WO2011102251A1 - 光デバイス、光集積デバイス、および光デバイスの製造方法 - Google Patents

光デバイス、光集積デバイス、および光デバイスの製造方法 Download PDF

Info

Publication number
WO2011102251A1
WO2011102251A1 PCT/JP2011/052506 JP2011052506W WO2011102251A1 WO 2011102251 A1 WO2011102251 A1 WO 2011102251A1 JP 2011052506 W JP2011052506 W JP 2011052506W WO 2011102251 A1 WO2011102251 A1 WO 2011102251A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical device
powder
cores
waveguide
Prior art date
Application number
PCT/JP2011/052506
Other languages
English (en)
French (fr)
Inventor
正文 中田
隆徳 清水
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012500557A priority Critical patent/JPWO2011102251A1/ja
Publication of WO2011102251A1 publication Critical patent/WO2011102251A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29335Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
    • G02B6/29338Loop resonators

Definitions

  • the present invention relates to an optical device used for optical communication, optical wiring, optical storage, and the like, an optical integrated device including the same, and a method for manufacturing the same.
  • Electro-optic materials whose refractive index changes by interaction with an applied electric field are applied to optical modulators because of their high response speed, low power consumption due to voltage drive, and simple structure.
  • LiNbO 3 as such an electro-optic material.
  • a Mach-Zehnder type waveguide is formed on a single crystal LiNbO 3 substrate by a Ti diffusion method, and an electrode is combined with the formed waveguide.
  • a voltage is applied by an electrode to change the refractive index of the waveguide, thereby turning on / off the optical signal.
  • an optical modulator using LiNbO 3 is expensive because it is necessary to use a single crystal substrate, and the electro-optic effect of LiNbO 3 is small and the length of the waveguide is small because of the planar electrode structure. There is a problem that the element size is as large as the cm level.
  • Non-Patent Document 1 and Non-Patent Document 2 As an electro-optical materials other than LiNbO 3 described above, there is a transparent ceramic Pb 1-x La x (Zr y Ti 1-y) O 3 (PLZT). Since PLZT has an electro-optic coefficient that is nearly two orders of magnitude higher than that of a LiNbO 3 single crystal, it can be expected to reduce costs, reduce power consumption, and increase the speed by downsizing the optical element. Further, PLZT has been studied for thinning by a sol-gel method so far (see Non-Patent Document 1 and Non-Patent Document 2).
  • silicon photonic devices that enable integration of light and electronics on one chip have been studied.
  • an LSI such as a CPU and memory and an active optical element such as an optical switch can be formed on the same substrate, and the LSI can be further increased in speed.
  • the technology for forming a silicon semiconductor device can be applied to the manufacturing process of an optical communication device, so that the price of the optical device can be reduced.
  • an optical modulator for LSI optical wiring is required to be small in size and low voltage, low power consumption that can be driven under LSI operating conditions.
  • a ring resonator type or an asymmetric Mach-Zehnder type which is low in voltage and power consumption and can be driven under LSI operating conditions is suitable.
  • Non-patent Document 3 a ring resonator type made of silicon has been studied (Non-patent Document 3).
  • the silicon ring resonator changes the refractive index by injecting carriers into the light waveguide layer, and performs the modulation operation by changing the resonance wavelength.
  • the operating principle of the ring resonator is as follows.
  • a laser CW light source having a wavelength corresponding to the resonance wavelength of the ring resonator is incident on the input / output optical waveguide (input side) of the ring resonator.
  • the wavelength of the incident light matches the resonance wavelength, the incident light resonates with the ring-shaped optical waveguide, so that the amount of light emitted to the output side of the input / output optical waveguide becomes very small.
  • the resonance wavelength and the wavelength of the incident light do not match, and resonance occurs in the ring optical waveguide.
  • the amount of output light increases.
  • the resonance wavelength of the ring-shaped optical waveguide is changed, but this resonance wavelength changes due to variations in device temperature. This is due to a change in refractive index due to temperature variation, that is, a so-called thermo-optic effect, and the resonance wavelength determined by the optical path length of the ring-shaped optical waveguide varies due to temperature variation. For this reason.
  • the ring resonator type has a problem that the modulation operation becomes unstable. When the resonance wavelength changes due to temperature fluctuation, the extinction ratio is lowered, and the function as an optical modulator is significantly lowered.
  • Non-Patent Document 4 As a temperature-independent ring resonance that solves the above-described ring resonator type problem, the temperature coefficient dn / dt of the refractive index of the core material and the temperature coefficient dn / dt of the refractive index of the cladding material are reversed.
  • a structure has been proposed (see Non-Patent Document 4).
  • TiO 2 —SiO 2 having a positive dn / dt is used as a core material
  • PMMA (polymethylmethacrylate) -TFMA (trifluoromethyl acrylic acid) having a negative dn / dt is used as a cladding material. This structure compensates for changes in refractive index due to temperature.
  • Non-Patent Document 4 it is difficult to reduce the size of the ring resonator, it is difficult to integrate, and the power required for modulation increases, so that high speed cannot be expected.
  • AWG array-waveguide grating
  • the provided group is refracted from the silica that constitutes arrayed-waveguide.
  • a structure has been proposed in which silicone having a reverse thermo-optical effect is filled (see Non-Patent Document 6).
  • the waveguide loss increases in the ring structure in which the radius of curvature of the waveguide is small.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to suppress temperature dependence without impairing the waveguide loss of an optical device composed of an optical waveguide. To do.
  • An optical device includes an optical waveguide having two cores provided with adjacent portions that perform optical multiplexing / demultiplexing, and at least one of the two cores includes a powder of a first material and a powder of a second material. Unlike the sign of the thermo-optic effect of the second material, the particle diameter of the powder is smaller than the wavelength of the light to be guided.
  • the optical integrated device includes the optical device on a substrate.
  • an optical device manufacturing method is a manufacturing method for manufacturing the above-mentioned optical device, in which a core composed of a mixed powder is formed by aero deposition.
  • one core constituting the adjacent portion that performs optical multiplexing / demultiplexing is composed of the mixed powder obtained by mixing the powder of the first material and the powder of the second material. Therefore, it is possible to obtain an excellent effect that the temperature dependency can be suppressed without impairing the waveguide loss of the optical device constituted by the optical waveguide.
  • FIG. 1A is a cross-sectional view showing a configuration of an optical device according to Embodiment 1 of the present invention.
  • FIG. 1B is a plan view showing a configuration example of the optical device according to Embodiment 1 of the present invention.
  • FIG. 2 is a characteristic diagram showing the result of calculating the temperature dependence of the refractive index of a core made of a mixed powder of PLZT powder and SrTiO 3 powder by effective medium approximation.
  • FIG. 3A is a cross-sectional view showing the configuration of the optical device according to Embodiment 2 of the present invention.
  • FIG. 3B is a cross-sectional view showing the configuration of the optical device according to Embodiment 2 of the present invention.
  • FIG. 3C is a plan view showing the configuration of the optical device according to Embodiment 2 of the present invention.
  • FIG. 4 is a configuration diagram showing a configuration of a film forming apparatus for performing film formation by an aero deposition method.
  • FIG. 1A is a sectional view showing a partial configuration of an optical device according to an embodiment of the present invention
  • FIG. 1B is a plan view.
  • FIG. 1A shows a cross section taken along line aa ′ of FIG. 1B.
  • the optical device is first composed of an optical waveguide having two cores 101a and 101b each provided with a nearby portion that performs optical multiplexing / demultiplexing.
  • the cores 101 a and 101 b function as an optical waveguide by including a clad 104 and a clad 105 around the cores 101 a and 101 b.
  • the core 101 a is composed of a mixed powder obtained by mixing the first material powder 102 and the second material powder 103.
  • the first material and the second material have thermo-optic effects with different signs, and the particle sizes of the powder 102 and the powder 103 are smaller than the wavelength of light to be guided.
  • the core 101b does not need to be composed of the powder as described above, and may be composed of a material that can function as a core.
  • the core 101b may be composed of a mixed powder obtained by mixing the powder of the first material and the powder of the second material.
  • the core 101a is composed of the mixed powder obtained by mixing the powder 102 and the powder 103 of the optical material having different thermo-optic effects, one of the materials due to the temperature change.
  • the change in the refractive index is canceled out by the change in the refractive index of the other material due to the temperature change.
