WO2011096280A1 - 画像表示装置、画像表示システム及び画像表示方法 - Google Patents
画像表示装置、画像表示システム及び画像表示方法 Download PDFInfo
- Publication number
- WO2011096280A1 WO2011096280A1 PCT/JP2011/050956 JP2011050956W WO2011096280A1 WO 2011096280 A1 WO2011096280 A1 WO 2011096280A1 JP 2011050956 W JP2011050956 W JP 2011050956W WO 2011096280 A1 WO2011096280 A1 WO 2011096280A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- eye
- mask
- display
- eye image
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3674—Details of drivers for scan electrodes
- G09G3/3677—Details of drivers for scan electrodes suitable for active matrices only
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/36—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/261—Image signal generators with monoscopic-to-stereoscopic image conversion
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0286—Details of a shift registers arranged for use in a driving circuit
Definitions
- the present invention relates to an image display device, an image display system, and an image display method.
- a stereoscope called a synopter is known as an optical device that displays the same image on the left and right eyes and uses the principle of so-called monocular stereoscopic vision.
- a synopter supplies light received at the same position separately to both eyes by combining half mirrors. According to this synopter, it is known that the retina images of both eyes become the same, and a stereoscopic depth can be given to a non-stereo image (see, for example, Non-Patent Document 1).
- Such a defect area or invalid area occurs in one of the right-eye image and the left-eye image and does not occur in the other. For this reason, when the viewer views both the right-eye image and the left-eye image converted from 2D to 3D using the principle of monocular stereoscopic vision, a screen flicker phenomenon called so-called binocular rivalry occurs. This occurs and the display quality is degraded.
- an object of the present invention is to display a screen when an image converted from 2D to 3D using the principle of monocular stereoscopic vision is displayed. It is an object of the present invention to provide a new and improved image display device, image display system, and image display method capable of suppressing a reduction in display quality caused by a defective area or an invalid area at an end.
- a mask is added to an input image of a two-dimensional image based on a parameter for converting a two-dimensional image into a three-dimensional image according to the principle of monocular stereoscopic vision.
- a mask adding unit that converts the input image to which the mask is added by the mask adding unit into a right-eye image and a left-eye image based on the principle of monocular stereoscopic vision, the right-eye image,
- An image display device comprising: a display unit that displays the left-eye image.
- a mask amount calculation unit configured to calculate a range of the mask; and when the mask amount calculation unit does not add the mask, an invalid region occurs in one of the right-eye image and the left-eye image.
- a range in which an area corresponding to the invalid area is not visually recognized with respect to the other of the right-eye image and the left-eye image may be calculated as the mask range.
- a mask amount calculation unit configured to calculate a range of the mask; and when the mask amount calculation unit does not add the mask, a missing region occurs in one of the right-eye image and the left-eye image.
- a range in which an area corresponding to the missing area is not visually recognized with respect to the other of the right-eye image and the left-eye image may be calculated as the mask range.
- the conversion unit may perform conversion by a parallel movement method.
- the conversion unit may perform conversion by a tilt plane pasting method.
- an input image of a two-dimensional image is converted based on a parameter for converting a two-dimensional image into a three-dimensional image according to the principle of monocular stereoscopic vision.
- a mask adding unit that adds a mask
- a conversion unit that converts the input image to which the mask is added by the mask adding unit into a right-eye image and a left-eye image based on the principle of monocular stereoscopic vision
- the right-eye An image display device having an image for display and a display for displaying the image for the left eye, and a shutter for the right eye and the left eye, and the image for the right eye and the left eye in the display
- an image display observation system comprising stereoscopic video observation glasses that open and close the shutters for the right eye and the left eye according to switching of the images for use.
- an input image of a two-dimensional image is converted based on a parameter for converting a two-dimensional image into a three-dimensional image according to the principle of monocular stereoscopic vision.
- Adding a mask converting the input image to which the mask is added by the mask adding unit into a right-eye image and a left-eye image according to the principle of monocular stereoscopic vision;
- An image display method comprising: displaying the left-eye image.
