
문덕원
장재환
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Priority to US13/578,237 priority Critical patent/US9252034B2/en
Priority to CN201180010113.4A priority patent/CN102763210B/zh
Publication of WO2011102648A2 publication Critical patent/WO2011102648A2/ko
Publication of WO2011102648A3 publication Critical patent/WO2011102648A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/061Lifting, gripping, or carrying means, for one or more sheets forming independent means of transport, e.g. suction cups, transport frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/067Sheet handling, means, e.g. manipulators, devices for turning or tilting sheet glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/02Controlled or contamination-free environments or clean space conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2043Screw mechanisms driving an oscillating lever, e.g. lever with perpendicular pivoting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/2075Coaxial drive motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms

Definitions

  • the present invention relates to a substrate processing system and a substrate conveying method, and more particularly, to convey substrates in both directions using a bidirectional substrate conveying unit of a substrate conveying apparatus provided between a plurality of process chambers arranged in an inline form.
  • the present invention relates to a substrate processing system and a substrate processing method capable of rotating a bidirectional substrate conveying unit to convey a substrate to an accurate position.
  • semiconductor devices such as flat panel displays and solar cells are made through a process of selectively and repeatedly performing a plurality of semiconductor manufacturing processes such as a deposition process, a photo process, an etching process, a diffusion process, an ion implantation process, and the like on a substrate.
  • semiconductor manufacturing processes such as a deposition process, a photo process, an etching process, a diffusion process, an ion implantation process, and the like on a substrate.
  • a substrate processing system having a multi-chamber structure is required.
  • a substrate processing system having a multi-chamber structure includes a plurality of process chambers for performing at least one process; And a transfer chamber that connects the plurality of process chambers in common.
  • the transfer chamber is configured to include a substrate transfer device for transferring a substrate supplied from the outside located therein.
  • the substrate transfer device serves to load or unload a substrate into each process chamber by using the lifting and rotating motion of the transfer robot.
  • the conventional substrate processing system has the following problems.
  • the present invention has been made to solve the above-described problems, by using a bidirectional substrate transfer unit of the substrate transfer apparatus disposed between the plurality of process chambers arranged in the in-line form to transfer the substrate in both directions to improve the transfer efficiency of the substrate, It is a technical object of the present invention to provide a substrate processing system and a substrate processing method capable of rotating a bidirectional substrate transfer unit so as to transfer a substrate to an accurate position.
  • a substrate processing system including: a transfer chamber having at least one bidirectional substrate transfer device for transferring a substrate in both directions; And a plurality of process chambers arranged in an inline form with the transfer chamber interposed therebetween to perform a semiconductor manufacturing process for the substrate, wherein the at least one bidirectional substrate transfer device is transportable in a horizontal direction by a linear motor.
  • a conveying unit installed in the transfer chamber to make the transfer chamber;
  • a bidirectional substrate conveying unit installed in the conveying unit to convey the substrate to the process chamber through bidirectional sliding;
  • a rotating unit provided between the transfer unit and the bidirectional substrate transfer unit to rotate the bidirectional substrate transfer unit at a predetermined angle.
  • the bidirectional substrate transfer unit is a base frame provided in the transfer unit; A fork frame installed on the base frame; First and second bidirectional sliding forks having a plurality of sliding bars installed in the fork frame to enable bidirectional sliding by linear motion; And a fork elevating unit for elevating the first and second bidirectional sliding fork portions by elevating the fork frame installed on the side surface of the fork frame.
  • a substrate processing system including: first and second process chambers installed in two rows to face each other to perform a semiconductor manufacturing process for a substrate; And at least one bidirectional substrate transfer device installed between the first and second process chambers and configured to convey the substrate to the first process chamber or the second process chamber by simultaneously linearly moving a plurality of sliding bars.
  • the at least one bidirectional substrate transfer device is characterized in that it comprises a rotating portion for rotating a plurality of sliding bars at a predetermined angle.
  • the at least one bidirectional substrate transfer device includes a transfer unit installed in the transfer chamber to be transferable in a horizontal direction by a linear motor; And a bidirectional substrate conveying part installed at the conveying part to convey the substrate to the process chamber through bidirectional sliding, wherein the rotating part is installed between the conveying part and the bidirectional substrate conveying part to rotate the bidirectional substrate conveying part at a predetermined angle. It is characterized by.
  • the bidirectional substrate transfer unit is a base frame provided in the transfer unit; A fork frame installed on the base frame; First and second bidirectional sliding forks having the plurality of sliding bars installed in the fork frame to enable bidirectional sliding by linear motion; And a fork elevating unit for elevating the first and second bidirectional sliding fork portions by elevating the fork frame installed on the side surface of the fork frame.
  • the rotating unit may include a first rotating guide part installed at each corner of the upper surface of the transfer part; A rotating device installed on an upper surface of the transfer part; A second rotation guide part installed on a rear surface of the base frame to be rotatable along the first rotation guide part; And installed on a rear surface of the base frame to linearly move according to the rotation of the rotary device, and by the linear movement, the second rotation guide part rotates along the first rotation guide part to rotate the base frame at a predetermined angle. Characterized in that it comprises a rotating shaft portion.
  • the rotating device may include a first bracket installed on an upper surface of the transfer unit; A second bracket provided on an upper surface of the transfer part to be spaced apart from the first bracket by a predetermined distance; A ball screw rotatably supported by the first bracket through the second bracket; A motor connected to the ball screw to rotate the ball screw; And a housing installed in the ball screw to linearly move according to the rotation of the ball screw to linearly move the rotating shaft part.
  • the rotating shaft may include a first support plate installed on a rear surface of the base frame; A rotating shaft rotatably installed on the first supporting plate; And a second rotation guide part rotated along the first rotation guide part by the linear motion installed in the rotation shaft and installed in the housing and interlocked with the linear motion of the housing to rotate the base frame at a predetermined angle.
  • the first and second rotation guide parts may be curved in shape with a predetermined curvature.
  • a substrate transfer method wherein a substrate is transferred between a load lock chamber in which a substrate is transferred and a process chamber installed to face the load lock chamber to perform a semiconductor manufacturing process for the substrate.
  • a substrate transfer method comprising: at least one bidirectional substrate transfer apparatus configured to include a transfer unit, a bidirectional substrate transfer unit, and a rotation unit provided between the transfer unit and the bidirectional substrate transfer unit, between the load lock chamber and the process chamber.
  • the rotating of the plurality of sliding bars by rotating the bidirectional substrate transfer unit by a predetermined angle by driving the rotating unit may rotate the ball screw according to the rotation of the motor installed on the upper surface of the transfer unit to linearly move the housing installed in the ball screw. step; Linearly moving the housing along a linear motion of a rotating shaft part installed on the rear surface of the base frame of the bidirectional substrate carrier supporting the plurality of sliding bars; And rotating the base frame at a predetermined angle by rotating the second rotation guide part provided on the rear surface of the base frame according to the linear motion of the rotation shaft part to be rotated along the first rotation guide part installed at each corner portion of the upper surface of the transfer part. It is characterized by comprising.
  • a substrate transfer method wherein a substrate is transferred between a load lock chamber in which a substrate is transferred and a process chamber installed to face the load lock chamber to perform a semiconductor manufacturing process for the substrate.
  • a substrate transfer method comprising: transferring any one of at least one bidirectional substrate transfer device between the load lock chamber and a process chamber; Linearly moving a plurality of sliding bars installed side by side in the bidirectional substrate conveying apparatus to simultaneously load into the load lock chamber to allow bi-directional sliding, and then returning the sliding bars to the original position by simultaneously linearly moving the plurality of sliding bars; ; Rotating the plurality of sliding bars at a predetermined angle; Simultaneously loading the rotated plurality of sliding bars to load the substrate rotated at the predetermined angle into the process chamber; Simultaneously moving the rotated plurality of sliding bars back to their original positions; And rotating the plurality of sliding bars to their original positions.
  • the at least one bidirectional substrate conveying apparatus is conveyed by a linear motor, characterized in that each of the plurality of sliding bars are slid in both directions by linear movement to be folded or unfolded simultaneously by pneumatic or hydraulic pressure.
  • the substrate transfer method of the substrate processing apparatus according to the present invention has the following effects.
  • the transfer efficiency of the substrate may be improved by transferring the substrate in both directions by using the bidirectional substrate transfer unit of the substrate transfer apparatus disposed between the plurality of process chambers arranged in the inline form.
  • the substrate may be loaded to be aligned with the substrate loading position of each process chamber by sliding the plurality of rotated sliding bars in both directions.
  • FIG. 1 is a diagram schematically illustrating a substrate processing system according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a perspective view for schematically illustrating a bidirectional substrate transport apparatus according to an exemplary embodiment of the present invention.
  • FIG. 3 is a plan view schematically illustrating a bidirectional substrate transport apparatus according to an exemplary embodiment of the present invention.
  • FIG. 4 is a view for schematically explaining a rotating part according to an embodiment of the present invention.
  • FIG. 5 is a diagram for schematically describing a first rotation guide part and a rotation device illustrated in FIG. 4.
  • FIG. 6 is a diagram for schematically describing a second rotation guide part and a rotation shaft part illustrated in FIG. 4.
  • FIGS. 7 is a view for explaining the rotation of the base frame by the rotating unit shown in FIGS.
  • FIG. 8 is a diagram schematically illustrating a transfer chamber in which a plurality of bidirectional substrate transfer apparatuses are installed in a substrate processing system according to an exemplary embodiment of the present disclosure.
  • 9 to 14 are views for explaining a substrate transfer method of a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 1 is a view for explaining a substrate processing system according to an embodiment of the present invention.
  • a substrate processing system may include a transfer chamber TC for transporting a substrate; At least one load lock chamber LC arranged to be connected to the transfer chamber TC; And a plurality of process chambers PC arranged side by side with the transfer chamber TC therebetween.
  • the load lock chamber LC may be installed on at least one side of one side and the other side of the transfer chamber TC.
  • the load lock chamber LC loads a substrate (not shown) from the outside into the transfer chamber TC or unloads the substrate supplied from the transfer chamber TC to the outside.
  • a gate GT for entering and exiting the substrate may be installed between the load lock chamber LC and the transfer chamber TC.
  • Each of the plurality of process chambers PC performs a corresponding semiconductor manufacturing process of the semiconductor manufacturing process on the substrate conveyed from the transfer chamber TC.
  • the semiconductor manufacturing process may be any one of manufacturing processes for manufacturing semiconductor devices such as flat panel display devices and solar cells.
  • the semiconductor manufacturing process may be any one of a deposition process, a cleaning process, a preheating process, a drying process, a heat treatment process, a photo process, an etching process, a diffusion process, and an ion implantation process.
  • Each of the plurality of process chambers PC may be arranged in a row on each of the upper side and the lower side of the transfer chamber TC.
  • a gate GT may be installed between each of the process chambers PC and the transfer chamber TC.
  • the transfer chamber TC is disposed between the plurality of process chambers PC with the gate GT therebetween. In this case, the inside of the transfer chamber TC may be maintained in a vacuum state.
  • the transfer chamber TC conveys the substrate supplied from the load lock chamber LC to each process chamber PC, or transfers the bidirectional substrate to withdraw the substrate from each process chamber PC to the load lock chamber LC. It comprises a device 100. At this time, the bidirectional substrate transfer apparatus 100 transfers the substrate between the process chambers PC while transferring in the horizontal direction inside the transfer chamber TC.
  • FIG. 2 is a perspective view for schematically illustrating a bidirectional substrate transport apparatus according to an embodiment of the present invention
  • FIG. 3 is a plan view for schematically illustrating a bidirectional substrate transport apparatus according to an embodiment of the present invention.
  • the bidirectional substrate transport apparatus 100 may include a transfer unit 200; And a bidirectional substrate transfer part 300.
  • the transfer unit 200 is installed along the longitudinal direction of the transfer chamber TC to transfer the bidirectional substrate transfer unit 300 in the horizontal direction.
  • the transfer unit 200 may be composed of a linear motor.
  • the transfer unit 200 includes a transfer guider 210; And a transfer block unit 220.
  • the transfer guider 210 guides the horizontal transfer of the transfer block 220.
  • the transfer guider 210 may be a stator of the linear motor.
  • the transfer block unit 220 is installed to be transported to the transfer guider 210 and transfers in the horizontal direction along the transfer guider 210.
  • the transfer block 220 may be a rotor (or coil) of the linear motor.
  • the bidirectional substrate carrier 300 includes a base frame 310; Fork frame 320; First and second bidirectional sliding forks 330 and 340; Fork lift unit 350; And a fork elevating guide unit 360.
  • the base frame 310 is installed on the transfer block 220 of the transfer unit 200 and is transferred along with the transfer block 220 in the horizontal direction.
  • Fork frame 320 includes a first support frame 322; A plurality of sidewall supports 324; And a second support frame 326.
  • the first support frame 322 is installed at a predetermined height on the base frame 310 and is supported to be liftable by the fork lifter 350. At this time, each of the first and second side surfaces of the first support frame 322 is formed with a protrusion 328 through which the fork lift unit 350 is connected.
  • the plurality of sidewall supports 324 are installed at regular intervals along the edge of the first support frame 322 to support the second support frame 326.
  • the second support frame 326 is installed on the plurality of sidewall supports 324 to overlap the first support frame 322. This, the second support frame 326 is raised and lowered with the lifting of the first support frame 322.
  • the first bidirectional sliding fork part 330 may include first and second sliding forks 410 and 420; First fork slider 430; And a plurality of first substrate support pads 440.
  • each of the first and second sliding forks 410 and 420 is installed side by side on the first support frame 322 at regular intervals so that the first and second sliding forks 410 and 420 are driven in the first horizontal direction or the first horizontal direction according to the driving of the first fork slider 430. Is conveyed in the second horizontal direction opposite to.
  • each of the first and second sliding forks 410 and 410 may include a first guide block 412; And first to third sliding bars 414, 416, 418.
  • the first guide block 412 is installed between both sides on the first support frame 322 to guide the sliding of the first sliding bar 414.
  • the first sliding bar 414 is installed in the first guide block 412 and is transferred in the first horizontal direction or the second horizontal direction according to the driving of the first fork slider 430.
  • the second sliding bar 416 is installed on the side of the first sliding bar 414 and is linked to the sliding of the first sliding bar 414 and is transferred in the horizontal direction.
  • the third sliding bar 418 is installed on the side of the second sliding bar 416 is linked to the sliding of the second sliding bar 416 is transported in the horizontal direction.
  • each of the second and third sliding bars 416 and 418 may be sequentially stacked on an upper surface of the first sliding bar 414 and may be transferred in a horizontal direction in association with sliding of the first sliding bar 414.
  • the first fork slider 430 is installed between both sides on the first support frame 322 so as to be disposed between the first and second sliding forks 410 and 420 to simultaneously move the first and second sliding forks 410 and 420. Transfer in the first horizontal direction or the second horizontal direction opposite to the first horizontal direction.
  • the first fork slider 430 may include a first guide rod 432 installed between both sides of the first support frame 322 to be supported by the bracket; And a first transfer cylinder 434 which is installed to be transported to the first guide rod 432 and has a link (not shown) connected to each of the first and second sliding forks 410 and 420.
  • the first fork slider 430 may include a hydraulic or pneumatic drive cylinder for transferring the first transfer cylinder 434 by hydraulic or pneumatic pressure supplied to at least one side of the first guide rod 432.
