WO2011091607A1 - 含芴卟啉-蒽共聚物、其制备方法和应用 - Google Patents

含芴卟啉-蒽共聚物、其制备方法和应用 Download PDF

Info

Publication number
WO2011091607A1
WO2011091607A1 PCT/CN2010/070435 CN2010070435W WO2011091607A1 WO 2011091607 A1 WO2011091607 A1 WO 2011091607A1 CN 2010070435 W CN2010070435 W CN 2010070435W WO 2011091607 A1 WO2011091607 A1 WO 2011091607A1
Authority
WO
WIPO (PCT)
Prior art keywords
porphyrin
organic
catalyst
solvent
copolymer
Prior art date
Application number
PCT/CN2010/070435
Other languages
English (en)
French (fr)
Inventor
周明杰
黄杰
刘贻锦
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44318632&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011091607(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to JP2012550292A priority Critical patent/JP5546070B2/ja
Priority to US13/575,684 priority patent/US8598301B2/en
Priority to PCT/CN2010/070435 priority patent/WO2011091607A1/zh
Priority to CN2010800481069A priority patent/CN102686592B/zh
Priority to EP10844385.4A priority patent/EP2530084B1/en
Publication of WO2011091607A1 publication Critical patent/WO2011091607A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/20Liquids
    • H01S3/213Liquids including an organic dye
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of organic materials, and in particular to a porphyrin-containing copolymer, a preparation method thereof and an application thereof.
  • Organic solar cells are a new type of solar cells. Compared with inorganic semiconductor materials, which are limited in source, expensive, toxic, complicated in preparation process and high in cost, they have some advantages that inorganic solar cells cannot match, such as a wide range of materials. Structure diversity and controllability, low cost, safety and environmental protection, production process, light weight, large-area flexible preparation, etc., can be widely used in various fields such as construction, lighting and power generation, with important development and Application prospects.
  • the photoelectric conversion efficiency of organic solar cells is still much lower than that of inorganic solar cells. Therefore, the development of new organic materials is of great significance for improving the efficiency of organic solar cells and other semiconductor devices or optoelectronic devices.
  • a porphyrin-ruthenium-containing copolymer having a wide spectral response and good stability, and a preparation method of a porphyrin-ruthenium-containing copolymer having a simple synthesis route and low cost are provided.
  • Embodiments of the present invention also provide the use of the above porphyrin-containing ruthenium copolymer in the manufacture of a solar cell device, an organic field effect transistor, an organic electroluminescent device, an organic optical memory device, an organic nonlinear material or an organic laser device.
  • a porphyrin-containing ruthenium copolymer comprising the polymer represented by the following structural formula (1):
  • RR 2 , R 3 , and R 4 are the same or different ( ⁇ -( 16 alkyl; n is an integer between 1 and 100).
  • a method for preparing a porphyrin-containing ruthenium copolymer comprising the steps of:
  • R 2 , R 3 , and R 4 are the same or different alkyl groups of C r C 16 ;
  • the compounds VIII, B, and C are subjected to a polycondensation oxidation reaction to form a fluorenyl porphyrin compound;
  • a thiol porphyrin compound is subjected to a bromination substitution reaction to produce a dibromo-substituted fluorenyl porphyrin compound;
  • the dibromo-substituted indenyl porphyrin compound is subjected to Suzuki polymerization with the compound D in the presence of a catalyst, a solvent and an alkaline solution to obtain a polymer represented by the following structural formula (1):
  • n in the structural formula (1) is an integer between 1 and 100.
  • the ruthenium or its derivative contained has excellent photostability and thermal stability, and has an easily modified structure, which can be introduced by introducing a heterocyclic ring, a polyaromatic ring or a heterocyclic ring.
  • the ring molecules increase the density of the skeletal electron cloud of the porphyrin-ruthenium-containing copolymer, so that the band gap of the copolymer is narrowed.
  • the porphyrin structure enables the copolymer to have higher quantum efficiency of charge transfer and energy transfer reactions, good electron buffering and photoelectricity, good rigidity, good thermal stability and environmental stability.
  • the ruthenium in the copolymer also has good stability and good film formability, and has good carrier transport properties, and has high hole mobility, thereby improving the porphyrin-containing copolymer.
  • the carrier transport characteristics improve hole mobility.
  • Figure 1 is a schematic view showing the structural formula of a porphyrin-containing ruthenium copolymer according to an embodiment of the present invention
  • FIG. 2 is a flow chart showing a preparation method of a porphyrin-containing ruthenium copolymer according to an embodiment of the present invention
  • Fig. 3 is a schematic view showing the structure of a porphyrin-ruthenium-containing copolymer-containing solar cell device according to an embodiment of the present invention.
  • Fig. 4 is a view showing the structure of an organic electroluminescent device containing a porphyrin-ruthenium copolymer according to an embodiment of the present invention.
  • Fig. 5 is a view showing the structure of an organic field effect transistor containing a porphyrin-ruthenium copolymer according to an embodiment of the present invention. detailed description
  • a structural formula of a porphyrin-containing ruthenium copolymer according to an embodiment of the present invention which is a copolymer represented by the following structural formula (1):
  • n is an integer between 1 and 100.
  • the porphyrin-containing ruthenium copolymer has two identical alkyl-containing fluorene groups in each unit, that is, for example, R, and R 3 are the same C r C 16
  • the alkyl group, R 2 and R 4 are the same -C ⁇ alkyl group, or in other words, 14 is the same -Cw alkyl group, and R 2 and R 3 are the same -C 16 alkyl group.
  • R 2 , R 3 , and R 4 are the same ( ⁇ -(: 16 fluorenyl group.
  • n) is preferably an integer of 5-50, more preferably 10-30.
  • R t , R 2 , R 3 and R 4 are C 8 alkyl groups.
  • the porphyrin-containing ruthenium copolymer includes ruthenium or a derivative thereof, a porphyrin structure, and a ruthenium structure.
  • hydrazine or its derivatives have excellent photostability and thermal stability, and have a structure which is easy to modify, and can increase the porphyrin-containing copolymer by introducing a heterocyclic ring, a polyaromatic ring or an aromatic heterocyclic molecule.
  • the density of the skeleton electron cloud narrows the band gap of the copolymer.
  • the porphyrin structure enables the copolymer to have higher quantum efficiency of charge transfer and energy transfer reactions, good electron buffering and photoelectricity, good rigidity, good thermal stability and environmental stability.
  • Bismuth also has good stability and good film formation, and has good carrier transport properties, and its hole mobility is high, so the carrier containing porphyrin-ruthenium copolymer can be improved. Transmission characteristics improve hole mobility.
  • the above porphyrin-containing copolymer contains a plurality of thiophene rings, has a moderate band gap, a wide spectral response, a wavelength band of about 300-700 nm, substantially covers the visible light band, and has good thermal stability and Environmental stability, showing good photoelectric performance.
  • Fluorene-containing porphyrins of the present embodiment - anthracene copolymer, RR 2, R 3, R4 is preferably an alkyl chain, for example C 6 alkyl chain or a C 6 above, by introducing an alkyl chain to improve the dissolution of the material Performance, which is conducive to film forming and expands its application range.