  • the characteristic fluctuation due to temperature can be reduced.
  • a ring-shaped optical waveguide is composed of the core 101a composed of the mixed powder as described above, a linear waveguide is composed of the core 101b, and a ring resonator is composed of these, the ring-shaped optical waveguide due to temperature change is formed. Variations in the resonance frequency in the waveguide are suppressed (compensated).
  • a temperature holding mechanism such as a Peltier element, according to the present embodiment, for example, an inexpensive optical modulator with low power consumption can be realized.
  • the first material and the second material need only have a refractive index that can be used as the core of the optical waveguide. Further, it is only necessary that the thermo-optic effect of the first material and the thermo-optic effect of the second material have different signs.
  • Pb 1-x La x ( Zr y Ti 1-y) O 3 which is an electro-optical material (PLZT), lead zirconate titanate, barium titanate, strontium added barium titanate, tantalum potassium niobate
  • the temperature coefficient dn / dt (thermo-optic effect) of the refractive index is positive.
  • dn / dt of SrTiO 3 , KTaO 3 , and TiO 2 that can be used as an optical (core) material is negative.
  • Table 1 shows optical characteristics of PLZT, SrTiO 3 , KTaO 3 , TiO 2 , and SiO 2 .
  • PLZT is a material used for obtaining an electro-optic effect, and this effect is manifested because PLZT takes a perovskite structure. Therefore, the above-mentioned two materials cannot be mixed at the atomic level.
  • the core is composed of a mixed powder obtained by mixing the powder of the first material and the powder of the second material, the temperature can be reduced without impairing the optical effect obtained by the characteristics of the material.
  • the change in the refractive index of the core due to the change can be suppressed.
  • the diameter of the particles constituting the powder is larger than the wavelength of the light to be guided in the waveguide, scattering increases and is not suitable for an optical device. Therefore, it is important that the diameter (average particle diameter) of the particles constituting the powder is smaller than the wavelength of light to be guided.
  • the results of calculation based on the effective medium approximation regarding the temperature change of the refractive index of the core 101a in the present embodiment will be described.
  • PLZT is used as the first material
  • SrTiO 3 is used as the second material.
  • the refractive index of the core made of the mixed particle molded body is obtained by setting the mixing ratio of PLZT and SrTiO 3 to 5: 7 (molar ratio). It has been found for the first time that the refractive index is constant regardless of the temperature.
  • 2B shows a temperature change in the refractive index of the core due to PLZT, and FIG.
  • 2C shows a temperature change in the refractive index of the core due to SrTiO 3 .
  • optical devices such as a resonant modulator using this core can be used without a temperature adjustment function. It becomes possible to do.
  • the mixing ratio of at least two materials having different signs of the temperature coefficient of the refractive index is appropriately determined based on the result of an experiment or the like so as to compensate for the change in the refractive index of the core due to the temperature change.
  • the refractive index can be made constant regardless of the temperature. Even if the relationship is not completely compensated, the temperature dependence can be suppressed by forming the core from a mixed powder of two materials having different refractive index temperature coefficients from each other. .
  • Table 2 shows the results of calculating the refractive index and dielectric constant of the mixed molded body that is temperature-independent based on the effective medium approximation as described above.
  • the value at the time of the mixing ratio with PLZT which has been made temperature independent is shown. It can be seen that the higher the dielectric constant, the better the electric field acts on PLZT, which is an electro-optic material, and it is better to combine with SrTiO 3 having a higher dielectric constant.
  • FIGS. 3A, 3B, and 3C are cross-sectional views illustrating a partial configuration of the optical device according to the present embodiment
  • FIG. 3C is a plan view.
  • 3A shows a cross section taken along line aa ′ in FIG. 3C
  • FIG. 3B shows a cross section taken along line bb ′ in FIG. 3C.
  • the optical device in this embodiment includes a silicon oxide layer 302, a silicon oxide layer 303, a SrTiO 3 layer 304, a silicon oxide layer 305, a core 306a, and a SrTiO 3 layer 307 formed on a silicon substrate 301.
  • the SrTiO 3 layer 304 is formed at the bottom of the groove formed in the silicon oxide layer 305, and the core 306a is formed on the SrTiO 3 layer 304 in the groove.
  • each silicon oxide layer and each SrTiO 3 layer function as a clad with respect to the core 306a.
  • the core 306a has an inverted ridge structure.
  • the core 306a is composed of a mixed powder obtained by mixing a powder of PLZT (first material) and a powder of SrTiO 3 (second material). This is the same as in the first embodiment described above, and the two powders (materials) constituting the core 306a have thermo-optic effects with different signs, and the particle size of the powder is the same as that of the waveguide target. It is supposed to be smaller than the wavelength of light to be transmitted.
  • the optical device in the present embodiment is a ring modulator using a ring resonator including a ring-shaped optical waveguide made of a core 306a and a linear waveguide made of a core 306b.
  • the circumferential length of the ring-shaped optical waveguide is, for example, 800 ⁇ m.
  • the ring-shaped optical waveguide composed of the core 306 a and the straight waveguide composed of the core 306 b are optically coupled by the splitter 341.
  • the splitter 341 is an area where the core 306a and the core 306b are arranged close enough to perform optical multiplexing / demultiplexing.
  • the optical device includes a refractive index control unit 342 in a ring-shaped optical waveguide.
  • the refractive index control unit 342 first includes a silicon oxide layer 302 on the silicon substrate 301 as in the region other than the refractive index control unit 342 (see FIG. 3A).
  • the refractive index control unit 342 includes a lower wiring layer 303 a having a laminated structure including a titanium layer 331, a gold layer 332, a titanium layer 333, and an ITO (Indium Tin Oxide) layer 334 on the silicon oxide layer 302. ing.
  • an SrTiO 3 layer 304, a silicon oxide layer 305, a core 306a, and an SrTiO 3 layer 307 are provided on the lower wiring layer 303a as in the region other than the refractive index control unit 342 (see FIG. 3A).
  • the SrTiO 3 layer 304 is formed at the bottom of the groove formed in the silicon oxide layer 305, and the core 306a is formed on the SrTiO 3 layer 304 in this groove.
  • the refractive index control unit 342 includes an upper wiring layer 321 having a laminated structure including an ITO layer 311, a titanium layer 312a, and a gold layer 313a on the SrTiO 3 layer 307 above the core 306a.
  • An electrode pad 343 is connected to the upper wiring layer 321 as shown in FIG. 3C.
  • the lower wiring layer 303 a is connected to a lead-out wiring 322 made of a titanium layer 312 b and a gold layer 313 b formed in a through hole penetrating the SrTiO 3 layer 307 and the silicon oxide layer 305, and the electrode pad 344 is connected to the lead-out wiring 322. Is connected.
  • the lower wiring layer 303a and the upper wiring layer 321 are electrodes that apply an electric field to the core 306a of the refractive index control unit 342.
  • an ITO layer 334 is provided on the core 306a side of the lower wiring layer 303a.
  • an ITO layer 311 is provided on the core 306a side of the upper wiring layer 321. Is provided.
  • each wiring layer is provided with a gold layer and a titanium layer, an increase in electrical resistance is suppressed.
  • the titanium layer is interposed, peeling of the gold layer can be suppressed.
  • a silicon oxide layer 302 is formed by depositing silicon oxide on a silicon substrate 301.
  • silicon oxide can be deposited by a well-known CVD method or sputtering method.
  • a titanium layer 331, a gold layer 332, and a titanium layer 333 are formed in this order in a region to be the refractive index control unit 342. These can be formed, for example, by patterning each material layer deposited by the DC magnetron sputtering method by a well-known lift-off method.
  • an ITO layer 334 is formed on the titanium layer 333.
  • argon gas is used as the sputtering gas.
  • a silicon oxide layer 303 is formed on the silicon oxide layer 302. The upper surface of the ITO layer 334 and the upper surface of the silicon oxide layer 303 are formed so that the same plane is continuously formed.
  • SrTiO 3 is deposited on the ITO layer 334 and the silicon oxide layer 303, and this is etched by an ion milling method to form the SrTiO 3 layer 304.
  • the SrTiO 3 layer 304 is formed in all regions where the core 306a is disposed.
  • a silicon oxide layer 305 is formed over the entire area covering the SrTiO 3 layer 304.
  • recesses for forming the core 306 a and the core 306 b are formed in the silicon oxide layer 305.
  • a groove having the same width as that of the SrTiO 3 layer 304 is formed up to the central portion in the layer thickness direction of the silicon oxide layer 305, and a wider portion is formed above the central portion in the layer thickness direction. Grooves are formed.
  • the cross section perpendicular to the waveguide direction of the groove formed is T-shaped.
  • a mixed powder obtained by mixing PLZT powder (powder) with an average particle size of 0.5 ⁇ m and SrTiO 3 powder (powder) with an average particle size of 0.6 ⁇ m was formed on the silicon oxide layer 305 as described above. It accumulates so that the inside of a groove
