WO2012063540A1 - 仮想視点画像生成装置 - Google Patents

仮想視点画像生成装置 Download PDF

Info

Publication number
WO2012063540A1
WO2012063540A1 PCT/JP2011/069937 JP2011069937W WO2012063540A1 WO 2012063540 A1 WO2012063540 A1 WO 2012063540A1 JP 2011069937 W JP2011069937 W JP 2011069937W WO 2012063540 A1 WO2012063540 A1 WO 2012063540A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
viewpoint
depth
depth image
unit
Prior art date
Application number
PCT/JP2011/069937
Other languages
English (en)
French (fr)
Inventor
敦稔 〆野
大津 誠
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012063540A1 publication Critical patent/WO2012063540A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/111Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation

Definitions

  • the present invention relates to a virtual viewpoint image generation device that generates a virtual viewpoint image in a processing technique for multi-viewpoint images for stereoscopic display.
  • a binocular stereoscopic display method As a stereoscopic display method, a binocular stereoscopic display method is currently the mainstream. This binocular stereoscopic display method enables stereoscopic viewing by using special glasses and showing different images with parallax between the left and right eyes.
  • This method can be roughly divided into the following two types.
  • the first is an active shutter system.
  • images corresponding to the left and right eyes are alternately switched and displayed on the stereoscopic display, and in the dedicated glasses, the liquid crystal shutter provided in the lens is opened and closed in synchronization with the image switching interval of the display. This is a method that enables visual observation.
  • the second is a polarization method.
  • the polarization method displays images corresponding to the left and right eyes through filters with different polarization characteristics, and can also be viewed stereoscopically through dedicated glasses with filters with different polarization characteristics attached to the left and right lenses. This is the method.
  • the autostereoscopic display method include a parallax barrier method and a lenticular method.
  • a parallax barrier method a parallax barrier 101 is disposed on the front surface of the display 100 as shown in FIG.
  • the lenticular method enables stereoscopic viewing by disposing a special kamaboko-shaped lens whose refractive index is adjusted so that the left and right images can reach only the eyes.
  • the head position is moved slightly to the left and right with respect to the parallax barrier 101 on the front surface of the display 100 as shown in FIG. Since the left and right images are inverted (reverse view), the stereoscopic view possible range is very narrow.
  • FIG. 10 is a diagram illustrating an example in which an image of three viewpoints is used for the display 200 provided with the parallax barrier 201 on the front surface.
  • the first viewpoint image 1 is viewed with the left eye
  • the second viewpoint image 2 is viewed with the right eye.
  • the head position is moved to the right as shown in FIG. 10B
  • the second viewpoint image 2 is viewed with the left eye
  • the third viewpoint image 3 is viewed with the right eye.
  • the continuous viewing range is widened.
  • an image pickup apparatus including a plurality of image pickup devices for taking a multi-viewpoint image used in the autostereoscopic display method.
  • an imaging device for capturing multi-viewpoint images is considered to be less practical from the viewpoint of portability and operability.
  • the synchronization processing of each camera the image quality deterioration in stereoscopic viewing due to the difference in camera characteristics, and the increase in data transmission amount due to the increase in the number of viewpoints.
  • a technology for generating a virtual viewpoint image that is not actually captured based on the viewpoint image captured by the camera is indispensable.
  • the viewing range can be expanded, and when viewing images with a plurality of people on a naked-eye stereoscopic display, they can be comfortably viewed. Further, even when the position of the head is moved when watching alone, a more natural stereoscopic image can be obtained by displaying the viewpoint image corresponding to the position.
  • Non-Patent Document 1 is a method for generating a virtual viewpoint image using a multi-viewpoint image and a depth image corresponding to each viewpoint image, and is currently promising.
  • the depth image refers to an image obtained by quantizing depth information in 256 ways from 0 to 255 and representing it as a gray scale image.
  • a virtual viewpoint image is generated mainly by the following procedure.
  • the depth image is geometrically transformed from the real viewpoint to the desired virtual viewpoint based on the actually photographed three-dimensional position of the real viewpoint and the desired three-dimensional position of the virtual viewpoint.
  • a smoothing filter such as a median filter or a bilateral filter is applied to the depth image geometrically transformed into the virtual viewpoint.
  • the color information of each pixel of the smoothed depth image is obtained from the original real viewpoint image, and a virtual viewpoint image is generated.
  • the procedure so far is performed at the two real viewpoints (usually the left and right viewpoints) closest to the virtual viewpoint to generate two virtual viewpoint images.
  • the depth value is not given to the background portion concealed by the foreground portion, after geometric transformation, the hole portion is in a state where no depth value exists.
  • the two virtual viewpoint images are mixed to obtain a final virtual viewpoint image.
  • the following methods are shown as the mixing method. For example, a method that uses the average value of virtual viewpoint images, a method that determines the weighted average value by determining the ratio of the distance between each real viewpoint and the virtual viewpoint, and other methods that are closest to the virtual viewpoint. For example.
  • the depth information used in the method of Non-Patent Document 1 often uses information obtained by a distance measuring device using infrared rays or the like, or information estimated from a viewpoint image. Regardless of the depth information obtained by any method, the accuracy greatly affects the quality of virtual viewpoint generation. Obtaining more accurate depth information is extremely important for obtaining high-quality virtual viewpoint images. Is an important element.
  • Patent Document 1 in order to generate a virtual viewpoint image, depth information is generated using images of two viewpoints in the vicinity of the viewpoint.
  • the depth can be calculated from the shift (parallax) between the images of the left and right eyes (the larger the parallax, the smaller the depth value, and the smaller the parallax, the larger the depth value), so the position of the object in the two images exists.
  • Depth information can be obtained indirectly by obtaining the deviation. Specifically, corresponding points between two images are detected by block matching, and the amount of deviation is used as parallax information (depth information).
  • depth information based on each of two images near the virtual viewpoint is calculated to obtain two depth information.
  • the depth information is an estimated value, and it is impossible to obtain an accurate value particularly in the occlusion portion.
  • the depth information is selected by comparing the depth information and evaluating the consistency as follows.
  • the depth information is assumed to be highly reliable, and the depth value is used. If the depth image values are completely different (the difference is greater than or equal to the threshold), the depth information is low in reliability and is discarded.
  • values are obtained from the surrounding pixels for the pixels for which the depth information has been discarded.
  • a virtual viewpoint image based on each depth information is generated, and a final virtual viewpoint image is generated by mixing them.