  • the preparation method of the above-mentioned ruthenium-ruthenium-containing copolymer comprises the following steps:
  • R 2 , R 3 , and R 4 are the same or different ( ⁇ ( ⁇ of the alkyl group;
  • n in the structural formula (1) is an integer between 1 and 100.
  • step S01 the compounds A, B, :, D can be directly obtained from the market or prepared by an existing synthesis method.
  • the description is the same as the above description of the porphyrin-containing ruthenium-containing copolymer, and R 2 , R 3 and R 4 are the structural forms described above, and are not described herein again.
  • R] are the same C r C 16 alkyl group, and R 2 and R 4 are the same dC 16 alkyl group, in which case the compounds A and B have the same structure.
  • the compounds A, B, C, and D are prepared separately, as follows:
  • the substitution reaction of 2-bromoindole with bromo alkane under a catalyst or a solvent to obtain 9,9-dialkyl-2-bromoindole is obtained.
  • the catalyst is tetrabutylammonium bromide or benzyltriethylammonium chloride
  • the solvent is toluene, disulfoxide, tetrahydrofuran or the like.
  • the bromine is a bromine having an alkyl group of R and R 2 , respectively.
  • the two reaction steps, i.e., steps i and ii were carried out separately using two bromines.
  • the reaction route was as follows:
  • reaction of bromination hydroformylation in an alkyllithium, dimercaptoamide and solvent system is as follows:
  • the alkyl lithium is n-butyllithium and the solvent is tetrahydrofuran.
  • the detailed preparation process can be found in the literature: Macromolecules, 2006, 39, 456.
  • the condensation reaction is carried out in a system containing furfural, a catalyst and pyrrole to obtain a compound C, and the reaction equation is as follows:
  • the catalyst of step iv may be trifluoroacetic acid or boron trifluoride dimethyloxy complex.
  • pyrrole is both a solvent and a reactant.
  • Detailed procedures for the preparation of dipyrrole, Compound C, can be found in the literature: Tetrahedron, 1994, 39, 1 1427.
  • the specific implementation process is as follows: Under the protection of N 2 , add 9,10-dibromofluorene to a three-necked flask, inject 150 ml of tetrahydrofuran solvent, and slowly inject n-butyllithium with a syringe at -78 ° C. Stirring was continued for 2 hours, and 2-isopropoxy-4,4,5,5-tetradecyl-1,3,2-dioxaborolane was injected at -78 ° C, and stirred at room temperature overnight. . The reaction was quenched by the addition of aq. EtOAc. EtOAc (EtOAc) The liquid was subjected to silica gel column chromatography to give the product.
  • the catalyst may be trifluoroacetic acid or the like, and the oxidizing agent may be dichlorodicyanobenzoquinone (DDQ) or the like, and is not limited thereto.
  • the solvent may be dichlorosilane, tetrahydrofuran, or the like. Carbon chloride, chloroform or acetonitrile. Its reaction formula is as follows:
  • the specific implementation process is as follows: Set up the anhydrous oxygen-free device, weigh the compounds A, B, C (for example, weighed in 1/1/2 of the molar ratio), dissolve in the dichlorosilane, pass nitrogen, add trifluoro Acetic acid, stirred, then add two molar equivalents of dichlorodicyanobenzoquinone (DDQ), continue to stir, then add triethylamine to quench the reaction, concentrate the solvent, filter, collect the filtrate and spin dry the solvent with dichloroguanidine Alkane on the silica gel column The extract was rinsed, the solvent was evaporated, and then crystallised from diethyl ether/methanol to product, i.
  • DDQ dichlorodicyanobenzoquinone
  • the solvent in the step S03 may be, but not limited to, chloroform or tetrahydrofuran, etc., and the specific implementation process is as follows: a mercaptoporphyrin compound (such as 5,15-bis(9,9-dialkylfluorene) porphyrin) is dissolved in chloroform. Add a small amount of pyridine, reduce the reaction to 0 ° C, add the appropriate amount of N-bromosuccinimide, stir, the mixture returned to room temperature, then continue to stir for several hours, add acetone to terminate the reaction, remove the solvent, with ether / decyl alcohol is recrystallized to give the product.
  • the reaction is as follows:
  • the catalyst in the step S04 may be an organic palladium catalyst in an amount of from 0.1 to 20% by mole based on the amount of the compound D.
  • the organic palladium catalyst may be, for example but not limited to, Pd 2 (dba) 3 /P(o-Tol) 3 , Pd(PPh 3 ) 4 or Pd(PPh 3 ) 2 Cl 2 .
  • the alkaline solution may be an inorganic alkali solution or an organic alkali solution, and the inorganic alkali solution may be an aqueous solution of an alkali metal hydroxide or an alkali metal carbonate, and may be, for example, but not limited to, a sodium hydroxide solution, a potassium hydroxide solution, or a sodium carbonate.
  • the solution, the potassium carbonate solution or the like is preferably a sodium carbonate solution
  • the organic solution may be an aqueous solution of an alkyl ammonium hydroxide, such as, but not limited to, tetradecyl ammonium hydroxide, tetraethylammonium hydroxide, tetrapropyl hydroxide.
  • the above alkaline solution may be used in an amount of 5 to 20 times the molar amount of the compound D.
  • the solvent is a weakly polar or polar aprotic organic solvent or a mixed solvent thereof, and may be, for example but not limited to, chloroform, dichlorodecane, ethylene glycol dioxime ether, dimercaptosulfoxide (DMSO), tetrahydrofuran (THF) And toluene, dinonylbenzene or the like, preferably toluene.
  • the solvent is used in an amount sufficient to dissolve the respective reactants and sufficiently react.
  • step S04 is as follows:
  • step S04 The specific implementation process of the step S04 is as follows: 10 mmol of 1,4-bis(4,4,5,5-tetradecyl-1,3,2-dioxaborolan) hydrazine is added to the round bottom flask. 1.0 mmol 5,15-dibromo-10,20-bis(9,9-dialkylfluorene) porphyrin, 0.01 mmol of tetrakis(triphenylphosphine)palladium, 3 ml of aqueous Na 2 C0 3 (2 mol/L And 20 ml of benzene solvent, vacuum deoxidation, and filled with nitrogen, the solution is heated to 50-120 ° C, the reaction is 12-80 hours.
  • the product is then purified: the product of the reaction is poured into methanol, the precipitate is separated by filtration through a Buchner funnel, washed with dilute HC1, and the solid is washed with acetone in a Soxhlet extractor for 12-72 hours to remove The monomer and catalyst residue, the remaining polymer was dissolved in tetrahydrofuran and chloroform, which is the copolymer of this example.
  • the n in the copolymer is preferably from 5 to 50, more preferably from 10 to 30.
  • the desired degree of polymerization can be obtained by controlling the solvent, the reaction temperature, the reaction time, the amount of the reactant added, the type and amount of the catalyst.
  • the synthesis routes of the three monomers of the compounds A, B and C are relatively simple and mature, and are basically one-step synthesis, thereby reducing the process flow and reducing the manufacturing cost.
  • the bromination substitution reaction and the Suzuki polymerization reaction are a mature polymerization reaction with high yield, mild conditions, easy control, and easy introduction of an alkyl group to increase the solubility and molecular weight of the product to realize a spin-coatable polymer.
  • the porphyrin-containing ruthenium copolymer of the present embodiment can be applied to various photovoltaic or semiconductor devices, for example, for solar cell devices, organic field effect transistors, organic electroluminescent devices, organic optical storage devices, organic nonlinearities. Materials and organic laser devices, etc.