- the present invention when displaying an image converted from 2D to 3D using the principle of monocular stereoscopic vision, it is possible to suppress a reduction in display quality due to a defective area or an invalid area at the edge of the screen. Is possible.
- FIG. 1 It is a schematic diagram which shows the image presentation method by the parallel movement system using the principle of monocular stereoscopic vision. It is a schematic diagram which shows the image presentation method by the tilting plane sticking system using the principle of monocular stereoscopic vision. It is a schematic diagram which shows a mode that a chip
- FIG. 5 is a schematic diagram showing a relationship between an original 2D image and a right-eye image R and a left-eye image L obtained by coordinate transformation for projection in the tilt plane pasting method. It is a schematic diagram which shows an example of the mask process by one Embodiment of this invention. It is a block diagram which shows the structure of the image display apparatus which concerns on this embodiment. It is a schematic diagram which shows the structure of the stereo image display observation system which concerns on one Embodiment of this invention.
- a method of making a viewer feel a stereoscopic effect by transforming a 2D image without using a depth map or the like For example, applying the principle of synopter, there is a method of projecting to the display surface by tilting the image in the direction of the left and right eyes so that the same image can be seen in the retinas of the left and right eyes. . There is also a method of adding a gradient of depth while simply moving the image back and forth from the display screen with uniform parallax for the entire 2D image or for each line.
- the former method using depth information aims to realize “binocular stereoscopic vision” by generating different parallax for each object.
- the latter method using the principle of synopter extracts the viewer's “monocular stereoscopic” ability by removing the information “displayed on the display surface” from the user from the viewing state of the 2D image. It is a method to try.
- FIG. 1 and FIG. 2 are schematic diagrams showing an image presentation method by the latter “monocular stereoscopic viewing” method.
- FIG. 1 is a method called a parallel movement method, in which the same image is arranged by being translated left and right, and the amount of this parallel movement is the distance between both eyes of the user. Only the right eye image R translated to the right side is visually recognized by the user's right eye, and only the left eye image L translated to the left side is visually recognized by the left eye.
- the right eye of the user is positioned on a line that passes through the center of the image R for the right eye and is perpendicular to the screen
- the left eye is positioned on a line that passes through the center of the image L for the left eye and is perpendicular to the screen.
- FIG. 2 is called the above-described tilting plane pasting method, and the right-eye video R and the left-eye video L are arranged so that their centers are located at one point O. Then, with the user's right eye and left eye facing the point O, only the right eye image R is visually recognized by the user's right eye, and only the left eye image L is visually recognized by the left eye. I do. If the position of the right eye is ER and the position of the left eye is EL, the right-eye image R is displayed on a plane orthogonal to the straight line ER-O, and the left-eye image L is displayed on a plane orthogonal to the straight line EL-O. Is displayed.
- the method of separating the right-eye image and the left-eye image and visually recognizing the right-eye and left-eye images is not limited to the shutter glasses method, and other methods such as a polarization method in which a polarizing plate is disposed on the front surface of the screen. A known method can be used.
- FIG. 3 is a schematic diagram showing a state in which an edge of the right-eye image R or the left-eye image L is chipped in the case of the parallel movement method.
- the actual display screen by the display panel is arranged at a position al from the viewer's eyes.
- the input image is virtually set at a position on the virtual input image plane that is a distance cl away from the position of the display screen for convenience in considering coordinate conversion. .
- the size of the input image is arranged after multiplying the image size of the display screen by (al + cl) / al in advance.
- the input image is virtually set at the position of the virtual input image plane in order to achieve the same geometrical arrangement as the tilt plane pasting method.
- the range of the left width WR2 on the display screen is the effective range of the right-eye image R.
- An invalid image will be displayed because it exceeds. If the left and right width of the display screen is not sufficient, an image is not displayed in the range of the right width WR1 of the display screen, and the right end image of the right eye image R is lost.
- the range of the width WL1 on the right side of the display screen is the left eye. Since the effective range of the image L is exceeded, an invalid image is displayed. If the left and right widths of the display screen are not sufficient, no image is displayed in the range of the width WL2 on the left side of the display screen, and the left end image of the left eye image L is missing.