  • the plurality of first substrate support pads 440 are installed on the third sliding bar 418 at regular intervals to support one side rear surface of the substrate when the substrate is transported.
  • the first two-way sliding fork 330 has been described as consisting of two sliding forks 410, 420, but this is not stable for stable and stable substrate conveyance may be composed of two or more.
  • the first fork slider 430 in the first two-way sliding fork 330 has been described as being composed of a hydraulic or pneumatic drive cylinder, but is not limited to this, without the first fork slider 430, LM guider, ball screw , And at least one or at least two of the belts may be combined to slide the sliding forks 410 and 420.
  • first bidirectional sliding fork 330 may move the sliding forks 410 and 420 by an electromagnet motor method in which at least one or at least two of the LM guider, the ball screw, and the belt are combined without the first fork slider 430. It can also slide.
  • the first two-way sliding fork 330 is configured to further include a position detection sensor for controlling the first fork slider 430 by detecting the sliding position during the two-way sliding of the sliding bar (414, 416, 418) Can be.
  • the first bidirectional sliding fork part 330 may be folded or unfolded simultaneously in the first horizontal direction or the second horizontal direction by using the first fork slider 430.
  • the substrate is conveyed in both directions to the process chamber TC disposed on one side or the other side of the transfer chamber TC.
  • the second bidirectional sliding fork part 340 may include third and fourth sliding forks 510 and 520; Second fork slider 530; And a plurality of second substrate support pads 540.
  • Each of the third and fourth sliding forks 510 and 520 is installed side by side on the second support frame 326 at regular intervals so as to be driven in the first horizontal direction or the second horizontal direction according to the driving of the second fork slider 530. Is transferred to.
  • each of the third and fourth sliding forks 510 and 510 may include a second guide block 512; And fourth to sixth sliding bars 514, 516, and 518.
  • the second guide block 512 is installed between both sides on the second support frame 322 to guide the sliding of the fourth sliding bar 514.
  • the fourth sliding bar 514 is installed in the second guide block 512 and is transferred in the first horizontal direction or the second horizontal direction according to the driving of the second fork slider 530.
  • the fifth sliding bar 516 is installed on the side of the fourth sliding bar 514 and is linked with the sliding of the fourth sliding bar 514 to be transferred in the horizontal direction.
  • the sixth sliding bar 518 is installed on the side of the fifth sliding bar 516 and is linked to the sliding of the fifth sliding bar 516 to be transferred in the horizontal direction.
  • each of the fifth and sixth sliding bars 516 and 518 may be sequentially stacked on the upper surface of the fourth sliding bar 514 and may be transferred in the horizontal direction in association with the sliding of the fourth sliding bar 514.
  • the second fork slider 530 is installed between both sides on the second support frame 326 so as to be disposed between the third and fourth sliding forks 510 and 520 to simultaneously move the third and fourth sliding forks 510 and 520. Transfer in the first horizontal direction or the second horizontal direction opposite to the first horizontal direction.
  • the second fork slider 530 may include a second guide rod 532 installed between both sides of the second support frame 326 to be supported by the bracket; And a second transfer cylinder 534 which is installed to be transferable to the second guide rod 532 and has a link 536 connected to each of the third and fourth sliding forks 510 and 520.
  • the second fork slider 530 may be configured as a hydraulic or pneumatic drive cylinder for transferring the second transfer cylinder 534 by hydraulic or pneumatic pressure supplied to at least one side of the second guide rod 532.
  • the plurality of second substrate support pads 540 are provided on the sixth sliding bar 518 at regular intervals to support one side rear surface of the substrate when the substrate is conveyed.
  • sliding forks 510 and 520 are described as being composed of two in the second bidirectional sliding fork 340, two or more sliding forks may be configured for stable and stable substrate transfer.
  • the second fork slider 530 in the second bidirectional sliding fork part 340 has been described as being configured as a hydraulic or pneumatic drive cylinder, the present invention is not limited thereto, and the LM guider and the ball screw without the second fork slider 530 are described.
  • at least one or at least two of the belts may be combined to slide the sliding forks 510 and 520.
  • the second bidirectional sliding fork 340 may move the sliding forks 510 and 520 by an electromagnet motor method combining at least one or at least two of the LM guider, the ball screw, and the belt without the second fork slider 530. It can also slide.
  • the second two-way sliding fork 340 is configured to further include a position detecting sensor for controlling the second fork slider 530 by detecting the sliding position during the two-way sliding of the sliding bar (514, 516, 518) Can be.
  • the second bidirectional sliding fork part 340 may simultaneously fold or unfold the third and fourth sliding forks 510 and 520 in the first horizontal direction or the second horizontal direction by using the second fork slider 530.
  • the substrate is conveyed in both directions to the process chamber TC disposed on one side or the other side of the transfer chamber TC.
  • Fork lift unit 350 includes a first lifting support (352a); Second lifting support 352b; A first lift motor 354a; A second lifting motor (not shown); First ball screw 356a; Second ball screw 356b; And an interlock shaft 358.
  • the first lifting support 352a is installed perpendicular to the base frame 310 to be adjacent to the first side of the fork frame 320.
  • the second lifting support 352b is installed perpendicular to the base frame 310 to be adjacent to the second side of the fork frame 320. At this time, the second lifting support 352b faces the first lifting support 352a.
  • the first lifting motor 354a is installed in the base frame 310 so as to be adjacent to the inner side surface of the first lifting support 352a so that the first ball screw 356a is in the first direction or the second direction opposite to the first direction. Rotate
  • the second lifting motor is installed on the base frame 310 to be adjacent to the inner side surface of the second lifting support 352b to rotate the second ball screw 356b in the same direction as the first ball screw 356b.
  • the first ball screw 356a is installed between the first lifting support 352a and the first lifting motor 354a so as to pass through the protrusion 328 formed in the first supporting frame 322 of the fork frame 320.
  • the lifting motor 354a rotates, the first side of the fork frame 320 is lifted.
  • the protrusion 328 formed in the first support frame 322 is formed with a screw thread that is engaged with the first ball screw 356a.
  • the second ball screw 356b is installed between the second elevating support 352b and the second elevating motor so as to pass through the protrusion 328 formed in the first supporting frame 322 of the fork frame 320.
  • the second side of the fork frame 320 is lifted in accordance with the rotation.
  • the protrusion 328 formed in the first support frame 322 is formed with a screw thread that is engaged with the second ball screw 356b.
  • the interlocking shaft 358 is installed between the first lifting motor 354a and the second lifting motor to transfer the rotational force of the first lifting motor 354a or the second lifting motor to another lifting motor, thereby providing the first lifting motor 354a with the first lifting motor 354a. Rotation of the second lifting motor is synchronized to synchronize.
  • the fork lift unit 350 lifts the fork frame 320 according to the rotation of the first and second ball screws 356a and 356b according to the rotation of the first lift motor 354a and the second lift motor.
  • the first or second bidirectional sliding fork portions 330 and 340 are raised and lowered to a desired height.
  • the fork lift unit 350 may further include a position sensor for detecting the position at the time of lifting the fork frame 320 to control the rotation of the first lifting motor 354a and the second lifting motor.
  • Fork lift guide portion 360 includes a plurality of lifting guide block 362; And a plurality of lifting guide rails 364.
  • the plurality of lifting guide blocks 362 are installed on the sidewall support 324 corresponding to the first and second side edge portions of the fork frame 320.
  • the plurality of lifting guide blocks 362 may be installed on each of the first and second side surfaces of the fork frame 320.
  • the plurality of lifting guide rails 364 are installed perpendicular to the base frame 310 so as to be connected to each lifting guide block 362 to guide the lifting of each lifting guide block 362 during the lifting of the fork frame 320.
  • the loading position of the substrate loaded therein may be different for each process chamber PC.
  • the bidirectional substrate transfer apparatus 100 of the substrate processing system according to the embodiment of the present invention is installed between the transfer unit 200 and the bidirectional substrate transfer unit 300, as shown in FIG. And a rotating part 600 for rotating the bidirectional substrate carrying part 300 at a predetermined angle ⁇ so that the substrate loaded on the PC corresponds to the substrate loading position.
  • the rotating part 600 is a base of the first rotation guide part 610 installed in the transfer block part 220 of the transfer part 200, the rotating device 620 installed in the transfer block part 200, and the bidirectional substrate transfer part 300.
  • the second rotating guide part 630 installed in the frame 310 and rotated according to the first rotating guide part 610, and the rotating device 620 installed in the base frame 310 of the bidirectional substrate transfer part 300. It comprises a rotating shaft portion 640 for rotating the base frame 310 at a predetermined angle ( ⁇ ) at the same time by linear motion by the rotation of.
  • the first rotation guide part 610 includes four LM guide rails installed to correspond to corner portions of the upper surface of the transfer block part 220.
  • Four LM guide rails may be formed in a curved shape to have a predetermined curvature.
  • the first rotation guide part 610 may be composed of four LM guide blocks installed to correspond to each corner portion of the transfer block 220.
  • the rotating device 620 includes first and second brackets 621 and 622 and first and second brackets installed on one side of an upper surface of the transfer block part 220 at predetermined intervals. And a ball screw 623 installed to penetrate 621 and 622, a motor 624 for rotating the ball screw 623, and a housing 625 linearly moving in accordance with the rotation of the ball screw 623. do.
  • the first bracket 621 is installed on one side of the upper surface of the transfer block 220 to rotatably support the other side of the ball screw 623.
  • the second bracket 622 is installed on the upper surface of the transfer block 220 so as to be spaced apart from each other so as to face the first bracket 621 so as to rotatably support one side of the ball screw 623.
  • the ball screw 623 is rotatably installed in the first bracket 621 through the second bracket 622.
  • the motor 624 is installed to be connected to the ball screw 623 passing through the second bracket 622 to rotate the ball screw 623. At this time, the motor 624 and the ball screw 623 are connected to each other by the combination of the first coupler 626 provided on one side of the ball screw 623 and the second coupler 627 provided on the drive shaft of the motor 624. The ball screw 623 is rotated in accordance with the rotation of the motor 624.
  • the motor 624 may be a rotary motor.
  • the housing 625 is installed in the ball screw 623 to linearly move according to the rotation of the ball screw 623.
  • the rotating device 620 linearly moves the housing 625 in accordance with the rotation of the motor 624.
  • the rotating device 620 described above is positioned to be inclined toward one side of the transfer block part 220, that is, in a line with the first rotation guide part 610 in order to easily rotate the base frame 310. It is preferable to be installed between one side edge portion of the transfer block 220.
  • the second rotation guide part 630 includes four LM guide blocks installed at each corner of the rear surface of the base frame 310 so as to correspond to the first rotation guide part 610.
  • the four LM guide blocks may be formed in a curved shape to have a predetermined curvature.
  • the second rotation guide part 630 may be formed at each corner of the rear surface of the base frame 310 so as to correspond to the first rotation guide part 610. It can also consist of four LM guide rails installed.
  • the second rotation guide part 630 is rotated along the first rotation guide part 610 by a linear motion of the housing 625 according to the driving of the rotating device 620 to rotate the base frame 310 by a predetermined angle ( rotate ( ⁇ ).
  • the rotation shaft part 640 includes a first support plate 642 provided on the rear surface of the base frame 310, a rotation shaft 644 rotatably installed on the first support plate 642, and It is configured to include a second support plate 646 installed on the rotating shaft 644 and coupled to the housing 625 of the rotating device 620.
  • the first support plate 642 is installed on the rear surface of the base frame 310 by a screw (not shown).
  • the rotating shaft 644 is rotatably installed on the first supporting plate 642 so that the first supporting plate 642 can be rotated.
  • the second support plate 646 is coupled to the end of the rotation shaft 644 and coupled to the housing 625 by screws.
  • the rotation shaft portion 640 is a second rotation guide portion 630 is a first rotation guide portion by the linear movement of the second support plate 646 and / or the rotation shaft 644 according to the linear movement of the housing 625.
  • the base frame 310 is rotated at a predetermined angle ⁇ .
  • the rotating part 600 rotates the motor 624 according to the substrate rotation angle of each process chamber PC set to correspond to the substrate loading position of each process chamber PC.
  • the base frame 310 is rotated at a predetermined angle ⁇ according to the linear motion and the rotational motion of the rotation shaft part 640 coupled to the housing 625.
  • the substrate seated on the bidirectional substrate carrier 300 that is, the first and second bidirectional sliding forks 330 and 340 by the rotation of the base frame 310, is aligned with the substrate loading position of each process chamber PC. Rotate at a predetermined angle ⁇ .
  • the bidirectional substrate transfer apparatus 100 described above may be transferred to the process chamber PC or the load lock chamber LC through horizontal transfer by the transfer unit 200 to transfer the substrate in both directions. In this case, the bidirectional substrate transfer apparatus 100 does not need to be rotated to transfer the substrate in both directions because bidirectional transfer of the substrate is possible through bidirectional sliding of the first and second bidirectional sliding forks 330 and 340.
  • the bidirectional substrate transport apparatus 100 rotates the first and second bidirectional sliding forks 330 and 340 at a predetermined angle ⁇ by using the rotation of the rotating part 600, and then, the first and second sliding are performed.
  • the substrates can be loaded to be precisely aligned with the substrate loading position of each process chamber PC.
  • the transfer chamber TC described above may be configured to include a plurality of bidirectional substrate transfer device 100, as shown in Figure 8, in order to improve the transfer efficiency of the substrate, bidirectional substrate transfer device 100
  • the number of may vary depending on the length of the transfer chamber TC.
  • Each of the plurality of bidirectional substrate transfer apparatuses 100 may be configured in the same manner as described above to perform substrate transfer for a predetermined region in the transfer chamber TC.
  • 9 to 14 are views for explaining a substrate transfer method of a substrate processing apparatus according to an embodiment of the present invention.
  • the bidirectional substrate conveying apparatus 100 may transfer the bidirectional substrate conveying unit ( 300 is transferred to the first load lock chamber LC1.
  • the bidirectional substrate transport apparatus 100 drives the fork lifter 350 to increase the height of the first bidirectional sliding fork 330 of the fork frame 320 by the first load lock.
  • the sliding bars 414, 416, and 418 of the first bidirectional sliding fork part 330 are moved in the first direction, that is, the first load lock chamber.
  • the fork frame 320 is raised to a predetermined height by driving the fork lifter 350 to seat the substrate S on the first two-way sliding fork 330.
  • the sliding bars 414, 416, and 418 of the first bidirectional sliding fork part 330 on which the substrate S is seated have the fork frame 320.
  • the sliding bars 414, 416, and 418 of the first bidirectional sliding fork part 330 are slid in the second direction so as to be folded to the original position on the upper surface of the upper surface.
  • the bidirectional substrate transfer apparatus 100 drives the rotating unit 600 so as to correspond to the substrate loading position of the process chamber PC on which the substrate S is to be loaded.
  • 300 is rotated at a predetermined angle [theta]. That is, the motor 624 of the rotating part 600 rotates to correspond to the substrate loading position of the process chamber PC on which the substrate S is to be loaded, thereby linearly moving the housing 625 according to the linear movement of the housing 625.
  • the rotating shaft 640 is linearly moved.
  • the base frame 310 is rotated by rotating the second rotation guide part 630 according to the guide of the first rotation guide part 610 in association with the linear motion of the rotation shaft part 640.
  • the seated first bidirectional sliding fork part 330 is rotated at a predetermined angle ⁇ such that the substrate S is aligned with the substrate loading position of the process chamber PC to be loaded.
  • the bidirectional substrate transport apparatus 100 moves the sliding bars 414, 416, and 418 of the first bidirectional sliding fork part 330 in a second direction, that is, inside the process chamber PC.
  • the fork elevating unit 350 by lowering the fork frame 320 to a predetermined height to the substrate (S) seated on the first two-way sliding fork 330 inside the process chamber (PC)
  • the substrate S is mounted on a substrate support member (not shown) or a substrate support frame (not shown) provided in the process chamber PC.
  • the bidirectional substrate transport apparatus 100 when the substrate S is seated inside the process chamber PC, the bidirectional substrate transport apparatus 100 includes sliding bars 414 and 416 of the first bidirectional sliding fork part 330. , 418 is slid in the first direction to be folded to the original position on the fork frame 320, and then the rotating unit 600 is driven to rotate the bidirectional substrate transfer unit 300 to the original position.
  • the first and second bidirectional sliding fork parts 330 and 340 are rotated at a predetermined angle ⁇ by using the rotation of the rotating part 600. Then, by folding or unfolding each of the first and second sliding forks 410 and 420 or the third and fourth sliding forks 510 and 520, the substrate is accurately positioned at the substrate loading position of each process chamber PC. Can be loaded to align.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

