WO2011102395A1 - ピロリドンカルボン酸またはその塩の製造方法 - Google Patents

ピロリドンカルボン酸またはその塩の製造方法 Download PDF

Info

Publication number
WO2011102395A1
WO2011102395A1 PCT/JP2011/053298 JP2011053298W WO2011102395A1 WO 2011102395 A1 WO2011102395 A1 WO 2011102395A1 JP 2011053298 W JP2011053298 W JP 2011053298W WO 2011102395 A1 WO2011102395 A1 WO 2011102395A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxylic acid
pyrrolidone carboxylic
acid
salt
reaction
Prior art date
Application number
PCT/JP2011/053298
Other languages
English (en)
French (fr)
Inventor
美佳 伊藤
里次 高橋
泰信 野口
良輔 弓岡
智加 小川
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to BR112012020306-1A priority Critical patent/BR112012020306B1/pt
Priority to JP2012500631A priority patent/JP5935689B2/ja
Publication of WO2011102395A1 publication Critical patent/WO2011102395A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4906Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom
    • A61K8/4913Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom having five membered rings, e.g. pyrrolidone carboxylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/08Liquid soap, e.g. for dispensers; capsuled
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/28Heterocyclic compounds containing nitrogen in the ring

Definitions

  • the present invention relates to a method for producing pyrrolidonecarboxylic acid or a salt thereof.
  • Pyrrolidone carboxylic acid is a useful compound not only as a cosmetic material but also as a raw material for pharmaceuticals. Pyrrolidone carboxylic acid is synthesized by heating glutamic acid to cause a self-cyclization reaction.
  • a solventless direct heating method, a high pressure and high temperature method in the presence of a solvent, a subcritical pressure heating method, and an enzymatic cyclization method are known.
  • Patent Document 1 JP-A-1-132560 (Patent Document 1) describes a solventless direct heating method.
  • the solventless direct heating method is a production method in which a monovalent alkaline earth metal salt of glutamic acid in a solid state is heated to a temperature between 120 ° C. and 250 ° C. until the reaction water for intramolecular condensation is completely discharged. is there.
  • the solvent-free direct heating method seems industrially simple and high in production efficiency.
  • the melt during the reaction is in the shape of a syrup, and after cooling, it hardens and solidifies on the wall surface of the apparatus. Therefore, it is not always a simple production method in handling the reaction product.
  • Patent Document 2 Japanese Patent Publication No. 41-19431
  • Patent Document 3 discloses a method in which L-glutamic acid is dissolved by heating at 190 to 200 ° C. to remove water to form pyrrolidonecarboxylic acid, and further a method for obtaining a racemate by heating. Is described.
  • Patent Document 4 describes a method of reacting glutamic acid with high-temperature and high-pressure water. In these production methods, an autoclave (heating kettle) or the like is used to withstand high temperature and pressure.
  • JP-A-10-66566 discloses an enzymatic cyclization method.
  • a method is described in which pyrrolidone carboxylic acid is obtained from glutamic acid at a high reaction rate at a mild pH and temperature range in water under normal pressure by an enzymatic reaction.
  • the yield of pyrrolidonecarboxylic acid per 10 ml of the reaction solution is only about 0.4 mg (300 nmol), which is an industrially suitable production method. I could't say that.
  • Japanese Patent Laid-Open No. 1-132560 Japanese Patent Publication No.41-19431 Japanese Patent Publication No. 37-17959 JP 2003-34680 A Japanese Patent Laid-Open No. 10-66566
  • An object of the present invention is to provide a method for producing pyrrolidone carboxylic acid or a salt thereof having high chemical purity and high optical purity easily and industrially under normal pressure.
  • a process for producing pyrrolidone carboxylic acid or a salt thereof characterized in that glutamic acid is heated and cyclized under normal pressure in an aqueous solution containing pyrrolidone carboxylic acid.
  • a pyrrolidone carboxylic acid comprising a first step of preparing a pyrrolidone carboxylic acid-containing aqueous solution, a second step of adding glutamic acid and heating and cyclizing under normal pressure, and a third step of extracting a reaction solution containing the generated pyrrolidone carboxylic acid. Or the manufacturing method of the salt.
  • the first to third steps described in [2] are defined as one cycle, and the remaining reaction solution when the reaction solution is partially extracted in the third step is used in the first step of the next cycle.
  • the production method according to [2] or [3], wherein the concentration of pyrrolidone carboxylic acid in the pyrrolidone carboxylic acid-containing aqueous solution prepared in the first step is 60 wt% or more and less than 100 wt%.
  • the weight of glutamic acid charged in the second step is 10% to 500% with respect to the weight of pyrrolidone carboxylic acid in the pyrrolidone carboxylic acid-containing aqueous solution, according to any one of [2] to [4] The manufacturing method as described.
  • the ratio (acid molar ratio) of “acid component (glutamic acid and pyrrolidone carboxylic acid)” to the total number of moles of “glutamic acid and its salt, pyrrolidone carboxylic acid and its salt” during the cyclization reaction is 90% to 10%
  • pyrrolidone carboxylic acid having high chemical purity and optical purity can be produced in an industrially simple and efficient manner under a normal pressure in a short time.
  • FIG. 1 is a flowchart showing a continuous manufacturing method.
  • FIG. 2 is a graph showing the relationship between the pyrrolidone carboxylic acid concentration and the boiling temperature (boiling start temperature and stable boiling temperature).
  • FIG. 3 is a graph showing the relationship between the reaction temperature and the reaction time / reaction rate.
  • FIG. 4 is a graph showing the relationship between the acid molar ratio and the reaction time / reaction rate.
  • the production method of the present invention is a method for producing pyrrolidone carboxylic acid or a salt thereof, characterized in that glutamic acid is heated and cyclized under normal pressure in a pyrrolidone carboxylic acid-containing aqueous solution (hereinafter referred to as “normal pressure production method”). ").
  • the heat cyclization reaction can proceed at normal pressure.
  • “normal pressure” refers to a state in which neither pressure nor pressure reduction is performed, and a state equivalent to atmospheric pressure.
  • the atmospheric pressure production method of the present invention can continuously produce pyrrolidone carboxylic acid or a salt thereof by reusing part of the produced pyrrolidone carboxylic acid as an aqueous solution containing pyrrolidone carboxylic acid (hereinafter referred to as the present specification). (Referred to as “continuous manufacturing method”).
  • the continuous production method of the present invention is not particularly limited as long as it is an embodiment in which all or a part of the pyrrolidone carboxylic acid produced by the atmospheric pressure production method is reused.
  • the first step to prepare the first step, the second step in which glutamic acid is added and heated to cyclize under normal pressure, and the third step in which the reaction solution containing the generated pyrrolidone carboxylic acid is withdrawn are defined as one cycle, and the cycle is repeated continuously. I can do it.
  • FIG. 1 the continuous manufacturing method of the said aspect was shown.
  • the first step of the present invention is a step of preparing a pyrrolidone carboxylic acid-containing aqueous solution having a desired concentration and a desired temperature by dissolving pyrrolidone carboxylic acid in water.
  • the first step is to adjust the reaction solution containing pyrrolidone carboxylic acid left in the previous step (third step) to a solution having a desired concentration and a desired temperature. It is a process to do.
  • the pyrrolidone carboxylic acid solution left in the previous step (third step) is used as it is, the first step can be omitted after the second cycle.
  • water examples include city water, industrial water, ion exchange water, and distilled water. From the viewpoint of reducing the coexisting components in the reaction system, ion-exchanged water and distilled water are more preferable.
  • the pyrrolidone carboxylic acid to be used may be either an optically active substance (L-form or D-form) or a racemic form (DL-form).
  • optical activity means a state in which one amount of L-form and D-form is larger than the other, and means that the L-form and D-form are not racemates in which an equal amount exists.
  • Optical purity means, for example, the percentage of L-form to the total of L-form and D-form in the case of L-form.
  • a commercially available pyrrolidone carboxylic acid can be used. Pyrrolidone carboxylic acid available as a commercial product is L-form, and its optical purity is 100% to 50%.
  • the pyrrolidone carboxylic acid to be used is preferably as the L isomer has a higher optical purity, for example, preferably 60% or more, more preferably 70% or more, and more preferably 80% or more. Is more preferable, and 90% or more is particularly preferable.