- the right eye recognizes the invalid image having the width WR2 and the defect having the width WR1, while the left eye does not recognize them.
- the left eye recognizes an invalid image with a width WL1 and a defect with a width WL2, while the right eye does not recognize them. For this reason, an image that can be seen only by one eye exists, and the binocular rivalry described above occurs.
- FIG. 5 shows an original 2D image (input image), a right eye image R and a left eye image L (output image) obtained by coordinate transformation for projection in the tilt plane pasting method shown in FIG. Shows the relationship.
- the right-eye image R is arranged on the left and the left-eye image L is arranged on the right.
- FIG. 6 shows the same applies to FIG. 6 described later.
- the original 2D image almost all four circles are drawn at the four corners of the screen.
- the right-eye image R lacks two right-side circles, and a black display invalid area is generated on the left-hand side.
- a black display invalid area is generated on the right side, and the two left circles are missing.
- FIG. 6 is a schematic diagram showing an example of mask processing according to the present embodiment.
- 2D-3D conversion is performed after pre-mask processing (Premask processing) is performed on the same original image as FIG.
- the 2D-3D conversion is a projection process for coordinate conversion of the tilt effect in the tilt plane method.
- the mask range is a range in which the right-eye image R and the left-eye image L obtained as a result of masking are the same image.
- FIG. 7 is a block diagram illustrating a configuration of the image display apparatus 100 according to the present embodiment.
- the processing block according to the present embodiment includes a mask addition unit 102, a 2D3D conversion parameter calculation unit 104, an optimal mask amount calculation unit 106, and a 2D3D conversion unit 108.
- Each block shown in FIG. 7 can be configured by a central processing unit such as a circuit (hardware) or a CPU and a program (software) for causing it to function.
- the program is an image processing unit. 100 or a recording medium such as an external memory.
- 2D image data (I2D) is input to the mask adding unit 102 as input image data.
- An adjustment parameter CONT for performing 2D3D conversion on the input image is input to the 2D3D conversion parameter calculation unit 104.
- the adjustment parameter CONT is the viewing distance al, the screen size dw, the number of horizontal pixels of the display (1920 for Full HD size), the virtual input screen setting position cl (the maximum retracted amount of the horopter surface from the display surface), Parameters such as the binocular interval el.
- the 2D3D conversion parameter calculation unit 104 calculates a 2D3D conversion parameter PRM from the adjustment parameter CONT and outputs it to the optimal mask amount calculation unit 106 and the 2D3D conversion unit 108.
- the adjustment parameter CONT and the 2D3D conversion parameter PRM are not limited to one value. Further, information of the input image may be used as the adjustment parameter CONT as the adjustment parameter, or the 2D3D conversion parameter PRM may be changed according to the image area.
- the optimum mask amount calculation unit 106 calculates the width of a portion that cannot be displayed on the display surface from the calculated 2D3D conversion parameter PRM, can mask this area, and sets the smallest mask amount as the optimum mask amount MPRM. calculate. At this time, the omission of image information due to mask processing is minimized by minimizing the mask width.
- the optimum mask amount MPRM has four independent values at the top, bottom, left, and right of the screen.
- the purpose of the mask is to replace effective pixels that do not have corresponding pixels on the left and right with invalid pixels
- the shape of the mask is not limited to a rectangle. That is, the shape of the effective image region after masking is not limited to a rectangle, and may be a shape such as a circle or an ellipse.
- the mask addition unit 102 performs mask superimposition processing on the input image I2D based on the calculation result of the optimal mask amount MPRM calculated by the optimal mask amount calculation unit 106.
- the mask adding unit 102 outputs a 2D input image (M2D) to which a mask is added.
- M2D 2D input image
- the 2D input image to which the mask is added corresponds to the image shown in the middle of FIG.
- a pedestal level can be normally used, but another value may be used.
- it is preferable that the pixel value of the mask is set to a pixel value at the same level as the invalid image region generated as a result of the 2D3D conversion.