본 발명은 인라인 형태로 배치된 복수의 공정 챔버 사이에 설치된 기판 반송장치의 양방향 기판 반송부를 이용하여 기판을 양방향으로 반송하여 기판의 반송 효율을 향상시킴과 아울러, 양방향 기판 반송부의 회전시켜 기판을 정확한 위치로 반송시킬 수 있도록 한 기판 처리 시스템 및 기판 처리 방법에 관한 것으로, 기판 처리 시스템은 기판을 양방향으로 반송하는 적어도 하나의 양방향 기판 반송장치를 가지는 트랜스퍼 챔버; 및 상기 트랜스퍼 챔버를 사이에 두고 인라인 형태로 배치되어 상기 기판에 대한 반도체 제조공정을 수행하는 복수의 공정 챔버를 포함하며, 상기 적어도 하나의 양방향 기판 반송장치는, 리니어 모터에 의해 수평 방향으로 이송 가능하도록 상기 트랜스퍼 챔버 내에 설치된 이송부; 상기 이송부에 설치되어 양방향 슬라이딩을 통해 상기 기판을 공정 챔버로 반송하는 양방향 기판 반송부; 및 상기 이송부와 상기 양방향 기판 반송부 사이에 설치되어 상기 양방향 기판 반송부를 소정 각도로 회전시키는 회전부를 포함하여 구성되는 것을 특징으로 한다.