  • the pyrrolidonecarboxylic acid-containing aqueous solution used in the first step after the second cycle those obtained in the third step of the previous cycle can be used.
  • 100% to 60% is preferable, 100% to 70% is more preferable, 100% to 80% is still more preferable, and 100% to 90% is even more preferred, 100% to 92% is even more preferred, 100% to 95% is particularly preferred, and 100% to 97% is most preferred.
  • pyrrolidone carboxylic acid with high optical purity and / or a salt thereof can be obtained in the third step.
  • the optical purity of the pyrrolidone carboxylic acid and / or salt thereof obtained in the third step is preferably, for example, 100% to 60%, more preferably 100% to 70%, further preferably 100% to 80%, more preferably 100% to 90%. % Is even more preferred, 100% to 92% is even more preferred, 100% to 95% is particularly preferred, and 100% to 97% is most preferred.
  • the preparation temperature of the pyrrolidone carboxylic acid-containing aqueous solution is not particularly limited as long as pyrrolidone carboxylic acid can be uniformly dissolved.
  • 105 ° C or higher is preferable, 108 ° C or higher is more preferable, 110 ° C or higher is further preferable, 113 ° C or higher is even more preferable, and 115 ° C or higher is most preferable.
  • 200 ° C. or lower is preferable, 180 ° C. or lower is more preferable, 150 ° C. or lower is further preferable, 140 ° C. or lower is even more preferable, and 135 ° C.
  • the preparation temperature and the cyclization reaction in the second step can be the same temperature.
  • “Concentration of pyrrolidone carboxylic acid in pyrrolidone carboxylic acid-containing aqueous solution” means the percentage of the weight of pyrrolidone carboxylic acid with respect to the total weight of pyrrolidone carboxylic acid and water contained in the reaction system, and is obtained from the following formula (1) Can do.
  • the “concentration of pyrrolidone carboxylic acid in the pyrrolidone carboxylic acid-containing aqueous solution” may be just before and immediately after the addition of glutamic acid, and at any time during the start of the thermal cyclization reaction and during the progress of the reaction. May be the concentration. In order to allow the thermal cyclization reaction to proceed efficiently in a short time, it is preferable to control the reaction immediately before or immediately after the addition of glutamic acid, or by the concentration at the start of the thermal cyclization reaction.
  • the concentration of pyrrolidone carboxylic acid in the pyrrolidone carboxylic acid-containing aqueous solution is not particularly limited as long as the cyclization reaction proceeds, but considering the reaction efficiency, a concentration higher than 50 wt% is preferable, and 55 wt% or higher is more preferable. 60 wt% or more, more preferably 65 wt% or more, even more preferably 70 wt% or more, particularly preferably 75 wt% or more, and particularly preferably 80 wt% or more.
  • dissolution requires time if the concentration is too high, it is preferably less than 100 wt%, more preferably 98 wt% or less, still more preferably 95 wt% or less, even more preferably 93 wt% or less, and most preferably 90 wt% or less.
  • a part or all of pyrrolidone carboxylic acid may be pyrrolidone carboxylate.
  • Possible salts include alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as calcium salts and magnesium salts, organic base salts such as zinc salts, ethanolamine salts and diethanolamine salts, lysine salts and arginine salts. And the like, and preferred are alkali metal salts such as sodium salt and potassium salt, and most preferred is sodium salt. These may be one kind or a mixture of two or more kinds.
  • the weight ratio of pyrrolidone carboxylic acid and pyrrolidone carboxylate can be 100: 0 to 0: 100, preferably 100: 0 to 20:80, more preferably 100: 0 to 35:65, and 100: 0 to 40:60 is even more preferred, and 100: 0 to 50:50 is most preferred.
  • the “weight of pyrrolidone carboxylic acid” in the above formula (1) when a part or all of pyrrolidone carboxylic acid is pyrrolidone carboxylate is the total weight of free pyrrolidone carboxylic acid and pyrrolidone carboxylate.
  • “Mole number of pyrrolidone carboxylic acid” in the above formula (2) is the total number of moles of free pyrrolidone carboxylic acid and pyrrolidone carboxylate.
  • the number of moles of polyvalent metal salt such as zinc salt is based on the number of moles of pyrrolidone carboxylate ions.
  • the second step of the present invention is a step in which glutamic acid is added to a pyrrolidonecarboxylic acid-containing aqueous solution and heated and cyclized under normal pressure.
  • the input weight of glutamic acid is not particularly limited as long as the fluidity of the system can be maintained, but is 10% to 500% with respect to the weight of pyrrolidone carboxylic acid in the pyrrolidone carboxylic acid-containing aqueous solution. If the weight of glutamic acid is larger than the weight of pyrrolidone carboxylic acid, the fluidity of the system deteriorates and the reaction is delayed, so 300% or less is preferable, and 200% or less is more preferable. If less, the amount of pyrrolidone carboxylic acid obtained decreases, so it is preferably 30% or more, more preferably 50% or more, and most preferably 70% or more. When continuously carried out, the amount of glutamic acid to be added can be adjusted by quantifying the content of unreacted glutamic acid in the previous cycle by HPLC or the like.
  • the glutamic acid to be used may be L-form or D-form optically active glutamic acid, DL-form racemic glutamic acid, or any of these.
  • the higher the optical purity of glutamic acid as the L form the more preferable, for example, 100% to 60% is preferable, 100% to 70% is more preferable, 100% to 80% is still more preferable, 100% to 90% is still more preferable, 100% to 92% is particularly preferred, 100% to 95% is particularly preferred, and 100% to 97% is most preferred.
  • glutamic acid can be converted to glutamate.
  • Possible salts include alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as calcium salts and magnesium salts, organic base salts such as ethanolamine salts and diethanolamine salts, bases such as lysine salts and arginine salts.
  • the weight ratio of glutamic acid to glutamate can be 100: 0 to 0: 100, preferably 80:20 to 0: 100, more preferably 65:35 to 0: 100, and 60:40 to 0: 100. 100 is even more preferred, and 50:50 to 0: 100 is most preferred.
  • “Mole number of glutamic acid” in the following formula (2) when a part or all of glutamic acid is glutamate is the total number of moles of free glutamic acid and glutamic acid.
  • the acid molar ratio is the number of moles of “acid component (glutamic acid and pyrrolidone carboxylic acid)” relative to the total number of moles of “glutamic acid and its salt, pyrrolidone carboxylic acid and its salt” present during the cyclization reaction. It means ratio.
  • the acid molar ratio can be obtained from the following formula (2).
  • the acid molar ratio is preferably 90% or less, more preferably 80% or less, and even more preferably 75% or less, from the viewpoint that the reaction proceeds more quickly.
  • 70% or less is still more preferred, 65% or less is particularly preferred, and 60% or less is particularly preferred.
  • it is preferably 10% or more, more preferably 20 or more, further preferably 25% or more, still more preferably 30% or more, particularly preferably 35% or more, and particularly preferably 40% or more.
  • heating is performed by appropriately adjusting the amount of pyrrolidone carboxylic acid or its salt used in the first step and / or the amount of glutamic acid or its salt used in the second step.
  • the acid molar ratio during the cyclization reaction can be adjusted.
  • pyrrolidone carboxylic acid and / or a salt thereof and / or an acid molar ratio in consideration of the acid molar ratio of the reaction solution obtained in the third step of the previous cycle, and / or Alternatively, glutamic acid and / or a salt thereof may be used.
  • the acid molar ratio of the reaction solution obtained in the third step of the previous cycle is too high, free pyrrolidonecarboxylic acid and / or glutamic acid may be used more than its salt, and the reaction obtained in the third step When the acid molar ratio of the solution is too low, the pyrrolidone carboxylic acid and / or glutamic acid salt may be used more than the free form. Furthermore, in order to maintain the acid molar ratio during the reaction in an appropriate range, a free form of pyrrolidonecarboxylic acid and / or glutamic acid and / or a salt thereof may be added during the reaction.
  • Glutamic acid can be added in several batches as needed to ensure the fluidity of the system.
  • the number of times of charging is preferably 1 to 10 times, more preferably 1 to 5 times, and particularly preferably 1 to 3 times. Of course, it is also possible to add continuously as the reaction proceeds.
  • the reaction temperature in the second step is not particularly limited as long as the reaction can proceed.
  • 105 ° C. or higher is preferable, 108 ° C. or higher is more preferable, 110 ° C. or higher is further preferable, 113 ° C. or higher is even more preferable, and 115 ° C. or higher is most preferable.