- the 2D3D conversion unit 108 performs 2D3D conversion processing based on the 2D3D conversion parameter PRM on the 2D input image (M2D) to which the mask is added, and outputs a left-eye output signal L3D and a right-eye output signal R3D.
- the 2D3D conversion process is a projection process (coordinate conversion) for the tilt effect in the case of the tilt plane method.
- the right-eye image R and the left-eye image L are separated by an interval between both eyes on the input image plane.
- the 2D3D conversion unit 108 performs coordinate conversion on the 2D input image (M2D) to which the mask is added, so that the right-eye image R and the left-eye image L as shown in FIG. A tilt process or a process of shifting the right-eye image R and the left-eye image L as shown in FIG. 1 is performed, and the left-eye image L and the right-eye image R are output.
- M2D 2D input image
- Expression 1 is a coordinate conversion expression for the left-eye image L
- Expression 2 is a coordinate conversion expression for the right-eye image.
- Equation 1 and Equation 2 y: Horizontal pixel position on the input image plane x: Horizontal pixel position on the display surface al: Viewing distance (cm) cl: Distance from display surface to input image reference surface (cm) el: Binocular distance (approximately 6.5cm) width: Number of horizontal pixels of the display (1920 for Full HD) dw: Display width (cm) scale: A scaling factor for adjusting the aspect ratio.
- Equation 1 the relationship between the input horizontal pixel position y and the horizontal pixel position x on the display surface is obtained for each of the right-eye image R and the left-eye image L.
- a specific method for calculating the mask amounts at the left and right edges of the screen will be described below.
- y1 MAX (yLL, yRL) is obtained (STEP 3).
- y1 is a value greater than 0, the left end of the input image is not displayed on the display surface (is missing) in either the L image or the R image after 2D3D conversion ( (Step 4).
- ROUNDUP is used is that when the value of y1 is converted to an integer, the mask width is finally calculated to be larger.
- y2 MIN (yLR, yRR) is obtained (STEP 3).
- y2 is a value less than 1919, the right end of the input image is not completely displayed on the display surface (is missing) in either the L image or the R image after 2D3D conversion ( (Step 4).
- ROUNDDOWN is used so that when the value of y2 is converted to an integer, the mask width is finally calculated to be larger. In this way, it is desirable to convert the coordinate conversion result into an integer so that the mask amount is calculated slightly larger.
- Perform mask processing For example, whether the defect at the left end of the display surface exists in the image after the left eye processing or the image after the right eye processing depends on the result of the coordinate conversion calculation. In the case of the geometric arrangement as shown in FIG. 4, a defect at the left end of the display surface occurs in the image after processing for the left eye, but in the arrangement where the value of cl is smaller than that in FIG. A defect at the left end of the display surface occurs in the image after processing for the right eye at the position where the broken lines intersect.
- the mask width can be obtained by the same method.
- the image R for the right eye and the image L for the left eye are shifted by the distance between both eyes on the input image plane, so that the input horizontal pixel position y and the horizontal pixel position x on the display surface
- a conversion expression indicating the relationship can be obtained based on the shift amount and the geometrical arrangement of FIG. 3, and based on this, the relationship between the position y and the position x can be calculated.
- FIG. 8 is a schematic diagram illustrating a configuration of a stereoscopic image display observation system according to an embodiment of the present invention. As shown in FIG. 8, the system according to the present embodiment includes the above-described image display device 100 and display image viewing glasses 200.
- the image display device 100 is, for example, a time-division stereoscopic video display device, and the left-eye video L and the right-eye video R output from the 2D3D conversion unit 108 are displayed on the entire screen of the display unit 110 in a very short cycle. Display alternately.
- the image display apparatus 100 provides the left eye and the right eye by separating the images in synchronization with the display cycle of the left eye image L and the right eye image R.
- the image display apparatus 100 alternately displays a right-eye parallax image (right-eye image R) and a left-eye parallax image (left-eye image L) for each field.
- the display image viewing glasses 200 are provided with a pair of liquid crystal shutters 200a and 200b in a portion corresponding to a lens.