Description

기판 처리 시스템 및 기판 반송 방법
본 발명은 기판 처리 시스템 및 기판 반송 방법에 관한 것으로, 보다 구체적으로, 인라인 형태로 배치된 복수의 공정 챔버 사이에 설치된 기판 반송장치의 양방향 기판 반송부를 이용하여 기판을 양방향으로 반송하여 기판의 반송 효율을 향상시킴과 아울러, 양방향 기판 반송부를 회전시켜 기판을 정확한 위치로 반송시킬 수 있도록 한 기판 처리 시스템 및 기판 처리 방법에 관한 것이다.
일반적으로, 평판 표시장치 및 태양전지 등의 반도체 장치는 기판 상에 증착공정, 사진공정, 식각공정, 확산공정, 이온주입공정 등과 같은 복수의 반도체 제조공정을 선택적이고도 반복적으로 수행하는 과정을 통해 이루어진다. 이러한 각 공정을 원활하게 수행하기 위해서는 멀티 챔버 구조를 갖는 기판 처리 시스템이 요구된다.
멀티 챔버 구조의 기판 처리 시스템은 적어도 하나의 공정을 수행하는 복수의 공정 챔버; 및 복수의 공정 챔버를 공통으로 연결하는 트랜스퍼 챔버를 포함하여 클러스터(Cluster) 타입으로 구성된다.
트랜스퍼 챔버는 내부에 위치되는 외부로부터 공급되는 기판을 반송하는 기판 반송장치를 포함하여 구성된다.
기판 반송장치는 반송 로봇의 승강 및 회전 운동을 이용하여 기판을 각 공정 챔버의 내부에 로딩시키거나 각 공정 챔버에서 언로딩시키는 역할을 한다.
그러나, 종래의 기판 처리 시스템은 다음과 같은 문제점이 있다.
첫째, 반송 로봇의 회전을 통해 클러스터 구조로 배치된 각 공정 챔버로 기판을 반송하기 때문에 반송 로봇의 반송 부하가 증가되어 생산성이 떨어진다는 문제점이 있다.
둘째, 반송 로봇의 회전을 위한 공간 확보로 인하여 트랜스퍼 챔버의 크기가 증가되므로 트랜스퍼 챔버의 유지 보수 시간이 많이 소요된다는 문제점이 있다.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 인라인 형태로 배치된 복수의 공정 챔버 사이에 설치된 기판 반송장치의 양방향 기판 반송부를 이용하여 기판을 양방향으로 반송하여 기판의 반송 효율을 향상시킴과 아울러, 양방향 기판 반송부를 회전시켜 기판을 정확한 위치로 반송시킬 수 있도록 한 기판 처리 시스템 및 기판 처리 방법을 제공하는 것을 기술적 과제로 한다.
상술한 기술적 과제를 달성하기 위한 본 발명에 따른 기판 처리 시스템은 기판을 양방향으로 반송하는 적어도 하나의 양방향 기판 반송장치를 가지는 트랜스퍼 챔버; 및 상기 트랜스퍼 챔버를 사이에 두고 인라인 형태로 배치되어 상기 기판에 대한 반도체 제조공정을 수행하는 복수의 공정 챔버를 포함하며, 상기 적어도 하나의 양방향 기판 반송장치는, 리니어 모터에 의해 수평 방향으로 이송 가능하도록 상기 트랜스퍼 챔버 내에 설치된 이송부; 상기 이송부에 설치되어 양방향 슬라이딩을 통해 상기 기판을 공정 챔버로 반송하는 양방향 기판 반송부; 및 상기 이송부와 상기 양방향 기판 반송부 사이에 설치되어 상기 양방향 기판 반송부를 소정 각도로 회전시키는 회전부를 포함하여 구성되는 것을 특징으로 한다.
상기 양방향 기판 반송부는 상기 이송부에 설치된 베이스 프레임; 상기 베이스 프레임 상에 설치되는 포크 프레임; 직선 운동에 의한 양방향 슬라이딩이 가능하도록 상기 포크 프레임에 설치된 복수의 슬라이딩 바를 가지는 제 1 및 제 2 양방향 슬라이딩 포크부; 및 상기 포크 프레임에 측면에 설치되는 상기 포크 프레임을 승강시켜 제 1 및 제 2 양방향 슬라이딩 포크부를 승강시키는 포크 승강부를 포함하여 구성되는 것을 특징으로 한다.
상술한 기술적 과제를 달성하기 위한 본 발명에 따른 기판 처리 시스템은 서로 마주보도록 2열로 설치되어 기판에 대한 반도체 제조공정을 수행하는 제 1 및 제 2 공정 챔버; 및 상기 제 1 및 제 2 공정 챔버 사이에 설치되며, 복수의 슬라이딩 바를 동시에 직선 운동시켜 상기 기판을 상기 제 1 공정 챔버 또는 상기 제 2 공정 챔버로 반송하는 적어도 하나의 양방향 기판 반송장치를 포함하며, 상기 적어도 하나의 양방향 기판 반송장치는 복수의 슬라이딩 바를 소정 각도로 회전시키기 위한 회전부를 포함하여 구성되는 것을 특징으로 한다.
상기 적어도 하나의 양방향 기판 반송장치는 리니어 모터에 의해 수평 방향으로 이송 가능하도록 상기 트랜스퍼 챔버 내에 설치된 이송부; 및 상기 이송부에 설치되어 양방향 슬라이딩을 통해 상기 기판을 공정 챔버로 반송하는 양방향 기판 반송부를 더 포함하며, 상기 회전부는 상기 이송부와 상기 양방향 기판 반송부 사이에 설치되어 상기 양방향 기판 반송부를 소정 각도로 회전시키는 것을 특징으로 한다.
상기 양방향 기판 반송부는 상기 이송부에 설치된 베이스 프레임; 상기 베이스 프레임 상에 설치되는 포크 프레임; 직선 운동에 의한 양방향 슬라이딩이 가능하도록 상기 포크 프레임에 설치된 상기 복수의 슬라이딩 바를 가지는 제 1 및 제 2 양방향 슬라이딩 포크부; 및 상기 포크 프레임에 측면에 설치되는 상기 포크 프레임을 승강시켜 제 1 및 제 2 양방향 슬라이딩 포크부를 승강시키는 포크 승강부를 포함하여 구성되는 것을 특징으로 한다.
상기 회전부는 상기 이송부 상면의 각 모서리 부분에 설치된 제 1 회전 가이드부; 상기 이송부 상면에 설치된 회전 장치; 상기 제 1 회전 가이드부를 따라 회전 가능하도록 상기 베이스 프레임의 배면에 설치된 제 2 회전 가이드부; 및 상기 베이스 프레임의 배면에 설치되어 상기 회전 장치의 회전에 따라 직선 운동하고, 상기 직선 운동에 의해 상기 제 2 회전 가이드부가 상기 제 1 회전 가이드부를 따라 회전되어 상기 베이스 프레임이 소정 각도로 회전되도록 하는 회전축부를 포함하여 구성되는 것을 특징으로 한다.
상기 회전 장치는 상기 이송부의 상면에 설치된 제 1 브라켓; 상기 제 1 브라켓에 소정 간격 이격되도록 상기 이송부의 상면에 설치된 제 2 브라켓; 상기 제 2 브라켓을 관통하여 상기 1 브라켓에 회전 가능하게 지지되는 볼 스크류; 상기 볼 스크류에 접속되어 상기 볼 스크류를 회전시키기 위한 모터; 및 상기 볼 스크류에 설치되어 상기 볼 스크류의 회전에 따라 직선 운동하여 상기 회전축부를 직선 운동시키는 하우징을 포함하여 구성되는 것을 특징으로 한다.
상기 회전축부는 상기 베이스 프레임의 배면에 설치된 제 1 지지 플레이트; 상기 제 1 지지 플레이트에 회전 가능하게 설치된 회전축; 및 상기 회전축에 설치됨과 아울러 상기 하우징에 설치되어 상기 하우징의 직선 운동에 연동한 상기 직선 운동에 의해 상기 제 2 회전 가이드부가 상기 제 1 회전 가이드부를 따라 회전되어 상기 베이스 프레임이 소정 각도로 회전되도록 한다.
상기 제 1 및 제 2 회전 가이드부는 소정의 곡률을 가지는 곡선 형태인 것을 특징으로 한다.
상술한 기술적 과제를 달성하기 위한 본 발명에 따른 기판 반송 방법은 기판이 반송되는 로드락 챔버와 상기 로드락 챔버와 마주보도록 설치되어 상기 기판에 대한 반도체 제조공정을 수행하는 공정 챔버간에 상기 기판을 반송하는 기판 반송 방법에 있어서, 이송부, 양방향 기판 반송부, 및 상기 이송부와 상기 양방향 기판 반송부 사이에 설치된 회전부를 포함하여 구성된 적어도 하나의 양방향 기판 반송장치 중 어느 하나를 상기 로드락 챔버와 공정 챔버 사이로 이송시키는 단계; 양방향 슬라이딩이 가능하도록 상기 양방향 기판 반송부에 나란하게 설치된 복수의 슬라이딩 바를 동시에 상기 로드락 챔버 내부로 직선 운동시켜 상기 기판을 적재한 후, 상기 복수의 슬라이딩 바를 동시에 직선 운동시켜 원 위치로 복귀시키는 단계; 상기 회전부를 구동하여 상기 양방향 기판 반송부를 소정 각도로 회전시켜 상기 복수의 슬라이딩 바를 회전시키는 단계; 상기 회전된 복수의 슬라이딩 바를 동시에 직선 운동시켜 상기 공정 챔버에 상기 소정 각도로 회전된 기판을 로딩시키는 단계; 상기 회전된 복수의 슬라이딩 바를 동시에 직선 운동시켜 원 위치로 복귀시키는 단계; 및 상기 회전부를 구동하여 상기 양방향 기판 반송부를 원 위치로 회전시켜 상기 복수의 슬라이딩 바를 원 위치로 회전시키는 단계를 포함하여 이루어지는 것을 특징으로 한다.
상기 회전부를 구동하여 상기 양방향 기판 반송부를 소정 각도로 회전시켜 상기 복수의 슬라이딩 바를 회전시키는 단계는 상기 이송부의 상면에 설치된 모터의 회전에 따라 볼 스크류를 회전시켜 상기 볼 스크류에 설치된 하우징을 직선 운동시키는 단계; 상기 복수의 슬라이딩 바를 지지하는 상기 양방향 기판 반송부의 베이스 프레임의 배면에 설치됨과 아울러 상기 하우징에 설치된 회전축부를 상기 하우징을 직선 운동에 따라 직선 운동시키는 단계; 및 상기 이송부의 상면 각 모서리 부분에 설치된 제 1 회전 가이드부를 따라 회전되도록 상기 베이스 프레임의 배면에 설치된 제 2 회전 가이드부를 상기 회전축부의 직선 운동에 따라 회전시켜 상기 베이스 프레임을 소정 각도로 회전시키는 단계를 포함하여 이루어지는 것을 특징으로 한다.
상술한 기술적 과제를 달성하기 위한 본 발명에 따른 기판 반송 방법은 기판이 반송되는 로드락 챔버와 상기 로드락 챔버와 마주보도록 설치되어 상기 기판에 대한 반도체 제조공정을 수행하는 공정 챔버간에 상기 기판을 반송하는 기판 반송 방법에 있어서, 적어도 하나의 양방향 기판 반송장치 중 어느 하나를 상기 로드락 챔버와 공정 챔버 사이로 이송시키는 단계; 양방향 슬라이딩이 가능하도록 상기 양방향 기판 반송장치에 나란하게 설치된 복수의 슬라이딩 바를 동시에 상기 로드락 챔버 내부로 직선 운동시켜 상기 기판을 적재한 후, 상기 복수의 슬라이딩 바를 동시에 직선 운동시켜 원 위치로 복귀시키는 단계; 상기 복수의 슬라이딩 바를 소정 각도로 회전시키는 단계; 상기 회전된 복수의 슬라이딩 바를 동시에 직선 운동시켜 상기 공정 챔버에 상기 소정 각도로 회전된 기판을 로딩시키는 단계; 상기 회전된 복수의 슬라이딩 바를 동시에 직선 운동시켜 원 위치로 복귀시키는 단계; 및 상기 복수의 슬라이딩 바를 원 위치로 회전시키는 단계를 포함하여 이루어지는 것을 특징으로 한다.
상기 적어도 하나의 양방향 기판 반송장치는 리니어 모터에 의해 이송되며, 상기 복수의 슬라이딩 바 각각은 공압 또는 유압에 의해 동시에 접히거나 펼쳐지도록 직선 운동하여 양방향으로 슬라이딩되는 것을 특징으로 한다.
상술한 바와 같이 본 발명에 따른 기판 처리 장치의 기판 반송 방법은 다음과 같은 효과가 있다.
첫째, 인라인 형태로 배치된 복수의 공정 챔버 사이에 설치된 기판 반송장치의 양방향 기판 반송부를 이용하여 기판을 양방향으로 반송하여 기판의 반송 효율을 향상시킬 수 있다.
둘째, 회전부의 회전을 이용하여 기판이 안착된 복수의 슬라이딩 바를 소정 각도로 회전시킨 후, 회전된 복수의 슬라이딩 바를 양방향으로 슬라이딩시킴으로써 기판을 각 공정 챔버의 기판 로딩 위치에 정확하게 정렬되도록 로딩시킬 수 있다.
도 1은 본 발명의 실시 예에 따른 기판 처리 시스템을 개략적으로 설명하기 위한 도면이다.
도 2는 본 발명의 실시 예에 따른 양방향 기판 반송장치를 개략적으로 설명하기 위한 사시도이다.
도 3은 본 발명의 실시 예에 따른 양방향 기판 반송장치를 개략적으로 설명하기 위한 평면도이다.
도 4는 본 발명의 실시 예에 따른 회전부를 개략적으로 설명하기 위한 도면이다.
도 5는 도 4에 도시된 제 1 회전 가이드부 및 회전 장치를 개략적으로 설명하기 위한 도면이다.
도 6은 도 4에 도시된 제 2 회전 가이드부 및 회전축부를 개략적으로 설명하기 위한 도면이다.
도 7은 도 4 내지 도 6에 도시된 회전부에 의해 베이스 프레임의 회전을 설명하기 위한 도면이다.
도 8은 본 발명의 실시 예에 따른 기판 처리 시스템에서 복수의 양방향 기판 반송장치가 설치된 트랜스퍼 챔버를 개략적으로 설명하기 위한 도면이다.
도 9 내지 도 14는 본 발명의 실시 예에 따른 기판 처리 장치의 기판 반송 방법을 설명하기 위한 도면들이다.
도 1은 본 발명의 실시 예에 따른 기판 처리 시스템을 설명하기 위한 도면이다.
도 1을 참조하면, 본 발명의 실시 예에 따른 기판 처리 시스템은 기판을 반송하는 트랜스퍼 챔버(TC); 트랜스퍼 챔버(TC)에 접속되도록 배치된 적어도 하나의 로드락 챔버(LC); 및 트랜스퍼 챔버(TC)를 사이에 두고 나란하게 배치된 복수의 공정 챔버(PC)를 포함하여 구성된다.
로드락 챔버(LC)는 트랜스퍼 챔버(TC)의 일측 및 타측 중 적어도 한 측에 설치될 수 있다. 이러한, 로드락 챔버(LC)는 외부로부터의 기판(미도시)을 트랜스퍼 챔버(TC)로 로딩하거나, 트랜스퍼 챔버(TC)로부터 공급되는 기판을 외부로 언로딩한다. 이때, 로드락 챔버(LC)와 트랜스퍼 챔버(TC) 사이에는 기판의 출입을 위한 게이트(GT)가 설치될 수 있다.
복수의 공정 챔버(PC) 각각은 트랜스퍼 챔버(TC)로부터 반송되는 기판 상에 반도체 제조 공정 중 해당하는 반도체 제조 공정을 수행한다. 여기서, 반도체 제조 공정은 평판 표시장치 및 태양전지 등의 반도체 장치를 제조하기 위한 제조 공정 중 어느 한 공정이 될 수 있다. 예를 들어, 반도체 제조 공정은 증착공정, 세정공정, 예열공정, 건조공정, 열처리공정, 사진공정, 식각공정, 확산공정, 및 이온주입공정 중 어느 한 공정이 될 수 있다.
이러한, 복수의 공정 챔버(PC) 각각은 트랜스퍼 챔버(TC)의 상측 및 하측 각각에 일렬로 배치될 수 있다. 또한, 각 공정 챔버(PC)와 트랜스퍼 챔버(TC) 사이에는 기판의 출입을 위한 게이트(GT)가 설치될 수 있다.