  • 200 ° C. or lower is preferable, 180 ° C. or lower is more preferable, 150 ° C. or lower is further preferable, 140 ° C. or lower is even more preferable, and 135 ° C.
  • the reaction time is 10 minutes to 40 hours.
  • the reaction time depends on the reaction temperature and the selection of the acid molar ratio, but is preferably 30 minutes or more, more preferably 1 hour or more, still more preferably 2 hours or more, and even more preferably 6 hours or more.
  • it is preferably within 20 hours, more preferably within 14 hours, further preferably within 12 hours, particularly preferably within 10 hours, and most preferably within 8 hours.
  • the third step of the present invention is a step in which a specific amount of the obtained reaction solution containing pyrrolidone carboxylic acid is taken out and used as a product, and the rest is used as a solution in the first step of the next cycle.
  • all of the reaction solution containing pyrrolidonecarboxylic acid may be taken out.
  • the ratio of the weight withdrawn as a product to the total weight of pyrrolidone carboxylic acid present in the system (hereinafter referred to as “drawing rate”) can be appropriately calculated from the amount of glutamic acid to be added and the reaction rate. The more pyrrolidone carboxylic acid to be extracted, the greater the yield per cycle.
  • the drawing rate is preferably 90% or less, more preferably 80% or less, and further preferably 70% or less.
  • the drawing method is not particularly limited, and it may be appropriately drawn according to the reaction apparatus to be used. For example, in the case of a device having a drain at the bottom of the reaction vessel, the drain may be opened and a specific amount may be withdrawn from the vessel, or may be withdrawn from the open portion at the top of the reaction device using a pump.
  • the product taken out in the third step can be appropriately purified according to a conventional method using an ion exchange resin or recrystallization. Moreover, it can mix
  • pyrrolidone carboxylic acid when pyrrolidone carboxylic acid is obtained in a free form, it may be converted into a pyrrolidone carboxylic acid salt according to a conventional method. When a pyrrolidone carboxylic acid salt is obtained, pyrrolidone carboxylic acid is obtained according to a conventional method. You may convert into the free body of an acid.
  • a mixture of a free form of pyrrolidone carboxylic acid and a salt may be converted to a free form or salt of pyrrolidone carboxylic acid according to a conventional method.
  • the salt include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt and magnesium salt, organic salts such as zinc salt, ethanolamine salt and diethanolamine salt. Examples include basic amino acid salts such as base salts, lysine salts, and arginine salts.
  • the temperature for concentration under reduced pressure is not particularly limited, but is 40 ° C. to 100 ° C. Since it takes time to concentrate at a low temperature, it is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint that it can be concentrated under reduced pressure in a short time.
  • the degree of vacuum is not particularly limited as long as water can be distilled off, and is preferably 50 kpa or less. On the other hand, 5 kpa or more is preferable, 10 kpa or more is more preferable, and 30 kpa or more is more preferable as a condition for ensuring a reduced pressure without using special equipment.
  • the amount of water after concentration is not particularly limited as long as the system has fluidity, but is 1 wt% to 30 wt%.
  • the content is preferably 4 wt% or more, more preferably 6 wt% or more, and still more preferably 8 wt% or more.
  • the reaction solution remaining in the third step can be used as a pyrrolidone carboxylic acid-containing aqueous solution in the first step.
  • addition of pyrrolidone carboxylic acid, addition of water, or concentration under reduced pressure may be performed as necessary so that the pyrrolidone carboxylic acid has the appropriate concentration described above.
  • concentration under reduced pressure is the same as described above.
  • a coexisting component can be added to water as long as the cyclization reaction is not inhibited.
  • the coexisting component is not particularly limited as long as it does not react with the substrate under the reaction conditions, and specifically includes alcohols such as methanol, ethanol, t-butanol and propylene glycol; ketones such as acetone and methyl ethyl ketone. You may use these 1 type or in mixture of 2 or more types.
  • the pyrrolidone carboxylic acid or salt thereof obtained in the present invention is a facial cleanser, soap, cleansing foam, lotion, emulsion, serum, beauty cream, shampoo, hair rinse, hair conditioner, enamel, foundation, lipstick, funny, powder , Packs, perfumes, cologne, toothpaste and other cosmetics.
  • ingredients for cosmetics or external preparations for skin can be used as additives.
  • Ingredients commonly used in cosmetics or topical skin preparations include antioxidants, anti-inflammatory agents, UV absorbers, whitening agents, hair restorers, cell activators, moisturizers, metal chelators, oily ingredients, and surface active agents Agent, solvent, polymer substance, powder substance, pigments, fragrance, transdermal absorption enhancer, antiseptic, anti-fading agent, buffer, acne agent, anti-dandruff / itch agent, antiperspirant deodorant, burn Drugs, anti-ticks / lices, keratin softeners, xeroderma, antivirals, hormones, vitamins, amino acids / peptides, proteins, astringents, refreshing / irritant, animal and plant derived ingredients, antibiotics And antifungal agents.
  • Experimental example 2 [Relationship between reaction temperature, reaction time and reaction rate] The change with time of the reaction rate from L-glutamic acid to L-pyrrolidonecarboxylic acid at each reaction temperature was examined. 50 g of pyrrolidone carboxylic acid was dissolved in 7 g of water, 50 g of L-glutamic acid was added, and the reaction was carried out using a reflux apparatus under normal pressure. The temperature of the oil bath was adjusted to 120 to 145 ° C., and the temperature in the test tube was controlled to be 100, 110, 115, 120, and 136 ° C., respectively. The reaction rate was the ratio of L-pyrrolidone carboxylic acid obtained by the reaction to the added L-glutamic acid. The results are shown in FIG.
  • Judgment criteria for reaction operability are as follows. ⁇ : During the reaction, the entire system is fluid at all times. ⁇ : During the reaction, fluidity is obtained almost throughout the system. However, there is local fluidity immediately after the raw material is divided and added. ⁇ : During the reaction, almost throughout the system. Although fluidity can be obtained, there may be only local agitation fluidity temporarily after dividing the raw materials. ⁇ : The system cannot be agitated without fluidity.
  • the time required to reach a reaction rate of 90% was measured and evaluated as follows. ⁇ : Less than 5 hours ⁇ : 5 hours or more and less than 8 hours ⁇ : 8 hours or more and less than 10 hours ⁇ : 10 hours or more
  • L-form existence ratio is 95% or more
  • L-form existence ratio is 92% or more and less than 95%
  • L-form existence ratio is 89% or more and less than 92%
  • L-form existence ratio is less than 89%
  • Experimental Example 5 [Relationship between acid molar ratio and reaction operability, reaction efficiency and optical purity] The amount of pyrrolidone carboxylic acid, L-glutamic acid and its salt was varied, and the relationship between reaction time and reaction rate was examined. Specifically, an aqueous solution of pyrrolidone carboxylic acid was prepared according to Table 3. Next, according to Table 3, L-glutamic acid and / or L-glutamic acid monosodium salt monohydrate was added and reacted at 120 ° C. using a reflux apparatus under normal pressure. The transition of the reaction rate under each condition was followed. The reaction rate was the ratio of L-pyrrolidone carboxylic acid obtained by the reaction to the added L-glutamic acid or a salt thereof. FIG. 4 shows the change over time in the reaction rate. Reaction operability, reaction efficiency, and optical purity were evaluated according to the same criteria as in Experimental Example 3.
  • the first cycle of the continuous reaction was performed as follows. As a first step, 40 g of pyrrolidone carboxylic acid (L-form content 97.7%) and 5.6 g of water were added to a 200 mL four-necked flask and dissolved by heating at 120 ° C. In the second step, 45.6 g of L-glutamic acid as a raw material was added and heated at 120 ° C. for 8 hours. In the third step, the reaction solution was depressurized at a temperature of 100 to 115 ° C. and the system was kept at 120 ° C.
  • aqueous solution obtained in the first cycle 40.1 g was placed in a 200 mL four-necked flask and heated and dissolved at 120 ° C.
  • 38.5 g of L-glutamic acid as a raw material and 2 g of water were added to adjust the system concentration. Then, it heated at 120 degreeC for 9 hours.
  • the reaction solution was depressurized at a temperature of 100 to 115 ° C. and maintained at 120 ° C. for 3 hours to remove about 5.7 g of water, to obtain 71.7 g of an aqueous solution containing pyrrolidonecarboxylic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Pyrrole Compounds (AREA)
  • Cosmetics (AREA)
  • Detergent Compositions (AREA)