- the image display device 100 includes an infrared transmitter that transmits an infrared signal in synchronization with the switching of the display of the left-eye video L and the right-eye video R, and the viewing glasses 200 include an infrared receiver.
- the liquid crystal shutters 200a and 200b alternately open and close in synchronization with image switching for each field of the image display device 100 based on the received infrared signal. That is, in the field where the image R for the right eye is displayed on the image display device 100, the liquid crystal shutter 200b for the left eye is in a closed state and the liquid crystal shutter for the right eye is in an open state 200a. In the field where the left-eye image L is displayed, the reverse operation is performed.
- the image display device 100 alternately displays the left-eye video L and the right-eye video R on the entire screen at a very short cycle, and at the same time, the display cycle of the left-eye video L and the right-eye video R.
- the video is provided separately for the left eye and the right eye in synchronization with
- the present invention can be widely applied to an image display device, an image display system, and an image display method for displaying an image for the right eye and an image for the left eye.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Controls And Circuits For Display Device (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
Description
1.前提となる技術
2.本実施形態に係るマスク処理の概略
3.本実施形態に係る画像表示装置の構成例
4.2D3D変換部における2D3D変換の例
5.立体画像表示観察システムの構成例
2D画像を3D画像に変換する手法としては様々なものが存在する。最も一般的な手法は、2D入力画像に含まれるオブジェクトの奥行き情報(いわゆるデプスマップ)を何らかの方法で得て、2D入力画像のオブジェクト毎、若しくは、領域毎に奥行き情報から生成した視差を付加してゆく方法である。
このため、本実施形態では、上述した「単眼立体視」の原理を利用して2Dから3Dに画像を変換する手法において、右眼用画像Rと左眼用画像Lが相違することによって生じる両眼視野闘争を抑制するため、右眼用画像Rと左眼用画像Lのそれぞれが同一の画像となるようにマスク処理を施す。
図7は、本実施形態に係る画像表示装置100の構成を示すブロック図である。図7に示すように、本実施形態に係る処理ブロックは、マスク付加部102、2D3D変換パラメータ算出部104、最適マスク量算出部106、2D3D変換部108を備える。なお、図7に示す各ブロックは、回路(ハードウェア)またはCPUなどの中央演算処理装置とこれを機能させるためのプログラム(ソフトウェア)によって構成することができ、この場合にそのプログラムは画像処理装置100が備えるメモリ、または外部のメモリなどの記録媒体に格納されることができる。
2D3D変換部108における変換の一例として、あおり処理について説明すると、以下の数式で規定される入力画像と表示画像との対応から、左眼用画像Lと右眼用画像Rを出力する。ここで、式1は左眼用画像Lの座標変換式であり、式2は右眼用画像の座標変換式である。
y:入力画像面での水平画素位置
x:ディスプレイ面での水平画素位置
al:視聴距離(cm)
cl:ディスプレイ面から入力画像基準面までの距離 (cm)
el:両眼間隔(およそ6.5cm)
width:ディスプレイの水平画素数(Full HDの場合1920)
dw:ディスプレイ幅(cm)
scale:アスペクト比調整用スケーリング倍率
である。
図8は、本発明の一実施形態に係る立体画像表示観察システムの構成を示す模式図である。図8に示すように、本実施形態に係るシステムは、上述した画像表示装置100と、表示画像鑑賞用メガネ200とを備える。
102 マスク付加部
108 2D3D変換部
110 表示部
Claims (7)
- 単眼立体視の原理により2次元画像を3次元画像に変換するためのパラメータに基づいて、2次元画像の入力画像にマスクを付加するマスク付加部と、
前記マスク付加部により前記マスクが付加された前記入力画像を、単眼立体視の原理による右眼用画像及び左眼用画像に変換する変換部と、
前記右眼用画像及び前記左眼用画像を表示する表示部と、
を備える、画像表示装置。 - 前記マスクの範囲を算出するマスク量算出部を備え、前記マスク量算出部は、前記マスクを付加しない場合に前記右眼用画像又は左眼用画像の一方に無効領域が生じる場合、前記右眼用画像又は左眼用画像の他方に対して前記無効領域に対応する領域が視認されない範囲を前記マスクの範囲として算出する、請求項1に記載の画像表示装置。