  • the core 306b may be formed in the same manner as the core 306a, and the core 306b may be formed from another material having the same refractive index as that of the mixed powder.
  • an SrTiO 3 layer 307 is formed, and an ITO layer 311 is formed on the SrTiO 3 layer 307 above the core 306b constituting the refractive index control unit 342.
  • a through hole for forming the lead wiring 322 is formed in the silicon oxide layer 305.
  • a titanium layer 312a and a gold layer 313a are formed on the ITO layer 311 to form an upper wiring layer 321, and a titanium layer 312b and a gold layer 313b are formed to lead out a wiring 322.
  • the electrode pad 343 and the electrode pad 344 are formed simultaneously with the upper wiring layer 321 and the lead-out wiring 322.
  • the mixed powder layer may be formed by an aero deposition method.
  • FIG. 4 is a configuration diagram showing a configuration of a film forming apparatus for performing film formation by an aero deposition method.
  • this apparatus includes a gas cylinder 401 that stores oxygen gas, a transport pipe 402 that transports oxygen gas supplied from the gas cylinder 401, and a glass bottle 403 that is supplied with oxygen transported through the transport pipe 402.
  • a glass bottle 403 contains raw material powder (mixed powder) 404.
  • an exhaust device (not shown) is connected to the glass bottle 403 via an exhaust pipe 405 so that the inside of the glass bottle 403 can be exhausted.
  • the glass bottle 403 includes a discharge pipe 406.
  • the conveyance pipe 407 is connected to the discharge pipe 406 of the glass bottle 403, and the conveyance pipe 407 is connected to the nozzle 408.
  • the nozzle 408 is disposed in a film formation chamber 409 that performs film formation.
  • a film formation target substrate W is arranged in the discharge direction of the nozzle 408.
  • a vacuum pump 410 is connected to the film formation chamber 409 so that the inside of the film formation chamber 409 can be evacuated.
  • the inside of the glass bottle 403 containing the raw material powder 404 is exhausted to a pressure of about 2.67 kPa (20 Torr) through the exhaust pipe 405.
  • oxygen as a carrier gas is introduced into the glass bottle 403 while controlling the flow rate from the gas cylinder 401.
  • the glass bottle 403 is vibrated by the vibrator 411 to generate aerosol in which fine particles of the powder 404 are dispersed in the gas in the glass bottle 403, and the introduced carrier gas causes the nozzle to pass through the transport pipe 407. Transport to 408.
  • the film formation chamber 409 in which the nozzle 408 is disposed is evacuated to a predetermined degree of vacuum by the vacuum pump 410.
  • the thin film formed by the aero deposition method gives mechanical shock force to the supplied ultrafine particle brittle magneto-optical material, and pulverizes the supplied ultrafine particle brittle magneto-optical material to bond it to the surface of the substrate. It is a molded product.
  • the film formation conditions by the above-described aero deposition method are as follows.
  • the carrier gas is oxygen
  • the incident angle of the aerosol 412 discharged from the nozzle 408 to the substrate W is 30 degrees.
  • the gas flow rate of the carrier gas is 12 liters / minute, and the vibration frequency of the vibrator 411 is 166 rpm. According to these conditions, the deposition rate is 0.5 ⁇ m / min.
  • a film (layer) of the mixed powder can be formed on the substrate.
  • the composition of PLZT is, for example, Pb 0.95 La 0.05 (Zr 0.3 Ti 0.7 ) O 3 .
  • This PLZT is a ferroelectric composition having a perovskite crystal structure and is suitable for an optical device having a first-order large electro-optic coefficient.
  • the average particle size of the PLZT powder used as a raw material may be 0.5 ⁇ m
  • the average particle size of the SrTiO 3 powder may be 0.6 ⁇ m.
  • CW light having a wavelength of 1.55 ⁇ m is input to the optical device (one of the straight waveguides) in the present embodiment manufactured as described above, and a bias voltage of 4.3 V is applied between the electrode pad 343 and the electrode pad 344.
  • modulation up to a high frequency of 10 GHz was possible.
  • the extinction ratio at this time was 3.5 dB.
  • the temperature of the manufactured optical device in the present embodiment was heated to 60 ° C., and the same measurement was performed, but when modulated with 2.5 Vpp with a bias voltage of 3 V applied, the frequency up to a high frequency of 10 GHz was obtained. Modulation was possible. The extinction ratio at this time was 3.2 dB.
  • a low-voltage driven optical device capable of high-speed operation with a small characteristic variation due to temperature is manufactured while using an electro-optical material having a large optical absorption for the refractive index control unit 342. did it.
  • the present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
  • the first material is made of an electro-optic material having a positive refractive index temperature coefficient
  • the second material is made of a material having a negative refractive index temperature coefficient, although it is not an electro-optic material.
  • the present invention is not limited to this, and it is sufficient that the thermo-optic effect of the first material and the thermo-optic effect of the second material have different signs, both of which have an electro-optic effect. There may be no case. If the thermo-optic effect of the first material and the thermo-optic effect of the second material have different signs, the temperature dependence can be suppressed.
  • Pb 1-x La x ( Zr y Ti 1-y) O 3 Pb 1-x La x ( Zr y Ti 1-y) O 3 (PLZT), lead zirconate titanate, barium titanate, barium strontium added titanate, potassium tantalate niobate
  • PZT lead zirconate titanate
  • barium titanate barium titanate
  • barium strontium added titanate potassium tantalate niobate
  • potassium tantalate niobate Any material may be used as long as it is a material containing lead zirconate titanate to which lanthanum is added and a material containing lead zirconate titanate added with lanthanum.
  • SrTiO 3 , KTaO 3 , and TiO 2 not only SrTiO 3 , KTaO 3 , and TiO 2 , but also materials obtained by substituting some of these elements can be used.
  • the ring type modulator has been described as an example.
  • the present invention is not limited to this, and includes an optical waveguide having two cores including adjacent portions that perform optical multiplexing / demultiplexing, such as a Mach-Zehnder type waveguide.
  • optical modulator not only the optical modulator but also an optical switch can be configured.
  • a substrate on which another type of optical element such as a laser, an electro-optical converter, a photoelectric converter, an optical amplifier, an optical waveguide, or an optical filter is formed in advance, or
  • the above-described optical device can be easily manufactured on a substrate on which an integrated circuit including electronic elements such as a CPU and a memory is formed in advance.
  • Such a manufacturing method includes the optical device according to the present invention and other devices or integrated circuits, and can be applied to the production of various optical integrated devices used in optical communication, optical wiring, optical storage, and the like.
  • Appendix 1 It is composed of an optical waveguide having two cores provided with adjacent portions for optical multiplexing / demultiplexing, and at least one of the cores is composed of a mixed powder obtained by mixing a powder of a first material and a powder of a second material.
  • the optical device is characterized in that the first material and the second material have thermo-optic effects with different signs, and the particle size of the powder is smaller than the wavelength of light to be guided.
  • Appendix 3 The optical device according to appendix 2, wherein the refractive index control unit includes an electrode that applies an electric field to the core.
  • Appendix 4 The optical device according to any one of appendices 1 to 3, wherein the first material is selected from a material containing lead zirconate titanate and a material containing lead zirconate titanate to which lanthanum is added.
  • the first material is selected from a material containing lead zirconate titanate and a material containing lead zirconate titanate to which lanthanum is added.
  • Appendix 5 The optical device according to any one of appendices 1 to 4, wherein the second material is selected from SrTiO 3 , KTaO 3 , TiO 2 , and materials obtained by element substitution of a part thereof.
  • Appendix 6 The optical device according to any one of appendices 1 to 5, comprising: a ring-shaped optical waveguide configured from one of the cores; and a linear waveguide configured from the other core. device.
  • Appendix 7 The optical device according to any one of appendices 1 to 5, further comprising a Mach-Zehnder type waveguide composed of the two cores.
  • Appendix 8 An optical integrated device comprising the optical device according to any one of appendices 1 to 7 on a substrate.
  • Appendix 9 The optical integrated device according to appendix 8, wherein in addition to the optical device, another optical device selected from a laser, an electro-optical converter, an opto-electric converter, an optical amplifier, an optical switch, and an optical filter is provided on the substrate. Integrated optical device.
  • Appendix 10 The optical integrated device according to appendix 8 or 9, wherein an electronic circuit is provided on the substrate.
  • Appendix 11 A manufacturing method for manufacturing the optical device according to any one of appendices 1 to 7, wherein the core made of the mixed powder is formed by an aero deposition method. Production method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 光合分波を行う近設部分を備える2つのコア(101a)およびコア(101b)を有する光導波路から構成し、コア(101a)は、第1材料の粉体(102)および第2材料の粉体(103)を混合した混合粉体から構成する。第1材料と第2材料とは、互いに異なる符号の熱光学効果を有し、粉体(102),粉体(103)の粒径は、導波対象とする光の波長より小さいものとする。