  • a solar cell device, an organic field effect transistor, and an organic electroluminescence device will be described as an example.
  • Others such as organic optical storage devices, organic
  • the linear material and the organic laser device are similar to the following, and are the optical storage materials, nonlinear materials, laser materials or semiconductor materials of the present embodiment using the porphyrin-containing copolymer.
  • a solar cell device using the porphyrin-ruthenium-containing copolymer in the above embodiment which comprises a glass substrate 11, a transparent anode 12, an intermediate auxiliary layer 13, an active layer 14, and a cathode 15 which are sequentially laminated.
  • the auxiliary layer 13 is made of polyethylene dioxythiophene: polystyrene-cross-acid composite material (abbreviated as PEDOT:PSS), the active layer 14 includes an electron donor material and an electron acceptor material, and the electron donor material adopts the above-mentioned ruthenium-containing material.
  • the porphyrin-ruthenium copolymer, the electron acceptor material may be [6,6]phenyl-C 61 -butyrate butyrate (PCBM for short).
  • the transparent anode 12 may be indium tin oxide (abbreviated as ITO), preferably indium tin oxide having a sheet resistance of 10-20 ⁇ / ⁇ .
  • the cathode 15 may be an aluminum electrode or a bimetal layer electrode such as Ca/Al or Ba/Al or the like.
  • the glass base layer 11 can be used as a bottom layer, and when prepared, ITO glass is selected, and after ultrasonic cleaning, treated with oxygen-Plasma, an intermediate auxiliary layer 13 is coated on the ITO glass, and the porphyrin-onion copolymer and The electron acceptor material is applied to the intermediate auxiliary layer 13 by blending to form the active layer 14, and then the cathode 15 is deposited on the active layer 14 by a vacuum evaporation technique to obtain the above solar cell device.
  • the transparent anode 12, the intermediate auxiliary layer 13, the active layer 14, the bimetal layer Ca, and the A1 layer have thicknesses of 160 nm, 40 nm, 150 nm, 20 nm, and 70 nm, respectively.
  • the porphyrin-containing copolymer can more fully utilize light energy due to its wide spectral response range, thereby achieving higher photoelectric conversion efficiency and increasing the power generation capability of the solar cell device.
  • the organic material can also reduce the quality of the solar cell device, and can be fabricated by spin coating techniques, etc., and is convenient for mass production.
  • the device includes a glass base layer 21, a transparent anode 22, a light-emitting layer 23, a buffer layer 24, and a cathode 25 which are sequentially stacked.
  • the transparent anode 22 may be indium tin oxide (abbreviated as ITO), preferably indium tin oxide having a sheet resistance of 10-20 ⁇ / ⁇ .
  • the light-emitting layer 23 contains the porphyrin-containing copolymer in the above examples.
  • the buffer layer 24 may be LiF or the like, but is not limited thereto.
  • the cathode 25 may be, but not limited to, metal A1 or Ba or the like, but is not limited thereto.
  • the organic electroluminescent device structure is represented by: ITO/porphyrin-containing copolymer/LiF/Al.
  • the layers can be formed by existing methods, and the porphyrin-containing copolymer can be formed on ITO by a spin coating technique.
  • an organic field effect transistor using the porphyrin-ruthenium-containing copolymer in the above embodiment which comprises a substrate 31, an insulating layer 32, a modification layer 33, an organic semiconductor layer 34, and a layer which are sequentially stacked.
  • the source electrode 35 and the drain electrode 36 on the organic semiconductor layer 34 may be, but not limited to, a highly doped silicon wafer (Si), and the insulating layer 32 may be, but not limited to, a micro-nano (eg, 450 nm) thick SiO 2 .
  • the organic semiconductor layer 34 employs the above-described cerium-containing cerium-containing copolymer.
  • Source electrode 35 and drain electrode 36 can be used without limitation.
  • the modifying layer 33 can be, but is not limited to, octadecyltrichlorosilane.
  • the substrate 31, the insulating layer 32, the modifying layer 33, and the source electrode 35 and the drain electrode 36 can be formed by a conventional method.
  • the organic semiconductor layer 34 may be a spin coating of the porphyrin-containing ruthenium copolymer in the above embodiment on the insulating layer 32 modified by the modification layer 33.
  • the preparation method of the porphyrin-containing ruthenium copolymer and its properties and the like are exemplified below by way of specific examples.
  • the eight, B, C, and D in the following examples are directly prepared according to the above methods. Of course, in other embodiments, they may be directly purchased from the market, and are not limited thereto.
  • 5,15-bis(9,9-dialkylfluorene)porphyrin is prepared, and 5,15-bis(9,9-dihexylfluorene)porphyrin is taken as an example, and the specific preparation process is as follows: Good anhydrous anaerobic device, weighed compounds A, B, C according to molar ratio 1: 1: 2, compounds A and B have the same structure, all are 9,9-dihexyl-2-yield, compound C is dipyrrole The decane was dissolved in dichloromethane, nitrogen was bubbled through for 30 minutes, trifluoroacetic acid was added by syringe, stirred at room temperature for 3 hours, and then two molar equivalents of dichlorodicyanobenzoquinone (DDQ) were added.
  • DDQ dichlorodicyanobenzoquinone
  • the third step the preparation of the porphyrin-containing copolymer, the structural formula of the porphyrin-containing copolymer of the present embodiment is:
  • the specific formation process is as follows: 1,4-bis(4,4,5,5-tetradecyl-1,3,2-dioxaborolan) fluorene, 5,15-di is added to a round bottom flask. Bromo-10,20-bis(9,9-dihexylfluorene)porphyrin, tetrakis(triphenylphosphine)palladium, Na 2 CO 3 aqueous solution and toluene solvent, vacuum deoxidation and charging with nitrogen, the solution is first The mixture was refluxed for 48 hours under N 2 atmosphere, then poured into methanol, and the precipitate was separated by filtration using a Buchner funnel, and washed with dilute HC1, and the solid was washed with acetone in a Soxhlet extractor for 24 hours to remove the monomer and the catalyst residue. The remaining polymer was dissolved in tetrahydrofuran and chloroform in a yield of 32%.
  • the ruthenium or its derivative contained has excellent photostability and thermal stability, and has a structure which is easy to repair and can be introduced by introducing a heterocyclic ring, a polyaromatic ring or The aromatic heterocyclic molecule increases the density of the skeletal electron cloud containing the porphyrin-ruthenium copolymer, so that the band gap of the copolymer is narrowed.
  • the porphyrin structure enables the copolymer to have higher quantum efficiency of charge transfer and energy transfer reactions, good electron buffering and photoelectricity, good rigidity, good thermal stability and environmental stability.
  • the ruthenium in the copolymer also has good stability and good film formation, and has good carrier transport properties. Since the hole mobility is high, the carrier transport characteristics of the porphyrin-ruthenium-containing copolymer can be improved, and the hole mobility can be improved.
  • the above porphyrin-containing ruthenium copolymer is used in a solar cell device, an organic field effect transistor, an organic electroluminescence device, an organic optical memory device, an organic nonlinear material or an organic laser device, the photoelectric or semiconductor related performance can be improved. And can reduce the quality of the device and facilitate the preparation of large quantities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)