- 前記マスクの範囲を算出するマスク量算出部を備え、前記マスク量算出部は、前記マスクを付加しない場合に前記右眼用画像又は左眼用画像の一方に欠損領域が生じる場合、前記右眼用画像又は左眼用画像の他方に対して前記欠損領域に対応する領域が視認されない範囲を前記マスクの範囲として算出する、請求項1に記載の画像表示装置。
- 前記変換部は、平行移動方式による変換を行う、請求項1に記載の画像表示装置。
- 前記変換部は、あおり平面貼付け方式による変換を行う、請求項1に記載の画像表示装置。
- 単眼立体視の原理により2次元画像を3次元画像に変換するためのパラメータに基づいて、2次元画像の入力画像にマスクを付加するマスク付加部と、前記マスク付加部により前記マスクが付加された前記入力画像を、単眼立体視の原理による右眼用画像及び左眼用画像に変換する変換部と、前記右眼用画像及び前記左眼用画像を表示する表示部と、を有する、画像表示装置と、
前記右眼用と左眼用のシャッターを有し、前記表示部における前記右眼用画像及び前記左眼用画像の切り換わりに応じて、前記右眼用と左眼用の前記シャッターを開閉する立体映像観察眼鏡と、
を備える、画像表示観察システム。 - 単眼立体視の原理により2次元画像を3次元画像に変換するためのパラメータに基づいて、2次元画像の入力画像にマスクを付加するステップと、
前記マスク付加部により前記マスクが付加された前記入力画像を、単眼立体視の原理による右眼用画像及び左眼用画像に変換するステップと、
前記右眼用画像及び前記左眼用画像を表示するステップと、
を備える、画像表示方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11739629A EP2463853A1 (en) | 2010-02-05 | 2011-01-20 | Image display device, image display system, and image display method |
US13/262,880 US20120287252A1 (en) | 2010-02-05 | 2011-01-20 | Image display device, image display system, and image display method |
CN2011800016042A CN102483909A (zh) | 2010-02-05 | 2011-01-20 | 图像显示设备,图像显示系统和图像显示方法 |
BRPI1106086A BRPI1106086A2 (pt) | 2010-02-05 | 2011-01-20 | dispositivo de exibição de imagem, sistema de observação de exibição de imagem, e, método de exibição de imagem. |
RU2011139582/08A RU2011139582A (ru) | 2010-02-05 | 2011-01-20 | Устройство отображения изображений, система отображения изображений и способ отображения изображений |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-024403 | 2010-02-05 | ||
JP2010024403A JP2011164202A (ja) | 2010-02-05 | 2010-02-05 | 画像表示装置、画像表示システム及び画像表示方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011096280A1 true WO2011096280A1 (ja) | 2011-08-11 |
Family
ID=44355282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/050956 WO2011096280A1 (ja) | 2010-02-05 | 2011-01-20 | 画像表示装置、画像表示システム及び画像表示方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20120287252A1 (ja) |
EP (1) | EP2463853A1 (ja) |
JP (1) | JP2011164202A (ja) |
KR (1) | KR20120114145A (ja) |
CN (1) | CN102483909A (ja) |
BR (1) | BRPI1106086A2 (ja) |
RU (1) | RU2011139582A (ja) |
WO (1) | WO2011096280A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9147278B2 (en) | 2011-06-08 | 2015-09-29 | Panasonic Intellectual Property Management Co., Ltd. | Parallax image generation device, parallax image generation method, program, and integrated circuit |
JP5337218B2 (ja) * | 2011-09-22 | 2013-11-06 | 株式会社東芝 | 立体画像変換装置、立体画像出力装置および立体画像変換方法 |
WO2013146041A1 (ja) | 2012-03-28 | 2013-10-03 | 富士フイルム株式会社 | 画像処理装置及び方法並びに撮像装置 |
TWI495327B (zh) * | 2013-02-07 | 2015-08-01 | Au Optronics Corp | 顯示裝置及其操作方法 |
KR102172388B1 (ko) * | 2014-09-11 | 2020-10-30 | 엘지디스플레이 주식회사 | 곡면 디스플레이 및 이의 영상 처리 방법 |
KR102308202B1 (ko) | 2014-12-23 | 2021-10-06 | 삼성디스플레이 주식회사 | 터치 스크린 표시 장치 및 그의 구동방법 |