Description

光デバイス、光集積デバイス、および光デバイスの製造方法
 本発明は、光通信,光配線,光ストレージなどに用いられる光デバイス、これを備えた光集積デバイス、およびその製造方法に関する。
 例えば、光通信,光配線,光ストレージなどに利用される光デバイスとして、電気光学材料を用いたものがある。印加される電界との相互作用により屈折率が変化する電気光学材料は、応答の高速性,電圧駆動であることによる低消費電力性,構造の単純性から、光変調器に応用されている。このような電気光学材料としてLiNbO3がある。LiNbO3を用いた光変調器では、単結晶LiNbO3基板に、Ti拡散法によりマッハ・ツエンダー型導波路を形成し、形成した導波路に電極を組み合わせるようにしている。この光変調器では、電極により電圧を印加することで導波路の屈折率を変化させ、光信号のON/OFFを行うようにしている。
 ただし、LiNbO3を用いた光変調器は、単結晶基板を用いる必要があることから高価であり、また、LiNbO3の電気光学効果が小さく、プレナー電極構造であることから導波路の長さが必要になり、素子サイズがcm台と非常に大きいという問題がある。
 上述したLiNbO3以外の電気光学材料として、透明セラミックスであるPb1-xLax(ZryTi1-y)O3(PLZT)がある。PLZTは、LiNbO3単結晶より2桁近く電気光学係数が大きいことから、光素子の小型化による低コスト化、低消費電力化、および高速化が期待できる。また、PLZTは、これまでゾルゲル法による薄膜化の検討がなされてきている(非特許文献1および非特許文献2参照)。
 ところで、今後に期待される革新的な技術として、光とエレクトロニクスの1チップ上の集積を可能とするシリコンフォトニックデバイスが研究されている。これを実現することで、CPU,メモリーなどのLSIと、光スイッチなどの能動光学素子とを同一基板上に形成することができ、LSIのさらなる高速化が可能となる。また、シリコンフォトニクスの技術では、シリコン半導体装置の形成技術を光通信デバイスの製造プロセスに適用できることから、光デバイスの低価格化が可能となる。
 しかしながら、シリコンが間接遷移型の半導体のため、レーザーなどの発光素子をシリコン基板の上に直接形成することは困難である。このため、電気信号を光信号に変換する光変調器をシリコン基板上に形成することが重要になる。また、LSI光配線用の光変調器は、LSIの動作条件で駆動できる低電圧、低消費電力で、小型であることが求められている。LSI光配線用の光変調器では、LSIの動作条件で駆動できる低電圧、低消費電力であり、小型であるリング共振器型、もしくは非対称マッハ・ツエンダー型が適している。
 例えば、シリコンで構成されたリング共振器型が研究されている(非特許文献3)。シリコン・リング型共振器は、光の導波層にキャリアを注入することで屈折率を変化させ、共振波長を変化させることで変調動作を行う。
 ここで、リング共振器型について説明する。リング共振器の動作原理は次のようになる。リング共振器の共振波長に対応した波長のレーザーのCW光源を、リング共振器の入出力光導波路(入力側)に入射する。入射された光(入射光)の波長が、共振波長と一致する場合、入射光はリング状光導波路に共振するため、入出力光導波路の出力側に出射される光量は非常に小さくなる。これに対し、導波する波長における屈折率を制御する屈折率制御部に電気信号を作用させ、共振波長を変化させると、共振波長と入射光の波長が一致しなくなり、リング状光導波路に共振しなくなり、出力光量は増加する。
K.D.Preston and G.H.Haertling, "Comparison of electro-optic lead-lanthanum zirconate titanate films on crystalline and glass substrates ", Appl. Phys. Lett. ,vol.60, no.23, pp.2831-2833, 1992. K.Nashimoto, et al. , "Patterning of (Pb,La)(Zr,Ti)O3 waveguides for fabricationg micro-optics using wet etching and solid-phase epitaxy", Appl. Phys. Lett. ,vol.75, no.8, pp.1054-1056, 1999. A.Liu, et al. , "High-speed optical modulation based on carrier depletion in silicon waveguide", Opt. Exp. , vol.15, no.2, pp.660-668, 2007. Yasuo Kokubun, Shigeru Yoneda, and Shinnosuke Matsuura, "Athermal Narrow-Band Optical Filter at 1.55 μm Wavelength by Silica-Based Athermal Waveguide", IEICE Trans. Electron. ,Vol.E81-C, No.8, pp.1187-1194, 1998. H.Tanobe, et al. , "A Temperature Insensitive InGaAsP-InP Optical Filter", IEEE Photo. Technol. Lett. , Vol.8, No.11, pp.1489-1491, 1996. Y. Inoue, et al. , "Athermal silica-based arrayed-waveguide grating multiplexer", Electron. Lett. ,Vol.33, No.23, pp.1945-1947, 1997.
 しかしながら、リング共振器型では、上述したようにリング状光導波路の共振波長を変化させているが、この共振波長はデバイス温度の変動により変化する。これは、温度変動による屈折率の変化、いわゆる熱光学効果によるものであり、リング状光導波路の光路長によって決定される共鳴波長が温度変動により変化するためである。このため。リング共振器型では、変調動作が不安定になるという問題がある。温度変動により共鳴波長が変化すると、消光比の低下を引き起こし、光変調器としての機能を著しく低下させてしまう。
 従って、光通信分野においては、リング共振器型の光変調器を用いる場合、ペルチェ素子などの温度保持機構を付加して用いている。この結果、光デバイスが高価になり、また大型化し、加えて、消費電力が大きいものとなってしまう。これは、電気光学材料を用いる光デバイスに限定される問題ではなく、光合分波を行う近設部分を備える2つのコアを有する光導波路を備える光デバイスに共通した問題である。
 上述したリング共振器型の問題を解決する温度無依存型のリング共振として、コア材料の屈折率の温度係数dn/dtとクラッド材料の屈折率の温度係数dn/dtとを、逆符号にする構造が提案されている(非特許文献4参照)。非特許文献4では、dn/dtが正のTiO2-SiO2をコア材料とし、dn/dtが負のPMMA(polymethylmethacrylate)-TFMA(トリフルオロメチルアクリル酸)をクラッド材料としている。この構造により、温度による屈折率変化を補償している。
 しかし、コア材料とクラッド材料の熱光学効果の符合を変えることで温度補償するためには、クラッドに多くの導波光を染み出させる必要がある。染み出し光が大きな導波路は、言い換えると光閉じ込めの弱い導波路であり、リング径を小さくすると放射損が大きくなる。このため、非特許文献4の技術では、リング共振器の小型化は困難であり、集積化が難しくなるとともに、変調に必要な電力が大きくなり、高速化が期待できない。
 また、温度無依存型の光デバイスの構成として、実効屈折率の熱光学効果が異なる材料からなり、長さが異なる2本の導波路からなるマッハ・ツエンダー型導波路構造の光フィルターが提案されている(非特許文献5参照)。しかし、この構造はマッハ・ツエンダー型では有効となるが、共振型では有効ではない。