트랜스퍼 챔버(TC)는 게이트(GT)를 사이에 두고 복수의 공정 챔버(PC) 사이에 배치된다. 이때, 트랜스퍼 챔버(TC) 내부는 진공 상태로 유지될 수 있다.
트랜스퍼 챔버(TC)는 로드락 챔버(LC)로부터 공급되는 기판을 각 공정 챔버(PC)로 반송하거나 각 공정 챔버(PC)에서 기판을 인출하여 로드락 챔버(LC)로 반송하기 위한 양방향 기판 반송장치(100)를 포함하여 구성된다. 이때, 양방향 기판 반송장치(100)는 트랜스퍼 챔버(TC) 내부에서 수평 방향으로 이송하면서 각 공정 챔버(PC) 간에 기판을 반송한다.
도 2는 본 발명의 실시 예에 따른 양방향 기판 반송장치를 개략적으로 설명하기 위한 사시도이고, 도 3은 본 발명의 실시 예에 따른 양방향 기판 반송장치를 개략적으로 설명하기 위한 평면도이다.
도 2 및 도 3을 도 1과 결부하면, 일 실시 예에 따른 양방향 기판 반송장치(100)는 이송부(200); 및 양방향 기판 반송부(300)를 포함하여 구성된다.
일 실시 예에 따른 이송부(200)는 트랜스퍼 챔버(TC)의 길이 방향을 따라 설치되어 양방향 기판 반송부(300)를 수평 방향으로 이송시킨다. 이를 위해, 이송부(200)는 리니어 모터로 구성될 수 있다.
일 실시 예에 있어서, 이송부(200)는 이송 가이더(210); 및 이송 블록부(220)를 포함하여 구성된다.
이송 가이더(210)는 이송 블록부(220)의 수평 이송을 가이드 한다. 예를 들어, 이송 가이더(210)는 리니어 모터의 고정자가 될 수 있다.
이송 블록부(220)는 이송 가이더(210)에 이송 가능하게 설치되어 이송 가이더(210)를 따라 수평 방향으로 이송한다. 예를 들어, 이송 블록부(220)는 리니어 모터의 회전자(또는 코일부)가 될 수 있다.
일 실시 예에 있어서, 양방향 기판 반송부(300)는 베이스 프레임(310); 포크 프레임(320); 제 1 및 제 2 양방향 슬라이딩 포크부(330, 340); 포크 승강부(350); 및 포크 승강 가이드부(360)를 포함하여 구성된다.
베이스 프레임(310)은 이송부(200)의 이송 블록부(220) 상에 설치되어 이송 블록부(220)와 함께 수평 방향으로 이송된다.
일 실시 예에 따른 포크 프레임(320)은 제 1 지지 프레임(322); 복수의 측벽 지지대(324); 제 2 지지 프레임(326)을 포함하여 구성된다.
제 1 지지 프레임(322)은 베이스 프레임(310) 상에 일정한 높이로 설치되어 포크 승강부(350)에 의해 승강 가능하도록 지지된다. 이때, 제 1 지지 프레임(322)의 제 1 및 제 2 측면 각각에는 포크 승강부(350)가 관통하여 접속되는 돌출부(328)가 형성된다.
복수의 측벽 지지대(324)는 제 1 지지 프레임(322)의 가장자리를 따라 일정한 간격으로 설치되어 제 2 지지 프레임(326)을 지지한다.
제 2 지지 프레임(326)은 제 1 지지 프레임(322)과 중첩되도록 복수의 측벽 지지대(324) 상에 설치된다. 이러한, 제 2 지지 프레임(326)은 제 1 지지 프레임(322)의 승강과 함께 승강된다.
일 실시 예에 따른 제 1 양방향 슬라이딩 포크부(330)는 제 1 및 제 2 슬라이딩 포크(410, 420); 제 1 포크 슬라이더(430); 및 복수의 제 1 기판 지지 패드(440)를 포함하여 구성될 수 있다.
제 1 및 제 2 슬라이딩 포크(410, 420) 각각은 제 1 지지 프레임(322) 상에 일정한 간격으로 나란하게 설치되어 제 1 포크 슬라이더(430)의 구동에 따라 제 1 수평 방향 또는 제 1 수평 방향에 반대되는 제 2 수평 방향으로 이송된다. 이를 위해, 제 1 및 제 2 슬라이딩 포크(410, 410) 각각은 제 1 가이드 블록(412); 및 제 1 내지 제 3 슬라이딩 바(414, 416, 418)를 포함하여 구성된다.
제 1 가이드 블록(412)은 제 1 지지 프레임(322) 상의 양측면 간에 설치되어 제 1 슬라이딩 바(414)의 슬라이딩을 안내한다.
제 1 슬라이딩 바(414)는 제 1 가이드 블록(412)에 설치되어 제 1 포크 슬라이더(430)의 구동에 따라 제 1 수평 방향 또는 제 2 수평 방향으로 이송된다.
제 2 슬라이딩 바(416)는 제 1 슬라이딩 바(414)의 측면에 설치되어 제 1 슬라이딩 바(414)의 슬라이딩에 연동되어 수평 방향으로 이송된다.
제 3 슬라이딩 바(418)는 제 2 슬라이딩 바(416)의 측면에 설치되어 제 2 슬라이딩 바(416)의 슬라이딩에 연동되어 수평 방향으로 이송된다.
한편, 제 2 및 제 3 슬라이딩 바(416, 418) 각각은 제 1 슬라이딩 바(414)의 상면에 순차적으로 적층되어 제 1 슬라이딩 바(414)의 슬라이딩에 연동되어 수평 방향으로 이송될 수도 있다.
제 1 포크 슬라이더(430)는 제 1 및 제 2 슬라이딩 포크(410, 420) 사이에 배치되도록 제 1 지지 프레임(322) 상의 양측면 간에 설치되어 제 1 및 제 2 슬라이딩 포크(410, 420)를 동시에 제 1 수평 방향 또는 제 1 수평 방향에 반대되는 제 2 수평 방향으로 이송시킨다. 이를 위해, 제 1 포크 슬라이더(430)는 브라켓에 의해 지지되도록 제 1 지지 프레임(322) 상의 양측면 간에 설치된 제 1 가이드 봉(432); 및 제 1 가이드 봉(432)에 이송 가능하게 설치됨과 아울러 제 1 및 제 2 슬라이딩 포크(410, 420) 각각에 접속된 링크(미도시)를 가지는 제 1 이송 실린더(434)를 포함하여 구성된다. 이러한, 제 1 포크 슬라이더(430)는 제 1 가이드 봉(432)의 적어도 한 측면에 공급되는 유압 또는 공압에 의해 제 1 이송 실린더(434)를 이송시키는 유압 또는 공압 구동 실린더로 이루어질 수 있다.
복수의 제 1 기판 지지 패드(440)는 제 3 슬라이딩 바(418) 상에 일정한 간격으로 설치되어 기판의 반송시 기판의 일측 배면을 지지한다.
한편, 제 1 양방향 슬라이딩 포크부(330)에서 슬라이딩 포크(410, 420)가 2개로 구성되는 것으로 설명하였으나, 이에 안정되지 않고 안정적인 기판 반송을 위해 슬라이딩 포크는 2개 이상으로 구성될 수 있다. 또한, 제 1 양방향 슬라이딩 포크부(330)에서 제 1 포크 슬라이더(430)가 유압 또는 공압 구동 실린더로 구성되는 것으로 설명하였으나, 이에 한정되지 않고, 제 1 포크 슬라이더(430) 없이 LM 가이더, 볼 스크류, 및 벨트 중 적어도 하나 또는 적어도 2개를 조합하여 슬라이딩 포크(410, 420)를 슬라이딩시킬 수도 있다. 나아가, 제 1 양방향 슬라이딩 포크부(330)는 제 1 포크 슬라이더(430) 없이 LM 가이더, 볼 스크류, 및 벨트 중 적어도 하나 또는 적어도 2개를 조합한 전자석 모터 방식으로 슬라이딩 포크(410, 420)를 슬라이딩시킬 수도 있다.
다른 한편, 제 1 양방향 슬라이딩 포크부(330)는 슬라이딩 바(414, 416, 418)의 양방향 슬라이딩시 슬라이딩 위치를 검출하여 제 1 포크 슬라이더(430)를 제어하기 위한 위치 검출센서를 더 포함하여 구성될 수 있다.
이와 같은, 제 1 양방향 슬라이딩 포크부(330)는 제 1 포크 슬라이더(430)를 이용해 제 1 및 제 2 슬라이딩 포크(410, 420)를 제 1 수평 방향 또는 제 2 수평 방향으로 동시에 접거나 펼쳐지도록 슬라이딩시킴으로써 트랜스퍼 챔버(TC)의 일측 또는 타측에 배치된 공정 챔버(TC)로 기판을 양방향으로 반송한다.
일 실시 예에 따른 제 2 양방향 슬라이딩 포크부(340)는 제 3 및 제 4 슬라이딩 포크(510, 520); 제 2 포크 슬라이더(530); 및 복수의 제 2 기판 지지 패드(540)를 포함하여 구성될 수 있다.
제 3 및 제 4 슬라이딩 포크(510, 520) 각각은 제 2 지지 프레임(326) 상에 일정한 간격으로 나란하게 설치되어 제 2 포크 슬라이더(530)의 구동에 따라 제 1 수평 방향 또는 제 2 수평 방향으로 이송된다. 이를 위해, 제 3 및 제 4 슬라이딩 포크(510, 510) 각각은 제 2 가이드 블록(512); 및 제 4 내지 제 6 슬라이딩 바(514, 516, 518)를 포함하여 구성된다.
제 2 가이드 블록(512)은 제 2 지지 프레임(322) 상의 양측면 간에 설치되어 제 4 슬라이딩 바(514)의 슬라이딩을 안내한다.
제 4 슬라이딩 바(514)는 제 2 가이드 블록(512)에 설치되어 제 2 포크 슬라이더(530)의 구동에 따라 제 1 수평 방향 또는 제 2 수평 방향으로 이송된다.
제 5 슬라이딩 바(516)는 제 4 슬라이딩 바(514)의 측면에 설치되어 제 4 슬라이딩 바(514)의 슬라이딩에 연동되어 수평 방향으로 이송된다.
제 6 슬라이딩 바(518)는 제 5 슬라이딩 바(516)의 측면에 설치되어 제 5 슬라이딩 바(516)의 슬라이딩에 연동되어 수평 방향으로 이송된다.
한편, 제 5 및 제 6 슬라이딩 바(516, 518) 각각은 제 4 슬라이딩 바(514)의 상면에 순차적으로 적층되어 제 4 슬라이딩 바(514)의 슬라이딩에 연동되어 수평 방향으로 이송될 수도 있다.
제 2 포크 슬라이더(530)는 제 3 및 제 4 슬라이딩 포크(510, 520) 사이에 배치되도록 제 2 지지 프레임(326) 상의 양측면 간에 설치되어 제 3 및 제 4 슬라이딩 포크(510, 520)를 동시에 제 1 수평 방향 또는 제 1 수평 방향에 반대되는 제 2 수평 방향으로 이송시킨다. 이를 위해, 제 2 포크 슬라이더(530)는 브라켓에 의해 지지되도록 제 2 지지 프레임(326) 상의 양측면 간에 설치된 제 2 가이드 봉(532); 및 제 2 가이드 봉(532)에 이송 가능하게 설치됨과 아울러 제 3 및 제 4 슬라이딩 포크(510, 520) 각각에 접속된 링크(536)를 가지는 제 2 이송 실린더(534)를 포함하여 구성된다. 이러한, 제 2 포크 슬라이더(530)는 제 2 가이드 봉(532)의 적어도 한 측면에 공급되는 유압 또는 공압에 의해 제 2 이송 실린더(534)를 이송시키는 유압 또는 공압 구동 실린더로 이루어질 수 있다.
복수의 제 2 기판 지지 패드(540)는 제 6 슬라이딩 바(518) 상에 일정한 간격으로 설치되어 기판의 반송시 기판의 일측 배면을 지지한다.
한편, 제 2 양방향 슬라이딩 포크부(340)에서 슬라이딩 포크(510, 520)가 2개로 구성되는 것으로 설명하였으나, 이에 안정되지 않고 안정적인 기판 반송을 위해 슬라이딩 포크는 2개 이상으로 구성될 수 있다. 또한, 제 2 양방향 슬라이딩 포크부(340)에서 제 2 포크 슬라이더(530)가 유압 또는 공압 구동 실린더로 구성되는 것으로 설명하였으나, 이에 한정되지 않고, 제 2 포크 슬라이더(530) 없이 LM 가이더, 볼 스크류, 및 벨트 중 적어도 하나 또는 적어도 2개를 조합하여 슬라이딩 포크(510, 520)를 슬라이딩시킬 수도 있다. 나아가, 제 2 양방향 슬라이딩 포크부(340)는 제 2 포크 슬라이더(530) 없이 LM 가이더, 볼 스크류, 및 벨트 중 적어도 하나 또는 적어도 2개를 조합한 전자석 모터 방식으로 슬라이딩 포크(510, 520)를 슬라이딩시킬 수도 있다.
다른 한편, 제 2 양방향 슬라이딩 포크부(340)는 슬라이딩 바(514, 516, 518)의 양방향 슬라이딩시 슬라이딩 위치를 검출하여 제 2 포크 슬라이더(530)를 제어하기 위한 위치 검출센서를 더 포함하여 구성될 수 있다.
이와 같은, 제 2 양방향 슬라이딩 포크부(340)는 제 2 포크 슬라이더(530)를 이용해 제 3 및 제 4 슬라이딩 포크(510, 520)를 제 1 수평 방향 또는 제 2 수평 방향으로 동시에 접거나 펼쳐지도록 슬라이딩시킴으로써 트랜스퍼 챔버(TC)의 일측 또는 타측에 배치된 공정 챔버(TC)로 기판을 양방향으로 반송한다.
일 실시 예에 따른 포크 승강부(350)는 제 1 승강 지지대(352a); 제 2 승강 지지대(352b); 제 1 승강 모터(354a); 제 2 승강 모터(미도시); 제 1 볼 스크류(356a); 제 2 볼 스크류(356b); 및 연동 샤프트(358)를 포함하여 구성된다.
제 1 승강 지지대(352a)는 포크 프레임(320)의 제 1 측면에 인접하도록 베이스 프레임(310)에 수직하게 설치된다.
제 2 승강 지지대(352b)는 포크 프레임(320)의 제 2 측면에 인접하도록 베이스 프레임(310)에 수직하게 설치된다. 이때, 제 2 승강 지지대(352b)는 제 1 승강 지지대(352a)와 마주보게 된다.
제 1 승강 모터(354a)는 제 1 승강 지지대(352a)의 내측면에 인접하도록 베이스 프레임(310)에 설치되어 제 1 볼 스크류(356a)를 제 1 방향 또는 제 1 방향에 반대되는 제 2 방향으로 회전시킨다.
제 2 승강 모터는 제 2 승강 지지대(352b)의 내측면에 인접하도록 베이스 프레임(310)에 설치되어 제 2 볼 스크류(356b)를 제 1 볼 스크류(356b)와 동일한 방향으로 회전시킨다.
제 1 볼 스크류(356a)는 포크 프레임(320)의 제 1 지지 프레임(322)에 형성된 돌출부(328)를 관통하도록 제 1 승강 지지대(352a)와 제 1 승강 모터(354a)간에 설치됨으로써 제 1 승강 모터(354a)의 회전에 따라 포크 프레임(320)의 제 1 측을 승강시킨다. 이때, 제 1 지지 프레임(322)에 형성된 돌출부(328)에는 제 1 볼 스크류(356a)에 치합되는 나사산이 형성된다.
제 2 볼 스크류(356b)는 포크 프레임(320)의 제 1 지지 프레임(322)에 형성된 돌출부(328)를 관통하도록 제 2 승강 지지대(352b)와 제 2 승강 모터간에 설치됨으로써 제 2 승강 모터의 회전에 따라 포크 프레임(320)의 제 2 측을 승강시킨다. 이때, 제 1 지지 프레임(322)에 형성된 돌출부(328)에는 제 2 볼 스크류(356b)에 치합되는 나사산이 형성된다.