US10742964B2 (en) * | 2017-04-04 | 2020-08-11 | Nextvr Inc. | Methods and apparatus for displaying images |
EP3528496A1 (en) | 2018-02-16 | 2019-08-21 | Ultra-D Coöperatief U.A. | Overscan for 3d display |
CN111935473B (zh) * | 2020-08-17 | 2022-10-11 | 广东申义实业投资有限公司 | 一种快速眼部三维图像采集器及其图像采集方法 |
TWI839578B (zh) * | 2020-10-21 | 2024-04-21 | 宏碁股份有限公司 | 3d顯示系統與3d顯示方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05316541A (ja) * | 1992-05-07 | 1993-11-26 | Nippon Telegr & Teleph Corp <Ntt> | 両眼立体視装置 |
JPH07302064A (ja) * | 1994-05-02 | 1995-11-14 | Canon Inc | 表示装置 |
JPH08205201A (ja) * | 1995-01-31 | 1996-08-09 | Sony Corp | 疑似立体視方法 |
JP2002010299A (ja) * | 2000-06-23 | 2002-01-11 | Olympus Optical Co Ltd | 画像表示装置 |
JP2010169777A (ja) * | 2009-01-21 | 2010-08-05 | Sony Corp | 画像処理装置、画像処理方法およびプログラム |
JP2010171628A (ja) * | 2009-01-21 | 2010-08-05 | Nikon Corp | 画像処理装置、プログラム、画像処理方法、記録方法および記録媒体 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7342721B2 (en) * | 1999-12-08 | 2008-03-11 | Iz3D Llc | Composite dual LCD panel display suitable for three dimensional imaging |
GB2370931B (en) * | 2001-01-06 | 2005-02-02 | Ibm | An image display system for displaying an adjustable widened virtual image |
US20040218269A1 (en) * | 2002-01-14 | 2004-11-04 | Divelbiss Adam W. | General purpose stereoscopic 3D format conversion system and method |
JP4015124B2 (ja) * | 2004-03-03 | 2007-11-28 | 株式会社東芝 | 三次元画像表示装置 |
JP4509668B2 (ja) * | 2004-06-25 | 2010-07-21 | 株式会社トプコン | 眼底撮影システム |
US8159526B2 (en) * | 2004-09-17 | 2012-04-17 | Seiko Epson Corporation | Stereoscopic image display system |
KR101311896B1 (ko) * | 2006-11-14 | 2013-10-14 | 삼성전자주식회사 | 입체 영상의 변위 조정방법 및 이를 적용한 입체 영상장치 |
JP4222627B1 (ja) * | 2008-06-25 | 2009-02-12 | 高秋 伊藤 | 映像立体的認識装置 |
-
2010
- 2010-02-05 JP JP2010024403A patent/JP2011164202A/ja not_active Withdrawn
-
2011
- 2011-01-20 KR KR1020117022681A patent/KR20120114145A/ko not_active Application Discontinuation
- 2011-01-20 RU RU2011139582/08A patent/RU2011139582A/ru unknown
- 2011-01-20 CN CN2011800016042A patent/CN102483909A/zh active Pending
- 2011-01-20 WO PCT/JP2011/050956 patent/WO2011096280A1/ja active Application Filing
- 2011-01-20 BR BRPI1106086A patent/BRPI1106086A2/pt not_active IP Right Cessation
- 2011-01-20 EP EP11739629A patent/EP2463853A1/en not_active Withdrawn
- 2011-01-20 US US13/262,880 patent/US20120287252A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05316541A (ja) * | 1992-05-07 | 1993-11-26 | Nippon Telegr & Teleph Corp <Ntt> | 両眼立体視装置 |
JPH07302064A (ja) * | 1994-05-02 | 1995-11-14 | Canon Inc | 表示装置 |
JPH08205201A (ja) * | 1995-01-31 | 1996-08-09 | Sony Corp | 疑似立体視方法 |
JP2002010299A (ja) * | 2000-06-23 | 2002-01-11 | Olympus Optical Co Ltd | 画像表示装置 |
JP2010169777A (ja) * | 2009-01-21 | 2010-08-05 | Sony Corp | 画像処理装置、画像処理方法およびプログラム |