 さらに、温度無依存型の光デバイスの構成として、AWG(arrayed-waveguide grating)で、「arrayed-waveguide」の一部にグルーブを設け、設けたグループに、arrayed-waveguideを構成するシリカとは屈折率の熱光学効果が逆符号のシリコーンを充填する構造が提案されている(非特許文献6参照)。しかしながら、この構造では、導波路の曲率半径が小さなリング構造では、導波損失が大きくなってしまう。
 本発明は、以上のような問題点を解消するためになされたものであり、光導波路から構成した光デバイスの導波損失を損なうことなく、温度依存性が抑制できるようにすることを目的とする。
 本発明に係る光デバイスは、光合分波を行う近設部分を備える2つのコアを有する光導波路を備え、2つのコアの少なくとも一方は、第1材料の粉体および第2材料の粉体を混合した混合粉体から形成され、第1材料の熱光学効果の符号は、第2材料の熱光学効果の符号と異なり、粉体の粒径は、導波対象とする光の波長より小さい。
 また、本発明に係る光集積デバイスは、上記光デバイスを基板の上に備える。
 また、本発明に係る光デバイスの製造方法は、上記光デバイスを製造する製造方法であって、混合粉体より構成されたコアを、エアロデポジション形成する。
 以上説明したように、本発明によれば、光合分波を行う近設部分を構成する一方のコアを、第1材料の粉体および第2材料の粉体を混合した混合粉体から構成したので、光導波路から構成した光デバイスの導波損失を損なうことなく、温度依存性が抑制できるようになるという優れた効果が得られる。
図1Aは、本発明の実施の形態1における光デバイスの構成を示す断面図である。 図1Bは、本発明の実施の形態1における光デバイスの構成例を示す平面図である。 図2は、PLZT粉体とSrTiO3粉体との混合粉体よりなるコアの屈折率の温度依存性を有効媒質近似により計算した結果を示す特性図である。 図3Aは、本発明の実施の形態2における光デバイスの構成を示す断面図である。 図3Bは、本発明の実施の形態2における光デバイスの構成を示す断面図である。 図3Cは、本発明の実施の形態2における光デバイスの構成を示す平面図である。 図4は、エアロデポジション法による成膜を行うための成膜装置の構成を示す構成図である。
 以下、本発明の実施の形態について図を参照して説明する。
[実施の形態1]
 はじめに、本発明の実施の形態1について、図1Aおよび図1Bを用いて説明する。図1Aは、本発明の実施の形態における光デバイスの一部構成を示す断面図、図1Bは平面図である。図1Aは、図1Bのaa’線の断面を示している。
 本実施の形態における光デバイスは、まず、光合分波を行う近設部分を備える2つのコア101aおよびコア101bを有する光導波路から構成されている。よく知られているように、コア101a,101bは、この周囲にクラッド104およびクラッド105を備えることで、光導波路として機能する。加えて、コア101aは、第1材料の粉体102および第2材料の粉体103を混合した混合粉体から構成されている。第1材料と第2材料とは、互いに異なる符号の熱光学効果を有し、粉体102,粉体103の粒径は、導波対象とする光の波長より小さいものとされている。コア101bは、上述したような粉体から構成されている必要はなく、コアとして機能させることができる材料から構成されていればよい。なお、コア101bが、第1材料の粉体および第2材料の粉体を混合した混合粉体から構成されていてもよい。
 本実施の形態によれば、コア101aが、各々異なる符号の熱光学効果をもつ光学材料の粉体102および粉体103を混合した混合粉体より構成されているので、温度変化による一方の材料の屈折率の変化が、温度変化による他方の材料の屈折率の変化により打ち消されるようになる。この結果、コア101aよりなる導波路においては、温度による特性変動を小さくすることができるようになる。
 例えば、上述したような混合粉体から構成されたコア101aよりリング状光導波路を構成し、コア101bより直線導波路を構成し、これらよりリング共振器を構成すれば、温度変化によるリング状光導波路における共振周波数の変動が抑制(補償)されるようになる。この結果、本実施の形態によれば、温度変動に影響を受けにくい安定した動作が行えるようになる。これは、ペルチェ素子などの温度保持機構を用いることなく実現できるので、本実施の形態によれば、例えば、低消費電力で安価な光変調器が実現可能である。
 以下、第1材料および第2材料について説明する。まず、第1材料および第2材料は、光導波路のコアとして用いることができる屈折率を備えていればよい。また、第1材料の熱光学効果と第2材料の熱光学効果とが、互いに符号が異なっていればよい。例えば、電気光学材料であるPb1-xLax(ZryTi1-y)O3(PLZT)、ジルコン酸チタン酸鉛、チタン酸バリウム、ストロンチウム添加チタン酸バリウム、タンタル酸ニオブ酸カリウムなどがあり、これらは、屈折率の温度係数dn/dt(熱光学効果)が正である。また、光学(コア)材料として用いることができるSrTiO3,KTaO3,およびTiO2のdn/dtは、負である。
 一例として、以下の表1に、PLZT,SrTiO3,KTaO3,TiO2,およびSiO2の光学特性について示す。
Figure JPOXMLDOC01-appb-T000001
 従って、例えば、PLZTとこれに屈折率の近いSrTiO3とを混合した成形体が形成できれば、温度変化によるコアの屈折率変化が抑制できるようになる。しかしながら、例えば、PLZTは、電気光学効果を得るために用いられる材料であり、この効果は、PLZTがペロブスカイト型の構造を取るために発現されている。従って、上述した2つの材料を原子レベルで混合することはできない。
 これに対し、本実施の形態では、コアを第1材料の粉体および第2材料の粉体を混合した混合粉体より構成したので、材料の特徴により得られる光学効果を損なうことなく、温度変化によるコアの屈折率変化が抑制できるようになる。ただし、粉体を構成する粒子の径が、当該導波路の導波対象となる光の波長より大きい場合、散乱が大きくなり、光デバイスには適さない。従って、粉体を構成する粒子の径(平均粒径)は、導波対象とする光の波長より小さいことが重要となる。
 次に、本実施の形態におけるコア101aの屈折率の温度変化に関し、有効媒質近似に基づいて計算を行った結果について説明する。この計算では、第1材料としてPLZTを用い、第2材料としてSrTiO3を用いる。この結果、図2の(a)に示すように、PLZTとSrTiO3との混合比を5:7(モル比)とすることで、混合粒子成型体よりなるコアの屈折率(有効媒質近似による屈折率)は、温度によらず一定とすることが初めて判明した。なお、図2の(b)は、PLZTによるコアの屈折率の温度変化であり、図2の(c)は、SrTiO3によるコアの屈折率の温度変化である。このように、屈折率の温度係数の符号が互いに異なる2つの材料の混合粉体よりコアを形成することで、このコアを用いた共振型変調器などの光デバイスを、温度調節機能なしで使用することが可能となる。
 上述したように、温度変化によるコアの屈折率変化を補償する関係となるように、屈折率の温度係数の符号が互いに異なる少なくとも2つの材料の混合比を、実験などの結果を用いて適宜に設定することで、温度によらず屈折率を一定とすることができる。なお、完全に補償する関係となっていなくても、少なくとも、屈折率の温度係数の符号が互いに異なる2つの材料の混合粉体よりコアを形成することで、温度依存性を抑制できるようになる。
 以下、一例として、温度無依存化した混合成型体の屈折率と誘電率を、上述同様に有効媒質近似に基づき計算した結果を表2に示す。温度無依存化したPLZTとの混合比のときの値を示している。誘電率が高いほど、電気光学材料であるPLZTに有効に電界が作用することから、より誘電率が高いSrTiO3と組み合わせるとよりよいことが分かる。