  • a mixing method a method of obtaining an average of these virtual viewpoint images, a method of mixing at a ratio according to the distance from the original viewpoint to the virtual viewpoint, or the like is used.
  • Patent Document 1 the accuracy of the two depth information is not fully evaluated. This is because even if two depth values are close, if they are not identical, at least one of them contains an error. For this reason, the virtual viewpoint image generated using the incorrect depth information includes an error, which affects the subsequent mixing process and adversely affects the quality of the finally generated virtual viewpoint image.
  • An object of the present invention is to provide a virtual viewpoint image generation device that generates a high-quality virtual viewpoint image.
  • the first technical means of the present invention includes a first actual viewpoint image and a second actual viewpoint image, and first and second depth images corresponding to the first viewpoint image and the second actual viewpoint image, respectively.
  • a virtual viewpoint image generation device that generates a virtual viewpoint image, wherein the correction unit corrects the second depth image with the first depth image and corrects the first depth image with the second depth image. It is characterized by having.
  • the correction unit converts the first actual viewpoint image and the first depth image into a viewpoint of the second actual viewpoint image.
  • a first geometric transformation unit that performs geometric transformation into a transformed viewpoint image and a transformed depth image at a certain second viewpoint, and a transformed viewpoint image at the second viewpoint that is generated by geometric transformation by the first geometric transformation unit;
  • the second actual viewpoint image is different, the transformed depth image at the second viewpoint generated by the geometric transformation by the first geometric transformation unit is corrected with the second depth image
  • a first depth image correction unit that generates a corrected converted depth image, and the first corrected converted depth image and the actual viewpoint image of the second viewpoint are the viewpoints of the first actual viewpoint image.
  • the converted viewpoint image in the first viewpoint and A second geometric conversion unit that performs geometric conversion into a converted depth image, and the converted viewpoint image at the first viewpoint generated by geometric conversion by the second geometric conversion unit are different from the first actual viewpoint image.
  • the first depth image correction unit calculates a difference between the converted viewpoint image at the second viewpoint and the second actual viewpoint image.
  • a difference image generation unit that calculates for each pixel and generates a difference image
  • a binary image generation unit that binarizes the difference image using a predetermined threshold
  • the binary image as a mask image Accordingly, the image processing apparatus includes an overwriting processing unit that switches whether to overwrite the converted depth image at the second viewpoint with the second depth image.
  • the second depth image correction unit includes the converted viewpoint image at the first viewpoint, the first actual viewpoint image, and A difference image generation unit that calculates a difference for each pixel and generates a difference image, a binary image generation unit that binarizes the difference image using a predetermined threshold, and the binary image as a mask image, And an overwriting processing unit that switches whether to rewrite the re-transformed depth image at the first viewpoint with the first depth image according to the value of.
  • the virtual viewpoint image generation device of the present invention has the following effects. That is, since the depth information includes an error, the quality of the final virtual viewpoint image can be improved by correcting the two depth images with each other.
  • FIG. 1 is a block diagram showing an internal configuration of a virtual viewpoint image generation apparatus according to an embodiment of the present invention.
  • the virtual viewpoint image generation device 10 in FIG. 1 receives the viewpoint image A at the actual viewpoint A, the viewpoint image B at the actual viewpoint B, and the depth image A and the depth image B corresponding to the respective images, and the virtual viewpoint C at the virtual viewpoint C.
  • It is a device for generating a viewpoint image C, and includes a depth image stabilization unit 11, depth image geometric conversion units 12a and 12b, depth image smoothing units 13a and 13b, disguise viewpoint image generation units 14a and 14b, and a viewpoint image mixing unit. 15 and a hole filling processing unit 16.
  • the operation of each functional block in the figure will be described by taking as an example the case of generating an image corresponding to the virtual viewpoint C from the images corresponding to the actual viewpoints A and B.
  • the depth image stabilization unit 11 receives the viewpoint image A, the depth image A, the depth image B, and the viewpoint image B from the input units a, b, c, and d, respectively, and the error portion of the depth image A from the output unit X1. Is output from the depth image B, and the output unit X2 outputs a depth image Brr in which the error portion of the depth image B is corrected by the depth image A. Details will be described later.
  • the depth image geometric conversion unit 12a geometrically converts the input modified depth image Arr into a depth image Ca of the virtual viewpoint C, and outputs it.
  • a transformation matrix from the real viewpoint A to the virtual viewpoint C is used.
  • the depth image geometric conversion unit 12b geometrically converts the modified depth image Brr into the depth image Cb of the virtual viewpoint C and outputs the same.
  • the depth image smoothing unit 13a applies a smoothing filter to the depth image Ca input from the depth image geometric conversion unit 12a, and outputs a smoothed depth image Ca ′.
  • a smoothing filter a median filter may be used in order to remove noise of the entire image, or a bilateral filter capable of performing smoothing while maintaining an edge may be used.
  • the depth image smoothing unit 13b also performs the same processing as the depth image smoothing unit 13a on the input depth image Cb, and outputs a smoothed depth image Cb ′.
  • the virtual viewpoint image generation unit 14a obtains color information for each pixel of the smoothed depth image Ca ′ from the viewpoint image A using the geometric transformation matrix from the virtual viewpoint C to the real viewpoint A, and the virtual viewpoint image Ca ′′ Is generated.
  • the virtual viewpoint image generation unit 14b acquires color information for each pixel of the smoothed depth image Cb ′ from the viewpoint image B, and generates a virtual viewpoint image Cb ′′.
  • the viewpoint image mixing unit 15 mixes the virtual viewpoint image Ca ′′ generated from the viewpoint image A and the virtual viewpoint image Cb ′′ generated from the viewpoint image B.
  • a mixing method a method of taking an average value of two images, a method of obtaining a weight according to a distance between the viewpoints A and C and a distance between the viewpoints B and C, and taking a weighted average, or simply a distance.
  • the hole-filling processing unit 16 performs a hole-filling process on the pixels for which color information in the virtual viewpoint image output from the viewpoint image mixing unit 15 has not been acquired. Specifically, a method using color information of surrounding pixels is used.
  • FIG. 2 is an internal block diagram of the depth image stabilization unit 11.
  • the depth image stabilization unit 11 receives the corrected depth image Arr,
  • the corrected depth image Brr is output from the output unit X2, and has depth image correction units 21a and 21b.