Description

含芴卟啉 -蒽共聚物、 其制备方法和应用
技术领域 本发明属于有机材料技术领域, 具体涉及一种含芴卟啉 -蒽共聚物、 其制备 方法和应用。
说 背景技术
当今世界经济主要是建立在以化石能源, 如煤炭、 石油和天然气等基础之 上的经济。然而,这些不可再生的化石能源都在书不断的枯竭。进入 21世纪以来, 全球性的能源问题以及随之而来的环境污染和气候变暖等问题日益凸现和逐渐 加剧。 由于太阳能具有分布普遍和广阔, 资源数量多, 无污染, 清洁, 安全以 及获取方便等突出优点, 被认为是最有希望的可再生能源之一。
为充分利用太阳光照射的能量, 人们不断开发出能够吸收太阳光的新型材 料, 其中无机半导体材料获得较为广泛的发展和应用, 例如目前用于地面的硅 晶电池, 然而由于其生产工艺复杂、 成本高, 使其应用受到限制。 为了降低成 本, 拓展应用范围, 长期以来人们一直在寻找新型的替代的半导体材料。
近年来,有机材料逐渐弓 I起人们广泛的兴趣,例如,在 1992年 N. S. Sariciftci 等报道了共轭聚合物与 C6Q之间的光诱导电子转移现象后, 人们在共轭聚合物 用作太阳能电池等方面投入了大量研究, 并取得了飞速的发展。 太阳能电池直 接把太阳光能转化成电能, 是利用太阳能切实可行的有效方法。
有机太阳能电池是一种新型的太阳能电池, 相对于无机半导体材料来源有 限、 价格昂贵、 有毒、 制备工艺复杂、 成本太高等而言, 它具有无机太阳能电 池无法比拟的一些优点, 如材料来源广泛、 结构多样性和可调控性、 成本低廉、 安全环保、 制作工艺筒单、 产品重量轻、 可大面积柔性制备等等, 可以广泛应 用在建筑、 照明和发电等多种领域, 具有重要的发展和应用前景。 然而, 到目 前为止, 有机太阳能电池的光电转换效率比无机太阳能电池还是要低很多。 因 此, 开发新型的有机材料对于提高有机太阳能电池及其它半导体器件或光电器 件的效率具有重要意义。
发明内容
有鉴于此, 提供一种光谱响应宽、 稳定性好的含芴卟啉 -蒽共聚物, 以及一 种合成路线简单、 成本低的含芴卟啉-蒽共聚物制备方法。
本发明实施例还提供上述含芴卟啉-蒽共聚物在制造太阳能电池器件、有机 场效应晶体管、 有机电致发光器件、 有机光存储器件、 有机非线性材料或有机 激光器件中的应用。
一种含芴卟啉 -蒽共聚物, 其包含如下结构式(1 )表示的聚合物:
Figure imgf000004_0001
式中: R R2、 R3、 R4为相同或不相同的(^-( 16的烷基; n为 1-100之间 的整数。
一种含芴卟啉-蒽共聚物制备方法, 其包括如下步骤:
分别提供如下结构式表示的化合物 A、 B、 C、 D,
Figure imgf000004_0002
R2、 R3、 R4为相同或不同的 Cr C16的烷基;
在含有催化剂、 氧化剂和溶剂的体系中, 将化合物八、 B、 C进行缩聚氧化 反应, 生成芴基卟啉化合物;
在含有催化剂和溶剂的体系中 , 将芴基卟啉化合物进行溴化取代反应 , 生 成二溴取代的芴基卟啉化合物;
在催化剂、 溶剂以及碱性溶液存在的条件下, 将二溴取代的芴基卟啉化合 物与化合物 D进行 Suzuki聚合反应, 获得如下结构式 (1)表示的聚合物:
Figure imgf000005_0001
结构式 (1)中的 n为 1-100之间的整数。
以及,上述含芴卟啉-蒽共聚物在制造太阳能电池器件、有机场效应晶体管、 有机电致发光器件、 有机光存储器件、 有机非线性材料或有机激光器件中的应 用。
在上述含芴卟啉-蒽共聚物中,所含的芴或其衍生物具有优异的光稳定性和 热稳定性, 并具有易修饰的结构, 可以通过引入杂环、 多芳环或芳杂环分子来 增大含芴卟啉 -蒽共聚物的骨架电子云的密度, 使得共聚物的带隙变窄。 卟啉结 构能使共聚物具有较高的电荷转移和能量转移反应的量子效率, 具有良好的电 子緩冲性和光电磁性, 良好的刚柔性、 较好热稳定性和环境稳定性。 共聚物中 的蒽也具有很好的稳定性和较好的成膜性, 并且具有较好的载流子传输特性, 其空穴迁移率较高, 因此可提高含芴卟啉-蒽共聚物的载流子传输特性, 提高空 穴迁移率。上述含芴卟啉-蒽共聚物应用于太阳能电池器件、有机场效应晶体管、 有机电致发光器件、 有机光存储器件、 有机非线性材料或有机激光器件中时, 可提高其光电或半导体相关性能, 并能减轻器件的质量,且便于大批量的制备。 附图说明
下面将结合附图及实施例对本发明作进一步说明, 附图中:
图 1是本发明实施例的含芴卟啉-蒽共聚物的结构式的示意图;
图 2是本发明实施例的含芴卟啉 -蒽共聚物制备方法流程图;
图 3 是釆用本发明实施例的含芴卟啉-蒽共聚物的太阳能电池器件结构示 意图。
图 4是采用本发明实施例的含芴卟啉-蒽共聚物的有机电致发光器件的结 构示意图。
图 5 是采用本发明实施例的含芴卟啉-蒽共聚物的有机场效应晶体管的结 构示意图。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。
请参阅图 1 , 显示本发明实施例的含芴卟啉-蒽共聚物的结构式, 即为如下 结构式(1 )表示的共聚物:
Figure imgf000006_0001
式中: 、 、 3 R4为相同或不相同的 -C16的烷基; n为 1-100之间 的整数。
在本发明的一个实施例中,含芴卟啉-蒽共聚物的每个单元中具有两个相同 的含烷基芴基团, 也即, 例如 R,、 R3为相同的 CrC16烷基, R2、 R4为相同的 -C^烷基,或者换句话说, 、1 4为相同的 -Cw烷基, R2、R3为相同的 -C16 烷基。 这样可以简化制备工艺, 降低生产成本, 另外, 含有烷基有助于提高共 聚物的溶解性能。 优选地, 所述 、 R2、 R3、 R4为相同的(^-(:16的垸基。 n优 选为 5-50, 更优选为 10-30之间的整数。 在本发明的一个具体实施例中, Rt、 R2、 R3、 R4为 C8烷基。
在该含芴卟啉-蒽共聚物中, 包括芴或其衍生物、卟啉结构和蒽结构。其中, 芴或其衍生物具有优异的光稳定性和热稳定性, 并具有易修饰的结构、 可以通 过引入杂环、多芳环或芳杂环分子来增大含芴卟啉-蒽共聚物的骨架电子云的密 度, 使得共聚物的带隙变窄。 卟啉结构能使共聚物具有较高的电荷转移和能量 转移反应的量子效率, 具有良好的电子緩冲性和光电磁性, 良好的刚柔性、 较 好热稳定性和环境稳定性。 蒽也具有很好的稳定性和较好的成膜性, 并且具有 较好的载流子传输特性, 其空穴迁移率较高, 因此可提高含芴卟啉 -蒽共聚物的 载流子传输特性, 提高空穴迁移率。