Abstract

 ピロリドンカルボン酸を含有する溶液中で、グルタミン酸を加熱環化させることにより、化学純度、光学純度の高いピロリドンカルボン酸またはその塩を、工業上簡便に、常圧下に、短時間で効率的に製造する方法を提供することができる。

Description

ピロリドンカルボン酸またはその塩の製造方法
 本発明は、ピロリドンカルボン酸またはその塩の製造方法に関する。
 ピロリドンカルボン酸(PCA)は、香粧品素材としてのみならず医薬品等の原料としても有用な化合物である。ピロリドンカルボン酸は、グルタミン酸を加熱し、自己環化反応させることで合成されている。製造法として、無溶媒直接加熱法、溶媒存在下高圧高熱法、亜臨界加圧加熱法、酵素的環化法が知られている。
 特開平1-132560号公報(特許文献1)には、無溶媒直接加熱法が記載されている。無溶媒直接加熱法は、固体状態のグルタミン酸の1価のアルカリ土類金属塩を、分子内縮合の反応水を完全に駆出するまで120℃~250℃の間の温度に加熱する製造方法である。無溶媒直接加熱法は、一見、工業上、簡便で生産効率も高いように見える。しかしながら、本製造法では、反応中の融解物は水飴状になり、冷却後には装置壁面に硬く固化するため、反応生成物の取り扱い上、必ずしも簡便な製造法でなかった。また、得られた固体状態のピロリドンカルボン酸を加熱すると、不純物である無水ピログルタミン酸が副生することが知られており(特公昭41-19431号公報(特許文献2)を参照のこと)、化学的に純度の高いピロリドンカルボン酸を得るという観点からも優れた製造法とはいえなかった。
 特公昭37-17959号公報(特許文献3)には、L-グルタミン酸を190~200℃に加熱溶解し生成する水を除去してピロリドンカルボン酸とする方法、さらに加熱してラセミ体を得る方法が記載されている。特開2003-34680号公報(特許文献4)には、グルタミン酸を高温高圧水を用いて反応させる方法が記載されている。これらの製造法においては、高温高圧に耐えるために、オートクレーブ(加熱釜)等が用いられる。よって、耐圧性のない汎用設備では製造することができないという点、容器内を減圧冷却するときにも反応が進行してしまうなど反応の制御の困難さの点から、汎用的で化学的純度、光学純度の高いピロリドンカルボン酸を得るために適した製造法とはいえなかった。
 特開平10-66566号公報(特許文献5)には、酵素的環化法が開示されている。酵素反応により常圧下、水中の温和なpH、温度領域において、グルタミン酸から高反応率にピロリドンカルボン酸を得る方法が記載されている。しかしながら、特開平10-66566号公報実施例5に記載されているように、この手法では反応液10mlあたりピロリドンカルボン酸の収量は0.4mg(300nmol)程度にとどまり、工業的に適した製造法とは言えなかった。
特開平1-132560号公報 特公昭41-19431号公報 特公昭37-17959号公報 特開2003-34680号公報 特開平10-66566号公報
 本発明の課題は、化学的純度、光学純度の高いピロリドンカルボン酸またはその塩を、工業上簡便に、常圧下に製造する方法を提供することにある。
 鋭意研究の結果、本発明者らはピロリドンカルボン酸を含有する溶液中で、グルタミン酸を常圧下で加熱環化させることにより、上記課題を解決することができ、かつ連続的に製造できることを見出し、本発明を完成した。
 すなわち、本発明は以下の態様を含む。
〔1〕ピロリドンカルボン酸含有水溶液中で、グルタミン酸を常圧下で加熱環化させることを特徴とするピロリドンカルボン酸またはその塩の製造方法。
〔2〕ピロリドンカルボン酸含有水溶液を調製する第一工程、グルタミン酸を投入し常圧下で加熱環化させる第二工程、生成したピロリドンカルボン酸を含む反応溶液を引き抜く第三工程を含む、ピロリドンカルボン酸またはその塩の製造方法。
〔3〕〔2〕に記載の第一工程乃至第三工程を1サイクルとし、第三工程で反応溶液を一部引き抜いた場合の残りの反応溶液を次サイクルの第一工程に用いる、ピロリドンカルボン酸またはその塩の連続製造方法。
〔4〕第一工程で調製されるピロリドンカルボン酸含有水溶液のピロリドンカルボン酸の濃度が、60wt%以上100wt%未満である〔2〕または〔3〕に記載の製造方法。
〔5〕加熱環化温度が105℃~150℃である〔1〕から〔4〕のいずれか一項に記載の製造方法。
〔6〕第二工程で投入するグルタミン酸の重量が、ピロリドンカルボン酸含有水溶液中のピロリドンカルボン酸の重量に対して、10%~500%である〔2〕から〔4〕のいずれか一項に記載の製造方法。
〔7〕グルタミン酸の一部または全部をグルタミン酸塩とする〔1〕から〔6〕のいずれか一項に記載の製造方法。
〔8〕ピロリドンカルボン酸の一部または全部をピロリドンカルボン酸塩とする〔1〕から〔7〕のいずれか一項に記載の製造方法。
〔9〕環化反応時の「グルタミン酸およびその塩、ピロリドンカルボン酸およびその塩」の合計モル数に対する「酸成分(グルタミン酸およびピロリドンカルボン酸)」の比率(酸モル比率)が90%~10%である〔7〕または〔8〕に記載の製造方法。
〔10〕ピロリドンカルボン酸の全重量に対して、生成物として引き抜く重量の割合(引き抜き率)が10%~100%である〔2〕から〔9〕のいずれか一項に記載の製造方法。
〔11〕光学活性ピロリドンカルボン酸および光学活性グルタミン酸を用い、光学活性ピロリドンカルボン酸またはその塩を製造する〔1〕から〔10〕のいずれか一項に記載の製造方法。
〔12〕〔11〕に記載の製造方法によって得られることを特徴とする、光学純度が100%~92%であるピロリドンカルボン酸またはその塩。
〔13〕〔12〕に記載のピロリドンカルボン酸またはその塩を含む化粧料。
〔14〕グルタミン酸とグルタミン酸塩の重量比が、50:50~0:100である〔7〕に記載の製造方法。
〔15〕ピロリドンカルボン酸とピロリドンカルボン酸塩の重量比が、100:0~50:50である〔8〕に記載の製造方法。
 本発明により、化学的純度、光学純度の高いピロリドンカルボン酸を、工業上簡便に、常圧下に、短時間で効率的に製造することが可能となった。
図1は、連続製造方法を示すフロー図である。 図2は、ピロリドンカルボン酸濃度と沸騰温度(沸騰開始温度及び安定沸騰温度)の関係を示すグラフである。 図3は、反応温度と反応時間・反応率の関係を示すグラフである。 図4は、酸モル比率と反応時間・反応率の関係を示すグラフである。
 以下、本発明を詳細に説明する。
 本発明の製造法は、ピロリドンカルボン酸含有水溶液中で、グルタミン酸を常圧下で加熱環化させることを特徴とするピロリドンカルボン酸またはその塩の製造方法(以下本明細書において、「常圧製造方法」という。)である。本発明において加熱環化反応は常圧で進行させることができる。本明細書において「常圧」とは特に加圧も減圧もしない状態であり、大気圧と同等の状態をいう。
 本発明の常圧製造方法は、生成したピロリドンカルボン酸の一部をピロリドンカルボン酸含有水溶液として再利用することにより、連続的にピロリドンカルボン酸またはその塩を製造することができる(以下本明細書において、「連続製造方法」という。)。
 本発明の連続製造方法は、常圧製造方法で生成したピロリドンカルボン酸の全部または一部を再利用する態様である限り特に限定されるものではないが、好ましい態様としては、ピロリドンカルボン酸含有水溶液を調製する第一工程、グルタミン酸を投入し常圧下で加熱環化させる第二工程、生成したピロリドンカルボン酸を含む反応溶液を引き抜く第三工程を一サイクルとし、サイクルを繰り返して連続的に実施することが出来る。図1に、当該態様の連続製造方法を示した。
 以下に、本発明の好適な態様について説明するが、本発明の常圧製造方法はこれに限定されない。
 本発明の第一工程について説明する。第一工程は、ピロリドンカルボン酸を水に溶かし、所望の濃度、所望の温度のピロリドンカルボン酸含有水溶液を調製する工程である。本発明を連続で実施する場合、2サイクル目以後においては、第一工程は、前工程(第三工程)で残したピロリドンカルボン酸を含む反応溶液を所望の濃度、所望の温度の溶液に調整する工程である。前工程(第三工程)で残したピロリドンカルボン酸溶液をそのまま使用する場合には、2サイクル目以後においては第一工程を省略することが出来る。
 水としては、具体的には市水、工業用水、イオン交換水、蒸留水等が挙げられる。反応系の共存成分を低下させるという観点では、イオン交換水や蒸留水がより好ましい。
 使用するピロリドンカルボン酸は、光学活性体(L体もしくはD体)、あるいはラセミ体(DL体)のいずれであってもよい。本明細書において「光学活性」とは、L体およびD体の一方の量が他方より多い状態を意味し、L体およびD体が等量存在するラセミ体ではないことを意味する。また、「光学純度」とは、例えば、L体の場合は、L体及びD体の合計に対するL体の百分率を言う。
 市販品として入手可能なピロリドンカルボン酸を使用することができる。市販品として入手可能なピロリドンカルボン酸は、L体であり、その光学純度は100%~50%である。光学純度の高いピロリドンカルボン酸を得るとの観点から、使用するピロリドンカルボン酸はL体として光学純度が高いほど好ましく、例えば60%以上であることが好ましく、70%以上がより好ましく、80%以上がさらに好ましく、90%以上が特に好ましい。
 2サイクル目以後の第一工程で使用するピロリドンカルボン酸含有水溶液は、それ以前のサイクルの第三工程で得たものを使用することができる。第一工程で使用するピロリドンカルボン酸はL体として光学純度が高いほど好ましく、例えば100%~60%が好ましく、100%~70%がより好ましく、100%~80%が更に好ましく、100%~90%が更により好ましく、100%~92%が殊更好ましく、100%~95%が特に好ましく、100%~97%が最も好ましい。
 第一工程で高光学純度のピロリドンカルボン酸を使用することにより、第三工程で高光学純度のピロリドンカルボン酸および/またはその塩を得ることができる。第三工程で得られるピロリドンカルボン酸および/またはその塩の光学純度は、例えば100%~60%が好ましく、100%~70%がより好ましく、100%~80%が更に好ましく、100%~90%が更により好ましく、100%~92%が殊更好ましく、100%~95%が特に好ましく、100%~97%が最も好ましい。
 ピロリドンカルボン酸含有水溶液の調製温度は、ピロリドンカルボン酸を均一に溶解させておくことができれば特に制限はない。溶解を迅速にするという点では、105℃以上が好ましく、108℃以上がより好ましく、110℃以上がさらに好ましく、113℃以上がさらにより好ましく、115℃以上が最も好ましい。特殊な装置を必要とせず、反応設備の劣化が進行しにくいという点では、200℃以下が好ましく、180℃以下がより好ましく、150℃以下がさらに好ましく、140℃以下がさらにより好ましく、135℃以下が最も好ましい。調製温度と第二工程の環化反応を同温度とすることもできる。
 「ピロリドンカルボン酸含有水溶液のピロリドンカルボン酸の濃度」とは、反応系中に含まれるピロリドンカルボン酸と水の全重量に対するピロリドンカルボン酸の重量の百分率を意味し、次式(1)から求めることができる。
Figure JPOXMLDOC01-appb-M000001
 