  • the depth image correction unit 21a When the viewpoint image A, the depth image A, the depth image B, and the viewpoint image B are input to the input units e, f, g, and h, respectively, the depth image correction unit 21a outputs the corrected depth image Arr from the output unit X3. Similarly to the depth image correction unit 21a, the depth image correction unit 21b receives the viewpoint image B, the depth image B, the depth image A, and the viewpoint image A from the input units e, f, g, and h, respectively, and the corrected depth image Brr. Is output from the output unit X3.
  • FIG. 3 is an internal block diagram of the depth image correction unit 21a
  • FIGS. 4 and 5 are diagrams illustrating a processing flow in the depth image correction unit 21a
  • FIG. 6 is an internal block of the depth image primary correction unit of the depth image correction unit 21a
  • FIG. 7 is an internal block diagram of the depth image secondary correction unit of the depth image correction unit 21a.
  • a secondary corrected depth image Arr which will be described later, is output as a corrected depth image Arr, and includes geometric conversion units 31a and 31b, a depth image primary correction unit 32a, and a depth image secondary correction unit 32b.
  • the geometric conversion unit 31a geometrically converts the viewpoint image A and the depth image A into a viewpoint image Ba and a depth image Ba of the same viewpoint B as the viewpoint image B (step S1). More specifically, the geometric conversion unit 31a outputs the result of geometric conversion of the depth image A to the viewpoint B as the depth image Ba (step S1-1), and uses the depth image A to convert the viewpoint image A to the viewpoint B. The result of geometric transformation is output as the viewpoint image Ba (step S1-2).
  • the viewpoint image Ba generated by the geometric conversion unit 31a and the viewpoint image B may have an error due to an error in the depth image A.
  • the depth image primary correction unit 32a when the viewpoint image Ba and the viewpoint image B are different, the depth image Ba created based on the depth image A (this depth image Ba is again converted into the depth image of the viewpoint A as described later. Is corrected by the depth image B.
  • the depth image primary correction unit 32a receives the viewpoint image Ba, the depth image Ba, the depth image B, and the viewpoint image B from the input units i, j, k, and l, and displays the correction result as the primary correction depth image Bar. As output from the output unit X4 (step S2). Details of step S2 will be described later.
  • the geometric conversion unit 31b uses the viewpoint image B and the depth image primary correction unit 32a as illustrated in FIG.
  • the output primary corrected depth image Bar is input, and these are geometrically converted to the viewpoint A (step S3).
  • the geometric conversion unit 31b outputs the result of geometric conversion of the primary corrected depth image Bar to the viewpoint A as a depth image Aar (step S3-1), and geometrically converts the viewpoint image B to the viewpoint A using the primary corrected depth image Bar.
  • the result is output as the viewpoint image Ab (step S3-2).
  • the depth image secondary correction unit 32b corrects the depth image Aar created based on the primary correction depth image Bar with the depth image A, for example.
  • the depth image secondary correction unit 32b inputs the viewpoint image Ab, the depth image Aar, the depth image A, and the viewpoint image A from the input units m, n, o, and p, and outputs the correction result to the secondary correction depth.
  • An image Arr is output from the output unit X5 (step S4). Details of this will also be described later. Since the depth image correction unit 21b is the same as the depth image correction unit 21a, the description thereof is omitted.
  • FIG. 6 is an internal block diagram of the depth image primary correction unit 32a.
  • the depth image primary correction unit 32a inputs the viewpoint image Ba, the depth image Ba, the depth image B, and the viewpoint image B from the input units i, j, k, and l, and corrects them from the output unit X4.
  • a depth image Ar is output, and includes a difference image generation unit 41, a binary image generation unit 42, and an overwrite processing unit 43.
  • the difference image generation unit 41 receives the viewpoint image Ba and the viewpoint image B, and obtains and outputs a difference image by subtracting the luminance value of the viewpoint image Ba from the viewpoint image B (FIG. 4, step S2-1). .
  • the binary image generation unit 42 uses a predetermined threshold value (for example, 5) ⁇ for the difference image output from the difference image generation unit 41 and a (when the luminance value is greater than or equal to the threshold value) and b (the luminance value is less than the threshold value). 2) (FIG. 4, step S2-2).
  • the overwrite processing unit 43 uses the binary image output from the binary image generation unit 42 as a mask, and only when the luminance value of the binary image is a (that is, when the difference is large), the depth image Ba has a depth image.
  • the pixel value of B is overwritten. All pixels are processed and output as a primary corrected depth image Bar (step S2-3).
  • FIG. 7 is an internal block diagram of the depth image secondary correction unit 32b.
  • the depth image secondary correction unit 32b inputs the viewpoint image Ab, the depth image Aar, the depth image A, and the viewpoint image A from the input units m, n, o, and p, and from the output unit X5,
  • a secondary correction depth image Arr is output, and includes a difference image generation unit 51, a binary image generation unit 52, and an overwrite processing unit 53.
  • the difference image generation unit 51 receives the viewpoint image Ab and the viewpoint image A, and obtains and outputs the difference image by subtracting the luminance value of the viewpoint image Ab from the viewpoint image A (FIG. 5, step S4-1). .
  • the binary image generation unit 52 binarizes the difference image output from the difference image generation unit 51 into a (when the luminance value is greater than or equal to the threshold value) and b (when the luminance value is less than the threshold value) using a predetermined threshold value. (FIG. 5, step S4-2).
  • the overwrite processing unit 53 uses the binary image output from the binary image generation unit 52 as a mask, and only when the luminance value of the binary image is a (that is, when the difference is large), the depth image Ab is added to the depth image Ab pixel.
  • the pixel value of A is overwritten. All the pixels are processed and output as a secondary corrected depth image Arr (step S4-3). Note that when the luminance value of the binary image is a, instead of filling the depth image Ab with the original depth image A, the binary image may be processed as a pixel having no information. By correcting the depth information by the above method, the quality of the virtual viewpoint image generated in the subsequent processing can be improved.
  • the virtual viewpoint image generation device 10 can generate a virtual viewpoint image from two viewpoint images and depth images corresponding to the two viewpoint images. At this time, even when the input depth image is not accurate, the depth image stabilization unit can correct the depth image and improve the quality of the output virtual viewpoint image.
  • SYMBOLS 10 ... Virtual viewpoint image generation apparatus, 11 ... Depth image stabilization part, 12a, 12b ... Depth image geometric transformation part, 13a, 13b ... Depth image smoothing part, 14a, 14b ... Virtual viewpoint image generation part, 15 ... Viewpoint image Mixing unit, 16 ... hole filling processing unit, 21a, 21b ... depth image correction unit, 31a, 31b ... geometric conversion unit, 32a ... depth image primary correction unit, 32b ... depth image secondary correction unit, 41, 51 ... difference image generation Part, 42, 52... Binary image generation part, 43, 53.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Processing Or Creating Images (AREA)