JP2010171628A (ja) * | 2009-01-21 | 2010-08-05 | Nikon Corp | 画像処理装置、プログラム、画像処理方法、記録方法および記録媒体 |
Non-Patent Citations (1)
Title |
---|
JAN J KOENDERINK ET AL.: "On so-called paradoxical monocular stereoscopy", PERCEPTION, PION PUBLICATION (UK, vol. 23, 1994, pages 583 - 594 |
Also Published As
Publication number | Publication date |
---|---|
RU2011139582A (ru) | 2013-04-10 |
BRPI1106086A2 (pt) | 2016-05-10 |
CN102483909A (zh) | 2012-05-30 |
KR20120114145A (ko) | 2012-10-16 |
JP2011164202A (ja) | 2011-08-25 |
US20120287252A1 (en) | 2012-11-15 |
EP2463853A1 (en) | 2012-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011096280A1 (ja) | 画像表示装置、画像表示システム及び画像表示方法 | |
US7440004B2 (en) | 3-D imaging arrangements | |
US8179424B2 (en) | 3D display method and apparatus | |
WO2011125368A1 (ja) | 立体画像表示装置、表示システム、駆動方法、駆動装置、表示制御方法、表示制御装置、プログラム、およびコンピュータ読み取り可能な記録媒体 | |
CN104539935B (zh) | 图像亮度的调节方法及调节装置、显示装置 | |
JP2014045473A (ja) | 立体画像表示装置、画像処理装置及び立体画像処理方法 | |
JP2011176800A (ja) | 画像処理装置、立体表示装置及び画像処理方法 | |
EP2541948B1 (en) | Stereoscopic image display method and display timing controller | |
US9088774B2 (en) | Image processing apparatus, image processing method and program | |
US20120320038A1 (en) | Three-dimensional image processing apparatus, method for processing three-dimensional image, display apparatus, and computer program | |
KR102279816B1 (ko) | 무안경 입체영상표시장치 | |
JP2006333400A (ja) | 立体視画像生成装置及び立体視画像生成プログラム | |
Fauster et al. | Stereoscopic techniques in computer graphics | |
Minami et al. | Portrait and landscape mode convertible stereoscopic display using parallax barrier | |
Kakeya | Real-image-based autostereoscopic display using LCD, mirrors, and lenses | |
US8994791B2 (en) | Apparatus and method for displaying three-dimensional images | |
KR102334031B1 (ko) | 무안경 입체영상표시장치 및 그 구동방법 | |
JP4283232B2 (ja) | 3次元表示方法および3次元表示装置 | |
JP2011176822A (ja) | 画像処理装置、立体表示装置及び画像処理方法 | |
WO2012063540A1 (ja) | 仮想視点画像生成装置 | |
JP2004294862A (ja) | 立体映像表示装置 | |
JP2014106330A (ja) | 3次元表示装置及び3次元表示方法 | |
JP2009237310A (ja) | 疑似3次元表示方法および疑似3次元表示装置 | |
KR100939080B1 (ko) | 합성 영상 생성 방법 및 장치, 합성 영상을 이용한 디스플레이 방법 및 장치 | |
KR100790951B1 (ko) | 소프트웨어 및 하드웨어로 구동하는 안경식 lcd 3차원표시 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180001604.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011739629 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117022681 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11739629 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011139582 Country of ref document: RU Ref document number: 7436/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13262880 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1106086 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1106086 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110928 |