上述含芴卟啉-蒽共聚物包含多个噻吩环, 具有适中的能带隙, 较宽的光谱 响应, 波段大约在 300 -700 nm, 基本涵盖可见光波段, 还具有较好的热稳定性 和环境稳定性, 表现出较好的光电性能。 在本实施例的含芴卟啉-蒽共聚物中, R R2、 R3、 R4优选为烷基链, 例如 C6或 C6以上的烷基链, 通过引入烷基链以 提高材料的溶解性能, 有利于成膜加工, 扩大其应用范围。
请参阅图 2, 上述含芴卟淋-蒽共聚物的制备方法包括如下步骤:
S01 : 分别提供如下结构式表示的化合物 A、 B、 C, D,
Figure imgf000008_0001
R2、 R3、 R4为相同或不同的(^ (^的烷基;
S02: 在含有催化剂、 氧化剂和溶剂的体系中, 将化合物 、 B、 C进行缩 聚氧化反应, 生成芴基卟啉化合物;
S03:在含有催化剂和溶剂的体系中,将芴基卟啉化合物进行溴化取代反应, 生成二溴取代的芴基卟啉化合物;
S04: 在催化剂、溶剂以及碱性溶液存在的条件下, 将二溴取代的芴基卟淋 化合物与化合物 D进行 Suzuki聚合反应, 获得如下结构式 (1)表示的聚合物:
Figure imgf000008_0002
结构式 (1)中的 n为 1-100之间的整数。
在步骤 S01中, 化合物 A、 B、 :、 D可直接从市场上购得或者通过现有的 合成方法制备。 其中, 与上述含芴卟啉-蒽共聚物的描述基本相同, 、 R2、 R3、 R4采用上面描述的结构形式, 在此不再赘述。 例如, 如前所述, 在一个优选的 实施例中, R】、 R3为相同的 CrC16烷基, R2、 R4为相同的 d-C16烷基, 此时化 合物 A、 B结构相同, 由此可少提供一种原料, 简化了制备工艺和降低了成本, 且相对于采用不同化合物 A和 B时具有更高的产率。
本实施例中, 化合物 A、 B、 C、 D分別制备而得, 具体如下:
1、 化合物 A和 B的制备 以化合物 A为例, 其制备包括以下步骤:
第 由 2-溴芴与溴烷在催化剂、 溶剂条件下进行取代反应, 制得 9,9- 二烷基 -2-溴芴。 催化剂为四丁基溴化铵或者苄基三乙基氯化铵, 溶剂为曱苯、 二曱亚砜、 四氢呋喃等。对应地, 溴烷分别是烷基为 R,、 R2的溴烷。 如下所示, 分两个反应步骤, 即步骤 i和 ii, 用两种溴烷分别进行取代反应, 其反应路线 如下:
Figure imgf000009_0001
9,9-二烷基 -2-溴芴的详细制备过程可参考文献: 高分号 > Macwmolecules ) 2002, 35, 3474。
第二步,在含有烷基锂、二曱基曱酰胺和溶剂体系中进行溴基醛化的反应, 其反应路线如下:
Figure imgf000009_0002
在一个具体的实施例中, 烷基锂为正丁基锂, 溶剂可为四氢呋喃, 详细制 备过程可参考文献: 《高分子》( Macromolecules ), 2006, 39, 456。
在制备化合物 B 时, 各步骤基本相同, 不同在于两种溴烷的烷基分别为 R3 R40
2、 化合物 C的制备
在含有曱醛、 催化剂和吡咯的体系中进行缩合反应, 制得化合物 C, 其反 应方程式如下:
Figure imgf000009_0003
其中步骤 iv的催化剂可以为三氟乙酸,也可以为三氟化硼二甲基氧基络合 物 (BF3.(CH3)20), 吡咯既是溶剂又是反应物。 二吡咯曱烷即化合物 C的制备详 细步骤可参考文献: 《四面体》 [ Tetrahedron ") , 1994, 39, 1 1427。
3、 化合物 D的制备
在丁基锂、 硼酯作用下进行的如下取代反应。
Figure imgf000010_0001
具体实施过程如下: 在 N2的保护下, 往三口瓶中加入对 9,10-二溴蒽, 注 入 150ml的四氢呋喃溶剂, 在 -78°C条件下再用注射器慢慢注入正丁基锂, 继 续搅拌反应 2小时, 在 -78°C条件下注入 2-异丙氧基 -4,4,5,5-四曱基 -1,3,2-二杂 氧戊硼烷, 室温下搅拌过夜。 加入饱和氯化钠水溶液终止反应, 用氯仿萃取, 无水硫酸钠干燥, 抽虑后将滤液收集并旋蒸掉溶剂, 最后将粗产物用石油醚 / 乙酸乙酯 (15/1)为淋洗液进行硅胶柱层析分离, 得到产物。
在步骤 S02中, 催化剂可采用三氟乙酸或其类似物, 氧化剂可采用二氯二 氰基苯醌 (DDQ)或其类似物, 并不限于此, 溶剂可采用二氯曱烷、 四氢呋喃、 四氯化碳、 氯仿或乙腈等。 其反应式如下所示:
Figure imgf000010_0002
具体实施过程如下: 搭好无水无氧装置, 称取化合物 A、 B、 C (例如按照 摩尔比例 1/1/2称取), 溶解于二氯曱烷中, 通入氮气, 加入三氟乙酸, 搅拌, 然后加入两个摩尔当量的二氯二氰基苯醌 (DDQ), 继续搅拌, 然后加入三乙胺 淬灭反应, 浓缩溶剂, 过滤, 收集滤液并旋干溶剂, 用二氯曱烷在硅胶柱上快 速淋洗, 旋干溶剂, 用乙醚 /甲醇重结晶到产物, 即芴基卟啉化合物。
步骤 S03中溶剂可以是但不限于氯仿或四氢呋喃等,其具体实施过程如下: 将芴基卟啉化合物 (如 5,15-二 (9,9-二烷基芴)卟啉)溶解于氯仿中, 加入少量 吡啶, 将反应物降到 0°C , 加入适量 N-溴代丁二酰亚胺, 搅拌后, 混合物恢复 到室温, 然后继续搅拌数小时, 加入丙酮终止反应, 除去溶剂, 用乙醚 /曱醇进 行重结晶得到产物。 其反应如下式所示:
Figure imgf000011_0001
步骤 S04中的催化剂可以为有机钯催化剂,其用量为化合物 D的摩尔用量 的 0.1-20%。 有机钯催化剂例如可以是但不限于 Pd2(dba)3/P(o-Tol)3、 Pd(PPh3)4 或 Pd(PPh3)2Cl2。碱性溶液可以是无机碱溶液或有机碱溶液,无机碱溶液可以是 碱金属氢氧化物或碱金属碳酸盐的水溶液 ,例如可以是但不限于氢氧化钠溶液、 氢氧化钾溶液、 碳酸钠溶液、 碳酸钾溶液等, 优选为碳酸钠溶液, 有机威溶液 可以是烷基氢氧化铵水溶液, 例如可以是但不限于四曱基氢氧化铵、 四乙基氢 氧化铵、 四丙基氢氧化铵、 四丁基氢氧化铵等水溶液。 上述碱性溶液的用量可 以为化合物 D的摩尔用量的 5-20倍。溶剂为弱极性或极性非质子性有机溶剂或 其混合溶剂, 例如可以是但不限于氯仿、 二氯曱烷、 乙二醇二曱醚、 二曱基亚 砜(DMSO ) 、 四氢呋喃 (THF ) 、 甲苯、 二曱苯或其类似化合物, 优选为甲 苯。 溶剂的用量足量, 以使各反应物溶解并充分反应。
步骤 S04进行的反应如下式所示:
Figure imgf000012_0001