Abstract

 本発明は、高品質な仮想視点画像を生成する仮想視点画像生成装置を提供することを目的とするものである。仮想視点画像生成装置10は、立体表示用の多視点画像に用いられる仮想視点画像を、第1の実際の視点画像及び第2の実際の視点画像と、それぞれに対応する第1及び第2の奥行き画像と、から生成するものであって、第1の奥行き画像で第2の奥行き画像を修正し、第2の奥行き画像で第1の奥行き画像を修正する修正部を有する。

Description

仮想視点画像生成装置
 本発明は、立体表示用の多視点画像の処理技術における仮想視点画像を生成する仮想視点画像生成装置に関するものである。
 立体表示方式としては現在、2眼式立体表示方式が現在の主流となっている。この2眼式立体表示方式は、専用のメガネを用い、左右の眼に視差のついた異なる画像を見せることによって立体視を可能にする。この方式には、様々な方式が存在し、以下の2つに大別することができる。まず1つ目は、アクティブシャッタ方式である。アクティブシャッタ方式は、立体ディスプレイにおいて左右の眼に対応する画像を交互に切り替えて表示し、専用メガネにおいては、レンズに備えた液晶シャッタをディスプレイの画像切替間隔と同期して開閉することにより、立体視を可能とする方式である。2つ目は、偏光方式である。偏光方式は、左右の眼に対応する画像を、それぞれ異なる偏光特性を持つフィルタを通して表示し、同様に左右のレンズに異なる偏光特性を持つフィルタを張り付けた専用メガネを通して観賞することにより立体視を可能とする方式である。
 これら2眼式立体表示方式を用いた立体ディスプレイにおいては、前述の通り、観賞の際に専用メガネが必要であり、複数人が同時に観賞する場合には観賞者それぞれが専用メガネを装着しなければならない。また、観賞範囲はある程度確保されるものの、観賞中に頭の位置を左右に移動させた場合に、左右に回り込んだ画像でなくディスプレイ正面における視点の画像が表示されるため、不自然な表現となるという問題がある。これらの問題は、立体表示技術の普及を妨げる大きな要因となっているといえる。
 一方、観賞の際に専用のメガネを必要としない裸眼式立体表示方式も存在する。裸眼式立体表示方式の代表的なものとして、パララックスバリア方式とレンチキュラ方式がある。パララックスバリア方式は、図8のようにディスプレイ100前面に視差バリア101を配置し、左の眼には左目に対応する画像Lのみが見えるようにし、右の眼には右目に対応する画像Rのみが見えるようにすることで立体視を可能とする。また、レンチキュラ方式は、左右画像がそれぞれの眼のみに届くように屈折率を調整した特殊なかまぼこ状のレンズをディスプレイ前面に配置することにより立体視を可能とする。これら裸眼式立体表示方式は、専用メガネを必要としないため、手軽に立体視を行うことが可能である。
 しかし、これらの方式は、左右の視点画像のみ(2眼)において実現する場合、図9のように、ディスプレイ100前面の視差バリア101に対して、頭の位置を少し左右に移動させただけで左右画像が反転してしまう(逆視)ため、立体視可能な範囲が非常に狭い。
 この問題を解決するためには、3視点以上の多視点画像を用いることが必須である。図10は、前面に視差バリア201を設けたディスプレイ200に、3視点の画像を用いる場合の例を示す図である。図10(A)では、左眼で第1の視点の画像1を、右眼で第2の視点の画像2を見ることになる。図10(B)のように頭の位置を右に移動させた場合には、左眼で第2の視点の画像2、右眼で第3の視点の画像3を見ることになり、左右の連続した観賞範囲が広くなる。
 裸眼式立体表示方式に用いられる多視点画像の撮影には、複数の撮像素子を備えた撮像装置を用いることが考えられる。しかし、テレビカメラのような大型の装置を多視点用に拡張したものを想像すると、多視点画像撮影用の撮像装置は、可搬性や操作性などの観点から実用性に乏しいと考えられる。また、各カメラの同期処理や、カメラ特性の差による立体視における画質低下、視点数増加によるデータの伝送量増加などが危惧される。
 そこで、カメラで撮影した視点の画像を基に、実際には撮影していない仮想視点の画像を生成する技術が必要不可欠となる。この仮想視点画像生成技術により各カメラ間の視点を補間することで、観賞範囲が拡大することが可能となり、裸眼式立体ディスプレイにおいて複数人で画像を観賞する際、快適に観賞することができる。また、一人で観賞する場合に頭の位置を移動させても、その位置に対応した視点の画像が表示されることで、より自然な立体画像を得ることが可能となる。
 仮想視点画像生成技術には、様々な方式が提案されている。非特許文献1に記載の仮想視点画像生成方式は、多視点画像とその各視点画像に対応する奥行き画像を用いて仮想視点画像を生成する方式であり、現在有望とされている。ここで奥行き画像とは、奥行き情報を0~255の256通りに量子化し、グレースケール画像として表わした画像を指す。
 非特許文献1の方式では、主に以下の手順で仮想視点画像を生成する。まず、実際に撮影した実視点の3次元位置と、所望の仮想視点の3次元位置を基に、実視点から所望の仮想視点へ奥行き画像を幾何変換する。次に、仮想視点へ幾何変換した奥行き画像に対し、メディアンフィルタ、バイラテラルフィルタ等の平滑化フィルタをかける。次に、この平滑化された奥行き画像の各画素の色情報を、元の実視点画像から求め、仮想視点画像を生成する。ここまでの手順を、仮想視点に最も近い2つの実視点(通常は左右視点)において行い、2つの仮想視点画像を生成する。ここで、前景部分によって隠蔽されている背景部分は奥行き値が与えられていないため、幾何変換後は、奥行き値が存在しないホールの状態となってしまうが、そのホール部分は、もう一方の実視点画像を用いて埋める。その後、2つの仮想視点画像を混合し、最終的な仮想視点画像を求める。 混合の方法には、以下の方法が示されている。例えば、仮想視点画像の平均値を用いる方法、また、各実視点と仮想視点との距離の比によって重み係数を決定し、重み付き平均値を求める方法、その他、単純に仮想視点に最も近いほうを全て用いる方法などである。