연동 샤프트(358)는 제 1 승강 모터(354a)와 제 2 승강 모터간에 설치되어 제 1 승강 모터(354a) 또는 제 2 승강 모터의 회전력을 다른 승강 모터에 전달하여 제 1 승강 모터(354a)와 제 2 승강 모터의 회전이 연동되어 동기되도록 한다.
이와 같은, 포크 승강부(350)는 제 1 승강 모터(354a)와 제 2 승강 모터의 회전에 따른 제 1 및 제 2 볼 스크류(356a, 356b)의 회전에 따라 포크 프레임(320)을 승강시킴으로써 제 1 또는 제 2 양방향 슬라이딩 포크부(330, 340)를 원하는 높이로 승강시킨다.
한편, 포크 승강부(350)는 포크 프레임(320)의 승강시 위치를 검출하여 제 1 승강 모터(354a)와 제 2 승강 모터의 회전을 제어하기 위한 위치 센서를 더 포함하여 구성될 수 있다.
일 실시 예에 따른 포크 승강 가이드부(360)는 복수의 승강 가이드 블록(362); 및 복수의 승강 가이드 레일(364)을 포함하여 구성된다.
복수의 승강 가이드 블록(362)은 포크 프레임(320)의 제 1 및 제 2 측면 모서리 부분에 대응되는 측벽 지지대(324)에 설치된다. 여기서, 복수의 승강 가이드 블록(362)은 포크 프레임(320)의 제 1 및 제 2 측면 각각에 2개씩 설치될 수 있다.
복수의 승강 가이드 레일(364)은 각 승강 가이드 블록(362)에 접속되도록 베이스 프레임(310)에 수직하게 설치됨으로써 포크 프레임(320)의 승강시 각 승강 가이드 블록(362)의 승강을 가이드한다.
한편, 본 발명의 실시 예에 따른 기판 처리 시스템에서 각 공정 챔버(PC)마다 내부에 로딩되는 기판의 로딩 위치가 다를 수 있다. 이에 따라, 본 발명의 실시 예에 따른 기판 처리 시스템의 양방향 기판 반송장치(100)는, 도 4에 도시된 바와 같이, 이송부(200)와 양방향 기판 반송부(300) 사이에 설치되어 각 공정 챔버(PC)에 로딩되는 기판이 기판 로딩 위치에 대응되도록 양방향 기판 반송부(300)를 소정 각도(θ)로 회전시키기 위한 회전부(600)를 더 포함하여 구성된다.
회전부(600)는 이송부(200)의 이송 블록부(220)에 설치된 제 1 회전 가이드부(610), 이송 블록부(200)에 설치된 회전 장치(620), 양방향 기판 반송부(300)의 베이스 프레임(310)에 설치되어 제 1 회전 가이드부(610)에 따라 회전되는 제 2 회전 가이드부(630), 및 양방향 기판 반송부(300)의 베이스 프레임(310)에 설치되어 회전 장치(620)의 회전에 의해 직선 운동함과 동시에 베이스 프레임(310)을 소정 각도(θ)로 회전시키는 회전축부(640)를 포함하여 구성된다.
제 1 회전 가이드부(610)는, 도 5에 도시된 바와 같이, 이송 블록부(220)의 상부면 각 모서리 부분에 대응되도록 설치된 4개의 LM 가이드 레일로 구성된다. 4개의 LM 가이드 레일은 소정의 곡률을 가지도록 곡선 형태로 형성될 수 있다.
한편, 제 1 회전 가이드부(610)는 이송 블록부(220)의 각 모서리 부분에 대응되도록 설치된 4개의 LM 가이드 블록으로 구성될 수도 있다.
회전 장치(620)는, 도 5에 도시된 바와 같이, 이송 블록부(220)의 상부면 일측에 소정 간격으로 이격되도록 설치된 제 1 및 제 2 브라켓(621, 622), 제 1 및 제 2 브라켓(621, 622)을 관통하도록 설치된 볼 스크류(623), 볼 스크류(623)을 회전시키기 위한 모터(624), 및 볼 스크류(623)의 회전에 따라 직선 운동하는 하우징(625)을 포함하여 구성된다.
제 1 브라켓(621)은 이송 블록부(220)의 상부면 일측에 설치되어 볼 스크류(623)의 타측을 회전 가능하게 지지한다.
제 2 브라켓(622)은 제 1 브라켓(621)과 마주보도록 소정 간격 이격되도록 이송 블록부(220)의 상부면에 설치되어 볼 스크류(623)의 일측부를 회전 가능하게 지지한다.
볼 스크류(623)는 제 2 브라켓(622)을 관통하여 제 1 브라켓(621)에 회전 가능하게 설치된다.
모터(624)는 제 2 브라켓(622)을 관통한 볼 스크류(623)에 접속되도록 설치되어 볼 스크류(623)을 회전시킨다. 이때, 모터(624)와 볼 스크류(623)는 볼 스크류(623)의 일측에 설치된 제 1 커플러(626)와 모터(624)의 구동축에 설치된 제 2 커플러(627)의 결합에 의해 서로 접속됨으로써 볼 스크류(623)는 모터(624)의 회전에 따라 회전하게 된다. 여기서, 모터(624)는 로터리 모터(Rotary Motor)가 될 수 있다.
하우징(625)은 볼 스크류(623)에 설치되어 볼 스크류(623)의 회전에 따라 직선 운동한다.
이러한, 회전 장치(620)는 모터(624)의 회전에 따라 하우징(625)을 직선 운동시킨다.
한편, 상술한 회전 장치(620)는 베이스 프레임(310)을 수월하게 회전시키기 위하여, 이송 블록부(220)의 일측변 쪽으로 치우치도록, 즉 제 1 회전 가이드부(610)와 일직선 상에 위치하도록 이송 블록부(220)의 일측 모서리 부분 사이에 설치되는 것이 바람직하다.
제 2 회전 가이드부(630)는, 도 6에 도시된 바와 같이, 제 1 회전 가이드부(610)에 대응되도록 베이스 프레임(310)의 배면 각 모서리 부분에 설치된 4개의 LM 가이드 블록으로 구성된다. 4개의 LM 가이드 블록은 소정의 곡률을 가지도록 곡선 형태로 형성될 수 있다.
한편, 제 2 회전 가이드부(630)는 제 1 회전 가이드부(610)가 LM 가이드 블록으로 구성될 경우, 제 1 회전 가이드부(610)에 대응되도록 베이스 프레임(310)의 배면 각 모서리 부분에 설치된 4개의 LM 가이드 레일로 구성될 수도 있다.
이러한, 제 2 회전 가이드부(630)는 회전 장치(620)의 구동에 따른 하우징(625)의 직선 운동에 의해 제 1 회전 가이드부(610)를 따라 회전됨으로써 베이스 프레임(310)을 소정 각도(θ)로 회전시킨다.
회전축부(640)는, 도 6에 도시된 바와 같이, 베이스 프레임(310)의 배면에 설치된 제 1 지지 플레이트(642), 제 1 지지 플레이트(642)에 회전 가능하게 설치된 회전축(644), 및 회전축(644)에 설치되어 회전 장치(620)의 하우징(625)에 결합된 제 2 지지 플레이트(646)를 포함하여 구성된다.
제 1 지지 플레이트(642)는 스크류(미도시)에 의해 베이스 프레임(310)의 배면에 설치된다.
회전축(644)은 제 1 지지 플레이트(642)가 회전될 수 있도록 제 1 지지 플레이트(642)에 회전 가능하도록 설치된다.
제 2 지지 플레이트(646)는 회전축(644)의 끝단에 결합되어 스크류에 의해 하우징(625)에 결합된다.
이러한, 회전축부(640)는 하우징(625)의 직선 운동에 따른 제 2 지지 플레이트(646) 및/또는 회전축(644)의 직선 운동에 의해 제 2 회전 가이드부(630)가 제 1 회전 가이드부(610)를 따라 회전시킴으로써 베이스 프레임(310)을 소정 각도(θ)로 회전시킨다.
이와 같은, 회전부(600)는, 도 7에 도시된 바와 같이, 각 공정 챔버(PC)의 기판 로딩 위치에 대응되도록 설정된 각 공정 챔버(PC)의 기판 회전 각도에 따라 모터(624)를 회전시켜 하우징(625)을 직선 운동시킴으로써 하우징(625)에 결합된 회전축부(640)의 직선 운동 및 회전 운동에 따라 베이스 프레임(310)을 소정 각도(θ)로 회전시킨다. 이러한 베이스 프레임(310)의 회전에 의해 양방향 기판 반송부(300), 즉 제 1 및 제 2 양방향 슬라이딩 포크부(330, 340)에 안착된 기판을 각 공정 챔버(PC)의 기판 로딩 위치에 정렬되도록 소정 각도(θ)로 회전시킨다.
상술한 양방향 기판 반송장치(100)는 이송부(200)에 의한 수평 이송을 통해 공정 챔버(PC) 또는 로드락 챔버(LC)로 이송되어 기판을 양방향으로 반송할 수 있다. 이때, 양방향 기판 반송장치(100)는 제 1 및 제 2 양방향 슬라이딩 포크부(330, 340)의 양방향 슬라이딩을 통해 기판의 양방향 반송이 가능하기 때문에 기판을 양방향으로 반송하기 위해 회전될 필요가 없다.
또한, 양방향 기판 반송장치(100)는 회전부(600)의 회전을 이용하여 제 1 및 제 2 양방향 슬라이딩 포크부(330, 340)를 소정 각도(θ)로 회전시킨 후, 제 1 및 제 2 슬라이딩 포크(410, 420) 또는/및, 제 3 및 제 4 슬라이딩 포크(510, 520) 각각을 접거나 펼침으로써 기판을 각 공정 챔버(PC)의 기판 로딩 위치에 정확하게 정렬되도록 로딩시킬 수 있다.
한편, 상술한 트랜스퍼 챔버(TC)는 기판의 반송 효율을 향상시키기 위하여, 도 8에 도시된 바와 같이, 복수의 양방향 기판 반송장치(100)를 포함하여 구성될 수도 있으며, 양방향 기판 반송장치(100)의 수는 트랜스퍼 챔버(TC)의 길이에 따라 변경될 수 있다. 이러한, 복수의 양방향 기판 반송장치(100) 각각은 상술한 바와 같이 동일하게 구성되어 트랜스퍼 챔버(TC) 내의 일정 영역에 대한 기판 반송을 수행할 수 있다. 이하에서는, 트랜스퍼 챔버(TC)가 하나의 양방향 기판 반송장치(100)를 포함하여 구성된 것을 가정하여 설명하기로 한다.
도 9 내지 도 14는 본 발명의 실시 예에 따른 기판 처리 장치의 기판 반송 방법을 설명하기 위한 도면들이다.
도 9 내지 도 14를 도 2 및 도 4와 결부하여 본 발명의 실시 예에 따른 기판 처리 장치의 기판 반송 방법을 설명하면 다음과 같다.
먼저, 도 9에 도시된 바와 같이, 외부로부터 제 1 로드락 챔버(LC1)에 기판(S)이 반송되면, 양방향 기판 반송장치(100)는 이송부(200)의 이송을 통해 양방향 기판 반송부(300)를 제 1 로드락 챔버(LC1) 쪽으로 이송시킨다.
그런 다음, 도 10에 도시된 바와 같이, 양방향 기판 반송장치(100)는 포크 승강부(350)를 구동시켜 포크 프레임(320)의 제 1 양방향 슬라이딩 포크부(330)의 높이를 제 1 로드락 챔버(LC1)로 이송된 기판(S)의 높이에 대응되도록 승강시킨 후, 제 1 양방향 슬라이딩 포크부(330)의 슬라이딩 바(414, 416, 418)를 제 1 방향, 즉 제 1 로드락 챔버(LC1) 내부로 슬라이딩시킨 다음, 포크 승강부(350)의 구동을 통해 포크 프레임(320)을 소정 높이로 상승시켜 제 1 양방향 슬라이딩 포크부(330) 상에 기판(S)을 안착시킨다.
그런 다음, 도 11에 도시된 바와 같이, 양방향 기판 반송장치(100)는 기판(S)이 안착된 제 1 양방향 슬라이딩 포크부(330)의 슬라이딩 바(414, 416, 418)가 포크 프레임(320) 상의 원 위치로 접히도록 제 1 양방향 슬라이딩 포크부(330)의 슬라이딩 바(414, 416, 418)를 제 2 방향으로 슬라이딩시킨다.
그런 다음, 도 12에 도시된 바와 같이, 양방향 기판 반송장치(100)는 기판(S)이 로딩될 공정 챔버(PC)의 기판 로딩 위치에 대응되도록 회전부(600)를 구동하여 양방향 기판 반송부(300)를 소정 각도(θ)로 회전시킨다. 즉, 회전부(600)의 모터(624)는 기판(S)이 로딩될 공정 챔버(PC)의 기판 로딩 위치에 대응되도록 회전하여 하우징(625)을 직선 운동시킴으로써 하우징(625)의 직선 운동에 따라 회전축부(640)가 직선 운동하게 된다. 이에 따라, 회전축부(640)의 직선 운동에 연동되어 제 2 회전 가이드부(630)가 제 1 회전 가이드부(610)의 가이드에 따라 회전함으로써 베이스 프레임(310)이 회전하게 되어 기판(S)이 안착된 제 1 양방향 슬라이딩 포크부(330)는 기판(S)이 로딩될 공정 챔버(PC)의 기판 로딩 위치에 정렬되도록 소정 각도(θ)로 회전되게 된다.
그런 다음, 도 13에 도시된 바와 같이, 양방향 기판 반송장치(100)는 제 1 양방향 슬라이딩 포크부(330)의 슬라이딩 바(414, 416, 418)를 제 2 방향, 즉 공정 챔버(PC) 내부로 슬라이딩시킨 다음, 포크 승강부(350)의 구동을 통해 포크 프레임(320)을 소정 높이로 하강시켜 제 1 양방향 슬라이딩 포크부(330) 상에 안착된 기판(S)을 공정 챔버(PC) 내부의 기판 로딩 위치에 안착시킨다. 이때, 기판(S)은 공정 챔버(PC)에 마련된 기판 지지부재(미도시) 또는 기판 지지 프레임(미도시)에 안착된다.
그런 다음, 도 14에 도시된 바와 같이, 양방향 기판 반송장치(100)는 기판(S)이 공정 챔버(PC) 내부에 안착되면, 제 1 양방향 슬라이딩 포크부(330)의 슬라이딩 바(414, 416, 418)를 포크 프레임(320) 상의 원 위치로 접히도록 제 1 방향으로 슬라이딩시킨 후, 회전부(600)를 구동하여 양방향 기판 반송부(300)를 원 위치로 회전시킨다.
이와 같은, 본 발명의 실시 예에 따른 기판 처리 장치의 기판 반송 방법은 회전부(600)의 회전을 이용하여 제 1 및 제 2 양방향 슬라이딩 포크부(330, 340)를 소정 각도(θ)로 회전시킨 후, 제 1 및 제 2 슬라이딩 포크(410, 420) 또는/및, 제 3 및 제 4 슬라이딩 포크(510, 520) 각각을 접거나 펼침으로써 기판을 각 공정 챔버(PC)의 기판 로딩 위치에 정확하게 정렬되도록 로딩시킬 수 있다.
본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (13)