步骤 S04的具体实施过程如下:在圆底烧瓶中加入 l.O mmol 1,4-二 (4,4,5,5- 四曱基 -1,3,2-二杂氧戊硼烷)基蒽、 1.0 mmol 5,15-二溴 -10,20-二 (9,9-二烷基芴) 卟啉、 0.01 mmol四 (三苯基膦)钯, 3 ml Na2C03水溶液 (2 mol/L)和 20 ml曱苯溶 剂, 抽真空除氧, 并充入氮气, 将溶液加热到 50-120 °C , 反应 12-80小时。 反 应结束后, 然后对产物进行提纯: 将反应的产物倒进曱醇中, 布氏漏斗过滤分 离沉淀物, 并用稀 HC1洗涤, 固体用丙酮在索氏提取器中洗涤 12-72小时, 以 除去单体和催化剂残留物, 剩下的聚合物溶于四氢呋喃与氯仿, 即为本实施例 的共聚物。 共聚物中的 n优选为 5-50, 更优选为 10-30。 在实际制备过程中, 可通过对溶剂的选择、 对反应温度、 反应时间、 反应物的加入量、 催化剂种类 和用量进行控制, 以获得所想要的聚合度。
在上述方法中, 化合物 A、 B、 C三种单体的合成路线比较简单且成熟, 基 本上是一步合成, 从而减少工艺流程, 降低制造成本。 而且溴化取代反应和 Suzuki聚合反应是一种成熟的聚合反应, 产率高、 条件温和, 易于控制, 且易 通过引入烷基提高产物的溶解性和分子量, 以实现可旋涂的聚合物。
本实施例的含芴卟啉 -蒽共聚物可应用于各种光电或半导体器件中, 例如, 可用于太阳能电池器件、 有机场效应晶体管、 有机电致发光器件、 有机光存储 器件、 有机非线性材料和有机激光器件等。 下面以太阳能电池器件、 有机场效 应晶体管, 有机电致发光器件为例进行说明。 其它如有机光存储器件, 有机非 线性材料和有机激光器件与下面类似,都是以本实施例的含芴卟啉 -蒽共聚物作 为其的光存储材料、 非线性材料、 激光材料或半导体材料等。
请参阅图 3,显示采用上述实施例中含芴卟啉-蒽共聚物的太阳能电池器件, 其包括依次层叠的玻璃基层 11、 透明阳极 12、 中间辅助层 13、 活性层 14、 阴 极 15, 中间辅助层 13釆用聚乙烯二氧基噻吩: 聚苯乙烯-横酸复合材料(简称 为 PEDOT:PSS ), 活性层 14包括电子给体材料和电子受体材料, 电子给体材料 采用上述含芴卟啉 -蒽共聚物, 电子受体材料可以是 [6,6]苯基 -C61-丁酸曱酯(简 称为 PCBM )。 透明阳极 12可采用氧化铟锡(简称为 ITO ), 优选为方块电阻 为 10-20 Ω /口的氧化铟锡。 阴极 15可采用铝电极或者双金属层电极,例如 Ca/Al 或 Ba/Al等。 其中, 玻璃基层 11可作为底层, 制作时, 选取 ITO玻璃, 并经超 声波清洗后, 用氧 -Plasma处理, 在 ITO玻璃上涂覆中间辅助层 13 , 再将含芴 卟啉-葱共聚物和电子受体材料通过共混后涂覆于中间辅助层 13上, 形成活性 层 14, 然后再通过真空蒸镀技术在活性层 14上沉积阴极 15, 获得上述太阳能 电池器件。 在一个优选的实施例中, 透明阳极 12、 中间辅助层 13、 活性层 14、 双金属层 Ca和 A1层的厚度分别为 160 nm、 40 nm、 150 nm、 20 nm、 70 nm。
如图所示, 在光照下, 光透过玻璃基层 11和 ITO电极 12, 活性层 14中的 含芴卟啉-蒽共聚物吸收光能, 并产生激子, 这些激子再迁移到电子给体 /受体 材料的界面处, 并将电子转移给电子受体材料, 如 PCBM, 实现电荷的分离, 从而形成自由的载流子, 即自由的电子和空穴。 这些自由的电子沿电子受体材 料向金属阴极传递并被阴极所收集, 自由的空穴沿电子给体材料向 ITO阳极传 递并被阳极所收集, 从而形成光电流和光电压, 实现光电转换, 外接负载 16 时, 可对其进行供电。 在此过程中, 含芴卟啉 -蒽共聚物由于其具有很宽的光谱 响应范围, 能够更充分地利用光能, 以获得更高的光电转换效率, 增加太阳能 电池器件的产电能力。 而且这种有机材料还能减轻太阳能电池器件的质量, 并 通过旋涂等技术即可制作, 便于大批量的制备。
请参阅图 4, 显示采用上述实施例中的含芴卟啉 -蒽共聚物的有机电致发光 器件, 其包括依次层叠设置的玻璃基层 21、 透明阳极 22、 发光层 23、 緩冲层 24、 阴极 25。 透明阳极 22可采用氧化铟锡(简称为 ITO ) , 优选为方块电阻 为 10-20 Ω/口的氧化铟锡。 发光层 23包含上述实施例中的含芴卟啉 -蒽共聚物。 緩冲层 24可采用 LiF等, 但不限于此。 阴极 25可以是但不限于金属 A1或 Ba 等, 但不限于此。 因而, 在一个具体实施例中, 有机电致发光器件结构表示为: ITO/含芴卟啉-蒽共聚物 /LiF/Al。 各层可采用现有方法形成, 而含芴卟啉 -蒽共 聚物可通过旋涂技术形成于 ITO上。
请参阅图 5, 显示采用上述实施例中的含芴卟啉 -蒽共聚物的有机场效应晶 体管, 其包括依次层叠设置的衬底 31、 绝缘层 32、 修饰层 33、 有机半导体层 34以及设于有机半导体层 34上的源电极 35和漏电极 36。 其中, 衬底 31可以 是但不限于高掺杂的硅片(Si ),绝缘层 32可以是但不限于微纳米(如 450 nm ) 厚的 Si02。 有机半导体层 34采用上述描述的含芴卟淋 -蒽共聚物。 源电极 35 和漏电极 36均可采用但不限于金。 修饰层 33可以是但不限于十八烷基三氯硅 烷。 村底 31、 绝缘层 32、 修饰层 33以及源电极 35和漏电极 36都可采用现有 的方法形成。 有机半导体层 34可以是将上述实施例中的含芴卟啉 -蒽共聚物旋 涂于由修饰层 33修饰的绝缘层 32上。
以下通过具体实施例来举例说明含芴卟啉-蒽共聚物制备方法以及其性能 等方面。 下面实施例中的八、 B、 C, D分别按照上述方法直接制备而得, 当然, 在其它实施例中也可以直接从市场上购得, 并不限于此。
第一步, 制备 5,15-二 (9,9-二烷基芴)卟啉, 以 5,15-二 (9,9-二己基芴)卟啉为 例, 其具体制备过程如下: 搭好无水无氧装置, 按照摩尔比例 1 : 1: 2称取化 合物 A、 B、 C, 化合物 A和 B结构相同, 均为 9,9-二己基 -2-酪芴, 化合物 C 为二吡咯曱烷, 将它们溶解于二氯曱烷中, 通入氮气 30分钟, 用注射器加入三 氟乙酸, 室温下搅拌 3小时, 然后加入两个摩尔当量的二氯二氰基苯醌 (DDQ), 继续在室温下搅拌 30分钟, 然后加入三乙胺淬灭反应, 浓缩溶剂, 过滤, 收集 滤液并旋干溶剂, 用二氯曱烷在硅胶柱上快速淋洗, 旋干溶剂, 用乙醚 /曱醇重 结晶到产物。