Figure JPOXMLDOC01-appb-T000002
[実施の形態2]
 次に、本発明の実施の形態2について、図3A,図3B,および図3Cを用いて説明する。図3A,図3Bは、本実施の形態における光デバイスの一部構成を示す断面図、図3Cは平面図である。図3Aは、図3Cのaa’線の断面を示し、図3Bは、図3Cのbb’線の断面を示している。
 本実施の形態における光デバイスは、シリコン基板301の上に形成された酸化シリコン層302,酸化シリコン層303,SrTiO3層304,酸化シリコン層305,コア306a,およびSrTiO3層307を備える。SrTiO3層304は、酸化シリコン層305に形成された溝の底部に形成され、この溝のSrTiO3層304の上にコア306aが形成されている。また、各酸化シリコン層および各SrTiO3層が、コア306aに対してクラッドとして機能する。ここで、本実施の形態では,コア306aを逆リッジ形構造としている。
 本実施の形態において、コア306aは、PLZT(第1材料)の粉体およびSrTiO3(第2材料)の粉体を混合した混合粉体から構成されている。これは、前述した実施の形態1と同様であり、コア306aを構成する2つの粉体(材料)は、互いに異なる符号の熱光学効果を有し、粉体の粒径は、導波対象とする光の波長より小さいものとされている。
 本実施の形態における光デバイスは、図3Cに示すように、コア306aよりなるリング状光導波路と、コア306bよりなる直線導波路とを備えるリング共振器を用いたリング型変調器である。リング状光導波路の周回長は、例えば800μmである。コア306aよりなるリング状光導波路およびコア306bよりなる直線導波路は、スプリッター341により光結合している。スプリッター341は、コア306aおよびコア306bが、光合分波を行える程度に近設して配置されている領域である。また、この光デバイスは、リング状光導波路において、屈折率制御部342を備えている。
 屈折率制御部342は、図3Bに示すように、まず、シリコン基板301の上に、屈折率制御部342以外の領域(図3A参照)と同様に、酸化シリコン層302を備えている。また、屈折率制御部342においては、酸化シリコン層302の上に、チタン層331,金層332,チタン層333,およびITO(Indium Tin Oxide)層334からなる積層構造の下部配線層303aを備えている。
 また、下部配線層303aの上に、屈折率制御部342以外の領域(図3A参照)と同様に、SrTiO3層304,酸化シリコン層305,コア306a,およびSrTiO3層307を備える。SrTiO3層304は、酸化シリコン層305に形成された溝の底部に形成され、この溝のSrTiO3層304の上にコア306aが形成されている。
 また、屈折率制御部342においては、コア306aの上部のSrTiO3層307の上に、ITO層311,チタン層312a,および金層313aからなる積層構造の上部配線層321を備えている。この上部配線層321には、図3Cに示すように、電極パッド343が接続している。一方、下部配線層303aには、SrTiO3層307および酸化シリコン層305を貫通する貫通孔に形成されたチタン層312bおよび金層313bからなる引き出し配線322が接続し、引き出し配線322に電極パッド344が接続している。下部配線層303aおよび上部配線層321は、屈折率制御部342のコア306aに、電界を印加する電極である。
 ここで、屈折率制御部342のコア306aの部分においては、下部配線層303aのコア306a側にはITO層334が設けられ、同様に、上部配線層321のコア306a側には、ITO層311が設けられている。このように、コア306aの側に透明電極を設けることで、コア306aより染み出した光が金属に吸収されることが抑制できるようになる。また、各配線層には、金層およびチタン層を設けているので、電気的な抵抗の上昇を抑制している。また、チタン層を介しているので、金層の剥がれ抑制できる。
 本実施の形態における光デバイスの製造について、簡単に説明すると、まず、シリコン基板301の上に、酸化シリコンを堆積することで、酸化シリコン層302を形成する。例えば、よく知られたCVD法もしくはスパッタ法により、酸化シリコンを堆積することができる。
 次に、屈折率制御部342となる領域において、チタン層331,金層332,およびチタン層333をこの順に形成する。これらは、例えば、よく知られたリフトオフ法により、DCマグネトロンスパッタ法で堆積した各材料の層をパターニングすることで形成できる。同様に、チタン層333の上に、ITO層334を形成する。なお、DCマグネトロンスパッタ法でITOを堆積するときは、スパッタガスとしてアルゴンガスを用いる。また、屈折率制御部342以外の領域においては、酸化シリコン層302の上に酸化シリコン層303を形成する。なお、ITO層334の上面と酸化シリコン層303の上面とは、連続して同一の平面が形成されるようにする。
 次に、ITO層334および酸化シリコン層303の上に、SrTiO3を堆積し、これをイオンミリング法でエッチング加工することで、SrTiO3層304を形成する。SrTiO3層304は、コア306aを配置する全ての領域に形成する。
 次に、SrTiO3層304を覆って全域に、酸化シリコン層305を形成する。次いで、コア306aおよびコア306bを形成するための凹部を、酸化シリコン層305に形成する。本実施の形態では、逆リッジ形構造とするため、酸化シリコン層305の層厚方向中央部まではSrTiO3層304と同じ幅の溝を形成し、層厚方向中央部より上は、より幅広とした溝を形成する。形成した溝の導波方向に垂直な断面は、T字状となる
 次に、平均粒径0.5μmのPLZT粉体(粉末)および平均粒径0.6μmのSrTiO3粉体(粉末)を混合した混合粉体を、上述したように酸化シリコン層305に形成した溝内を充填するように堆積して混合粉体層を形成する。これを、大気中で加熱(550℃・5分)し、この後、よく知られたCMP法などにより表面研磨して混合粉末層を平坦化し、上述した溝内にコア306aを形成する。なお、コア306bも、コア306aと同様に形成してもよく、また、コア306bは、上記混合粉体と同様の屈折率を有する他の材料から形成してもよい。
 次に、SrTiO3層307を形成し、屈折率制御部342を構成するコア306bの上部のSrTiO3層307の上に、ITO層311を形成する。次に、引き出し配線322を形成するための貫通孔を酸化シリコン層305に形成する。次いで、チタンおよび金を堆積することで、ITO層311の上にチタン層312aおよび金層313aを形成して上部配線層321とし、また、チタン層312bおよび金層313bを形成して引き出し配線322とする。また、電極パッド343および電極パッド344も、上部配線層321および引き出し配線322と同時に形成する。
 ここで、コア306aを形成するための上記混合粉体層の形成についてより詳細に説明する。この混合粉体層の形成は、エアロデポジション法により行えばよい。
 エアロデポジション法による粉体層の形成では、例えば、図4に示す成膜装置を用いればよい。図4は、エアロデポジション法による成膜を行うための成膜装置の構成を示す構成図である。
 この装置は、まず、酸素ガスを収容するガスボンベ401と、ガスボンベ401より供給される酸素ガスを搬送する搬送管402と、搬送管402で搬送される酸素が供給されるガラスボトル403とを備える。ガラスボトル403には、原料の粉末(混合粉体)404が収容されている。また、ガラスボトル403には、排気管405を介して排気装置(図示せず)が接続され、ガラスボトル403の内部を排気可能としている。また、ガラスボトル403は、排出管406を備える。