  1. 기판을 양방향으로 반송하는 적어도 하나의 양방향 기판 반송장치를 가지는 트랜스퍼 챔버; 및
    상기 트랜스퍼 챔버를 사이에 두고 인라인 형태로 배치되어 상기 기판에 대한 반도체 제조공정을 수행하는 복수의 공정 챔버를 포함하며,
    상기 적어도 하나의 양방향 기판 반송장치는,
    리니어 모터에 의해 수평 방향으로 이송 가능하도록 상기 트랜스퍼 챔버 내에 설치된 이송부;
    상기 이송부에 설치되어 양방향 슬라이딩을 통해 상기 기판을 공정 챔버로 반송하는 양방향 기판 반송부; 및
    상기 이송부와 상기 양방향 기판 반송부 사이에 설치되어 상기 양방향 기판 반송부를 소정 각도로 회전시키는 회전부를 포함하여 구성되는 것을 특징으로 하는 기판 처리 시스템.
  2. 제 1 항에 있어서,
    상기 양방향 기판 반송부는,
    상기 이송부에 설치된 베이스 프레임;
    상기 베이스 프레임 상에 설치되는 포크 프레임;
    직선 운동에 의한 양방향 슬라이딩이 가능하도록 상기 포크 프레임에 설치된 복수의 슬라이딩 바를 가지는 제 1 및 제 2 양방향 슬라이딩 포크부; 및
    상기 포크 프레임에 측면에 설치되는 상기 포크 프레임을 승강시켜 제 1 및 제 2 양방향 슬라이딩 포크부를 승강시키는 포크 승강부를 포함하여 구성되는 것을 특징으로 하는 기판 처리 시스템.
  3. 서로 마주보도록 2열로 설치되어 기판에 대한 반도체 제조공정을 수행하는 제 1 및 제 2 공정 챔버; 및
    상기 제 1 및 제 2 공정 챔버 사이에 설치되며, 복수의 슬라이딩 바를 동시에 직선 운동시켜 상기 기판을 상기 제 1 공정 챔버 또는 상기 제 2 공정 챔버로 반송하는 적어도 하나의 양방향 기판 반송장치를 포함하며,
    상기 적어도 하나의 양방향 기판 반송장치는 복수의 슬라이딩 바를 소정 각도로 회전시키기 위한 회전부를 포함하여 구성되는 것을 특징으로 하는 기판 처리 시스템.
  4. 제 3 항에 있어서,
    상기 적어도 하나의 양방향 기판 반송장치는,
    리니어 모터에 의해 수평 방향으로 이송 가능하도록 상기 트랜스퍼 챔버 내에 설치된 이송부; 및
    상기 이송부에 설치되어 양방향 슬라이딩을 통해 상기 기판을 공정 챔버로 반송하는 양방향 기판 반송부를 더 포함하며,
    상기 회전부는 상기 이송부와 상기 양방향 기판 반송부 사이에 설치되어 상기 양방향 기판 반송부를 소정 각도로 회전시키는 것을 특징으로 하는 기판 처리 시스템.
  5. 제 4 항에 있어서,
    상기 양방향 기판 반송부는,
    상기 이송부에 설치된 베이스 프레임;
    상기 베이스 프레임 상에 설치되는 포크 프레임;
    직선 운동에 의한 양방향 슬라이딩이 가능하도록 상기 포크 프레임에 설치된 상기 복수의 슬라이딩 바를 가지는 제 1 및 제 2 양방향 슬라이딩 포크부; 및
    상기 포크 프레임에 측면에 설치되는 상기 포크 프레임을 승강시켜 제 1 및 제 2 양방향 슬라이딩 포크부를 승강시키는 포크 승강부를 포함하여 구성되는 것을 특징으로 하는 기판 처리 시스템.
  6. 제 2 항 또는 제 5 항에 있어서,
    상기 회전부는,
    상기 이송부 상면의 각 모서리 부분에 설치된 제 1 회전 가이드부;
    상기 이송부 상면에 설치된 회전 장치;
    상기 제 1 회전 가이드부를 따라 회전 가능하도록 상기 베이스 프레임의 배면에 설치된 제 2 회전 가이드부; 및
    상기 베이스 프레임의 배면에 설치되어 상기 회전 장치의 회전에 따라 직선 운동하고, 상기 직선 운동에 의해 상기 제 2 회전 가이드부가 상기 제 1 회전 가이드부를 따라 회전되어 상기 베이스 프레임이 소정 각도로 회전되도록 하는 회전축부를 포함하여 구성되는 것을 특징으로 하는 기판 처리 시스템.
  7. 제 6 항에 있어서,
    상기 회전 장치는,
    상기 이송부의 상면에 설치된 제 1 브라켓;
    상기 제 1 브라켓에 소정 간격 이격되도록 상기 이송부의 상면에 설치된 제 2 브라켓;
    상기 제 2 브라켓을 관통하여 상기 1 브라켓에 회전 가능하게 지지되는 볼 스크류;
    상기 볼 스크류에 접속되어 상기 볼 스크류를 회전시키기 위한 모터; 및
    상기 볼 스크류에 설치되어 상기 볼 스크류의 회전에 따라 직선 운동하여 상기 회전축부를 직선 운동시키는 하우징을 포함하여 구성되는 것을 특징으로 하는 기판 처리 시스템.
  8. 제 7 항에 있어서,
    상기 회전축부는,
    상기 베이스 프레임의 배면에 설치된 제 1 지지 플레이트;
    상기 제 1 지지 플레이트에 회전 가능하게 설치된 회전축; 및
    상기 회전축에 설치됨과 아울러 상기 하우징에 설치되어 상기 하우징의 직선 운동에 연동한 상기 직선 운동에 의해 상기 제 2 회전 가이드부가 상기 제 1 회전 가이드부를 따라 회전되어 상기 베이스 프레임이 소정 각도로 회전되도록 하는 제 2 지지 플레이트를 포함하여 구성되는 것을 특징으로 하는 기판 처리 시스템.
  9. 제 6 항에 있어서,
    상기 제 1 및 제 2 회전 가이드부는 소정의 곡률을 가지는 곡선 형태인 것을 특징으로 하는 기판 처리 시스템.
  10. 기판이 반송되는 로드락 챔버와 상기 로드락 챔버와 마주보도록 설치되어 상기 기판에 대한 반도체 제조공정을 수행하는 공정 챔버간에 상기 기판을 반송하는 기판 반송 방법에 있어서,
    이송부, 양방향 기판 반송부, 및 상기 이송부와 상기 양방향 기판 반송부 사이에 설치된 회전부를 포함하여 구성된 적어도 하나의 양방향 기판 반송장치 중 어느 하나를 상기 로드락 챔버와 공정 챔버 사이로 이송시키는 단계;
    양방향 슬라이딩이 가능하도록 상기 양방향 기판 반송부에 나란하게 설치된 복수의 슬라이딩 바를 동시에 상기 로드락 챔버 내부로 직선 운동시켜 상기 기판을 적재한 후, 상기 복수의 슬라이딩 바를 동시에 직선 운동시켜 원 위치로 복귀시키는 단계;
    상기 회전부를 구동하여 상기 양방향 기판 반송부를 소정 각도로 회전시켜 상기 복수의 슬라이딩 바를 회전시키는 단계;
    상기 회전된 복수의 슬라이딩 바를 동시에 직선 운동시켜 상기 공정 챔버에 상기 소정 각도로 회전된 기판을 로딩시키는 단계;
    상기 회전된 복수의 슬라이딩 바를 동시에 직선 운동시켜 원 위치로 복귀시키는 단계; 및
    상기 회전부를 구동하여 상기 양방향 기판 반송부를 원 위치로 회전시켜 상기 복수의 슬라이딩 바를 원 위치로 회전시키는 단계를 포함하여 이루어지는 것을 특징으로 하는 기판 반송 방법.
  11. 제 10 항에 있어서,
    상기 회전부를 구동하여 상기 양방향 기판 반송부를 소정 각도로 회전시켜 상기 복수의 슬라이딩 바를 회전시키는 단계는,
    상기 이송부의 상면에 설치된 모터의 회전에 따라 볼 스크류를 회전시켜 상기 볼 스크류에 설치된 하우징을 직선 운동시키는 단계;
    상기 복수의 슬라이딩 바를 지지하는 상기 양방향 기판 반송부의 베이스 프레임의 배면에 설치됨과 아울러 상기 하우징에 설치된 회전축부를 상기 하우징을 직선 운동에 따라 직선 운동시키는 단계; 및
    상기 이송부의 상면 각 모서리 부분에 설치된 제 1 회전 가이드부를 따라 회전되도록 상기 베이스 프레임의 배면에 설치된 제 2 회전 가이드부를 상기 회전축부의 직선 운동에 따라 회전시켜 상기 베이스 프레임을 소정 각도로 회전시키는 단계를 포함하여 이루어지는 것을 특징으로 하는 기판 반송 방법.
  12. 기판이 반송되는 로드락 챔버와 상기 로드락 챔버와 마주보도록 설치되어 상기 기판에 대한 반도체 제조공정을 수행하는 공정 챔버간에 상기 기판을 반송하는 기판 반송 방법에 있어서,
    적어도 하나의 양방향 기판 반송장치 중 어느 하나를 상기 로드락 챔버와 공정 챔버 사이로 이송시키는 단계;
    양방향 슬라이딩이 가능하도록 상기 양방향 기판 반송장치에 나란하게 설치된 복수의 슬라이딩 바를 동시에 상기 로드락 챔버 내부로 직선 운동시켜 상기 기판을 적재한 후, 상기 복수의 슬라이딩 바를 동시에 직선 운동시켜 원 위치로 복귀시키는 단계;
    상기 복수의 슬라이딩 바를 소정 각도로 회전시키는 단계;
    상기 회전된 복수의 슬라이딩 바를 동시에 슬라이딩시켜 상기 공정 챔버에 상기 소정 각도로 회전된 기판을 로딩시키는 단계;
    상기 회전된 복수의 슬라이딩 바를 동시에 직선 운동시켜 원 위치로 복귀시키는 단계; 및
    상기 복수의 슬라이딩 바를 원 위치로 회전시키는 단계를 포함하여 이루어지는 것을 특징으로 하는 기판 반송 방법.
  13. 제 10 항 또는 제 12 항에 있어서,
    상기 적어도 하나의 양방향 기판 반송장치는 리니어 모터에 의해 이송되며,
    상기 복수의 슬라이딩 바 각각은 공압 또는 유압에 의해 동시에 접히거나 펼쳐지도록 직선 운동하여 양방향으로 슬라이딩되는 것을 특징으로 하는 기판 반송 방법.
PCT/KR2011/001048 2010-02-19 2011-02-17 기판 처리 시스템 및 기판 반송 방법 WO2011102648A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/578,237 US9252034B2 (en) 2010-02-19 2011-02-17 Substrate processing system and substrate transferring method
CN201180010113.4A CN102763210B (zh) 2010-02-19 2011-02-17 基板处理系统及基板传送方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100015079A KR101690970B1 (ko) 2010-02-19 2010-02-19 기판 처리 시스템 및 기판 반송 방법
KR10-2010-0015079 2010-02-19