第二步, 制备 5,15-二溴 -10,20-二 (9,9-二己基芴)卟啉
将 5,15-二 (9,9-二己基芴)卟啉溶解于氯仿中, 加入少量吡啶, 将反应物降到 0°C, 加入适量 N-溴代丁二酰亚胺, 搅拌 0.5小时后, 混合物恢复到室温, 然后 继续搅拌 4小时, 加入丙酮终止反应, 除去溶剂, 用乙醚 /曱醇进行重结晶得到 产物。
第三步, 含芴卟啉 -蒽共聚物的制备, 本实施例的含芴卟啉-蒽共聚物结构式 为:
Figure imgf000015_0001
具体形成过程如下:在圆底烧瓶中加入 1,4-二 (4,4,5,5-四曱基 -1,3,2-二杂氧戊 硼烷)基蒽、 5,15-二溴 -10,20-二 (9,9-二己基芴)卟啉、 四 (三苯基膦)钯, Na2C03 水溶液和曱苯溶剂, 抽真空除氧并充入氮气, 溶液首先在 N2氛围下回流 48小 时, 然后倒进曱醇中, 布氏漏斗过滤分离沉淀物, 并用稀 HC1洗涤, 固体用丙 酮在索氏提取器中洗涤 24小时, 以除去单体和催化剂残留物, 剩下的聚合物溶 于四氢呋喃与氯仿, 产率 32%。
在上述含芴卟啉-蒽共聚物中,所含的芴或其衍生物具有优异的光稳定性和 热稳定性, 并具有易修 _饰的结构, 可以通过引入杂环、 多芳环或芳杂环分子来 增大含芴卟啉 -蒽共聚物的骨架电子云的密度, 使得共聚物的带隙变窄。 卟啉结 构能使共聚物具有较高的电荷转移和能量转移反应的量子效率, 具有良好的电 子緩冲性和光电磁性, 良好的刚柔性、 较好热稳定性和环境稳定性。 共聚物中 的蒽也具有很好的稳定性和较好的成膜性, 并且具有较好的载流子传输特性, 其空穴迁移率较高, 因此可提高含芴卟啉-蒽共聚物的载流子传输特性, 提高空 穴迁移率。上述含芴卟啉-蒽共聚物应用于太阳能电池器件、有机场效应晶体管、 有机电致发光器件、 有机光存储器件、 有机非线性材料或有机激光器件中时, 可提高其光电或半导体相关性能,并能减轻器件的质量,且便于大批量的制备。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求 书
1、 一种含芴卟啉 -蒽共聚物, 其包含如下结构式(1 )表示的聚合物:
Figure imgf000017_0001
式中: R】、 R2、 R3、 为相同或不相同的(^-(:|6的烷基; n为 1-100之间 的整数。
2、 如权利要求 1所述的含芴卟啉 -蒽共聚物, 其特征在于, 所述 、 为 相同的 C CM烷基, 所述 R2、 R4为相同的 d-C16烷基。
3、 如权利要求 1所述的含芴卟啉 -蒽共聚物, 其特征在于, 所述 R,、 R2、 R3、 R4为相同的 CRC16的烷基。
4、 如权利要求 1所述的含芴卟啉 -蒽共聚物, 其特征在于, 所述 n为 5-50 之间的整数。
5、 一种含芴卟啉-蒽共聚物制备方法, 其包括如下步骤:
分别提供如下结构式表示的化合物 A、 B、 C , D,
Figure imgf000017_0002
、 R3、 R4为相同或不同的(^- 的烷基;
在含有催化剂、 氧化剂和溶剂的体系中, 将化合物八、 B、 C进行缩聚氧化 反应, 生成芴基卟啉化合物; 在含有催化剂和溶剂的体系中, 将芴基卟啉化合物进行溴化取代反应, 生 成二溴取代的芴基卟淋化合物;
在催化剂、 溶剂以及碱性溶液存在的条件下, 将二溴取代的芴基卟淋化合 物与化合物 D进行 Suzuki聚合反应, 获得如下结构式 (1)表示的聚合物:
Figure imgf000018_0001
结构式 (1)中的 n为 1-100之间的整数。
6、 如权利要求 5所述的含芴卟啉-蒽共聚物制备方法, 其特征在于, 所述 缩聚氧化反应采用的催化剂为三氟乙酸, 氧化剂为二氯二氰基苯醌。
7、 如权利要求 5所述的含芴卟啉-蒽共聚物制备方法, 其特征在于, 所述 Suzuki聚合反应采用的催化剂为有机钯催化剂, 所述碱性溶液为无机碱水溶液
8、 如权利要求 5所述的含芴卟啉-蒽共聚物制备方法, 其特征在于, 所述 溴化取代反应的催化剂为吡啶、 吡啶衍生物或三乙胺, 溶剂为为氯仿或四氢呋 喃。
9、如权利要求 5所述的含芴卟啉-蒽共聚物制备方法,其特征在于,在 Suzuki 聚合反应后进行如下提纯步骤: 将 Suzuki聚合反应产物倒入曱醇中, 过滤分离 沉淀物, 洗涤, 获得的固体用丙酮在索氏提取器中洗涤, 除去单体和催化剂残 留物, 获得所述含芴卟啉 -蒽共聚物。
10、 如权利要求 1-4任一项所述的含芴卟啉-蒽共聚物在制造太阳能电池器 件、 有机场效应晶体管、 有机电致发光器件、 有机光存储器件、 有机非线性材 料或有机激光器件中的应用。
PCT/CN2010/070435 2010-01-30 2010-01-30 含芴卟啉-蒽共聚物、其制备方法和应用 WO2011091607A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012550292A JP5546070B2 (ja) 2010-01-30 2010-01-30 フルオレニルポルフィリン−アントラセンを含むコポリマー、その製造方法およびその応用
US13/575,684 US8598301B2 (en) 2010-01-30 2010-01-30 Copolymer containing fluorenylporphyrin-anthracene, preparation method and application thereof
PCT/CN2010/070435 WO2011091607A1 (zh) 2010-01-30 2010-01-30 含芴卟啉-蒽共聚物、其制备方法和应用
CN2010800481069A CN102686592B (zh) 2010-01-30 2010-01-30 含芴卟啉-蒽共聚物、其制备方法和应用
EP10844385.4A EP2530084B1 (en) 2010-01-30 2010-01-30 Copolymer containing fluorenylporphyrin-anthracene, preparation method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/070435 WO2011091607A1 (zh) 2010-01-30 2010-01-30 含芴卟啉-蒽共聚物、其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2011091607A1 true WO2011091607A1 (zh) 2011-08-04