 ガラスボトル403の排出管406には、搬送管407が接続され、搬送管407は、ノズル408に接続している。ノズル408は、成膜を行う成膜チャンバー409の中に配置されている。また、成膜チャンバー409の内部においては、ノズル408の吐出方向に成膜対象の基板Wが配置される。また、成膜チャンバー409には、真空ポンプ410が接続され、成膜チャンバー409の内部を真空排気可能としている。
 この成膜装置において、まず、原料となる粉末404を収容したガラスボトル403の内部を、排気管405を介して2.67kPa(20Torr)程度の圧力に排気する。排気した後、キャリアガスとして酸素を、ガスボンベ401より流量を制御しながらガラスボトル403に導入する。ガラスボトル403を加振器411により振動させることで、ガラスボトル403内の気体中に粉末404の微粒子を分散させたエアロゾルを発生させ、導入されているキャリアガスにより、搬送管407を介してノズル408に輸送する。ノズル408が配置されている成膜チャンバー409は、真空ポンプ410により所定の真空度に排気しておく。
 以上のようにしてノズル408に供給されたエアロゾルを、ノズル408より吐出し、吐出したエアロゾル412を基板Wの表面に吹き付ければ、エアロゾルに含まれている混合粉体による薄膜が基板Wの表面に形成される。このように、エアロデポジション法により形成される薄膜は、供給した超微粒子脆性磁気光学材料に機械的衝撃力を与え、供給した超微粒子脆性磁気光学材料を粉砕して基板の表面に接合させて成型した成形体である。
 上述したエアロデポジション法による成膜条件は、次のようになる。キャリアガスは酸素とし、ノズル408より吐出されるエアロゾル412の基板Wへの入射角を30度とする。また、キャリアガスのガス流量は12リットル/分とし、加振器411の振動数は166rpmとする。これらの条件によると、成膜速度は0.5μm/分となる。
 このようなエアロデポジション法において、PLZT粉体およびSrTiO3粉体を混合した混合粉体を用いれば、基板の上に上記混合粉体の膜(層)を形成することができる。PLZTの組成は、例えば、Pb0.95La0.05(Zr0.3Ti0.7)O3である。このPLZTは、ペロブスカイト型結晶構造を持つ強誘電体の組成であり、一次の大きな電気光学係数を持つ光デバイスに好適な組成である。また、この場合、原料とするPLZT粉体の平均粒径は0.5μm、SrTiO3粉体の平均粒径は0.6μmとすればよい。これらの粒径は、走査型電子顕微鏡による観察の結果による粒径測定で決定すればよい。
 以上のようにして作製した本実施の形態における光デバイス(直線導波路の一方)に、波長1.55μmのCW光を入力し、電極パッド343および電極パッド344の間にバイアス電圧として4.3V印加した状態で2.5Vppで変調したところ、10GHzの高周波までの変調が可能であった。このときの消光比は、3.5dBであった。
 また、作製した本実施の形態における光デバイスの温度を60℃に加熱し、同様の測定を行ったが、3Vのバイアス電圧を印加した状態で2.5Vppで変調したところ、10GHzの高周波までの変調が可能であった。このときの消光比は3.2dBであった。
 以上の通り、本実施の形態によれば、屈折率制御部342に光学吸収の大きな電気光学材料を用いながら、小型で温度による特性変動が小さく高速動作が可能な低電圧駆動の光デバイスが製造できた。
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。例えば、上述では、第1材料を屈折率の温度係数が正である電気光学材料から構成し、第2材料を、電気光学材料ではないが、屈折率の温度係数が負の材料から構成した。しかしながら、本発明は、これに限るものではなく、第1材料の熱光学効果と第2材料の熱光学効果とが、互いに符号が異なっていればよく、これらがいずれも電気光学効果を備えていない場合であってもよい。第1材料の熱光学効果と第2材料の熱光学効果とが、互いに符号が異なっていれば、温度依存性が抑制できるようになる。
 また、電気光学材料としては、Pb1-xLax(ZryTi1-y)O3(PLZT)、ジルコン酸チタン酸鉛、チタン酸バリウム、ストロンチウム添加チタン酸バリウム、タンタル酸ニオブ酸カリウムに限らず、ジルコン酸チタン酸鉛を含む材料、ランタンが添加されたジルコン酸チタン酸鉛を含む材料であればよい。また、SrTiO3,KTaO3,およびTiO2に限らず、これらの一部を元素置換した材料でも用いることができる。
 また、上述では、リング型変調器を例に説明したが、これに限るものではなく、マッハ・ツエンダー型導波路などの光合分波を行う近設部分を備える2つのコアを有する光導波路を備える他の光デバイスであっても同様である。また、光変調器に限らず、光スイッチを構成することもできる。
 また、成膜にエアロゾルデポジション法を用いることで、レーザー、電気光変換器、光電気変換器、光増幅器、光導波路、光フィルターなどの別種の光学素子を予め形成した基板に対し、或いは、CPU、メモリーなどの電子素子で構成される集積回路が予め形成されている基板に対し、上述した光デバイスを作製することが容易になる。このような製造方法は、本発明による光デバイスと、他のデバイス又は集積回路を備え、光通信,光配線,光ストレージなどで用いられる種々の光集積デバイスの作製に応用することができる。
 上記実施形態の一部または全部は、以下の付記のようにも記載されるが、以下には限られない。
(付記1)
 光合分波を行う近設部分を備える2つのコアを有する光導波路から構成され、少なくとも一方の前記コアは、第1材料の粉体および第2材料の粉体を混合した混合粉体から構成され、前記第1材料と前記第2材料とは、互いに異なる符号の熱光学効果を有し、前記粉体の粒径は、導波対象とする光の波長より小さいことを特徴とする光デバイス。
(付記2)
 付記1記載の光デバイスにおいて、一方の前記コアより構成される光導波路の一部に設けられた屈折率制御部を備え、この屈折率制御部のコアを構成する前記第1材料は、電気光学効果を有することを特徴とする光デバイス。
(付記3)
 付記2記載の光デバイスにおいて、前記屈折率制御部は、前記コアに電界を印加する電極を備えることを特徴とする光デバイス。
(付記4)
 付記1~3のいずれか1項に記載の光デバイスにおいて、前記第1材料は、ジルコン酸チタン酸鉛を含む材料およびランタンが添加されたジルコン酸チタン酸鉛を含む材料の中より選択されたものであることを特徴とする光デバイス。
(付記5)
 付記1~4のいずれか1項に記載の光デバイスにおいて、前記第2材料は、SrTiO3,KTaO3,TiO2,およびこれらの一部を元素置換した材料の中より選択されたものであるであることを特徴とする光デバイス。
(付記6)
 付記1~5のいずれか1項に記載の光デバイスにおいて、一方の前記コアより構成されたリング状光導波路と、他方の前記コアより構成された直線導波路とを備えることを特徴とする光デバイス。
(付記7)
 付記1~5のいずれか1項に記載の光デバイスにおいて、2つの前記コアより構成されたマッハツェンダー型導波路を備えることを特徴とする光デバイス。
(付記8)
 付記1~7のいずれか1項に記載の光デバイスを基板の上に備える光集積デバイス。
(付記9)
 付記8記載の光集積デバイスにおいて、前記光デバイスに加え、レーザー,電気光変換器,光電気変換器,光増幅器,光スイッチ,光フィルターの中より選択された他の光デバイスを前記基板の上に備える光集積デバイス。
(付記10)
 付記8または9記載の光集積デバイスにおいて、電子回路を前記基板の上に備えることを特徴とする光集積デバイス。
(付記11)
 付記1~7のいずれか1項に記載の光デバイスを製造する製造方法であって、前記混合粉体より構成された前記コアを、エアロデポジション法で形成することを特徴とする光デバイスの製造方法。
 この出願は、2010年2月18日に出願された日本出願特願2010-033262号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
 101a,101b…コア、102…第1材料の粉体、103…第2材料の粉体、104,105…クラッド。