 非特許文献1の方式で用いられる奥行き情報は、赤外線等を用いた測距装置により得られるものか、視点画像から推定したものを使用する場合が多い。いずれの方法によって取得した奥行き情報であっても、その精度は仮想視点生成の品質に多大な影響を与えるため、より正確な奥行き情報を得ることは、高品質な仮想視点画像を得るための非常に重要な要素である。
 例えば、特許文献1においては、仮想視点画像を生成するために、その視点近傍の2視点の画像を用いて奥行き情報を生成する。奥行きは、左右の眼の像のずれ(視差)から算出可能である(視差が大きい程奥行き値は小さく、視差が小さいほど奥行き値は大きい)ため、2つの画像中のオブジェクトが存在する位置のずれを求めることによって、間接的に奥行き情報を得ることができる。具体的には、ブロックマッチングによって2つの画像の対応点を検出し、そのずれ量を視差情報(奥行き情報)とする。特許文献1では、仮想視点近傍の2つの画像それぞれを基準とした奥行き情報を計算し、2つの奥行き情報を求める。これらの奥行き情報は推定値であり、特にオクルージョン部分においては、正確な値を求めることは不可能である。
 そこで、特許文献1は、それぞれの奥行き情報を比較し以下のように整合性を評価することで奥行き情報の選別を行う。2つの奥行き画像の値が近似している場合(差が閾値未満)は、その奥行き情報の信頼性は高いとし、その奥行きの値を用いる。奥行き画像の値が全く異なる場合(差が閾値以上)は、その奥行き情報は信頼性が低いため破棄する。以上のように奥行き情報の選別を行った後、奥行き情報が破棄された画素に関しては、周辺画素から値を得る。その後、それぞれの奥行き情報を基にした仮想視点画像を生成し、それらを混合することで最終的な仮想視点画像を生成する。混合の方法は、これら仮想視点画像の平均を求める方法や、元の視点から仮想視点までの距離に応じた比率で混合する方法などを用いる。
特開平10-191396号公報
森、他:奥行き画像を用いた3D warpingによる自由視点画像生成,電子情報通信学会総合大会 情報・システム講演論文集2,D-11-7,2008年
 しかし、特許文献1において、2つの奥行き情報の正確性は十分に評価されていない。なぜなら、2つの奥行き値が近い場合でも、同一でない場合は少なくともどちらかは誤りを含んでいる。そのため、この誤った奥行き情報を用いて生成した仮想視点画像は誤りを含んでおり、その後の混合処理に影響を与え、最終的に生成される仮想視点画像の品質に悪影響を及ぼすことになる。
 本発明は、高品質な仮想視点画像を生成する仮想視点画像生成装置を提供することを目的とするものである。
 上記課題を解決するために、本発明の第1の技術手段は、第1の実際の視点画像及び第2の実際の視点画像と、それぞれに対応する第1及び第2の奥行き画像と、から仮想視点画像を生成する仮想視点画像生成装置であって、前記第1の奥行き画像で前記第2の奥行き画像を修正し、前記第2の奥行き画像で前記第1の奥行き画像を修正する修正部を有することを特徴としたものである。
 本発明の第2の技術手段は、第1の技術手段において、前記修正部が、前記第1の実際の視点画像と前記第1の奥行き画像を、前記第2の実際の視点画像の視点である第2の視点における変換視点画像と変換奥行き画像へ幾何変換する第1の幾何変換部と、該第1の幾何変換部により幾何変換され生成された前記第2の視点における変換視点画像と、前記第2の実際の視点画像とが異なるとき、前記第1の幾何変換部により幾何変換され生成された前記第2の視点における変換奥行き画像を、前記第2の奥行き画像で修正し、第1の修正変換奥行き画像を生成する第1の奥行き画像修正部と、前記第1の修正変換奥行き画像と前記第2の視点の実際の視点画像を、前記第1の実際の視点画像の視点である第1の視点における変換視点画像と再変換奥行き画像へ幾何変換する第2の幾何変換部と、該第2の幾何変換部により幾何変換され生成された前記第1の視点における変換視点画像と、第1の実際の視点画像とが異なるとき、前記第2の幾何変換部により幾何変換され生成された前記第1の視点における再変換奥行き画像を修正し、第2の修正変換奥行き画像を生成する第2の奥行き画像修正部と、を有することを特徴としたものである。
 本発明の第3の技術手段は、第2の技術手段において、前記第1の奥行き画像修正部が、前記第2の視点における変換視点画像と、前記第2の実際の視点画像との差分を画素毎に算出し差分画像を生成する差分画像生成部と、前記差分画像を所定の閾値によって二値化する二値画像生成部と、前記二値画像をマスク画像とし、二値画像の値に応じ、前記第2の視点における変換奥行き画像を、前記第2の奥行き画像で上書きするか否かを切り替える上書き処理部とを備えることを特徴としたものである。
 本発明の第4の技術手段は、第2または第3の技術手段において、前記第2の奥行き画像修正部は、前記第1の視点における変換視点画像と、前記第1の実際の視点画像との差分を画素毎に算出し差分画像を生成する差分画像生成部と、前記差分画像を所定の閾値によって二値化する二値画像生成部と、前記二値画像をマスク画像とし、二値画像の値に応じ、前記第1の視点における再変換奥行き画像を、前記第1の奥行き画像で上書きするか否かを切り替える上書き処理部とを備えることを特徴としたものである。
 上記の構成を備えることにより、本発明の仮想視点画像生成装置は、次の効果を奏する。すなわち、奥行き情報は誤差を含むため、2つの奥行き画像をお互いに修正しあうことにより、最終的な仮想視点画像の品質を向上させることが可能である。