 従って、例えば、第二工程でグルタミン酸を投入して反応溶液中にグルタミン酸が含まれる場合であっても、グルタミン酸の重量は考慮しないものとする。
 また、「ピロリドンカルボン酸含有水溶液のピロリドンカルボン酸の濃度」は、グルタミン酸を投入する直前及び直後のものであってもよく、さらには、加熱環化反応の開始時および反応進行中の任意の時点の濃度であってもよい。
 加熱環化反応を短時間で効率的に進行させるためには、グルタミン酸を投入する直前又は直後、あるいは加熱環化反応の開始時の濃度により反応を制御するのが好ましい。
 ピロリドンカルボン酸含有水溶液のピロリドンカルボン酸の濃度は、加熱環化反応が進行する濃度であれば特に制限はないが、反応効率を考えると、50wt%より高い濃度が好ましく、55wt%以上がより好ましく、60wt%以上がさらに好ましく、65wt%以上がさらにより好ましく、70wt%以上がよりさらに好ましく、75wt%以上が特に好ましく、80wt%以上が殊更好ましい。また、濃度が高すぎると溶解に時間を要するため、100wt%未満が好ましく、98wt%以下がより好ましく、95wt%以下がさらに好ましく、93wt%以下がさらにより好ましく、90wt%以下が最も好ましい。
 本発明の一態様として、ピロリドンカルボン酸の一部または全部をピロリドンカルボン酸塩とすることもできる。可能な塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、マグネシウム塩等のアルカリ土類金属塩、亜鉛塩、エタノールアミン塩、ジエタノールアミン塩等の有機塩基塩、リジン塩、アルギニン塩等の塩基性アミノ酸塩等が挙げられ、好ましくはナトリウム塩、カリウム塩等のアルカリ金属塩であり、最も好ましくはナトリウム塩である。これらは一種あるいは二種以上の混合物であっても良い。ピロリドンカルボン酸とピロリドンカルボン酸塩の重量比は、100:0~0:100とすることができるが、100:0~20:80が好ましく、100:0~35:65がより好ましく、100:0~40:60がさらにより好ましく、100:0~50:50が最も好ましい。
 ピロリドンカルボン酸の一部または全部をピロリドンカルボン酸塩とした場合の上記式(1)中の「ピロリドンカルボン酸の重量」は、フリー体のピロリドンカルボン酸とピロリドンカルボン酸塩の合計重量とし、後掲の式(2)中の「ピロリドンカルボン酸のモル数」は、フリー体のピロリドンカルボン酸とピロリドンカルボン酸塩の合計モル数とする。また、亜鉛塩のような多価金属塩のモル数は、ピロリドンカルボン酸イオンのモル数に基づくものとする。
 本発明の第二工程について説明する。第二工程は、ピロリドンカルボン酸含有水溶液に、グルタミン酸を投入し常圧下で加熱環化させる工程である。
 グルタミン酸の投入重量は、系の流動性が保持できれば特に制限はないが、ピロリドンカルボン酸含有水溶液中のピロリドンカルボン酸の重量に対して、10%~500%である。ピロリドンカルボン酸の重量に対して、グルタミン酸の重量が多ければ系の流動性が悪化し反応が遅延することから300%以下が好ましく、200%以下がさらに好ましい。少なければピロリドンカルボン酸の取得量が低下することから、30%以上が好ましく、50%以上がさらに好ましく、70%以上が最も好ましい。連続して実施する場合、前サイクルにおいて未反応であったグルタミン酸含有量をHPLC等で定量することにより、投入するグルタミン酸の量を調整することができる。
 使用するグルタミン酸は、L体もしくはD体の光学活性グルタミン酸、あるいはDL体のラセミグルタミン酸、これらのいずれであってもよい。グルタミン酸のL体としての光学純度は高いほど好ましく、例えば100%~60%が好ましく、100%~70%がより好ましく、100%~80%が更に好ましく、100%~90%が更により好ましく、100%~92%が殊更好ましく、100%~95%が特に好ましく、100%~97%が最も好ましい。
 本発明の一態様として、グルタミン酸の一部または全部をグルタミン酸塩とすることができる。可能な塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、マグネシウム塩等のアルカリ土類金属塩、エタノールアミン塩、ジエタノールアミン塩等の有機塩基塩、リジン塩、アルギニン塩等の塩基性アミノ酸塩等が挙げられ、好ましくはナトリウム塩、カリウム塩等のアルカリ金属塩であり、最も好ましくはナトリウム塩である。これらは一種あるいは二種以上の混合物であっても良い。グルタミン酸とグルタミン酸塩の重量比は、100:0~0:100とすることができるが、80:20~0:100が好ましく、65:35~0:100がより好ましく、60:40~0:100がさらにより好ましく、50:50~0:100が最も好ましい。
 グルタミン酸の一部または全部をグルタミン酸塩とした場合の後掲の式(2)中の「グルタミン酸のモル数」は、フリー体のグルタミン酸とグルタミン酸塩の合計モル数とする。
 加熱環化反応の進行は、酸モル比率の影響を受ける。本明細書において、酸モル比率とは、環化反応時に存在する「グルタミン酸およびその塩、ピロリドンカルボン酸およびその塩」の合計モル数に対する「酸成分(グルタミン酸およびピロリドンカルボン酸)」のモル数の比率を意味する。
 酸モル比率は下式(2)から求めることができる。
Figure JPOXMLDOC01-appb-M000002
 