Claims (11)

  1.  光合分波を行う近設部分を備える2つのコアを有する光導波路を備え、
     前記2つのコアの少なくとも一方は、第1材料の粉体および第2材料の粉体を混合した混合粉体から形成され、
     前記第1材料の熱光学効果の符号は、前記第2材料の熱光学効果の符号と異なり、
     前記粉体の粒径は、導波対象とする光の波長より小さい
     ことを特徴とする光デバイス。
  2.  請求項1記載の光デバイスにおいて、
     前記2つのコアの一方のコアの一部に設けられた屈折率制御部をさらに備え、
     前記屈折率制御部に含まれる前記第1材料は、電気光学効果を有することを特徴とする光デバイス。
  3.  請求項2記載の光デバイスにおいて、
     前記屈折率制御部は、前記一方のコアに電界を印加する電極を備えることを特徴とする光デバイス。
  4.  請求項1記載の光デバイスにおいて、
     前記第1材料は、ジルコン酸チタン酸鉛を含む材料およびランタンが添加されたジルコン酸チタン酸鉛を含む材料のいずれかであることを特徴とする光デバイス。
  5.  請求項1記載の光デバイスにおいて、
     前記第2材料は、SrTiO3,KTaO3,TiO2,およびこれら材料の一部を元素置換した材料のいずれかであることを特徴とする光デバイス。
  6.  請求項1記載の光デバイスにおいて、
     前記2つのコアの一方はリング状光導波路を構成し、
     前記2つのコアの他方は直線導波路を構成する
     ことを特徴とする光デバイス。
  7.  請求項1記載の光デバイスにおいて、
     前記光導波路はマッハツェンダー型導波路を含む
     ことを特徴とする光デバイス。
  8.  基板と、
     前記基板の上に配置された光デバイスとを備え、
     前記光デバイスは、
     光合分波を行う近設部分を備える2つのコアを有する光導波路を備え、
     前記2つのコアの少なくとも一方は、第1材料の粉体および第2材料の粉体を混合した混合粉体から形成され、
     前記第1材料の熱光学効果の符号は、前記第2材料の熱光学効果の符号と異なり、
     前記粉体の粒径は、導波対象とする光の波長より小さい
     ことを特徴とする光集積デバイス。
  9.  請求項8記載の光集積デバイスにおいて、
     前記基板の上に配置された、レーザー,電気光変換器,光電気変換器,光増幅器,光スイッチ,光フィルターの中のいずれかをさらに備える光集積デバイス。
  10.  請求項8記載の光集積デバイスにおいて、
     前記基板の上に配置された電子回路を備えることを特徴とする光集積デバイス。
  11.  光合分波を行う近設部分を備える2つのコアを有する光導波路を備え、
     前記2つのコアの少なくとも一方は、第1材料の粉体および第2材料の粉体を混合した混合粉体から形成され、
     前記第1材料の熱光学効果の符号は、前記第2材料の熱光学効果の符号と異なり、
     前記粉体の粒径は、導波対象とする光の波長より小さい
     光デバイスを製造する工程を備え、
     前記混合粉体より構成された前記コアは、エアロデポジション法で形成することを特徴とする光デバイスの製造方法。
PCT/JP2011/052506 2010-02-18 2011-02-07 光デバイス、光集積デバイス、および光デバイスの製造方法 WO2011102251A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012500557A JPWO2011102251A1 (ja) 2010-02-18 2011-02-07 光デバイス、光集積デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010033262 2010-02-18
JP2010-033262 2010-02-18

Publications (1)

Publication Number Publication Date
WO2011102251A1 true WO2011102251A1 (ja) 2011-08-25

Family

ID=44482838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052506 WO2011102251A1 (ja) 2010-02-18 2011-02-07 光デバイス、光集積デバイス、および光デバイスの製造方法

Country Status (2)

Country Link
JP (1) JPWO2011102251A1 (ja)
WO (1) WO2011102251A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153553A (ja) * 1987-12-11 1989-06-15 Nippon Telegr & Teleph Corp <Ntt> ガラス薄膜の製造方法
WO2004113963A1 (ja) * 2003-06-17 2004-12-29 Konica Minolta Opto, Inc. 光学素子
JP2007023379A (ja) * 2005-06-15 2007-02-01 Fujifilm Corp 成膜方法及び構造物
JP2007047326A (ja) * 2005-08-08 2007-02-22 Nippon Telegr & Teleph Corp <Ntt> 熱光学光変調器および光回路
JP2007185572A (ja) * 2006-01-11 2007-07-26 Fujifilm Corp 粉体及びその製造方法、成膜方法、並びに、構造物
JP2008281896A (ja) * 2007-05-14 2008-11-20 Nec Corp 光学素子及び光集積デバイス
WO2009113469A1 (ja) * 2008-03-13 2009-09-17 日本電気株式会社 光デバイス、その製造方法とそれを用いた光集積デバイス
JP2009249720A (ja) * 2008-04-10 2009-10-29 Panasonic Corp 薄膜の製膜方法、それを用いた電子写真感光体および電子写真装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153553A (ja) * 1987-12-11 1989-06-15 Nippon Telegr & Teleph Corp <Ntt> ガラス薄膜の製造方法
WO2004113963A1 (ja) * 2003-06-17 2004-12-29 Konica Minolta Opto, Inc. 光学素子
JP2007023379A (ja) * 2005-06-15 2007-02-01 Fujifilm Corp 成膜方法及び構造物
JP2007047326A (ja) * 2005-08-08 2007-02-22 Nippon Telegr & Teleph Corp <Ntt> 熱光学光変調器および光回路
JP2007185572A (ja) * 2006-01-11 2007-07-26 Fujifilm Corp 粉体及びその製造方法、成膜方法、並びに、構造物
JP2008281896A (ja) * 2007-05-14 2008-11-20 Nec Corp 光学素子及び光集積デバイス
WO2009113469A1 (ja) * 2008-03-13 2009-09-17 日本電気株式会社 光デバイス、その製造方法とそれを用いた光集積デバイス
JP2009249720A (ja) * 2008-04-10 2009-10-29 Panasonic Corp 薄膜の製膜方法、それを用いた電子写真感光体および電子写真装置

Also Published As

Publication number Publication date
JPWO2011102251A1 (ja) 2013-06-17

Similar Documents

Publication Publication Date Title
US8515225B2 (en) Optical device, method for manufacturing the same and optical integrated device using the same
US11892715B2 (en) Engineered electro-optic devices
TWI779506B (zh) 光子裝置之製造方法
WO2007011727A1 (en) Ring resonators comprising chalcogenide glass
US20210048721A1 (en) Integrated Optical Phase Modulator and Method of Making Same
US20210278708A1 (en) Phase shifter employing electro-optic material sandwich
US20060222281A1 (en) External optical modulator
EP3942361A1 (en) Active photonic devices incorporating high dielectric constant materials
US11994758B1 (en) Active photonic devices with enhanced pockels effect via isotope substitution
KR20220127932A (ko) 저손실 고효율 포토닉 위상 시프터
US20210278738A1 (en) Phase shifter employing transparent electrodes
US20220269114A1 (en) Plasmonic Waveguide
Posadas et al. Electro-optic barium titanate modulators on silicon photonics platform
JP2007298895A (ja) 光学素子、光学集積デバイス及びその製造方法
JP2009139734A (ja) 光デバイス、光集積デバイス、及びその製造方法
WO2011102251A1 (ja) 光デバイス、光集積デバイス、および光デバイスの製造方法
JP5273336B2 (ja) 光学素子及び光集積デバイス
TW202204946A (zh) 具有氧化鎂直接置於絕緣層上之晶圓堆疊
JP2013164615A (ja) 光デバイス、光集積デバイス、及びその製造方法
US20220373828A1 (en) Optical device and optical communication apparatus
WO2023188195A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
Xiong Novel Materials for Active Silicon Photonics
WO2023183357A1 (en) Phase shifter including an interlayer for improved electro-optic performance and method of fabrication thereof
JP2007025072A (ja) 光スイッチ
JPH063710A (ja) 光制御デバイス及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744538

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500557

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744538

Country of ref document: EP

Kind code of ref document: A1