本発明の一実施形態である、仮想視点画像生成装置のブロック図である。 図1の奥行き画像安定化部11の内部ブロック図である。 図2の奥行き画像修正部21aの内部ブロック図である。 図2の奥行き画像修正部21aにおける処理フローを説明する図である。 図2の奥行き画像修正部21aにおける処理フローを説明する図である。 図3の奥行き画像一次修正部32aの内部ブロック図である。 図3の奥行き画像二次修正部32bの内部ブロック図である。 背景技術である2眼式パララックスバリア方式の概念説明図である。 背景技術である2眼式パララックスバリア方式の概念説明図である。 背景技術である多眼式パララックスバリア方式の概念説明図である。
 以下、図面を参照して、本発明の実施形態について説明する。
 図1に本発明の一実施形態である仮想視点画像生成装置の内部構成のブロック図を示す。図1の仮想視点画像生成装置10は、実視点Aにおける視点画像Aと実視点Bにおける視点画像B、およびそれぞれの画像に対応する奥行き画像Aと奥行き画像Bを入力とし、仮想視点Cにおける仮想視点画像Cを生成するための装置であり、奥行き画像安定化部11、奥行き画像幾何変換部12a,12b、奥行き画像平滑化部13a,13b、仮装視点画像生成部14a,14b、視点画像混合部15、穴埋め処理部16を備える。以下、実視点AおよびBに対応する画像から、仮想視点Cに対応する画像を生成する場合を例に、図中の各機能ブロックの動作を説明する。
 奥行き画像安定化部11は、入力部a、b、c、dからそれぞれ視点画像A、奥行き画像A、奥行き画像B、視点画像Bが入力され、出力部X1からは、奥行き画像Aの誤り部分を奥行き画像Bによって修正した奥行き画像Arrを、出力部X2からは、奥行き画像Bの誤り部分を奥行き画像Aによって修正した奥行き画像Brrをそれぞれ出力する。詳細は後述する。
 奥行き画像幾何変換部12aは、入力された修正奥行き画像Arrを、仮想視点Cの奥行き画像Caに幾何変換し出力する。幾何変換の際には、実視点Aから仮想視点Cへの変換行列を使用する。奥行き画像幾何変換部12bも同様にして修正奥行き画像Brrを仮想視点Cの奥行き画像Cbに幾何変換し出力する。
 奥行き画像平滑化部13aは、奥行き画像幾何変換部12aから入力された奥行き画像Caに対して、平滑化フィルタをかけ、平滑化された奥行き画像Ca´を出力する。平滑化フィルタには、画像全体のノイズを除去するためにメディアンフィルタを使用してもよいし、エッジを保持しつつ平滑化を行うことが可能なバイラテラルフィルタを使用してもよい。奥行き画像平滑化部13bに関しても、入力された奥行き画像Cbに対して、奥行き画像平滑化部13aと同様の処理を行い、平滑化された奥行き画像Cb´を出力する。
 仮想視点画像生成部14aは、仮想視点Cから実視点Aへの幾何変換行列を用いて、平滑化された奥行き画像Ca´の各画素に対する色情報を視点画像Aから取得し、仮想視点画像Ca´´を生成する。仮想視点画像生成部14bも同様にして、平滑化された奥行き画像Cb´の各画素に対する色情報を視点画像Bから取得し、仮想視点画像Cb´´を生成する。
 視点画像混合部15は、視点画像Aから生成した仮想視点画像Ca´´と、視点画像Bから生成した仮想視点画像Cb´´を混合する。混合の方法としては、2つの画像の平均値をとる方法や、視点A―C間の距離と視点B-C間の距離に応じた重みを求め、重み付き平均をとる方法、また単純に距離が小さい方の画像のみを使う方法などを用いる。距離が小さい方のみを用いる場合は、1視点分の情報しか用いないため、前景による背景の隠れなどにより、色情報が取得できない部分の割合が大きい。そのため、両方の画像から色情報を取得する方法の方が好ましい。いずれの方法を用いるかは切り替え可能である。
 穴埋め処理部16は、視点画像混合部15から出力された仮想視点画像中の色情報が取得されなかった画素に対し、穴埋め処理を行う。具体的には、周辺の画素の色情報を用いる方法をとる。
 ここで、奥行き画像安定化部11の処理について詳細に説明する。図2は、奥行き画像安定化部11の内部ブロック図である。奥行き画像安定化部11は、入力部a、b、c、dにそれぞれ、視点画像A、奥行き画像A、奥行き画像B、視点画像Bが入力されると、出力部X1から修正奥行き画像Arr、出力部X2から修正奥行き画像Brrを出力するもので、奥行き画像修正部21a,21bを有する。
 奥行き画像修正部21aは、入力部e、f、g、hにそれぞれ視点画像A、奥行き画像A、奥行き画像B、視点画像Bが入力されると、修正奥行き画像Arrを出力部X3から出力する。奥行き画像修正部21bは、奥行き画像修正部21aと同様に、入力部e、f、g、hからそれぞれ視点画像B、奥行き画像B、奥行き画像A、視点画像Aが入力され、修正奥行き画像Brrが出力部X3から出力される。
 次に、奥行き画像修正部の処理の詳細を説明する。図3は、奥行き画像修正部21aの内部ブロック図、図4及び図5は、奥行き画像修正部21aにおける処理フローを示す図、図6は奥行き画像修正部21aの奥行き画像一次修正部の内部ブロック図、図7は奥行き画像修正部21aの奥行き画像二次修正部の内部ブロック図である。
 奥行き画像修正部21aは、図3に示すように、入力部e、f、g、hにそれぞれ視点画像A、奥行き画像A、奥行き画像B、視点画像Bが入力されると、出力部X3より、修正奥行き画像Arrとして後述の二次修正奥行き画像Arrを出力するもので、幾何変換部31a,31b、奥行き画像一次修正部32aと、奥行き画像二次修正部32bを有する。