Family

ID=44318632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070435 WO2011091607A1 (zh) 2010-01-30 2010-01-30 含芴卟啉-蒽共聚物、其制备方法和应用

Country Status (5)

Country Link
US (1) US8598301B2 (zh)
EP (1) EP2530084B1 (zh)
JP (1) JP5546070B2 (zh)
CN (1) CN102686592B (zh)
WO (1) WO2011091607A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009030847A1 (de) * 2009-06-26 2010-12-30 Merck Patent Gmbh Polymere enthaltend substituierte Anthracenyleinheiten, Blends enthaltend diese Polymere sowie Vorrichtungen enthaltend diese Polymere oder Blends
CN102712652B (zh) * 2010-03-23 2014-03-19 海洋王照明科技股份有限公司 含芴卟啉-苯共聚物、其制备方法和应用
EP2562197B1 (en) * 2010-04-23 2018-08-01 Ocean's King Lighting Science & Technology Co., Ltd. Copolymer comprising anthracene and benzoselenadiazole, preparing method and uses thereof
JP5667693B2 (ja) * 2010-05-18 2015-02-12 ▲海▼洋王照明科技股▲ふん▼有限公司 キノキサリン単位含有ポルフィリン共重合体及びその製造方法、並びにその応用
WO2011153680A1 (zh) * 2010-06-07 2011-12-15 海洋王照明科技股份有限公司 含噻吩并噻二唑单元卟啉共聚物、其制备方法和应用
JP5538630B2 (ja) * 2010-09-13 2014-07-02 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド シラフルオレン金属ポルフィリン−ベンゼン有機半導体材料及びその調製方法並びに応用
CN103694246B (zh) * 2013-12-23 2015-06-17 北京工业大学 A3b型不对称卟啉类化合物的制备方法
CA3062176C (en) 2017-05-04 2024-01-23 Versa Power Systems Ltd. Compact high temperature electrochemical cell stack architecture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1459127A (zh) * 2000-07-21 2003-11-26 北卡罗莱纳州立大学 光捕获阵列

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371199B1 (en) * 1992-08-14 1995-12-26 Univ Pennsylvania Substituted porphyrins porphyrin-containing polymers and synthetic methods therefor
JP3150948B2 (ja) * 1998-09-21 2001-03-26 科学技術振興事業団 メソ位直結型ポルフィリンポリマーとその製造方法
JP4183402B2 (ja) * 2001-07-18 2008-11-19 独立行政法人科学技術振興機構 フラーレンを含む薄膜から成る光電変換素子用材料
JP4014960B2 (ja) * 2002-07-31 2007-11-28 独立行政法人科学技術振興機構 分子ワイヤ及びその製造方法
KR100482276B1 (ko) 2002-08-12 2005-04-13 한국과학기술연구원 피롤계 화합물, 그 중합체 및 이들을 이용한 el 소자
AU2003900404A0 (en) * 2003-01-31 2003-02-13 Massey University Conducting polymers with porphyrin cross-linkers
CN101817810A (zh) 2003-10-31 2010-09-01 日产化学工业株式会社 酰基化合物的制造方法
JP4883898B2 (ja) * 2004-11-18 2012-02-22 パナソニック株式会社 電子デバイスおよびそれを用いた電子機器
FR2892723B1 (fr) 2005-11-03 2009-04-24 Biomerieux Sa Nouveaux monomeres electropolymerisables, solubles en solution aqueuse, comportant une metalloporphyrine.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1459127A (zh) * 2000-07-21 2003-11-26 北卡罗莱纳州立大学 光捕获阵列

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
MACROMOLECULES, vol. 35, 2002, pages 3474
MACROMOLECULES, vol. 39, 2006, pages 456
PAUL-ROTH, CHRISTINE ET AL.: "Selective anodic preparation of 1D or 2D electroactive deposits from 5,15-bis-(9H-fluoren-2-yl)-10,20-diphenyl porphyrins", JOURNAL OF ELECTROANALYTICAL CHEMISTRY, vol. 606, no. 2, 2007, pages 103 - 116, XP022162608, DOI: doi:10.1016/j.jelechem.2007.06.003 *
See also references of EP2530084A4
TETRAHEDRON, vol. 39, 1994, pages 11427
YANG, CHANGDUK ET AL.: "Synthesis and Photochromic Properties of Ladderized Poly(p-phenylene-alt-9,10-anthrylene)s", MACROMOLECULES, vol. 39, no. 17, 2006, pages 5696 - 5704, XP055062256, DOI: doi:10.1021/ma060722w *

Also Published As

Publication number Publication date
US20120302717A1 (en) 2012-11-29
JP2013518151A (ja) 2013-05-20
EP2530084A1 (en) 2012-12-05
EP2530084B1 (en) 2014-03-12
JP5546070B2 (ja) 2014-07-09
EP2530084A4 (en) 2013-06-12
US8598301B2 (en) 2013-12-03
CN102686592A (zh) 2012-09-19
CN102686592B (zh) 2013-11-27

Similar Documents

Publication Publication Date Title
WO2011091607A1 (zh) 含芴卟啉-蒽共聚物、其制备方法和应用
JP5599903B2 (ja) 共役フルオレンポリマー、その製造方法、および太陽電池
CN112608309B (zh) 一种含芴环基团的非稠环有机小分子材料及其制备方法和应用
WO2011091609A1 (zh) 含杂环醌型噻吩有机光电材料、其制备方法和应用
JP5612757B2 (ja) フルオレン類共重合体及びその製造方法並びにその使用
JP5688420B2 (ja) フルオレニル含有ポルフィリン―ベンゼン共重合体、及びその製造方法
JP5667693B2 (ja) キノキサリン単位含有ポルフィリン共重合体及びその製造方法、並びにその応用
JP5600365B2 (ja) キノイドシラフルオレン類の有機半導体材料、該有機半導体材料の製造方法及びその使用
JP5443655B2 (ja) チエノチアジアゾール単位を含むポルフィリン共重合体、該共重合体の製造方法及びその応用
CN102653587B (zh) 一种n,n'-二取代异靛与2,7-咔唑共聚物及其制备方法和应用
JP5480403B2 (ja) キノイドチオフェン有機光電材料、その製造方法、およびその利用
WO2012083510A1 (zh) 有机半导体材料及其制备方法和应用
CN102206328A (zh) 含苯并噻二唑单元卟啉共聚物、其制备方法和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048106.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844385

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012550292

Country of ref document: JP

Ref document number: 13575684

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010844385

Country of ref document: EP