 酸モル比率が100%でも反応は進行するが、よりすみやかに反応を進行させるとの観点から、酸モル比率は、90%以下が好ましく、80%以下がより好ましく、75%以下がさらに好ましく、70%以下が更により好ましく、65%以下が殊更好ましく、60%以下が特に好ましい。また、反応操作性の観点より、10%以上が好ましく、20以上がより好ましく、25%以上がさらに好ましく、30%以上が更により好ましく、35%以上が殊更好ましく、40%以上が特に好ましい。
 常圧製造方法または連続製造方法の1サイクル目では、第一工程のピロリドンカルボン酸またはその塩の使用量、および/または第二工程のグルタミン酸またはその塩の使用量を適宜調整することによって、加熱環化反応時の酸モル比を調整することができる。例えば、(1)第一工程で全てフリー体のピロリドンカルボン酸を用い、第二工程でグルタミン酸および/またはその塩を投入する態様、(2)第一工程でピロリドンカルボン酸および/またはその塩を用い、第二工程でフリー体のグルタミン酸のみを投入する態様、(3)第一工程でピロリドンカルボン酸および/またはその塩を用い、第二工程でグルタミン酸および/またはその塩を投入する態様のいずれであってもよい。
 連続製造方法の2サイクル目以降では、前サイクルの第三工程で得られる反応溶液の酸モル比を考慮して適切な酸モル比になるように、ピロリドンカルボン酸および/またはその塩、および/またはグルタミン酸および/またはその塩を用いればよい。例えば、前サイクルの第三工程で得られる反応溶液の酸モル比が高すぎる場合には、フリー体のピロリドンカルボン酸および/またはグルタミン酸をその塩より多く用いればよく、第三工程で得られる反応溶液の酸モル比が低すぎる場合には、ピロリドンカルボン酸および/またはグルタミン酸の塩をフリー体より多く用いればよい。更には、反応中での酸モル比を適切な範囲に維持するため、反応途中でピロリドンカルボン酸および/またはグルタミン酸のフリー体および/またはその塩を追加してもよい。
 グルタミン酸は、必要に応じ、系の流動性が確保できるよう複数回に分け投入することができる。投入回数は、1回から10回が好ましく、1回から5回がより好ましく、1回から3回が特に好ましい。当然、反応の進行に伴い連続的に投入することも可能である。
 第二工程の反応温度は、反応を進行させることができれば特に制限はない。反応時間を短縮するという点では、105℃以上が好ましく、108℃以上がより好ましく、110℃以上がさらに好ましく、113℃以上がさらにより好ましく、115℃以上が最も好ましい。特殊な装置を必要とせず、反応設備の劣化が進行しにくいという点では、200℃以下が好ましく、180℃以下がより好ましく、150℃以下がさらに好ましく、140℃以下がさらにより好ましく、135℃以下が最も好ましい。熱効率が良いという観点から、系の沸騰状態を保持しつつ温度制御して(最高到達温度で)反応させることが好ましい。
 反応時間は、10分~40時間である。反応時間は、反応温度や酸モル比率の選択にも依存するが、好ましくは、30分以上、より好ましくは1時間以上、さらに好ましくは2時間以上、殊更好ましくは6時間以上である。一方、副反応としてのラセミ化を抑制するという観点から、20時間以内が好ましく、14時間以内がより好ましく、12時間以内がさらに好ましく、10時間以内が殊更好ましく、8時間以内が最も好ましい。
 本発明の第三工程について説明する。第三工程は、得られたピロリドンカルボン酸を含む反応溶液の特定量を取り出し、生成物とし、残りは次サイクルの第一工程の溶液とする工程である。連続製造方法としない場合には、ピロリドンカルボン酸を含む反応溶液の全てを取り出してもよい。
 系内に存在するピロリドンカルボン酸の全重量に対して、生成物として引き抜く重量の割合(以後「引き抜き率」と記載する)は、投入するグルタミン酸の量と反応率から適宜算出することが出来る。引き抜くピロリドンカルボン酸が多いほど1サイクルあたりの収量が多くなるため、高ければ高いほど好ましく100%とするのが最も好ましい。一方、連続サイクルにするため必要な量を残すためには、引き抜き率は90%以下が好ましく、80%以下がより好ましく、70%以下がさらに好ましい。
 引き抜く方法は特に限定されず、用いる反応装置に従い適宜抜き取ればよい。例えば、反応容器の下部にドレインを有する装置である場合は、ドレインを開放して、特定量を容器から抜き取ればよく、また、反応装置上部の開放部からポンプを用いて抜き取ってもよい。
 第三工程で取り出した生成物は、イオン交換樹脂や再結晶を使用して常法に従い適宜精製することができる。また、追加の精製をすることなくそのまま化粧品等に配合することができる。
 第三工程で、ピロリドンカルボン酸がフリー体で得られた場合は、常法に従ってピロリドンカルボン酸の塩に変換してもよく、ピロリドンカルボン酸の塩が得られた場合には常法に従ってピロリドンカルボン酸のフリー体に変換してもよい。また、ピロリドンカルボン酸のフリー体と塩の混合物が得られた場合には、常法に従って、全てをピロリドンカルボン酸のフリー体または塩に変換してもよい。
 ピロリドンカルボン酸の塩を得る場合、当該塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、マグネシウム塩等のアルカリ土類金属塩、亜鉛塩、エタノールアミン塩、ジエタノールアミン塩等の有機塩基塩、リジン塩、アルギニン塩等の塩基性アミノ酸塩等が挙げられる。
 本発明の一態様として、第三工程の後または前に、任意に減圧濃縮することができる。減圧濃縮する温度については、特に制限はないが、40℃~100℃である。低温では濃縮に時間がかかるため短時間で減圧濃縮できるという観点から、50℃以上が好ましく、60℃以上がより好ましい。減圧度は、水を留去できれば特に制限はなく、50kpa以下が好ましい。一方、特殊な設備でなくとも減圧を確保できる条件として、5kpa以上が好ましく、10kpa以上がより好ましく、30kpa以上がさらに好ましい。
 濃縮後の水分量は、系に流動性があれば特に制限はないが、1wt%~30wt%である。水分が少ない場合は流動性が確保しにくい傾向があるため、好ましくは4wt%以上、より好ましくは6wt%以上、さらに好ましくはが8wt%以上である。
 第三工程で残った反応溶液は第一工程のピロリドンカルボン酸含有水溶液として用いることができる。この際に、ピロリドンカルボン酸が上記で説明した適切な濃度となるように必要に応じて、ピロリドンカルボン酸の追加、水の添加または減圧濃縮を行ってもよい。減圧濃縮の方法は上記と同様である。
 上記第一から第三工程を1サイクルとし、サイクルを繰り返すことで、工業上簡便に、常圧下で、連続的に高化学的純度、高光学純度なピロリドンカルボン酸またはその塩を取得することができる。
 本発明の製造方法においては、環化反応を阻害しない限りにおいて、水に共存成分を添加することができる。共存成分は反応条件下において基質と反応しない成分であれば特に制限されず、具体的にはメタノール、エタノール、t-ブタノール、プロピレングリコール等のアルコール;アセトン、メチルエチルケトン等のケトン類等が挙げられる。これらは一種あるいは二種以上を混合して使用しても良い。
 本発明で得られたピロリドンカルボン酸またはその塩は、洗顔料、石鹸、クレンジングフォーム、化粧水、乳液、美容液、美容クリーム、シャンプー、ヘアリンス、ヘアコンディショナー、エナメル、ファンデーション、リップスティック、おしろい、パウダー、パック、香水、オーデコロン、歯磨等の化粧品に配合することができる。
 一般に化粧料あるいは皮膚外用剤に使用されている常用成分を添加剤として使用することができる。一般に化粧料あるいは皮膚外用剤に使用されている成分としては、抗酸化剤、抗炎症剤、紫外線吸収剤、美白剤、育毛剤、細胞賦活剤、保湿剤、金属キレート剤、油性原料、界面活性剤、溶剤、高分子物質、粉体物質、色素類、香料、経皮吸収促進剤、防腐剤、褪色防止剤、緩衝剤、にきび用薬剤、ふけ・かゆみ防止剤、制汗防臭剤、熱傷用薬剤、抗ダニ・シラミ剤、角質軟化剤、乾皮症用薬剤、抗ウイルス剤、ホルモン類、ビタミン類、アミノ酸・ペプチド類、タンパク質類、収れん剤、清涼・刺激剤、動植物由来成分、抗生物質、抗真菌剤等を挙げることができる。
 以下、実施例を用いて本発明をより詳しく説明するが、これらの例は本発明を限定するものではない。
〔定量・光学純度分析方法〕
 ピロリドンカルボン酸およびグルタミン酸の定量は、高速液体クロマトグラフィー(キラルカラム:住友化学分析センター製「スミキラルOA-5500」、カラム温度:25℃、溶離液:2mmol硫酸銅(II)水溶液、流量:1ml/min、検出:UV254nm)を用いて行った。L-グルタミン酸(和光純薬製)、ピロリドンカルボン酸(味の素株式会社製)の標準液を作成し、相対エリアから含有量を算出した。また、ピロリドンカルボン酸の光学純度分析は、検出されたエリア比を以ってL/L+D比とした。
実験例1
〔ピロリドンカルボン酸濃度と系内温度の関係〕
 20mlの試験管にピロリドンカルボン酸と水を入れ、50、60、80、88、90、95wt%の水溶液を調製した。試験管に小型マグネチックスタラーバーを入れ、デジタル温度計を試験管の底部や側面に接触しないように差し入れ、オイルバスを用いて加熱し、沸騰開始温度(系から気体が放出され始めた温度)、および安定沸騰温度(安定的に沸騰状態を保持している温度)を測定した。結果を図2に示す。
 図2の結果より、ピロリドンカルボン酸含有水溶液中のピロリドンカルボン酸濃度が60wt%以上のときに沸点が105℃を超え、80wt%以上のときに沸点が110℃を超えることが明らかとなった。
実験例2
〔反応温度と反応時間・反応率の関係〕
 各反応温度における、L-グルタミン酸からL-ピロリドンカルボン酸への反応率の経時変化を調べた。ピロリドンカルボン酸50gを水7gに加え溶解させ、L-グルタミン酸50gを加え、常圧下、還流装置を用いて反応させた。オイルバスの温度を120~145℃に調整し、試験管内の温度が、それぞれ、100、110、115、120、136℃になるよう制御した。なお、反応率は、添加したL-グルタミン酸に対し反応で得られたL-ピロリドンカルボン酸の割合とした。結果を図3に示す。
 図3から明らかなように、反応温度の上昇に伴い反応速度の劇的な向上が見られ、反応時間が大幅に短縮されることを確認した。
実験例3
〔反応操作性・反応効率・光学純度の評価〕
 ピロリドンカルボン酸0~70gを水7gに加え加熱溶解させた。溶解後、L-グルタミン酸を加え、常圧下、還流装置を用いて沸騰状態を保持しつつ温度制御して反応させた。なお、反応率は、添加したL-グルタミン酸に対し反応で得られたL-ピロリドンカルボン酸の割合とした。
 反応操作性についての判断基準は以下のとおりである。
◎:反応中、常時、系全体に流動性あり
○:反応中、ほぼ系全体に流動性は得られるものの、原料の分割投入直後に局所的に流動性あり
△:反応中、ほぼ系全体に流動性は得られるものの、原料の分割投入後、一時的に局所的な攪拌の流動性のみになる場合があり
×:系全体に流動性なく攪拌不可
 反応効率については、反応率90%に達するまでに要した時間を測定し以下のように評価した。
◎:5時間未満
○:5時間以上8時間未満
△:8時間以上10時間未満
×:10時間以上
 光学純度ついては、以下のように評価した。
◎:L体の存在割合が95%以上
○:L体の存在割合が92%以上95%未満
△:L体の存在割合が89%以上92%未満
×:L体の存在割合が89%未満
Figure JPOXMLDOC01-appb-T000003
 