Publications (2)

Publication Number Publication Date
WO2011102648A2 true WO2011102648A2 (ko) 2011-08-25
WO2011102648A3 WO2011102648A3 (ko) 2012-01-19

Family

ID=44483465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001048 WO2011102648A2 (ko) 2010-02-19 2011-02-17 기판 처리 시스템 및 기판 반송 방법

Country Status (5)

Country Link
US (1) US9252034B2 (ko)
KR (1) KR101690970B1 (ko)
CN (1) CN102763210B (ko)
TW (1) TWI520253B (ko)
WO (1) WO2011102648A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104770076A (zh) * 2012-10-29 2015-07-08 富士机械制造株式会社 元件供给装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462596B1 (ko) * 2012-12-31 2014-11-18 주식회사 에스에프에이 기판 처리장치
CN103434842B (zh) * 2013-09-04 2015-08-19 深圳市华星光电技术有限公司 机械手臂叉子以及机械手臂
CN105849859B (zh) * 2013-12-26 2019-11-01 柯尼卡美能达株式会社 电子器件的印刷制造系统
KR101588973B1 (ko) * 2014-10-13 2016-01-27 에스엔유 프리시젼 주식회사 유기물 증착 장치
EP3220413B1 (de) * 2016-03-15 2022-01-26 Integrated Dynamics Engineering GmbH Serviceeinrichtung
JP6846943B2 (ja) * 2017-02-10 2021-03-24 東京エレクトロン株式会社 塗布装置、および塗布方法
DE102018216878A1 (de) * 2018-10-01 2020-04-02 centrotherm international AG Transporteinheit für paralleles Einfahren oder Ausfahren von Substratträgern, in parallele Prozessrohre und Verfahren zum gleichzeitigen Beladen von parallelen, horizontal beabstandeten Prozessrohren
CN113611646B (zh) * 2021-08-27 2024-04-16 沈阳芯源微电子设备股份有限公司 晶圆搬运装置及晶圆搬运方法
KR102408793B1 (ko) * 2021-12-31 2022-06-16 (주)성원에이치티 피가공물 자동 이송 시스템
KR102407466B1 (ko) * 2022-02-24 2022-06-14 엠리그 주식회사 배터리 시험장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297085A (ja) * 1986-06-17 1987-12-24 富士電機株式会社 両方向伸縮搬送装置
JP2002064128A (ja) * 2000-08-22 2002-02-28 Kaijo Corp 基板搬送装置及びこれを備えた基板処理装置
JP2008050072A (ja) * 2006-08-22 2008-03-06 Hitachi Plant Technologies Ltd 出入装置
WO2009072199A1 (ja) * 2007-12-05 2009-06-11 Hirata Corporation 基板搬送装置及び基板搬送装置の制御方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385120A (en) * 1966-07-06 1968-05-28 Rotork Eng Co Ltd Auxiliary drive unit for an actuator
JP4310504B2 (ja) 1999-02-25 2009-08-12 Tdk株式会社 ワーク搭載用テーブルのθ軸調整機構
JP4560235B2 (ja) * 2001-05-16 2010-10-13 日本トムソン株式会社 角度調整テーブル装置
WO2004010476A2 (en) * 2002-07-22 2004-01-29 Brooks Automation, Inc. Substrate processing apparatus
US7959395B2 (en) * 2002-07-22 2011-06-14 Brooks Automation, Inc. Substrate processing apparatus
US7988398B2 (en) * 2002-07-22 2011-08-02 Brooks Automation, Inc. Linear substrate transport apparatus
US8960099B2 (en) * 2002-07-22 2015-02-24 Brooks Automation, Inc Substrate processing apparatus
KR101039231B1 (ko) * 2004-03-24 2011-06-07 주성엔지니어링(주) 기판 제조 장치
JP5006122B2 (ja) * 2007-06-29 2012-08-22 株式会社Sokudo 基板処理装置
JP5160204B2 (ja) * 2007-11-30 2013-03-13 株式会社Sokudo 基板処理装置
JP5128918B2 (ja) * 2007-11-30 2013-01-23 株式会社Sokudo 基板処理装置
JP5318403B2 (ja) * 2007-11-30 2013-10-16 株式会社Sokudo 基板処理装置
KR101543681B1 (ko) * 2009-01-15 2015-08-11 주성엔지니어링(주) 기판 처리 시스템
US8602706B2 (en) * 2009-08-17 2013-12-10 Brooks Automation, Inc. Substrate processing apparatus
JP5666361B2 (ja) * 2011-03-29 2015-02-12 株式会社Screenセミコンダクターソリューションズ 基板処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297085A (ja) * 1986-06-17 1987-12-24 富士電機株式会社 両方向伸縮搬送装置
JP2002064128A (ja) * 2000-08-22 2002-02-28 Kaijo Corp 基板搬送装置及びこれを備えた基板処理装置
JP2008050072A (ja) * 2006-08-22 2008-03-06 Hitachi Plant Technologies Ltd 出入装置
WO2009072199A1 (ja) * 2007-12-05 2009-06-11 Hirata Corporation 基板搬送装置及び基板搬送装置の制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104770076A (zh) * 2012-10-29 2015-07-08 富士机械制造株式会社 元件供给装置
US20150282397A1 (en) * 2012-10-29 2015-10-01 Fuji Machine Mfg. Co., Ltd. Component supply device
US9781870B2 (en) * 2012-10-29 2017-10-03 Fuji Machine Mfg. Co., Ltd. Component supply device
CN104770076B (zh) * 2012-10-29 2018-04-10 富士机械制造株式会社 元件供给装置

Also Published As

Publication number Publication date
CN102763210B (zh) 2015-08-19
US20130051957A1 (en) 2013-02-28
KR101690970B1 (ko) 2016-12-29
WO2011102648A3 (ko) 2012-01-19
TWI520253B (zh) 2016-02-01
TW201203432A (en) 2012-01-16
KR20110095548A (ko) 2011-08-25
US9252034B2 (en) 2016-02-02
CN102763210A (zh) 2012-10-31

Similar Documents

Publication Publication Date Title
WO2011102648A2 (ko) 기판 처리 시스템 및 기판 반송 방법
WO2010082750A2 (ko) 기판 처리 시스템 및 기판 반송 방법
WO2014148857A1 (ko) 기판과 기판 반송용 트레이 반송장치 및 반송방법
WO2018146658A1 (ko) 검사 장치, 및 그 장치를 이용한 검사 방법
KR101854165B1 (ko) 공정 챔버, 이를 포함하는 반도체 제조 장치 및 기판 처리 방법
TW201349376A (zh) 基材處理設備
KR20000023251A (ko) 기판처리장치 및 기판처리방법
WO2019029078A1 (zh) 显示面板的检查设备和显示面板检测方法
WO2011037418A2 (ko) 자동차 차체용 용접장치
WO2022092822A1 (ko) 복수의 확산로용 기판 로딩 장치
WO2020213961A1 (ko) 트레이 이송 장치
WO2023106727A2 (ko) 글래스 강화로의 바스켓 투입 장치
WO2024010253A1 (ko) 무인 배송 로봇
WO2012173374A2 (ko) 위상유지수단이 구비된 장치
WO2017138705A1 (ko) 기판 반송용 로봇
KR101097939B1 (ko) 태양 전지 모듈 제조를 위한 레이업 시스템 및 그 시스템에사용되는 정렬유닛
WO2015102420A1 (ko) 기판 이송장치용 승강장치 및 이를 포함하는 기판 이송장치
KR101427596B1 (ko) 기판이송장치
WO2012036393A2 (ko) 기판 처리 장치 및 기판 전달 방법
WO2018062607A1 (ko) 종이판재용 피딩벨트 가변장치
WO2012150798A2 (ko) 인라인 열처리 장치
WO2009134088A2 (ko) 홀더 스테이지
WO2015130138A1 (ko) 얼라이너 구조 및 얼라인 방법
WO2014003286A1 (ko) 웨이퍼 그립퍼
KR101098357B1 (ko) 태양 전지 모듈 제조를 위한 레이업 시스템 및 레이업 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010113.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744890

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13578237

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11744890

Country of ref document: EP

Kind code of ref document: A2