 幾何変換部31aは、視点画像Aと奥行き画像Aを、視点画像Bと同一の視点Bの視点画像Baと奥行き画像Baへ幾何変換する(ステップS1)。より具体的には、幾何変換部31aは、奥行き画像Aを視点Bへ幾何変換した結果を奥行き画像Baとして出力し(ステップS1-1)、奥行き画像Aを用いて視点画像Aを視点Bへ幾何変換した結果を視点画像Baとして出力する(ステップS1-2)。
 幾何変換部31aで生成した視点画像Baと、視点画像Bとは、奥行き画像Aの誤りによって誤差が生じる可能性がある。言い換えれば、視点画像Baと、視点画像Bとで異なる場合には、奥行き画像Aが誤っていると推測される。そこで、奥行き画像一次修正部32aでは、視点画像Baと視点画像Bとで異なる場合、奥行き画像Aに基づいて作成した奥行き画像Ba(後述のようにこの奥行き画像Baは視点Aの奥行き画像に再度幾何変換される)を奥行き画像Bで修正する。そのために、奥行き画像一次修正部32aは、入力部i、j、k、lより視点画像Ba、奥行き画像Ba、奥行き画像B、視点画像Bが入力され、そして、修正結果を一次修正奥行き画像Barとして出力部X4より出力する(ステップS2)。ステップS2の詳細は後述する。
 上述のように奥行き画像Bに基づいて修正を行うが、奥行き画像Bが正しいという保証はないため、幾何変換部31bは、図5に示すように、視点画像Bと奥行き画像一次修正部32aから出力された一次修正奥行き画像Barを入力とし、それらを視点Aへ幾何変換する(ステップS3)。幾何変換部31bは、一次修正奥行き画像Barを視点Aへ幾何変換した結果を奥行き画像Aarとして出力し(ステップS3-1)、一次修正奥行き画像Barを用いて視点画像Bを視点Aへ幾何変換した結果を視点画像Abとして出力する(ステップS3-2)。そして、奥行き画像二次修正部32bでは、視点画像Abと視点画像Aとで異なる場合、例えば、一次修正奥行き画像Barに基づいて作成した奥行き画像Aarを奥行き画像Aで修正する。そのために、奥行き画像二次修正部32bは、入力部m、n、o、pより視点画像Ab、奥行き画像Aar、奥行き画像A、視点画像Aを入力し、そして、修正結果を二次修正奥行き画像Arrとして出力部X5より出力する(ステップS4)。これについても詳細は後述する。
 奥行き画像修正部21bについては、奥行き画像修正部21aと同様であるため、説明は省略する。
 次に、奥行き画像一次修正部の詳細を、図4を参照し、図6を用いて説明する。図6は、奥行き画像一次修正部32aの内部ブロック図である。
 奥行き画像一次修正部32aは、図6に示すように、入力部i、j、k、lより視点画像Ba、奥行き画像Ba、奥行き画像B、視点画像Bを入力し、出力部X4より、修正奥行き画像Arを出力するもので、差分画像生成部41、二値画像生成部42、上書き処理部43を有する。
 差分画像生成部41は、視点画像Baと視点画像Bを入力とし、視点画像Bから視点画像Baの輝度値を減算することにより、差分画像を得、出力する(図4、ステップS2-1)。二値画像生成部42は、差分画像生成部41から出力された差分画像を所定の閾値(例えば5など)θを用いてa(輝度値が閾値以上の場合)とb(輝度値が閾値未満の場合)に二値化する(図4、ステップS2-2)。上書き処理部43は、二値画像生成部42より出力された二値画像をマスクとし、二値画像の輝度値がaの場合(すなわち差分が大きい場合)だけ、奥行き画像Baの画素に奥行き画像Bの画素値を上書きする。全ての画素において処理を行い、一次修正奥行き画像Barとして出力する(ステップS2-3)。
 次に、奥行き画像二次修正部の詳細を、図5を参照し、図7を用いて説明する。図7は、奥行き画像二次修正部32bの内部ブロック図である。
 奥行き画像二次修正部32bは、図7に示すように、入力部m、n、o、pより視点画像Ab、奥行き画像Aar、奥行き画像A、視点画像Aを入力し、出力部X5より、二次修正奥行き画像Arrを出力するもので、差分画像生成部51、二値画像生成部52、上書き処理部53を有する。
 差分画像生成部51は、視点画像Abと視点画像Aを入力とし、視点画像Aから視点画像Abの輝度値を減算することにより、差分画像を得、出力する(図5、ステップS4-1)。二値画像生成部52は、差分画像生成部51から出力された差分画像を所定の閾値を用いてa(輝度値が閾値以上の場合)とb(輝度値が閾値未満の場合)に二値化する(図5、ステップS4-2)。上書き処理部53は、二値画像生成部52より出力された二値画像をマスクとし、二値画像の輝度値がaの場合(すなわち差分が大きい場合)だけ、奥行き画像Abの画素に奥行き画像Aの画素値を上書きする。全ての画素において処理を行い、二次修正奥行き画像Arrとして出力する(ステップS4-3)。
 なお、上述の二値画像の輝度値がaの場合に、奥行き画像Abを元の奥行き画像Aを用いて埋める代わりに、何も情報がない画素として処理するようにしてもよい。
 以上の方法によって、奥行き情報を修正することにより、その後の処理において生成する仮想視点画像の品質を向上させることが可能である。
 以上のように、仮想視点画像生成装置10は、2つの視点画像とそれぞれに対応する奥行き画像から、仮想視点の画像を生成することが可能である。その際、入力された奥行き画像が正確でない場合にも、奥行き画像安定化部によって修正を行い、出力される仮想視点画像の品質を向上させることができる。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
10…仮想視点画像生成装置、11…奥行き画像安定化部、12a,12b…奥行き画像幾何変換部、13a,13b…奥行き画像平滑化部、14a,14b…仮想視点画像生成部、15…視点画像混合部、16…穴埋め処理部、21a,21b…奥行き画像修正部、31a,31b…幾何変換部、32a…奥行き画像一次修正部、32b…奥行き画像二次修正部、41,51…差分画像生成部、42,52…二値画像生成部、43,53…上書き処理部。