 実施例1から5において、常圧下において、優れた反応操作性・反応効率で、高光学純度、高化学的純度のピロリドンカルボン酸を得ることができた。比較例1および2においては、流動性が悪く反応を進行させることができなかった。
実験例4
〔ピロリドンカルボン酸とピロリドンカルボン酸塩の比率と系内温度の関係〕
 20mlの試験管に所定量のピロリドンカルボン酸、ピロリドンカルボン酸ナトリウムおよび水を入れ、90wt%の水溶液を調製した。試験管に小型マグネチックスタラーバーを入れ、デジタル温度計を試験管の底部や側面に接触しないように差し入れ、オイルバスを用いて加熱し、安定沸騰時の温度を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 
 表2の結果より、ピロリドンカルボン酸をピロリドンカルボン酸ナトリウムに置き換えても、ほぼ同じ温度で安定に沸騰することが示された。
実験例5
〔酸モル比率と反応操作性、反応効率及び光学純度の関係〕
 ピロリドンカルボン酸、L-グルタミン酸およびその塩の量を変動させ、反応時間と反応率の関係を調べた。具体的には、表3に従いピロリドンカルボン酸の水溶液を調製した。次に表3に従い、L-グルタミン酸および、又はL-グルタミン酸モノナトリウム塩一水和物を加え、常圧下、還流装置を用いて120℃で反応させた。各条件における反応率の推移を追った。なお、反応率は、添加したL-グルタミン酸またはその塩に対し反応で得られたL-ピロリドンカルボン酸の割合とした。図4に反応率の経時変化を示した。
 反応操作性、反応効率及び光学純度について、実験例3と同様の判断基準により評価した。
Figure JPOXMLDOC01-appb-T000005
 
 実施例6から11において、常圧下において、優れた反応操作性・反応効率で、高光学純度、高化学的純度のピロリドンカルボン酸またはその塩を製造することができた。評価した酸モル比率のうち、53%で最も早く反応が進行することを確認した。
〔連続製造例1〕
 連続反応の1サイクル目を以下のように実施した。
 第一工程として、200mLの4つ口フラスコにピロリドンカルボン酸40g(L体含量97.7%)、水5.6gを加え120℃で加熱溶解した。第二工程として、原料であるL-グルタミン酸45.6gを加え、120℃で8時間加熱した。第三工程として、反応液の液温100~115℃にて減圧し系を120℃で1時間保持し、水約6.1gを除去した後、ピロリドンカルボン酸水溶液81gを得た。このとき、ピロリドンカルボン酸含有率は98.1%、光学純度は96.3%、未反応グルタミン酸含量は1.9%であった。取得したピロリドンカルボン酸含有水溶液の40gを連続反応の2サイクル目の第一工程の溶液として使用した。
 連続反応2サイクル目を次のように実施した。
 第一工程として、200mLの4つ口フラスコに1サイクル目で取得したピロリドンカルボン酸水溶液40.1gを入れ、120℃で加熱溶解した。第二工程として、原料であるL-グルタミン酸38.5g、さらに水2gを添加し、系の濃度を整えた。その後、120℃で9時間加熱した。反応液の液温100~115℃にて減圧し120℃で3時間保持して水を約5.7g除去した後、ピロリドンカルボン酸含有水溶液71.7gを得た。反応終了時の系内のピロリドンカルボン酸への反応率は99.2%、光学純度は94.7%、グルタミン酸含量は0.8%であった。連続製造例1の内容を表4にまとめた。
 この結果より、同様の反応サイクルを連続的に実施することで、化学的純度、光学純度の高いピロリドンカルボン酸を、工業上簡便に、常圧下に得ることができるとわかった。
Figure JPOXMLDOC01-appb-T000006
 
処方例1 クリーム
Figure JPOXMLDOC01-appb-T000007
 
処方例2 液体ハンドソープ
Figure JPOXMLDOC01-appb-T000008
 化学的純度、光学純度の高いピロリドンカルボン酸またはその塩を、工業上簡便に、常圧下に、短時間で効率的に得る方法を提供することができた。
 本出願は、日本で出願された特願2010-031056を基礎としており、その内容は本明細書にすべて包含されるものである。

Claims (15)

  1.  ピロリドンカルボン酸含有水溶液中で、グルタミン酸を常圧下で加熱環化させることを特徴とするピロリドンカルボン酸またはその塩の製造方法。
  2.  ピロリドンカルボン酸含有水溶液を調製する第一工程、グルタミン酸を投入し常圧下で加熱環化させる第二工程、生成したピロリドンカルボン酸を含む反応溶液を引き抜く第三工程を含む、ピロリドンカルボン酸またはその塩の製造方法。
  3.  請求項2に記載の第一工程乃至第三工程を1サイクルとし、第三工程で反応溶液を一部引き抜いた場合の残りの反応溶液を次サイクルの第一工程に用いる、ピロリドンカルボン酸またはその塩の連続製造方法。
  4.  第一工程で調製されるピロリドンカルボン酸含有水溶液のピロリドンカルボン酸の濃度が、60wt%以上100wt%未満である請求項2または3に記載の製造方法。
  5.  加熱環化温度が105℃~150℃である請求項1から4のいずれか一項に記載の製造方法。
  6.  第二工程で投入するグルタミン酸の重量が、ピロリドンカルボン酸含有水溶液中のピロリドンカルボン酸の重量に対して、10%~500%である請求項2から4のいずれか一項に記載の製造方法。
  7.  グルタミン酸の一部または全部をグルタミン酸塩とする請求項1から6のいずれか一項に記載の製造方法。
  8.  ピロリドンカルボン酸の一部または全部をピロリドンカルボン酸塩とする請求項1から7のいずれか一項に記載の製造方法。
  9.  環化反応時の「グルタミン酸およびその塩、ピロリドンカルボン酸およびその塩」の合計モル数に対する「酸成分(グルタミン酸およびピロリドンカルボン酸)」の比率(酸モル比率)が90%~10%である請求項7または8に記載の製造方法。
  10.  ピロリドンカルボン酸の全重量に対して、生成物として引き抜く重量の割合(引き抜き率)が10%~100%である請求項2から9のいずれか一項に記載の製造方法。
  11.  光学活性ピロリドンカルボン酸および光学活性グルタミン酸を用い、光学活性ピロリドンカルボン酸またはその塩を製造する請求項1から10のいずれか一項に記載の製造方法。
  12.  請求項11に記載の製造方法によって得られることを特徴とする、光学純度が100%~92%であるピロリドンカルボン酸またはその塩。
  13.  請求項12に記載のピロリドンカルボン酸またはその塩を含む化粧料。
  14.  グルタミン酸とグルタミン酸塩の重量比が、50:50~0:100である請求項7に記載の製造方法。
  15.  ピロリドンカルボン酸とピロリドンカルボン酸塩の重量比が、100:0~50:50である請求項8に記載の製造方法。
PCT/JP2011/053298 2010-02-16 2011-02-16 ピロリドンカルボン酸またはその塩の製造方法 WO2011102395A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112012020306-1A BR112012020306B1 (pt) 2010-02-16 2011-02-16 Método para produzir ácido pirrolidona carboxílico ou um sal do mesmo
JP2012500631A JP5935689B2 (ja) 2010-02-16 2011-02-16 ピロリドンカルボン酸またはその塩の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010031056 2010-02-16
JP2010-031056 2010-02-16

Publications (1)

Publication Number Publication Date
WO2011102395A1 true WO2011102395A1 (ja) 2011-08-25

Family

ID=44482980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053298 WO2011102395A1 (ja) 2010-02-16 2011-02-16 ピロリドンカルボン酸またはその塩の製造方法

Country Status (4)

Country Link
JP (1) JP5935689B2 (ja)
BR (1) BR112012020306B1 (ja)
FR (1) FR2957076B1 (ja)
WO (1) WO2011102395A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189524A (ja) * 2013-03-27 2014-10-06 Lion Corp 口腔用組成物
CN104119261A (zh) * 2014-07-31 2014-10-29 洪雅县雅星生物科技有限公司 一种l-焦谷氨酸的制备方法
CN107721898A (zh) * 2017-10-10 2018-02-23 成都百事兴科技实业有限公司 一种采用水解法制备l‑焦谷氨酸的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524757A (zh) * 2022-02-15 2022-05-24 南雄阳普医疗科技有限公司 一种吡咯烷酮羧酸盐及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066566A (ja) * 1996-08-28 1998-03-10 Ichibiki Kk ストレプトミセス属の生産するl−グルタミン酸・l−ピログルタミン酸相互変換酵素とその製造法
JP2003512323A (ja) * 1999-10-19 2003-04-02 ザ、プロクター、エンド、ギャンブル、カンパニー ピログルタミン酸及び金属塩を含む抗菌組成物
JP2008260733A (ja) * 2007-04-13 2008-10-30 Ajinomoto Co Inc アミノ酸類高配合防腐水溶液

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066566A (ja) * 1996-08-28 1998-03-10 Ichibiki Kk ストレプトミセス属の生産するl−グルタミン酸・l−ピログルタミン酸相互変換酵素とその製造法
JP2003512323A (ja) * 1999-10-19 2003-04-02 ザ、プロクター、エンド、ギャンブル、カンパニー ピログルタミン酸及び金属塩を含む抗菌組成物
JP2008260733A (ja) * 2007-04-13 2008-10-30 Ajinomoto Co Inc アミノ酸類高配合防腐水溶液

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189524A (ja) * 2013-03-27 2014-10-06 Lion Corp 口腔用組成物
CN104119261A (zh) * 2014-07-31 2014-10-29 洪雅县雅星生物科技有限公司 一种l-焦谷氨酸的制备方法
CN104119261B (zh) * 2014-07-31 2016-08-31 洪雅县雅星生物科技有限公司 一种l-焦谷氨酸的制备方法
CN107721898A (zh) * 2017-10-10 2018-02-23 成都百事兴科技实业有限公司 一种采用水解法制备l‑焦谷氨酸的方法

Also Published As

Publication number Publication date
BR112012020306B1 (pt) 2018-01-09
BR112012020306A2 (pt) 2016-04-26
JP5935689B2 (ja) 2016-06-15
JPWO2011102395A1 (ja) 2013-06-17
BR112012020306A8 (pt) 2017-10-10
FR2957076A1 (fr) 2011-09-09
FR2957076B1 (fr) 2016-12-09

Similar Documents

Publication Publication Date Title
JP5935689B2 (ja) ピロリドンカルボン酸またはその塩の製造方法
JP4392884B2 (ja) N−長鎖アシル酸性アミノ酸塩、およびその製造方法
US8044082B2 (en) N-phenylacetamide inhibitors of the enzyme SOAT-1 and pharmaceutical/cosmetic compositions comprised thereof
JP5327384B2 (ja) システイン誘導体
WO2013118895A1 (ja) 両性イオン型塩基性アミノ酸誘導体
CN101166524A (zh) 氨基酸衍生物
JP2010538046A (ja) 薬剤使用および美容使用のための、酵素soat−1の阻害薬としてのn−フェニルアセトアミドの誘導体
McConathy et al. Synthesis and evaluation of 2-amino-4-[18F] fluoro-2-methylbutanoic acid (FAMB): relationship of amino acid transport to tumor imaging properties of branched fluorinated amino acids
JP5979155B2 (ja) システイン誘導体およびアルコールを含有する化粧料
EP3693357B1 (en) Method for producing optically active pyrrolidone carboxylic acid or alkali metal salt thereof
US11807598B2 (en) Process for preparing fatty acid chlorides and N-acyl amino acid salts
ES2400798T3 (es) Nuevos derivados de dioxo-imidazolidina que inhiben la enzima SOAT-1, composiciones farmaceúticas y cosméticas que los contienen
JP6880369B2 (ja) 化粧品使用のための(r)−n−(アダマンチル−2−イル)ピロリジン−2−カルボキサミド誘導体
CN106083588B (zh) 一种不对称羧基保护的壬二酸及其制备方法和用途
JP4205804B2 (ja) N−長鎖アシル酸性アミノ酸、およびその製造法
JP5498862B2 (ja) カルボキシル基とアミド基を有する化合物及びその応用
CA2751328A1 (en) Novel dioxo-imidazolidine derivatives, which inhibit the enzyme soat-1, and pharmaceutical and cosmetic compositions containing them
WO2016104694A1 (ja) アシル塩基性アミノ酸誘導体および塩基性アミノ酸を含有する化粧料組成物
CN105111099A (zh) N-月桂酰基甘氨酸三乙醇胺盐溶液的固液合成方法
US20150080598A1 (en) Asymmetric synthesis for preparing fluoroleucine alkyl esters
JP2004238350A (ja) N−アシルアミノ酸およびその塩の製造方法
Tao et al. Efficient preparation of L-cysteic acid and its esters
JPS61254545A (ja) 光学活性フエニルアラニンアミドのラセミ化方法
WO2014208399A1 (ja) 保湿剤、及びそれを含有する化粧料
JP2001278873A (ja) 養毛剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744681

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500631

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744681

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012020306

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012020306

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120813