Claims (4)

  1.  第1の実際の視点画像及び第2の実際の視点画像と、それぞれに対応する第1及び第2の奥行き画像と、から仮想視点画像を生成する仮想視点画像生成装置であって、
     前記第1の奥行き画像で前記第2の奥行き画像を修正し、前記第2の奥行き画像で前記第1の奥行き画像を修正する修正部を有することを特徴とする仮想視点画像生成装置。
  2.  前記修正部は、
     前記第1の実際の視点画像と前記第1の奥行き画像を、前記第2の実際の視点画像の視点である第2の視点における変換視点画像と変換奥行き画像へ幾何変換する第1の幾何変換部と、
     該第1の幾何変換部により幾何変換され生成された前記第2の視点における変換視点画像と、前記第2の実際の視点画像とが異なるとき、前記第1の幾何変換部により幾何変換され生成された前記第2の視点における変換奥行き画像を、前記第2の奥行き画像で修正し、第1の修正変換奥行き画像を生成する第1の奥行き画像修正部と、
     前記第1の修正変換奥行き画像と前記第2の視点の実際の視点画像を、前記第1の実際の視点画像の視点である第1の視点における変換視点画像と再変換奥行き画像へ幾何変換する第2の幾何変換部と、
     該第2の幾何変換部により幾何変換され生成された前記第1の視点における変換視点画像と、第1の実際の視点画像とが異なるとき、前記第2の幾何変換部により幾何変換され生成された前記第1の視点における再変換奥行き画像を修正し、第2の修正変換奥行き画像を生成する第2の奥行き画像修正部と、を有することを特徴とする請求項1に記載の仮想視点画像生成装置。
  3.  前記第1の奥行き画像修正部は、前記第2の視点における変換視点画像と、前記第2の実際の視点画像との差分を画素毎に算出し差分画像を生成する差分画像生成部と、
     前記差分画像を所定の閾値によって二値化する二値画像生成部と、
     前記二値画像をマスク画像とし、二値画像の値に応じ、前記第2の視点における変換奥行き画像を、前記第2の奥行き画像で上書きするか否かを切り替える上書き処理部とを備えることを特徴とする請求項2に記載の仮想視点画像生成装置。
  4.  前記第2の奥行き画像修正部は、前記第1の視点における変換視点画像と、前記第1の実際の視点画像との差分を画素毎に算出し差分画像を生成する差分画像生成部と、
     前記差分画像を所定の閾値によって二値化する二値画像生成部と、
     前記二値画像をマスク画像とし、二値画像の値に応じ、前記第1の視点における再変換奥行き画像を、前記第1の奥行き画像で上書きするか否かを切り替える上書き処理部とを備えることを特徴とする請求項2または3に記載の仮想視点画像生成装置。
PCT/JP2011/069937 2010-11-12 2011-09-01 仮想視点画像生成装置 WO2012063540A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-253523 2010-11-12
JP2010253523 2010-11-12

Publications (1)

Publication Number Publication Date
WO2012063540A1 true WO2012063540A1 (ja) 2012-05-18

Family

ID=46050696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069937 WO2012063540A1 (ja) 2010-11-12 2011-09-01 仮想視点画像生成装置

Country Status (1)

Country Link
WO (1) WO2012063540A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014049894A1 (ja) * 2012-09-25 2014-04-03 パナソニック株式会社 画像信号処理装置および画像信号処理方法
JP2022506823A (ja) * 2018-11-09 2022-01-17 オランジュ ビュー合成

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215311A (ja) * 1999-01-21 2000-08-04 Nippon Telegr & Teleph Corp <Ntt> 仮想視点画像生成方法およびその装置
JP2001067473A (ja) * 1999-08-25 2001-03-16 Nippon Telegr & Teleph Corp <Ntt> 画像生成方法及びその装置
JP2006513596A (ja) * 2002-10-23 2006-04-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 3次元ビデオ信号予処理方法
JP2008263528A (ja) * 2007-04-13 2008-10-30 Univ Nagoya 画像情報処理方法及び画像情報処理システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215311A (ja) * 1999-01-21 2000-08-04 Nippon Telegr & Teleph Corp <Ntt> 仮想視点画像生成方法およびその装置
JP2001067473A (ja) * 1999-08-25 2001-03-16 Nippon Telegr & Teleph Corp <Ntt> 画像生成方法及びその装置
JP2006513596A (ja) * 2002-10-23 2006-04-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 3次元ビデオ信号予処理方法
JP2008263528A (ja) * 2007-04-13 2008-10-30 Univ Nagoya 画像情報処理方法及び画像情報処理システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014049894A1 (ja) * 2012-09-25 2014-04-03 パナソニック株式会社 画像信号処理装置および画像信号処理方法
JP5830705B2 (ja) * 2012-09-25 2015-12-09 パナソニックIpマネジメント株式会社 画像信号処理装置および画像信号処理方法
JP2022506823A (ja) * 2018-11-09 2022-01-17 オランジュ ビュー合成
JP7518071B2 (ja) 2018-11-09 2024-07-17 オランジュ ビュー合成

Similar Documents

Publication Publication Date Title
US9872007B2 (en) Controlling light sources of a directional backlight
US8953023B2 (en) Stereoscopic depth mapping
JP6644371B2 (ja) 映像表示装置
KR100770019B1 (ko) 스테레오 카메라의 영상왜곡 보정 장치 및 그 방법
US9104096B2 (en) 3D-image display apparatus, 3D-image capturing apparatus, and 3D-image display method using longitudinal line images for parallax information
US11785197B2 (en) Viewer-adjusted stereoscopic image display
WO2011096280A1 (ja) 画像表示装置、画像表示システム及び画像表示方法
CN109716761B (zh) 图像生成装置、图像生成方法以及记录介质
TWI432013B (zh) 立體影像顯示方法及影像時序控制器
US9154771B2 (en) Apparatus for capturing stereoscopic image
WO2012063540A1 (ja) 仮想視点画像生成装置
Kakeya Real-image-based autostereoscopic display using LCD, mirrors, and lenses
Ideses et al. 3D from compressed 2D video
EP2652955A1 (en) Improved stereoscopic shooting apparatus, and method thereof
JP7339278B2 (ja) 視聴者に合わせて調整された立体画像表示
JP2011102993A (ja) 立体画像表示装置および方法並びにプログラム
JP5250604B2 (ja) 立体画像表示装置、立体画像表示方法およびプログラム
KR20100000951A (ko) 스테레오스코픽 영상 신호의 2차원 영상 신호로의 변환방법 및 변환 장치
JP2007017558A (ja) 立体画像表示装置および立体画像表示方法
Arai Three-dimensional television system based on integral photography
TWI432011B (zh) 立體影像顯示裝置與方法
JP2012075055A (ja) 立体画像表示装置
JPH08240789A (ja) 画像表示装置及び画像入力装置
Lateef USING ANAGLYPH 3D TECHNOLOGY FOR VIDEO PRODUCTION WITH HIGH RESOLUTION BASED ON SUPER-RESOLUTION
JP2013090170A (ja) 立体視映像再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP