WO2011090080A1 - アンテナ装置および通信端末装置 - Google Patents

アンテナ装置および通信端末装置 Download PDF

Info

Publication number
WO2011090080A1
WO2011090080A1 PCT/JP2011/050884 JP2011050884W WO2011090080A1 WO 2011090080 A1 WO2011090080 A1 WO 2011090080A1 JP 2011050884 W JP2011050884 W JP 2011050884W WO 2011090080 A1 WO2011090080 A1 WO 2011090080A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductance
inductance element
circuit
coil
antenna
Prior art date
Application number
PCT/JP2011/050884
Other languages
English (en)
French (fr)
Inventor
加藤登
石塚健一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201180001341.5A priority Critical patent/CN102341957B/zh
Priority to KR1020117019919A priority patent/KR101244902B1/ko
Priority to EP11734686.6A priority patent/EP2388858B1/en
Publication of WO2011090080A1 publication Critical patent/WO2011090080A1/ja
Priority to US13/218,501 priority patent/US9030371B2/en
Priority to US14/681,222 priority patent/US9711848B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20336Comb or interdigital filters
    • H01P1/20345Multilayer filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2135Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers

Definitions

  • the present invention relates to an antenna device and a communication terminal device using the antenna device, and more particularly to an antenna device capable of matching in a wide frequency band.
  • communication terminals such as mobile phones have been used in communication systems such as GSM (Global System for mobile Communication), DCS (Digital Communication System), PCS (Personal Communication Service), UMTS (Universal Mobile Telecommunications System), and GPS ( In some cases, it is required to support Global Positioning System), wireless LAN, Bluetooth (registered trademark), and the like. Therefore, the antenna device in such a communication terminal device is required to cover a wide frequency band from 800 MHz to 2.4 GHz.
  • an antenna device having a broadband matching circuit constituted by an LC parallel resonance circuit or an LC series resonance circuit is generally used. Is. Further, as an antenna device corresponding to a wide frequency band, for example, tunable antennas disclosed in Patent Document 3 and Patent Document 4 are known.
  • JP 2004-336250 A JP 2006-173697 A JP 2000-124728 A JP2008-035065
  • the matching circuits shown in Patent Documents 1 and 2 include a plurality of resonant circuits, the insertion loss in the matching circuit tends to increase and a sufficient gain may not be obtained.
  • the tunable antennas disclosed in Patent Documents 3 and 4 require a circuit for controlling the variable capacitance element, that is, a switching circuit for switching the frequency band, so that the circuit configuration tends to be complicated. In addition, since a loss and distortion in the switching circuit are large, a sufficient gain may not be obtained.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an antenna device impedance-matched with a power feeding circuit in a wide frequency band, and a communication terminal device including the antenna device.
  • the antenna device of the present invention includes an antenna element and an impedance conversion circuit connected to the antenna element,
  • the impedance conversion circuit includes a first inductance element (L1) and a second inductance element (L2) tightly coupled to the first inductance element,
  • the first inductance element and the second inductance element are tightly coupled to generate a pseudo negative inductance component, and the effective inductance component of the antenna element is suppressed by the negative inductance component.
  • the impedance conversion circuit includes a transformer type circuit in which the first inductance element and the second inductance element are tightly coupled via mutual inductance, The transformer circuit is connected between a first port connected to a power feeding circuit, a second port connected to the antenna element, a third port connected to the ground, and between the first port and a branch point.
  • T composed of a first inductance element, a second inductance element connected between the second port and the branch point, and a third inductance element connected between the third port and the branch point.
  • the pseudo negative inductance component corresponds to the second inductor.
  • a first end of the first inductance element is connected to the power feeding circuit, a second end of the first inductance element is connected to a ground, and the second inductance element The first end is connected to the antenna element, and the second end of the second inductance element is connected to the ground.
  • a first end of the first inductance element is connected to the feeder circuit, and a second end of the first inductance element is connected to the antenna element.
  • the first end of the second inductance element is connected to the antenna element, and the second end of the second inductance element is connected to the ground.
  • the first inductance element (L1) includes a first coil element (L1a) and a second coil element (L1b), and the first coil element and the second coil element Are preferably connected in series with each other and have a conductor winding pattern formed so as to form a closed magnetic circuit.
  • the second inductance element (L2) includes a third coil element (L2a) and a fourth coil element (L2b), and the third coil element and the second coil element (L2b)
  • the four-coil elements are preferably connected in series with each other, and a conductor winding pattern is preferably formed so as to form a closed magnetic circuit.
  • the first inductance element and the second inductance element are coupled via a magnetic field and an electric field,
  • a direction of a current flowing through the second inductance element due to coupling via the magnetic field and a direction of a current flowing through the second inductance element due to coupling via the electric field are determined.
  • they are the same.
  • the first inductance element and the second inductance element are in a laminated body (multilayer substrate) in which a plurality of dielectric layers or magnetic layers are laminated.
  • the first inductance element and the second inductance element are coupled to each other inside the multilayer body.
  • the first inductance element includes at least two inductance elements electrically connected in parallel, and the two inductance elements sandwich the second inductance element. It is preferable that they are arranged in a positional relationship.
  • the second inductance element includes at least two inductance elements electrically connected in parallel, and the two inductance elements sandwich the first inductance element. It is preferable that they are arranged in a positional relationship.
  • a communication terminal device includes an antenna device including an antenna element, a power feeding circuit, and an impedance conversion circuit connected between the antenna element and the power feeding circuit.
  • the impedance conversion circuit includes a first inductance element and a second inductance element tightly coupled to the first inductance element, The first inductance element and the second inductance element are tightly coupled to generate a pseudo negative inductance component, and the effective inductance component of the antenna element is suppressed by the negative inductance component.
  • a pseudo negative inductance component is generated in the impedance conversion circuit, so that the effective inductance component of the antenna element is suppressed by the negative inductance component, that is, the apparent appearance of the antenna element.
  • the impedance frequency characteristic of the antenna device is reduced. Therefore, the impedance change of the antenna device can be suppressed over a wide band, and impedance matching with the feeding circuit can be achieved over a wide frequency band.
  • the communication terminal device of the present invention since the antenna device is provided, the communication terminal device can support various communication systems having different frequency bands.
  • FIG. 1A is a circuit diagram of the antenna device 101 according to the first embodiment, and FIG. 1B is an equivalent circuit diagram thereof.
  • FIG. 2 is a diagram illustrating the action of a negative inductance component that is artificially generated in the impedance conversion circuit 45 and the action of the impedance conversion circuit 45.
  • FIG. 3A is a circuit diagram of the antenna device 102 of the second embodiment, and FIG. 3B is a diagram showing a specific arrangement of each coil element.
  • FIG. 4 is a diagram in which various arrows indicating states of magnetic field coupling and electric field coupling are entered in the circuit illustrated in FIG.
  • FIG. 5 is a circuit diagram of the antenna device 102 corresponding to multiband.
  • FIG. 6A is a perspective view of the impedance conversion circuit 35 of the third embodiment
  • FIG. 6B is a perspective view of the impedance conversion circuit 35 as viewed from the lower surface side
  • FIG. 7 is an exploded perspective view of the laminated body 40 constituting the impedance conversion circuit 35.
  • FIG. 8 is a diagram illustrating the operating principle of the impedance conversion circuit 35.
  • FIG. 9 is a circuit diagram of the antenna device of the fourth embodiment.
  • FIG. 10 is an exploded perspective view of the laminate 40 that constitutes the impedance conversion circuit 34.
  • FIG. 11A is a perspective view of the impedance conversion circuit 135 of the fifth embodiment
  • FIG. 11B is a perspective view of the impedance conversion circuit 135 viewed from the lower surface side.
  • FIG. 11A is a perspective view of the impedance conversion circuit 135 of the fifth embodiment
  • FIG. 11B is a perspective view of the impedance conversion circuit 135 viewed from the lower surface side.
  • FIG. 11A is
  • FIG. 12 is an exploded perspective view of the laminated body 40 constituting the impedance conversion circuit 135.
  • FIG. 13 is a circuit diagram of the antenna device 106 according to the sixth embodiment, and FIG. 13B is an equivalent circuit diagram thereof.
  • FIG. 14A is a circuit diagram of the antenna device 107 of the seventh embodiment, and FIG. 14B is a diagram showing a specific arrangement of each coil element.
  • FIG. 15A is a diagram showing the transformer ratio of the impedance conversion circuit based on the equivalent circuit shown in FIG.
  • FIG. 16 is a circuit diagram of the antenna device 107 corresponding to the multiband.
  • FIG. 17 is a diagram illustrating an example of a conductor pattern of each layer when the impedance conversion circuit 25 according to the eighth embodiment is configured on a multilayer substrate.
  • FIG. 18 shows the main magnetic flux passing through the coil element by the conductor pattern formed in each layer of the multilayer substrate shown in FIG.
  • FIG. 19 is a diagram showing the magnetic coupling relationship of the four coil elements L1a, L1b, L2a, and L2b of the impedance conversion circuit 25 according to the eighth embodiment.
  • FIG. 20 is a diagram illustrating a configuration of an impedance conversion circuit according to the ninth embodiment, and is a diagram illustrating an example of a conductor pattern of each layer when the impedance conversion circuit is configured on a multilayer substrate.
  • FIG. 21 is a diagram showing main magnetic fluxes passing through the coil element by the conductor pattern formed in each layer of the multilayer substrate shown in FIG. FIG.
  • FIG. 22 is a diagram showing the magnetic coupling relationship of the four coil elements L1a, L1b, L2a, and L2b of the impedance conversion circuit according to the ninth embodiment.
  • FIG. 23 is a diagram illustrating an example of a conductor pattern of each layer of the impedance conversion circuit according to the tenth embodiment configured on a multilayer substrate.
  • FIG. 24 is a diagram showing main magnetic fluxes passing through the coil element by the conductor pattern formed in each layer of the multilayer substrate shown in FIG.
  • FIG. 25 is a diagram showing the magnetic coupling relationship of the four coil elements L1a, L1b, L2a, and L2b of the impedance conversion circuit according to the ninth embodiment.
  • FIG. 23 is a diagram illustrating an example of a conductor pattern of each layer of the impedance conversion circuit according to the tenth embodiment configured on a multilayer substrate.
  • FIG. 24 is a diagram showing main magnetic fluxes passing through the coil element by the conductor pattern formed in each layer of the multi
  • FIG. 26 is a diagram illustrating an example of a conductor pattern of each layer when the impedance conversion circuit according to the eleventh embodiment is configured on a multilayer substrate.
  • FIG. 27 is a circuit diagram of an impedance conversion circuit according to the twelfth embodiment.
  • FIG. 28 is a diagram illustrating an example of a conductor pattern of each layer when the impedance conversion circuit according to the twelfth embodiment is configured on a multilayer substrate.
  • FIG. 29 is a circuit diagram of an impedance conversion circuit according to the thirteenth embodiment.
  • FIG. 30 is a diagram illustrating an example of a conductor pattern of each layer when the impedance conversion circuit according to the thirteenth embodiment is configured on a multilayer substrate.
  • FIG. 31A is a configuration diagram of a communication terminal apparatus as a first example of the fourteenth embodiment
  • FIG. 31B is a configuration diagram of a communication terminal apparatus as a second example.
  • FIG. 1A is a circuit diagram of the antenna device 101 according to the first embodiment, and FIG. 1B is an equivalent circuit diagram thereof.
  • the antenna device 101 includes an antenna element 11 and an impedance conversion circuit 45 connected to the antenna element 11.
  • the antenna element 11 is a monopole antenna, and an impedance conversion circuit 45 is connected to the feeding end of the antenna element 11.
  • the impedance conversion circuit 45 is inserted between the antenna element 11 and the power feeding circuit 30.
  • the power feeding circuit 30 is a power feeding circuit for feeding a high frequency signal to the antenna element 11 and generates and processes a high frequency signal, but may include a circuit that combines and demultiplexes the high frequency signal.
  • the impedance conversion circuit 45 includes a first inductance element L1 connected to the power feeding circuit 30 and a second inductance element L2 coupled to the first inductance element L1. More specifically, the first end of the first inductance element L1 is connected to the feeder circuit 30, the second end is connected to the ground, the first end of the second inductance element L2 is connected to the antenna element 11, and the second end. Each end is connected to ground.
  • the first inductance element L1 and the second inductance element L2 are tightly coupled. As a result, a pseudo negative inductance component is generated.
  • the negative inductance component cancels out the inductance component of the antenna element 11 itself, so that the inductance component of the antenna element 11 is apparently small. That is, since the effective inductive reactance component of the antenna element 11 is reduced, the antenna element 11 is less dependent on the frequency of the high frequency signal.
  • the impedance conversion circuit 45 includes a transformer type circuit in which the first inductance element L1 and the second inductance element L2 are tightly coupled via the mutual inductance M. As shown in FIG. 1B, this transformer type circuit can be equivalently converted into a T type circuit including three inductance elements Z1, Z2, and Z3. That is, the T-type circuit includes a first port P1 connected to the power feeding circuit, a second port P2 connected to the antenna element 11, a third port P3 connected to the ground, the first port P1 and the branch point. A first inductance element Z1 connected between them, a second inductance element Z2 connected between the second port P2 and the branch point A, and a third terminal connected between the third port P3 and the branch point A. It consists of an inductance element Z3.
  • the inductance of the first inductance element L1 shown in FIG. 1A is L1
  • the inductance of the second inductance element L2 is L2
  • the mutual inductance is M
  • the inductance of the second inductance element Z2 is L2-M
  • the inductance of the third inductance element Z3 is + M.
  • L2 ⁇ M the inductance of the second inductance element Z2 is a negative value. That is, a pseudo negative composite inductance component is formed here.
  • the antenna element 11 is equivalently composed of an inductance component LANT, a radiation resistance component Rr, and a capacitance component CANT.
  • the inductance component LANT of the antenna element 11 alone acts so as to be canceled out by the negative composite inductance component (L2-M) in the impedance conversion circuit 45. That is, when the antenna element 11 side is viewed from the point A of the impedance conversion circuit, the inductance component (of the antenna element 11 including the second inductance element Z2) is small (ideally zero).
  • the impedance frequency characteristic of 101 becomes small.
  • the degree of coupling may be 1 or more.
  • the impedance conversion ratio by the transformer type circuit is a ratio (L1: L2) of the inductance L2 of the second inductance element L2 to the inductance L1 of the first inductance element L1.
  • FIG. 2 is a diagram schematically showing the action of a negative inductance component that is artificially generated in the impedance conversion circuit 45 and the action of the impedance conversion circuit 45.
  • a curve S0 represents an impedance locus on the Smith chart when the frequency is swept over the use frequency band of the antenna element 11. Since the antenna element 11 alone has a relatively large inductance component LANT, the impedance changes greatly as shown in FIG.
  • a curve S1 is an impedance locus when the antenna element 11 side is viewed from the point A of the impedance conversion circuit.
  • the inductance component LANT of the antenna element is canceled by the pseudo negative inductance component of the impedance conversion circuit, and the locus of the impedance viewed from the point A toward the antenna element side is greatly reduced.
  • a curve S2 is an impedance locus of the antenna device 101 viewed from the power feeding circuit 30, that is, an impedance locus.
  • the impedance of the antenna device 101 approaches 50 ⁇ (the center of the Smith chart) by the impedance conversion ratio (L1: L2) by the transformer type circuit.
  • This fine adjustment of the impedance may be performed by adding a separate inductance element or capacitance element to the transformer type circuit.
  • the impedance change of the antenna device can be suppressed over a wide band. Therefore, impedance matching with the feeder circuit can be achieved over a wide frequency band.
  • FIG. 3A is a circuit diagram of the antenna device 102 of the second embodiment
  • FIG. 3B is a diagram showing a specific arrangement of each coil element.
  • the basic configuration of the second embodiment is the same as that of the first embodiment, but a more specific configuration for coupling (tight coupling) the first inductance element and the second inductance element with an extremely high degree of coupling. Is shown.
  • the first inductance element L1 is composed of a first coil element L1a and a second coil element L1b, and these coil elements are connected in series with each other, and a closed magnetic circuit Is wound to constitute.
  • the second inductance element L2 includes a third coil element L2a and a fourth coil element L2b, and these coil elements are connected in series with each other and wound so as to form a closed magnetic circuit.
  • the first coil element L1a and the second coil element L1b are coupled in opposite phases (polarity coupling)
  • the third coil element L2a and the fourth coil element L2b are coupled in opposite phases (polarity coupling).
  • first coil element L1a and the third coil element L2a can be coupled in phase (depolarized coupling), and the second coil element L1b and the fourth coil element L2b can be coupled in phase (depolarized coupling). preferable.
  • FIG. 4 is a diagram in which various arrows indicating states of magnetic field coupling and electric field coupling are entered in the circuit illustrated in FIG.
  • a current is supplied from the power feeding circuit in the direction of arrow a in the figure
  • a current flows in the direction of arrow b in the figure through the first coil element L1a, and the arrow in the figure is drawn in the second coil element L1b.
  • Current flows in the direction c.
  • a magnetic flux passing through the closed magnetic path is formed by these currents.
  • the magnetic field generated by the current b flowing through the coil element L1a is coupled to the coil element L2a, and the induced current d flows through the coil element L2a in the reverse direction.
  • the magnetic field generated by the current c flowing through the coil element L1b is coupled to the coil element L2b, and the induced current e is applied to the coil element L2b in the reverse direction. Flowing. Then, as indicated by an arrow B in the figure, a magnetic flux passing through the closed magnetic path is formed by these currents.
  • the first inductance element An equivalent magnetic barrier MW is generated between L1 and the second inductance element L2.
  • Capacitors Ca and Cb in FIG. 4 are symbols representing the coupling capacitance for the electric field coupling.
  • the first inductance element L1 and the second inductance element L2 are strongly coupled by both the magnetic field and the electric field. That is, loss can be suppressed and high frequency energy can be propagated.
  • the impedance conversion circuit 35 When an alternating current flows through the first inductance element L1, the impedance conversion circuit 35 has a direction of a current flowing through the second inductance element L2 due to coupling via a magnetic field and a current flowing through the second inductance element L2 due to coupling via an electric field. It can also be said that the circuit is configured to have the same direction.
  • FIG. 5 is a circuit diagram of the antenna device 102 corresponding to multiband.
  • This antenna device 102 is an antenna device used in a multiband-compatible mobile radio communication system (800 MHz band, 900 MHz band, 1800 MHz band, 1900 MHz band) that is compatible with the GSM system and the CDMA system.
  • the antenna element 11 is a branched monopole antenna.
  • the impedance conversion circuit 35 'used here is between the first inductance element L1 composed of the coil element L1a and the coil element L1b and the second inductance element L2 composed of the coil element L2a and the coil element L2b.
  • the other configuration is the same as that of the impedance conversion circuit 35 described above.
  • This antenna device 102 is used as a main antenna of a communication terminal device.
  • the first radiating portion of the branched monopole antenna element 11 mainly functions as an antenna radiating element on the high band side (1800 to 2400 MHz band), and the first radiating portion and the second radiating portion are mainly used on the low band side ( 800 to 900 MHz band).
  • the branched monopole antenna elements 11 do not necessarily have to resonate in their corresponding frequency bands. This is because the impedance conversion circuit 35 ′ matches the characteristic impedance of each radiating section with the impedance of the power feeding circuit 30.
  • the impedance conversion circuit 35 matcheses the characteristic impedance of the second radiating section with the impedance (usually 50 ⁇ ) of the power feeding circuit 30 in the 800 to 900 MHz band, for example. Accordingly, the low-band high-frequency signal supplied from the power feeding circuit 30 can be radiated from the second radiating unit, or the low-band high-frequency signal received by the second radiating unit can be supplied to the power feeding circuit 30. Similarly, the high-band high-frequency signal supplied from the power supply circuit 30 can be radiated from the first radiation unit, or the high-band high-frequency signal received by the first radiation unit can be supplied to the power supply circuit 30.
  • the capacitor C1 passes a signal in a particularly high frequency band among high-band high-frequency signals.
  • the antenna device can be further widened.
  • the antenna and the power feeding circuit are separated from each other in terms of direct current, and thus are strong against ESD.
  • FIG. 6A is a perspective view of the impedance conversion circuit 35 of the third embodiment
  • FIG. 6B is a perspective view of the impedance conversion circuit 35 as viewed from the lower surface side
  • FIG. 7 is an exploded perspective view of the laminated body 40 constituting the impedance conversion circuit 35.
  • the conductor pattern 61 is formed on the uppermost base layer 51a of the laminate 40, and the conductor pattern 62 (62a, 62b) is formed on the second base layer 51b.
  • Conductive patterns 63 and 64 are formed on the base material layer 51c.
  • Two conductor patterns 65 and 66 are formed on the fourth base layer 51d, and conductor patterns 67 (67a and 67b) are formed on the fifth base layer 51e.
  • a ground conductor 68 is formed on the sixth base layer 51f, and a power supply terminal 41, a ground terminal 42, and an antenna terminal 43 are formed on the back surface of the seventh base layer 51g.
  • a plain base material layer (not shown) is laminated on the uppermost base material layer 51a.
  • the first coil element L1a is constituted by the conductor patterns 62a and 63
  • the second coil element L1b is constituted by the conductor patterns 62b and 64.
  • the conductor patterns 65 and 67a constitute a third coil element L2a
  • the conductor patterns 66 and 67b constitute a fourth coil element L2b.
  • the various conductor patterns 61 to 68 can be formed using a conductive material such as silver or copper as a main component.
  • a conductive material such as silver or copper
  • a glass ceramic material, an epoxy resin material or the like can be used if it is a dielectric
  • a ferrite ceramic material or a resin material containing ferrite can be used if it is a magnetic material.
  • a material for the base layer it is preferable to use a dielectric material when forming an impedance conversion circuit for the UHF band, and use a magnetic material when forming an impedance conversion circuit for the HF band. Is preferred.
  • the conductor patterns 61 to 68 and the terminals 41, 42, and 43 are connected through interlayer connection conductors (via conductors), thereby forming the circuit shown in FIG.
  • the first coil element L1a and the second coil element L1b are adjacently arranged so that the winding axes of the respective coil patterns are parallel to each other.
  • the third coil element L2a and the fourth coil element L2b are adjacently arranged so that the winding axes of the respective coil patterns are parallel to each other.
  • first coil element L1a and the third coil element L2a are arranged close to each other (coaxially) so that the winding axes of the respective coil patterns are substantially the same straight line.
  • second coil element L1b and the fourth coil element L2b are arranged close to each other (coaxially) so that the winding axes of the respective coil patterns are substantially the same straight line. That is, when viewed from the stacking direction of the base material layers, the conductor patterns constituting each coil pattern are arranged so as to overlap each other.
  • each coil element L1a, L1b, L2a, L2b is each comprised by the loop-shaped conductor of about 2 turns, the number of turns is not restricted to this. Further, the winding axes of the coil patterns of the first coil element L1a and the third coil element L2a do not need to be arranged so as to be exactly the same straight line, and the first coil element L1a and the third coil element in plan view. It is only necessary that the coil openings of L2a are wound so as to overlap each other.
  • the coil patterns of the second coil element L1b and the fourth coil element L2b do not have to be arranged so that the winding axes are exactly the same straight line, and the second coil element L1b and the fourth coil in a plan view. It only has to be wound so that the coil openings of the element L2b overlap each other.
  • the coil elements L1a, L1b, L2a, and L2b are built in and integrated in the dielectric or magnetic laminate 40, and in particular, the first inductance element L1 and the coil element L2a formed by the coil elements L1a and L1b. , L2b are provided in the laminated body 40 with a region serving as a coupling portion with the second inductance element L2, and the element values of the elements constituting the impedance conversion circuit 35, and further, the first inductance element L1 and the second inductance element The degree of coupling with L2 is less affected by other electronic elements arranged adjacent to the stacked body 40. As a result, the frequency characteristics can be further stabilized.
  • various wirings are provided on a printed wiring board (not shown) on which the laminate 40 is mounted, and these wirings and the impedance conversion circuit 35 may interfere with each other.
  • the ground conductor 68 is provided at the bottom of the multilayer body 40 so as to cover the opening of the coil pattern formed by the conductor patterns 61 to 67, so that the magnetic field generated in the coil pattern is generated on the printed wiring board. Less susceptible to magnetic fields from various wirings. In other words, the inductance values of the coil elements L1a, L1b, L2a, and L2b are less likely to vary.
  • FIG. 8 is a diagram showing an operation principle of the impedance conversion circuit 35.
  • the first coil element L1a (conductor patterns 62a and 63) is indicated by arrows c and d.
  • the second coil element L1b (conductor patterns 62b and 64) as indicated by arrows e and f.
  • the third coil element L2a (High-frequency signal currents indicated by arrows g and h are induced in the conductor patterns 65 and 67a).
  • the fourth coil is generated by mutual inductive coupling and electric field coupling.
  • High-frequency signal currents indicated by arrows i and j are induced in the element L2b (conductor patterns 66 and 67b).
  • the conductor pattern 63 of the first coil element L1a and the conductor pattern 65 of the third coil element L2a are opposed to each other, electric field coupling occurs between them, and the current flowing through this electric field coupling is the induced current. Flows in the same direction. That is, the coupling degree is strengthened by magnetic field coupling and electric field coupling. Similarly, magnetic field coupling and electric field coupling also occur in the conductor pattern 64 of the second coil element L1b and the conductor pattern 66 of the fourth coil element L2b.
  • the first coil element L1a and the second coil element L1b are coupled in phase with each other, and the third coil element L2a and the fourth coil element L2b are coupled in phase with each other to form a closed magnetic circuit. Therefore, the two magnetic fluxes C and D are confined to reduce energy loss between the first coil element L1a and the second coil element L1b and between the third coil element L2a and the fourth coil element L2b. can do. If the inductance values of the first coil element L1a and the second coil element L1b and the inductance values of the third coil element L2a and the fourth coil element L2b are set to substantially the same element value, the leakage magnetic field of the closed magnetic circuit is reduced. Energy loss can be further reduced. Of course, the impedance conversion ratio can be controlled by appropriately designing the element value of each coil element.
  • the third coil element L2a and the fourth coil element L2b are electrically coupled by the capacitors Cag and Cbg via the ground conductor 68, the current flowing by this field coupling further enhances the degree of coupling between L2a and L2b. . If there is a ground on the upper side, the coupling between L1a and L1b can be further increased by generating electric field coupling between the first coil element L1a and the second coil element L1b by the capacitors Cag and Cbg.
  • the magnetic flux C excited by the primary current flowing in the first inductance element L1 and the magnetic flux D excited by the secondary current flowing in the second inductance element L2 are repelled by the induced current (repulsion). To occur).
  • the magnetic field generated in the first coil element L1a and the second coil element L1b and the magnetic field generated in the third coil element L2a and the fourth coil element L2b are confined in a narrow space, respectively, the first coil element L1a and the first coil element L1a
  • the three-coil element L2a, the second coil element L1b, and the fourth coil element L2b are coupled with a higher degree of coupling.
  • FIG. 9 is a circuit diagram of the antenna device of the fourth embodiment.
  • the impedance conversion circuit 34 used here includes a first inductance element L1 and two second inductance elements L21 and L22.
  • the fifth coil element L2c and the sixth coil element L2d constituting the second inductance element L22 are coupled in phase with each other.
  • the fifth coil element L2c is coupled with the first coil element L1a in reverse phase
  • the sixth coil element L2d is coupled with the second coil element L1b in reverse phase.
  • One end of the fifth coil element L2c is connected to the radiating element 11, and one end of the sixth coil element L2d is connected to the ground.
  • FIG. 10 is an exploded perspective view of the laminated body 40 constituting the impedance conversion circuit 34.
  • 51j are stacked. That is, similarly to the first to fourth coil elements described above, the fifth and sixth coil elements are respectively configured, the fifth and sixth coil elements L2c and L2d are configured by the conductor of the coil pattern, and the first The fifth and sixth coil elements L2c and L2d are wound so that the magnetic flux generated in the fifth and sixth coil elements L2c and L2d forms a closed magnetic path.
  • the operating principle of the impedance conversion circuit 34 of the fourth embodiment is basically the same as that of the first to third embodiments.
  • the stray capacitance generated between the first inductance element L1 and the ground is suppressed by arranging the first inductance element L1 so as to be sandwiched between the two second inductance elements L21 and L22. The By suppressing such a capacitive component that does not contribute to radiation, the radiation efficiency of the antenna can be increased.
  • first inductance element L1 and the second inductance elements L21, L22 are more tightly coupled, that is, the leakage magnetic field is reduced, and the high-frequency signal between the first inductance element L1 and the second inductance elements L21, L22 is reduced. Energy transmission loss is reduced.
  • FIG. 11A is a perspective view of the impedance conversion circuit 135 of the fifth embodiment
  • FIG. 11B is a perspective view of the impedance conversion circuit 135 viewed from the lower surface side
  • FIG. 12 is an exploded perspective view of the laminate 40 constituting the impedance conversion circuit 135.
  • the laminated body 140 is formed by laminating a plurality of base material layers made of a dielectric material or a magnetic material, and has a power supply terminal 141 connected to the power supply circuit 30, a ground terminal 142 connected to the ground, and the antenna element 11 on the back surface thereof.
  • An antenna terminal 143 connected to is provided.
  • an NC terminal 144 used for mounting is also provided on the back surface.
  • an inductor or a capacitor for impedance matching may be mounted on the surface of the multilayer body 140 as necessary. Further, an inductor or a capacitor may be formed in the multilayer body 140 with an electrode pattern.
  • the impedance conversion circuit 135 built in the laminate 140 has the various terminals 141, 142, 143, and 144 formed on the first base layer 151a.
  • Conductive patterns 161 and 163 to be the first and third coil elements L1a and L2a are formed on the base layer 151b, and the conductive pattern 162 to be the second and fourth coil elements L1b and L2b are formed on the third base layer 151c. , 164 are formed.
  • the conductor patterns 161 to 164 can be formed by screen printing of a paste mainly composed of a conductive material such as silver or copper, or etching of a metal foil.
  • a conductive material such as silver or copper
  • etching of a metal foil As the base material layers 151a to 151c, a glass ceramic material, an epoxy resin material, or the like can be used as long as it is a dielectric, and a ferrite ceramic material or a resin material containing ferrite can be used as a magnetic material. .
  • the conductor patterns 161 to 164 and the terminals 141, 142, and 143 are connected via the interlayer connection conductors (via hole conductors), as shown in FIG. 3A described above.
  • Configure an equivalent circuit That is, the power supply terminal 141 is connected to one end of the conductor pattern 161 (first coil element L1a) via the via-hole conductor pattern 165a, and the other end of the conductor pattern 161 is connected to the conductor pattern 162 (second coil element) via the via-hole conductor 165b.
  • L1b) is connected to one end.
  • the other end of the conductor pattern 162 is connected to the ground terminal 142 via the via-hole conductor 165c, and the other end of the branched conductor pattern 164 (fourth coil element L2b) is connected to the conductor pattern 163 (third coil element) via the via-hole conductor 165d.
  • L2a) is connected to one end.
  • the other end of the conductor pattern 163 is connected to the antenna terminal 143 through a via-hole conductor 165e.
  • the coil elements L1a, L1b, L2a, and L2b are built in the multilayer body 140 made of a dielectric material or a magnetic material, and in particular, a region serving as a coupling portion between the first inductance element L1 and the second inductance element L2.
  • the impedance conversion circuit 135 is hardly affected by other circuits and elements arranged adjacent to the laminated body 140. As a result, the frequency characteristics can be further stabilized.
  • first coil element L1a and the third coil element L2a are provided in the same layer (base material layer 151b) of the laminate 140, and the second coil element L1b and the fourth coil element L2b are provided in the same layer of the laminate 140 ( By providing in the base material layer 151c), the thickness of the laminated body 140 (impedance conversion circuit 135) becomes thin. Furthermore, since the first coil element L1a and the third coil element L2a and the second coil element L1b and the fourth coil element L2b that are coupled to each other can be formed in the same process (for example, application of conductive paste), stacking deviation, etc. The variation in the coupling degree due to the is suppressed, and the reliability is improved.
  • FIG. 13 is a circuit diagram of the antenna device 106 according to the sixth embodiment, and FIG. 13B is an equivalent circuit diagram thereof.
  • the antenna device 106 includes an antenna element 11 and an impedance conversion circuit 25 connected to the antenna element 11.
  • the antenna element 11 is a monopole antenna, and an impedance conversion circuit 25 is connected to the feeding end of the antenna element 11.
  • the impedance conversion circuit 25 (strictly speaking, the first inductance element L1 of the impedance conversion circuit 25) is inserted between the antenna element 11 and the power feeding circuit 30.
  • the power feeding circuit 30 is a power feeding circuit for feeding a high frequency signal to the antenna element 11 and generates and processes a high frequency signal, but may include a circuit that combines and demultiplexes the high frequency signal.
  • the impedance conversion circuit 25 includes a first inductance element L1 connected to the power supply circuit 30 and a second inductance element L2 coupled to the first inductance element L1. More specifically, the first end of the first inductance element L1 is connected to the power feeding circuit 30, the second end is connected to the antenna, the first end of the second inductance element L2 is connected to the antenna element 11, and the second end. Each end is connected to ground.
  • the first inductance element L1 and the second inductance element L2 are tightly coupled. As a result, a pseudo negative inductance component is generated.
  • the inductance component of the antenna element 11 is apparently reduced by canceling out the inductance component of the antenna element 11 itself by the negative inductance component. That is, since the effective inductive reactance component of the antenna element 11 is reduced, the antenna element 11 is less dependent on the frequency of the high frequency signal.
  • the impedance conversion circuit 25 includes a transformer type circuit in which the first inductance element L1 and the second inductance element L2 are tightly coupled via the mutual inductance M. As shown in FIG. 13B, this transformer type circuit can be equivalently converted into a T type circuit including three inductance elements Z1, Z2, and Z3. That is, the T-type circuit includes a first port P1 connected to the power feeding circuit, a second port P2 connected to the antenna element 11, a third port P3 connected to the ground, the first port P1 and the branch point A. The first inductance element Z1 connected between the second port P2 and the second inductance element Z2 connected between the branch point A, and the second inductance element Z2 connected between the third port P3 and the branch point A. It is comprised by 3 inductance element Z3.
  • the inductance of the first inductance element L1 shown in FIG. 13A is L1
  • the inductance of the second inductance element L2 is L2
  • the mutual inductance is M
  • the inductance of the first inductance element Z1 of FIG. L1 + M
  • the inductance of the second inductance element Z2 is ⁇ M
  • the inductance of the third inductance element Z3 is L2 + M. That is, the inductance of the second inductance element Z2 is a negative value regardless of the values of L1 and L2. That is, a pseudo negative inductance component is formed here.
  • the antenna element 11 is equivalently composed of an inductance component LANT, a radiation resistance component Rr, and a capacitance component CANT as shown in FIG.
  • the inductance component LANT of the antenna element 11 alone acts so as to be canceled out by the negative inductance component ( ⁇ M) in the impedance conversion circuit 45. That is, the inductance component (of the antenna element 11 including the second inductance element Z2) viewed from the point A of the impedance conversion circuit is small (ideally zero), and as a result, The impedance frequency characteristic of the antenna device 106 is reduced.
  • the degree of coupling is preferably 0.5 or more, and more preferably 0.7 or more. That is, with such a configuration, an extremely high degree of coupling such as the degree of coupling in the first embodiment is not necessarily required.
  • FIG. 14A is a circuit diagram of the antenna device 107 of the seventh embodiment
  • FIG. 14B is a diagram showing a specific arrangement of each coil element.
  • the basic configuration of the seventh embodiment is the same as that of the sixth embodiment, but a more specific configuration for coupling (tight coupling) the first inductance element and the second inductance element with a very high degree of coupling. Is shown.
  • the first inductance element L1 is composed of a first coil element L1a and a second coil element L1b, and these coil elements are connected in series to each other, and a closed magnetic circuit Is wound to constitute.
  • the second inductance element L2 includes a third coil element L2a and a fourth coil element L2b, and these coil elements are connected in series with each other and wound so as to form a closed magnetic circuit.
  • the first coil element L1a and the second coil element L1b are coupled in opposite phases (polarity coupling), and the third coil element L2a and the fourth coil element L2b are coupled in opposite phases (polarity coupling). .
  • first coil element L1a and the third coil element L2a can be coupled in phase (depolarized coupling), and the second coil element L1b and the fourth coil element L2b can be coupled in phase (depolarized coupling). preferable.
  • FIG. 15A is a diagram showing the transformer ratio of the impedance conversion circuit based on the equivalent circuit shown in FIG.
  • FIG. 15B is a diagram in which various arrows indicating states of magnetic field coupling and electric field coupling are entered in the circuit illustrated in FIG. 14B.
  • the magnetic field generated by the current b flowing through the coil element L1a is coupled to the coil element L2a, and the induced current d flows through the coil element L2a in the reverse direction.
  • the magnetic field generated by the current c flowing through the coil element L1b is coupled to the coil element L2b, and the induced current e is applied to the coil element L2b in the reverse direction. Flowing. Then, as indicated by an arrow B in the figure, a magnetic flux passing through the closed magnetic path is formed by these currents.
  • the first inductance element An equivalent magnetic barrier MW is generated between L1 and the second inductance element L2.
  • Capacitors Ca and Cb in FIG. 4 are symbols representing the coupling capacitance for the electric field coupling.
  • the first inductance element L1 and the second inductance element L2 are strongly coupled by both the magnetic field and the electric field.
  • the impedance conversion circuit 25 directs the direction of the current flowing through the second inductance element L2 through coupling via a magnetic field and the current flowing through the second inductance element L2 through coupling through an electric field. It can also be said that the circuit is configured to have the same direction.
  • FIG. 16 is a circuit diagram of the antenna device 107 corresponding to multiband.
  • This antenna device 107 is an antenna device used in a multiband-compatible mobile radio communication system (800 MHz band, 900 MHz band, 1800 MHz band, 1900 MHz band) that is compatible with the GSM system and the CDMA system.
  • the antenna element 11 is a branched monopole antenna.
  • This antenna device 102 is used as a main antenna of a communication terminal device.
  • the first radiating portion of the branched monopole antenna element 11 mainly functions as an antenna radiating element on the high band side (1800 to 2400 MHz band), and the first radiating portion and the second radiating portion are mainly used on the low band side ( 800 to 900 MHz band).
  • the branched monopole antenna elements 11 do not need to resonate in their corresponding frequency bands. This is because the impedance conversion circuit 25 matches the characteristic impedance of each radiation unit with the impedance of the power feeding circuit 30.
  • the impedance conversion circuit 25 matches the characteristic impedance of the second radiating unit with the impedance (usually 50 ⁇ ) of the feeder circuit 30 in the 800 to 900 MHz band, for example.
  • the low-band high-frequency signal supplied from the power feeding circuit 30 can be radiated from the second radiating unit, or the low-band high-frequency signal received by the second radiating unit can be supplied to the power feeding circuit 30.
  • the high-band high-frequency signal supplied from the power supply circuit 30 can be radiated from the first radiation unit, or the high-band high-frequency signal received by the first radiation unit can be supplied to the power supply circuit 30.
  • FIG. 17 is a diagram illustrating an example of a conductor pattern of each layer when the impedance conversion circuit 25 according to the eighth embodiment is configured on a multilayer substrate.
  • Each layer is composed of a magnetic sheet, and the conductor pattern of each layer is formed on the back surface of the magnetic sheet in the direction shown in FIG. 17, but each conductor pattern is represented by a solid line.
  • the linear conductor pattern has a predetermined line width, it is represented by a simple solid line here.
  • the conductor pattern 73 is formed on the back surface of the base material layer 51a
  • the conductor patterns 72 and 74 are formed on the back surface of the base material layer 51b
  • the conductor patterns 71 and 75 are formed on the back surface of the base material layer 51c.
  • Conductive pattern 63 is formed on the back surface of base material layer 51d
  • conductive patterns 62 and 64 are formed on the back surface of base material layer 51e
  • conductive patterns 61 and 65 are formed on the back surface of base material layer 51f.
  • a conductor pattern 66 is formed on the back surface of the base material layer 51g
  • a power feeding terminal 41, a ground terminal 42, and an antenna terminal 43 are formed on the back surface of the base material layer 51h.
  • a broken line extending in the vertical direction in FIG. 17 is a via electrode, and the conductor patterns are connected between the layers. These via electrodes are actually cylindrical electrodes having a predetermined diameter, but are represented here by simple broken lines.
  • the first coil element L1a is constituted by the right half of the conductor pattern 63 and the conductor patterns 61 and 62.
  • the second coil element L1b is constituted by the left half of the conductor pattern 63 and the conductor patterns 64 and 65.
  • the right half of the conductor pattern 73 and the conductor patterns 71 and 72 constitute the third coil element L2a.
  • the left half of the conductor pattern 73 and the conductor patterns 74 and 75 constitute a fourth coil element L2b.
  • the winding axis of each coil element L1a, L1b, L2a, L2b is oriented in the stacking direction of the multilayer substrate.
  • the winding axes of the first coil element L1a and the second coil element L1b are juxtaposed in a different relationship.
  • the third coil element L2a and the fourth coil element L2b are juxtaposed with each other with different winding axes.
  • the winding ranges of the first coil element L1a and the third coil element L2a overlap at least partly in a plan view
  • the winding ranges of the second coil element L1b and the fourth coil element L2b in a plan view At least partly overlaps. In this example, they overlap almost completely.
  • four coil elements are constituted by a conductor pattern having an 8-shaped structure.
  • Each layer may be composed of a dielectric sheet. However, if a magnetic sheet having a high relative permeability is used, the coupling coefficient between the coil elements can be further increased.
  • FIG. 18 shows the main magnetic flux passing through the coil element by the conductor pattern formed in each layer of the multilayer substrate shown in FIG.
  • the magnetic flux FP12 passes through the first coil element L1a by the conductor patterns 61 to 63 and the second coil element L1b by the conductor patterns 63 to 65.
  • the magnetic flux FP34 passes through the third coil element L2a constituted by the conductor patterns 71 to 73 and the fourth coil element L2b constituted by the conductor patterns 73 to 75.
  • FIG. 19 is a diagram showing a magnetic coupling relationship of the four coil elements L1a, L1b, L2a, and L2b of the impedance conversion circuit 25 according to the eighth embodiment.
  • the first coil element L1a and the second coil element L1b are wound such that the first coil element L1a and the second coil element L1b constitute a first closed magnetic path (a loop indicated by the magnetic flux FP12).
  • the third coil element L2a and the fourth coil element L2b are wound so that the third coil element L2a and the fourth coil element L2b form a second closed magnetic circuit (a loop indicated by the magnetic flux FP34). It has been turned.
  • the four coil elements L1a, L1b, L2a, and L2b are wound so that the magnetic flux FP12 passing through the first closed magnetic path and the magnetic flux FP34 passing through the second closed magnetic path are in opposite directions.
  • a straight line indicated by a two-dot chain line in FIG. 19 represents a magnetic barrier in which the two magnetic fluxes FP12 and FP34 are not coupled.
  • magnetic barriers are generated between the coil elements L1a and L2a and between L1b and L2b.
  • FIG. 20 is a diagram illustrating a configuration of an impedance conversion circuit according to the ninth embodiment, and is a diagram illustrating an example of a conductor pattern of each layer when the impedance conversion circuit is configured on a multilayer substrate.
  • the conductor pattern of each layer is formed on the back surface in the direction shown in FIG. 20, but each conductor pattern is represented by a solid line.
  • the linear conductor pattern has a predetermined line width, it is represented by a simple solid line here.
  • the conductor pattern 73 is formed on the back surface of the base material layer 51a
  • the conductor patterns 72 and 74 are formed on the back surface of the base material layer 51b
  • the conductor patterns 71 and 75 are formed on the back surface of the base material layer 51c.
  • Conductive pattern 63 is formed on the back surface of base material layer 51d
  • conductive patterns 62 and 64 are formed on the back surface of base material layer 51e
  • conductive patterns 61 and 65 are formed on the back surface of base material layer 51f.
  • a conductor pattern 66 is formed on the back surface of the base material layer 51g
  • a power feeding terminal 41, a ground terminal 42, and an antenna terminal 43 are formed on the back surface of the base material layer 51h.
  • a broken line extending in the vertical direction in FIG. 20 is a via electrode, and the conductor patterns are connected between the layers. These via electrodes are actually cylindrical electrodes having a predetermined diameter, but are represented here by simple broken lines.
  • the first coil element L1a is configured by the right half of the conductor pattern 63 and the conductor patterns 61 and 62.
  • the second coil element L1b is constituted by the left half of the conductor pattern 63 and the conductor patterns 64 and 65.
  • the right half of the conductor pattern 73 and the conductor patterns 71 and 72 constitute the third coil element L2a.
  • the left half of the conductor pattern 73 and the conductor patterns 74 and 75 constitute a fourth coil element L2b.
  • FIG. 21 is a diagram showing main magnetic fluxes passing through the coil element by the conductor pattern formed in each layer of the multilayer substrate shown in FIG.
  • FIG. 22 is a diagram showing the magnetic coupling relationship of the four coil elements L1a, L1b, L2a, and L2b of the impedance conversion circuit according to the ninth embodiment.
  • the magnetic flux FP12 a closed magnetic circuit is constituted by the first coil element L1a and the second coil element L1b
  • a closed magnetic circuit is constituted by the third coil element L2a and the fourth coil element L2b. Is done.
  • a closed magnetic circuit is formed by the first coil element L1a and the third coil element L2a as shown by the magnetic flux FP13, and a closed magnetic circuit by the second coil element L1b and the fourth coil element L2b is shown by the magnetic flux FP24. Is configured. Further, a closed magnetic circuit FPall is formed by four coil elements L1a, L1b, L2a, and L2b.
  • the impedance conversion circuit shown in the ninth embodiment is the same as that of the seventh embodiment. The same effect as the impedance conversion circuit 25 is obtained.
  • FIG. 23 is a diagram illustrating an example of a conductor pattern of each layer of the impedance conversion circuit according to the tenth embodiment configured on a multilayer substrate.
  • Each layer is composed of a magnetic sheet, and the conductor pattern of each layer is formed on the back surface of the magnetic sheet in the direction shown in FIG. 23, but each conductor pattern is represented by a solid line.
  • the linear conductor pattern has a predetermined line width, it is represented by a simple solid line here.
  • the conductor pattern 73 is formed on the back surface of the base material layer 51a
  • the conductor patterns 72 and 74 are formed on the back surface of the base material layer 51b
  • the conductor patterns 71 and 75 are formed on the back surface of the base material layer 51c.
  • Conductive patterns 61 and 65 are formed on the back surface of the base material layer 51d
  • conductive patterns 62 and 64 are formed on the back surface of the base material layer 51e
  • conductive patterns 63 are formed on the back surface of the base material layer 51f.
  • a power supply terminal 41, a ground terminal 42, and an antenna terminal 43 are formed on the back surface of the base material layer 51g.
  • a broken line extending in the vertical direction in FIG. 23 is a via electrode, and the conductor patterns are connected between the layers. These via electrodes are actually cylindrical electrodes having a predetermined diameter, but are represented here by simple broken lines.
  • the first coil element L1a is configured by the right half of the conductor pattern 63 and the conductor patterns 61 and 62.
  • the second coil element L1b is constituted by the left half of the conductor pattern 63 and the conductor patterns 64 and 65.
  • the right half of the conductor pattern 73 and the conductor patterns 71 and 72 constitute the third coil element L2a.
  • the left half of the conductor pattern 73 and the conductor patterns 74 and 75 constitute a fourth coil element L2b.
  • FIG. 24 is a diagram showing a magnetic coupling relationship between the four coil elements L1a, L1b, L2a, and L2b of the impedance conversion circuit according to the tenth embodiment.
  • the first coil element L1a and the second coil element L1b constitute a first closed magnetic circuit (a loop indicated by the magnetic flux FP12).
  • the third coil element L2a and the fourth coil element L2b constitute a second closed magnetic circuit (a loop indicated by a magnetic flux FP34).
  • the directions of the magnetic flux FP12 passing through the first closed magnetic path and the magnetic flux FP34 passing through the second closed magnetic path are opposite to each other.
  • first coil element L1a and the second coil element L1b are expressed as “primary side” and the third coil element L2a and the fourth coil element L2b are expressed as “secondary side”, as shown in FIG. Since the power feeding circuit is connected to the secondary side closer to the secondary side, the potential in the vicinity of the secondary side of the primary side can be increased, and the electric field between the coil element L1a and the coil element L2a can be increased. Coupling increases and the electric current due to this electric field coupling increases.
  • the impedance conversion circuit shown in the tenth embodiment is also the seventh embodiment. The same effect as that of the impedance conversion circuit 25 is obtained.
  • FIG. 25 is a circuit diagram of an impedance conversion circuit according to the eleventh embodiment.
  • the impedance conversion circuit includes a first series circuit 26 connected between the power feeding circuit 30 and the antenna element 11, a third series circuit 28 connected between the power feeding circuit 30 and the antenna element 11, and an antenna.
  • the second serial circuit 27 is connected between the element 11 and the ground.
  • the first series circuit 26 is a circuit in which a first coil element L1a and a second coil element L1b are connected in series.
  • the second series circuit 27 is a circuit in which a third coil element L2a and a fourth coil element L2b are connected in series.
  • the third series circuit 28 is a circuit in which a fifth coil element L1c and a sixth coil element L1d are connected in series.
  • an enclosure M12 represents a coupling between the coil elements L1a and L1b
  • an enclosure M34 represents a coupling between the coil elements L2a and L2b
  • an enclosure M56 represents a coupling between the coil elements L1c and L1d.
  • An enclosure M135 represents the coupling of the coil elements L1a, L2a, and L1c.
  • box M246 represents the coupling of coil elements L1b, L2b, and L1d.
  • the coil elements L2a and L2b constituting the second inductance element are arranged so as to be sandwiched between the coil elements L1a, L1b, L1c and L1d constituting the first inductance element.
  • the stray capacitance generated between the two-inductance element and the ground is suppressed. By suppressing such a capacitive component that does not contribute to radiation, the radiation efficiency of the antenna can be increased.
  • FIG. 26 is a diagram illustrating an example of a conductor pattern of each layer when the impedance conversion circuit according to the eleventh embodiment is configured on a multilayer substrate.
  • Each layer is composed of a magnetic sheet, and the conductor pattern of each layer is formed on the back surface of the magnetic sheet in the direction shown in FIG. 26, but each conductor pattern is represented by a solid line.
  • the linear conductor pattern has a predetermined line width, it is represented by a simple solid line here.
  • a conductor pattern 82 is formed on the back surface of the base material layer 51a
  • conductor patterns 81 and 83 are formed on the back surface of the base material layer 51b
  • a conductor pattern 72 is formed on the back surface of the base material layer 51c.
  • Conductive patterns 71 and 73 are formed on the back surface of the base material layer 51d
  • conductive patterns 61 and 63 are formed on the back surface of the base material layer 51e
  • conductive patterns 62 are formed on the back surface of the base material layer 51f.
  • a power feeding terminal 41, a ground terminal 42, and an antenna terminal 43 are formed on the back surface of the base material layer 51g.
  • the broken line extending in the vertical direction in FIG. 26 is a via electrode, and the conductor patterns are connected between the layers. These via electrodes are actually cylindrical electrodes having a predetermined diameter, but are represented here by simple broken lines.
  • the first coil element L1a is constituted by the right half of the conductor pattern 62 and the conductor pattern 61. Further, the left half of the conductor pattern 62 and the conductor pattern 63 constitute a second coil element L1b. Further, the third coil element L2a is constituted by the conductor pattern 71 and the right half of the conductor pattern 72. The left half of the conductor pattern 72 and the conductor pattern 73 constitute the fourth coil element L2b. Further, the fifth coil element L1c is constituted by the conductor pattern 81 and the right half of the conductor pattern 82. Further, the left half of the conductor pattern 82 and the conductor pattern 83 constitute a sixth coil element L1d.
  • the dashed ellipse represents a closed magnetic circuit.
  • the closed magnetic circuit CM12 is linked to the coil elements L1a and L1b.
  • the closed magnetic circuit CM34 is linked to the coil elements L2a and L2b.
  • the closed magnetic circuit CM56 is linked to the coil elements L1c and L1d.
  • the first coil element L1a and the second coil element L1b constitute a first closed magnetic circuit CM12
  • the third coil element L2a and the fourth coil element L2b constitute a second closed magnetic circuit CM34.
  • the fifth coil element L1c and the sixth coil element L1d constitute a third closed magnetic circuit CM56.
  • the alternate long and two short dashes line plane is coupled so that magnetic flux is generated in the opposite directions between the coil elements L1a and L2a, L2a and L1c, L1b and L2b, and L2b and L1d.
  • two magnetic barriers MW that are equivalently generated.
  • the two magnetic barriers MW confine the magnetic flux in the closed magnetic circuit by the coil elements L1a and L1b, the magnetic flux in the closed magnetic circuit by the coil elements L2a and L2b, and the magnetic flux in the closed magnetic circuit by the coil elements L1c and L1d.
  • the second closed magnetic circuit CM34 is sandwiched in the layer direction by the first closed magnetic circuit CM12 and the third closed magnetic circuit CM56.
  • the second closed magnetic circuit CM34 is sandwiched between two magnetic barriers and sufficiently confined (the confinement effect is enhanced). That is, it can act as a transformer having a very large coupling coefficient.
  • the gap between the closed magnetic circuits CM12 and CM34 and between the CM34 and CM56 can be widened to some extent.
  • a circuit in which a series circuit composed of coil elements L1a and L1b and a series circuit composed of coil elements L1c and L1d are connected in parallel is referred to as a primary circuit, and a series circuit composed of coil elements L2a and L2b is referred to as a secondary circuit.
  • the capacitance generated between each of the three series circuits 28 can be reduced. That is, the capacitance component of the LC resonance circuit that determines the frequency of the self-resonance point is reduced.
  • the first series circuit 26 including the coil elements L1a and L1b and the third series circuit 28 including the coil elements L1c and L1d are connected in parallel.
  • the inductance component of the LC resonance circuit that determines the frequency of the point is reduced.
  • the capacitance component and inductance component of the LC resonance circuit that determines the frequency of the self-resonance point are reduced, and the frequency of the self-resonance point can be set to a high frequency sufficiently away from the use frequency band.
  • Twelfth Embodiment a configuration example for increasing the frequency of the self-resonance point of the transformer unit from that shown in the eighth to tenth embodiments is different from the configuration of the eleventh embodiment.
  • FIG. 27 is a circuit diagram of an impedance conversion circuit according to the twelfth embodiment.
  • the impedance conversion circuit includes a first series circuit 26 connected between the power feeding circuit 30 and the antenna element 11, a third series circuit 28 connected between the power feeding circuit 30 and the antenna element 11, and an antenna.
  • the second serial circuit 27 is connected between the element 11 and the ground.
  • the first series circuit 26 is a circuit in which a first coil element L1a and a second coil element L1b are connected in series.
  • the second series circuit 27 is a circuit in which a third coil element L2a and a fourth coil element L2b are connected in series.
  • the third series circuit 28 is a circuit in which a fifth coil element L1c and a sixth coil element L1d are connected in series.
  • an enclosure M12 represents a coupling between the coil elements L1a and L1b
  • an enclosure M34 represents a coupling between the coil elements L2a and L2b
  • an enclosure M56 represents a coupling between the coil elements L1c and L1d.
  • An enclosure M135 represents the coupling of the coil elements L1a, L2a, and L1c.
  • box M246 represents the coupling of coil elements L1b, L2b, and L1d.
  • FIG. 28 is a diagram illustrating an example of a conductor pattern of each layer when the impedance conversion circuit according to the twelfth embodiment is configured on a multilayer substrate.
  • Each layer is composed of a magnetic sheet, and the conductor pattern of each layer is formed on the back surface of the magnetic sheet in the direction shown in FIG. 28, but each conductor pattern is represented by a solid line.
  • the linear conductor pattern has a predetermined line width, it is represented by a simple solid line here.
  • the closed magnetic circuit CM36 is linked to the coil elements L2a, L1c, L1d, and L2b. Therefore, an equivalent magnetic barrier does not occur between the coil elements L2a and L2b and L1c and L1d.
  • Other configurations are as shown in the eleventh embodiment.
  • the closed magnetic circuits CM12, CM34, and CM56 shown in FIG. 28 and the closed magnetic circuit CM36 are generated, so that the magnetic flux generated by the coil elements L2a and L2b is absorbed by the magnetic flux generated by the coil elements L1c and L1d. .
  • the magnetic flux hardly leaks even in the structure of the twelfth embodiment, and as a result, it can act as a transformer having a very large coupling coefficient.
  • the capacitance component and the inductance component of the LC resonance circuit that determines the frequency of the self-resonance point are reduced, and the frequency of the self-resonance point can be set to a high frequency sufficiently away from the use frequency band.
  • FIG. 29 is a circuit diagram of an impedance conversion circuit according to the thirteenth embodiment.
  • the impedance conversion circuit includes a first series circuit 26 connected between the power feeding circuit 30 and the antenna element 11, a third series circuit 28 connected between the power feeding circuit 30 and the antenna element 11, and an antenna.
  • the second serial circuit 27 is connected between the element 11 and the ground.
  • FIG. 30 is a diagram illustrating an example of a conductor pattern of each layer when the impedance conversion circuit according to the thirteenth embodiment is configured on a multilayer substrate.
  • Each layer is composed of a magnetic sheet, and the conductor pattern of each layer is formed on the back surface of the magnetic sheet in the direction shown in FIG. 30, but each conductor pattern is represented by a solid line.
  • the linear conductor pattern has a predetermined line width, it is represented by a simple solid line here.
  • the closed magnetic circuit CM16 is linked to all the coil elements L1a to L1d, L2a, and L2b. Therefore, in this case, an equivalent magnetic barrier does not occur.
  • Other configurations are as shown in the eleventh embodiment and the twelfth embodiment.
  • the closed magnetic circuits CM12, CM34, and CM56 shown in FIG. 30 and the closed magnetic circuit CM16 are generated, so that the magnetic flux from the coil elements L1a to L1d is difficult to leak, and as a result, the coupling coefficient is large. Can act as a transformer.
  • both the capacitance component and the inductance component of the LC resonance circuit that determines the frequency of the self-resonance point are reduced, and the frequency of the self-resonance point can be set to a high frequency sufficiently away from the use frequency band.
  • FIG. 31A is a configuration diagram of a communication terminal apparatus as a first example of the fourteenth embodiment
  • FIG. 31B is a configuration diagram of a communication terminal apparatus as a second example.
  • These are terminals (470 to 770 MHz) for receiving high-frequency signals of a one-segment partial reception service (common name: one-segment) for mobile phones and mobile terminals, for example.
  • the communication terminal device 1 shown in FIG. 31A includes a first housing 10 that is a lid body and a second housing 20 that is a main body, and the first housing 10 is foldable with respect to the second housing 20 or It is connected by sliding.
  • the first casing 10 is provided with a first radiating element 11 that also functions as a ground plate
  • the second casing 20 is provided with a second radiating element 21 that also functions as a ground plate.
  • the first and second radiating elements 11 and 21 are formed of a conductive film made of a thin film such as a metal foil or a thick film such as a conductive paste.
  • the first and second radiating elements 11, 21 obtain a performance almost equivalent to that of a dipole antenna by being differentially fed from the feeding circuit 30.
  • the power feeding circuit 30 has a signal processing circuit such as an RF circuit or a baseband circuit.
  • the inductance value of the impedance conversion circuit 35 is preferably smaller than the inductance value of the connection line 33 that connects the two radiating elements 11 and 21. This is because the influence of the inductance value of the connection line 33 relating to the frequency characteristics can be reduced.
  • a communication terminal device 2 shown in FIG. 31B is provided with the first radiating element 11 as a single antenna.
  • the first radiating element 11 various antenna elements such as a chip antenna, a sheet metal antenna, and a coil antenna can be used.
  • this antenna element you may utilize the linear conductor provided along the internal peripheral surface or outer peripheral surface of the housing 10, for example.
  • the second radiating element 21 also functions as a ground plate of the second casing 20, and various antennas may be used similarly to the first radiating element 11.
  • the communication terminal device 2 is a terminal having a straight structure that is not a folding type or a sliding type.
  • the second radiating element 21 does not necessarily function sufficiently as a radiator, and the first radiating element 11 may behave like a so-called monopole antenna.
  • the feeding circuit 30 has one end connected to the second radiating element 21 and the other end connected to the first radiating element 11 via the impedance conversion circuit 35.
  • the first and second radiating elements 11 and 21 are connected to each other by a connection line 33.
  • This connection line 33 functions as a connection line for electronic components (not shown) mounted on each of the first and second housings 10 and 20, and acts as an inductance element for high-frequency signals, but the performance of the antenna. It does not act directly.
  • the impedance conversion circuit 35 is provided between the power feeding circuit 30 and the first radiating element 11, and is a high-frequency signal transmitted from the first and second radiating elements 11, 21, or the first and second radiating elements 11, 21 stabilizes the frequency characteristics of the high-frequency signal received. Therefore, the frequency characteristics of the high-frequency signal are stabilized without being affected by the shape of the first radiating element 11 or the second radiating element 21, the shape of the first casing 10 or the second casing 20, the arrangement state of adjacent components, and the like. To do. In particular, in the case of a foldable or slide type communication terminal device, the first and second radiating elements 11, according to the open / closed state of the second casing 20 that is the main body of the first casing 10 that is the lid.
  • the impedance of the high-frequency signal can be stabilized by providing the impedance conversion circuit 35. That is, it is possible for the impedance conversion circuit 35 to perform frequency characteristic adjustment functions such as center frequency setting, passband width setting, impedance matching setting, which are important matters for antenna design, and the antenna element itself. Since it is only necessary to consider directivity and gain, antenna design becomes easy.
  • Inductance component M ... Mutual inductance MW ... Magnetic barrier
  • Laminate 141 ... Feed terminal 142 ... Ground terminal 143 ... Antenna terminal 144 ... NC terminals 151a, 151b , 151c... Substrate layers 161 to 164... Conductor patterns 165a to 165e. Conductor

Abstract

 アンテナ装置(106)は、アンテナ素子(11)と、このアンテナ素子(11)に接続されたインピーダンス変換回路(25)とを備えている。アンテナ素子(11)の給電端にインピーダンス変換回路(25)が接続されている。インピーダンス変換回路(25)はアンテナ素子(11)と給電回路(30)との間に挿入されている。インピーダンス変換回路(25)は、給電回路(30)に接続された第1インダクタンス素子(L1)と、第1インダクタンス素子(L1)に結合した第2インダクタンス素子(L2)とを備え、第1インダクタンス素子(L1)の第1端は給電回路(30)に、第2端はアンテナにそれぞれ接続されていて、第2インダクタンス素子(L2)の第1端はアンテナ素子(11)に、第2端はグランドにそれぞれ接続されている。

Description

アンテナ装置および通信端末装置
 本発明は、アンテナ装置およびこれを用いた通信端末装置に関し、特に、広い周波数帯域でマッチングの取れたアンテナ装置に関する。
 近年、携帯電話をはじめとする通信端末装置は、GSM(Global System for mobile Communication)、DCS(Digital CommunicationSystem)、PCS(PersonalCommunication Services)、UMTS(Universal Mobile Telecommunications System)等の通信システム、さらにはGPS(GlobalPositioning system)やワイヤレスLAN、Bluetooth(登録商標)等への対応が求められることがある。したがって、こうした通信端末装置におけるアンテナ装置は、800MHz~2.4GHzまでの広い周波数帯域をカバーすることが求められる。
 広い周波数帯域に対応するアンテナ装置としては、特許文献1や特許文献2に開示されているように、LC並列共振回路やLC直列共振回路にて構成された広帯域の整合回路を備えたものが一般的である。また、広い周波数帯域に対応するアンテナ装置として、たとえば特許文献3や特許文献4に開示されているようなチューナブルアンテナが知られている。
特開2004-336250 特開2006-173697 特開2000-124728 特開2008-035065
 ところが、特許文献1,2に示されている整合回路は複数の共振回路を含むものであるため、この整合回路における挿入損失が大きくなりやすく、十分な利得が得られないことがある。
 他方、特許文献3,4に示されているチューナブルアンテナは、可変容量素子を制御するための回路、すなわち周波数帯域を切り換えるための切替回路、が必要であるので回路構成が複雑になりやすい。また、切替回路での損失や歪みが大きいので十分な利得が得られないことがある。
 本発明は上述した実情に鑑みてなされたものであり、その目的は、広い周波数帯域で給電回路とインピーダンス整合したアンテナ装置、およびこのアンテナ装置を備えた通信端末装置を提供することにある。
(1)本発明のアンテナ装置は、アンテナ素子と、このアンテナ素子に接続されたインピーダンス変換回路とを含み、
 前記インピーダンス変換回路は、第1インダクタンス素子(L1)と、この第1インダクタンス素子に密結合した第2インダクタンス素子(L2)と、を含み、
 前記第1インダクタンス素子と前記第2インダクタンス素子とが密結合することにより擬似的な負のインダクタンス成分が生じ、この負のインダクタンス成分により前記アンテナ素子の実効的なインダクタンス成分が抑制されたことを特徴とする。
(2)(1)において、例えば前記インピーダンス変換回路は、前記第1インダクタンス素子と前記第2インダクタンス素子とが相互インダクタンスを介して密結合したトランス型回路を含み、
 前記トランス型回路を、給電回路に接続される第1ポート、前記アンテナ素子に接続される第2ポート、グランドに接続される第3ポート、前記第1ポートと分岐点との間に接続された第1インダクタンス素子、前記第2ポートと前記分岐点との間に接続された第2インダクタンス素子、および前記第3ポートと前記分岐点との間に接続された第3インダクタンス素子で構成されるT型回路に等価変換した際に、前記擬似的な負のインダクタンス成分は前記第2インダクタに相当する。
(3)(1)または(2)において、例えば前記第1インダクタンス素子の第1端は前記給電回路に接続され、第1インダクタンス素子の第2端はグランドに接続され、前記第2インダクタンス素子の第1端は前記アンテナ素子に接続され、前記第2インダクタンス素子の第2端はグランドに接続されている。
(4)また、(1)または(2)において、例えば、前記第1インダクタンス素子の第1端は前記給電回路に接続され、前記第1インダクタンス素子の第2端は前記アンテナ素子に接続され、前記第2インダクタンス素子の第1端は前記アンテナ素子に接続され、前記第2インダクタンス素子の第2端はグランドに接続されている。
(5)(3)または(4)において、前記第1インダクタンス素子(L1)は第1コイル素子(L1a)および第2コイル素子(L1b)を含み、前記第1コイル素子および前記第2コイル素子は互いに直列的に接続されていて、且つ閉磁路を作るように導体の巻回パターンが形成されていることが好ましい。
(6)(3)~(5)のいずれかにおいて、前記第2インダクタンス素子(L2)は第3コイル素子(L2a)および第4コイル素子(L2b)を含み、前記第3コイル素子および前記第4コイル素子は互いに直列的に接続されていて、且つ閉磁路を作るように導体の巻回パターンが形成されていることが好ましい。
(7)(1)~(6)のいずれかにおいて、前記第1インダクタンス素子と前記第2インダクタンス素子とは、磁界および電界を介して結合されていて、
 前記第1インダクタンス素子に交流電流が流れるとき、前記磁界を介した結合により前記第2インダクタンス素子に流れる電流の向きと、前記電界を介した結合により前記第2インダクタンス素子に流れる電流の向きとが同じであることが好ましい。
(8)(1)~(7)のいずれかにおいて、前記第1インダクタンス素子に交流電流が流れるとき、前記第2インダクタンス素子に流れる電流の向きは、前記第1インダクタンス素子と前記第2インダクタンス素子との間に磁気障壁が生じる向きであることが好ましい。
(9)(1)~(8)のいずれかにおいて、前記第1のインダクタンス素子および前記第2のインダクタンス素子は、複数の誘電体層または磁性体層が積層された積層体(多層基板)内に配置された導体パターンで構成され、前記第1のインダクタンス素子と前記第2のインダクタンス素子とは前記積層体の内部で結合していることが好ましい。
(10)(1)~(9)のいずれかにおいて、前記第1インダクタンス素子は電気的に並列接続された少なくとも二つのインダクタンス素子で構成され、この二つのインダクタンス素子は前記第2インダクタンス素子を挟む位置関係に配置されていることが好ましい。
(11)(1)~(9)のいずれかにおいて、前記第2インダクタンス素子は電気的に並列接続された少なくとも二つのインダクタンス素子で構成され、この二つのインダクタンス素子は前記第1インダクタンス素子を挟む位置関係に配置されていることが好ましい。
(12)本発明の通信端末装置は、アンテナ素子と、給電回路と、前記アンテナ素子と前記給電回路との間に接続されたインピーダンス変換回路とを含むアンテナ装置を備え、
 前記インピーダンス変換回路は、第1インダクタンス素子と、この第1インダクタンス素子に密結合した第2インダクタンス素子と、を含み、
 前記第1インダクタンス素子と前記第2インダクタンス素子とが密結合することにより擬似的な負のインダクタンス成分が生じ、この負のインダクタンス成分により前記アンテナ素子の実効的なインダクタンス成分が抑制されたことを特徴とする。
 本発明のアンテナ装置によれば、インピーダンス変換回路で擬似的な負のインダクタンス成分が生じることで、この負のインダクタンス成分により前記アンテナ素子の実効的なインダクタンス成分が抑制され、すなわちアンテナ素子の見かけ上のインダクタンス成分が小さくなり、その結果、アンテナ装置のインピーダンス周波数特性が小さくなる。したがって広帯域に亘ってアンテナ装置のインピーダンス変化を抑制でき、広い周波数帯域に亘って給電回路とインピーダンス整合がとれる。
 また、本発明の通信端末装置によれば、前記アンテナ装置を備えているため、周波数帯域の異なる各種の通信システムに対応可能である。
図1(A)は第1の実施形態のアンテナ装置101の回路図、図1(B)はその等価回路図である。 図2は、インピーダンス変換回路45で擬似的に生じる負のインダクタンス成分の作用およびインピーダンス変換回路45の作用を示す図である。 図3(A)は第2の実施形態のアンテナ装置102の回路図、図3(B)はその各コイル素子の具体的な配置を示す図である。 図4は、図3(B)に示した回路に磁界結合と電界結合の様子を示す各種矢印を書き入れた図である。 図5は、マルチバンドに対応させたアンテナ装置102の回路図である。 図6(A)は第3の実施形態のインピーダンス変換回路35の斜視図、図6(B)はそれを下面側から見た斜視図である。 図7はインピーダンス変換回路35を構成する積層体40の分解斜視図である。 図8はインピーダンス変換回路35の動作原理を示す図である。 図9は第4の実施形態のアンテナ装置の回路図である。 図10はインピーダンス変換回路34を構成する積層体40の分解斜視図である。 図11(A)は第5の実施形態のインピーダンス変換回路135の斜視図、図11(B)はそれを下面側から見た斜視図である。 図12はインピーダンス変換回路135を構成する積層体40の分解斜視図である。 図13は第6の実施形態のアンテナ装置106の回路図、図13(B)はその等価回路図である。 図14(A)は第7の実施形態のアンテナ装置107の回路図、図14(B)はその各コイル素子の具体的な配置を示す図である。 図15(A)は図14(B)に示した等価回路を基にしてインピーダンス変換回路のトランス比を示す図である。 図16は、マルチバンドに対応させたアンテナ装置107の回路図である。 図17は第8の実施形態に係るインピーダンス変換回路25を多層基板に構成した場合の各層の導体パターンの例を示す図である。 図18は、図17に示した多層基板の各層に形成された導体パターンによるコイル素子を通る主な磁束を示している。 図19は第8の実施形態に係るインピーダンス変換回路25の4つコイル素子L1a,L1b,L2a,L2bの磁気的結合の関係を示す図である。 図20は第9の実施形態に係るインピーダンス変換回路の構成を示す図であり、このインピーダンス変換回路を多層基板に構成した場合の各層の導体パターンの例を示す図である。 図21は、図20に示した多層基板の各層に形成された導体パターンによるコイル素子を通る主な磁束を示す図である。 図22は第9の実施形態に係るインピーダンス変換回路の4つのコイル素子L1a,L1b,L2a,L2bの磁気的結合の関係を示す図である。 図23は、多層基板に構成された第10の実施形態に係るインピーダンス変換回路の各層の導体パターンの例を示す図である。 図24は、図23に示した多層基板の各層に形成された導体パターンによるコイル素子を通る主な磁束を示す図である。 図25は第9の実施形態に係るインピーダンス変換回路の4つのコイル素子L1a,L1b,L2a,L2bの磁気的結合の関係を示す図である。 図26は第11の実施形態に係るインピーダンス変換回路を多層基板に構成した場合の各層の導体パターンの例を示す図である。 図27は第12の実施形態に係るインピーダンス変換回路の回路図である。 図28は第12の実施形態に係るインピーダンス変換回路を多層基板に構成した場合の各層の導体パターンの例を示す図である。 図29は第13の実施形態に係るインピーダンス変換回路の回路図である。 図30は第13の実施形態に係るインピーダンス変換回路を多層基板に構成した場合の各層の導体パターンの例を示す図である。 図31(A)は第14の実施形態の第1例である通信端末装置、図31(B)は第2例である通信端末装置のそれぞれの構成図である。
《第1の実施形態》
 図1(A)は第1の実施形態のアンテナ装置101の回路図、図1(B)はその等価回路図である。
 図1(A)に示すように、アンテナ装置101は、アンテナ素子11と、このアンテナ素子11に接続されたインピーダンス変換回路45とを備えている。アンテナ素子11はモノポール型アンテナであり、このアンテナ素子11の給電端にインピーダンス変換回路45が接続されている。インピーダンス変換回路45はアンテナ素子11と給電回路30との間に挿入されている。給電回路30は高周波信号をアンテナ素子11に給電するための給電回路であり、高周波信号の生成や処理を行うが、高周波信号の合波や分波を行う回路を含んでいてもよい。
 インピーダンス変換回路45は、給電回路30に接続された第1インダクタンス素子L1と、第1インダクタンス素子L1に結合した第2インダクタンス素子L2とを備えている。より具体的には、第1インダクタンス素子L1の第1端は給電回路30に、第2端はグランドにそれぞれ接続されていて、第2インダクタンス素子L2の第1端はアンテナ素子11に、第2端はグランドにそれぞれ接続されている。
 そして、第1インダクタンス素子L1と第2インダクタンス素子L2とは密結合している。このことにより擬似的に負のインダクタンス成分が生じている。この負のインダクタンス成分で、アンテナ素子11自身が持つインダクタンス成分が打ち消されることにより、アンテナ素子11のインダクタンス成分は見かけ上小さい。すなわち、アンテナ素子11の実効的な誘導性リアクタンス成分が小さくなるため、アンテナ素子11は高周波信号の周波数に依存しにくくなる。
 このインピーダンス変換回路45は、第1インダクタンス素子L1と第2インダクタンス素子L2とを相互インダクタンスMを介して密結合したトランス型回路を含む。このトランス型回路は、図1(B)に示すように、三つのインダクタンス素子Z1,Z2,Z3によるT型回路に等価変換できる。すなわち、このT型回路は、給電回路に接続される第1ポートP1、アンテナ素子11に接続される第2ポートP2、グランドに接続される第3ポートP3、第1ポートP1と分岐点との間に接続された第1インダクタンス素子Z1、第2ポートP2と分岐点Aとの間に接続された第2インダクタンス素子Z2、および第3ポートP3と分岐点Aとの間に接続された第3インダクタンス素子Z3で構成される。
 図1(A)に示した第1インダクタンス素子L1のインダクタンスをL1、第2インダクタンス素子L2のインダクタンスをL2、相互インダクタンスをMで表すと、図1(B)の第1インダクタンス素子Z1のインダクタンスは、L1-M、第2インダクタンス素子Z2のインダクタンスはL2-M、第3インダクタンス素子Z3のインダクタンスは+Mである。ここで、L2<Mの関係であれば、第2インダクタンス素子Z2のインダクタンスは負の値である。すなわち、ここに擬似的な負の合成インダクタンス成分が形成されている。
 一方、アンテナ素子11は図1(B)に表れているように、等価的にインダクタンス成分LANT、放射抵抗成分Rr、およびキャパシタンス成分CANTで構成される。このアンテナ素子11単体のインダクタンス成分LANTは、インピーダンス変換回路45における前記負の合成インダクタンス成分(L2-M)によって打ち消されるように作用する。すなわち、インピーダンス変換回路のA点からアンテナ素子11側を見た(第2インダクタンス素子Z2を含めたアンテナ素子11の)インダクタンス成分は小さく(理想的にはゼロに)なり、その結果、このアンテナ装置101のインピーダンス周波数特性が小さくなる。
 このように負のインダクタンス成分を生じさせるためには、第1インダクタンス素子と第2インダクタンス素子とを高い結合度で結合させることが重要である。具体的には、この結合度は1以上であればよい。
 トランス型回路によるインピーダンス変換比は、第1インダクタンス素子L1のインダクタンスL1に対する第2インダクタンス素子L2のインダクタンスL2の比(L1:L2)である。
 図2は、前記インピーダンス変換回路45で擬似的に生じる負のインダクタンス成分の作用およびインピーダンス変換回路45の作用を模式的に示す図である。図2において曲線S0はアンテナ素子11の使用周波数帯域に亘って周波数をスイープしたときのインピーダンス軌跡をスミスチャート上に表したものである。アンテナ素子11単体ではインダクタンス成分LANTが比較的大きいので、図2に表れているようにインピーダンスは大きく推移する。
 図2において曲線S1はインピーダンス変換回路のA点からアンテナ素子11側を見たインピーダンスの軌跡である。このように、インピーダンス変換回路の擬似的な負のインダクタンス成分によってアンテナ素子のインダクタンス成分LANTが相殺されて、A点からアンテナ素子側を見たインピーダンスの軌跡は大幅に縮小される。
 図2において曲線S2は給電回路30から見たインピーダンスすなわちアンテナ装置101のインピーダンスの軌跡である。このように、トランス型回路によるインピーダンス変換比(L1:L2)によって、アンテナ装置101のインピーダンスは50Ω(スミスチャートの中心)に近づく。なお、このインピーダンスの微調整は、トランス型回路に、別途インダクタンス素子やキャパシタンス素子を付加することで行ってもよい。
 このようにして、広帯域に亘ってアンテナ装置のインピーダンス変化を抑制できる。ゆえに、広い周波数帯域に亘って給電回路とインピーダンス整合がとれる。
《第2の実施形態》
 図3(A)は第2の実施形態のアンテナ装置102の回路図、図3(B)はその各コイル素子の具体的な配置を示す図である。
 第2の実施形態の基本構成は第1の実施形態と同様であるが、第1インダクタンス素子と第2インダクタンス素子とを極めて高い結合度で結合(密結合)させるための、より具体的な構成を示すものである。
 図3(A)に表れているように、第1インダクタンス素子L1は第1コイル素子L1aおよび第2コイル素子L1bで構成されていて、これらのコイル素子は互いに直列的に接続され、且つ閉磁路が構成されるように巻回されている。また、第2インダクタンス素子L2は第3コイル素子L2aおよび第4コイル素子L2bで構成されていて、これらのコイル素子は互いに直列的に接続され、且つ閉磁路を構成するように巻回されている。換言すると、第1コイル素子L1aと第2コイル素子L1bとは逆相で結合(加極性結合)し、第3コイル素子L2aと第4コイル素子L2bとは逆相で結合(加極性結合)する。
 さらに、第1コイル素子L1aと第3コイル素子L2aとは同相で結合(減極性結合)するとともに、第2コイル素子L1bと第4コイル素子L2bとは同相で結合(減極性結合)することが好ましい。
 図4は、図3(B)に示した回路に磁界結合と電界結合の様子を示す各種矢印を書き入れた図である。図4に示すように、給電回路から図中矢印a方向に電流が供給されたとき、第1コイル素子L1aに図中矢印b方向に電流が流れるとともに、第2コイル素子L1bには図中矢印c方向に電流が流れる。そして、これらの電流により、図中矢印Aで示されるように、閉磁路を通る磁束が形成される。
 コイル素子L1aとコイル素子L2aは互いに並走しているので、コイル素子L1aに電流bが流れて生じる磁界がコイル素子L2aに結合して、コイル素子L2aに誘導電流dが逆方向に流れる。同様に、コイル素子L1bとコイル素子L2bは互いに並走しているので、コイル素子L1bに電流cが流れて生じる磁界がコイル素子L2bに結合して、コイル素子L2bに誘導電流eが逆方向に流れる。そして、これらの電流により、図中矢印Bで示されるように、閉磁路を通る磁束が形成される。
 コイル素子L1a,L1bによる第1インダクタンス素子L1に生じる磁束Aの閉磁路と、コイル素子L1b,L2bによる第2インダクタンス素子L2に生じる磁束Bの閉磁路とは独立しているので、第1インダクタンス素子L1と第2インダクタンス素子L2との間には等価的な磁気障壁MWが生じることになる。
 また、コイル素子L1aとコイル素子L2aとは電界によっても結合されている。同様に、コイル素子L1bとコイル素子L2bとは電界によっても結合されている。したがって、コイル素子L1aおよびコイル素子L1bに交流信号が流れるとき、コイル素子L2aおよびコイル素子L2bには電界結合により電流が励起される。図4中のキャパシタCa,Cbは前記電界結合のための結合容量を表象的に表した記号である。
 第1インダクタンス素子L1に交流電流が流れるとき、前記磁界を介した結合により第2インダクタンス素子L2に流れる電流の向きと、前記電界を介した結合により第2インダクタンス素子L2に流れる電流の向きとは同じである。したがって、第1インダクタンス素子L1と第2インダクタンス素子L2とは磁界と電界の両方で強く結合することになる。すなわち、損失を抑え、高周波エネルギーを伝搬させることができる。
 インピーダンス変換回路35は、第1インダクタンス素子L1に交流電流が流れるとき、磁界を介した結合により第2インダクタンス素子L2に流れる電流の向きと、電界を介した結合により第2インダクタンス素子L2に流れる電流の向きとが同じになるよう構成された回路であると言うこともできる。
 図5は、マルチバンドに対応させたアンテナ装置102の回路図である。このアンテナ装置102は、GSM方式やCDMA方式に対応可能なマルチバンド対応型移動体無線通信システム(800MHz帯、900MHz帯、1800MHz帯、1900MHz帯)に用いられるアンテナ装置である。アンテナ素子11は分岐モノポール型アンテナである。
 ここで用いられているインピーダンス変換回路35′は、コイル素子L1aおよびコイル素子L1bで構成される第1インダクタンス素子L1と、コイル素子L2aおよびコイル素子L2bで構成される第2インダクタンス素子L2との間にキャパシタC1を挿入したもので、他の構成は上記のインピーダンス変換回路35と同様である。
 このアンテナ装置102は通信端末装置のメインアンテナとして利用される。分岐モノポール型のアンテナ素子11の第1放射部は主にハイバンド側(1800~2400MHz帯)のアンテナ放射素子として作用し、第1放射部と第2放射部の両者で主にローバンド側(800~900MHz帯)のアンテナ素子として作用する。ここで、分岐モノポール型のアンテナ素子11は、必ずしもそれぞれの対応周波数帯で共振する必要はない。なぜなら、インピーダンス変換回路35′が、各放射部のもつ特性インピーダンスを給電回路30のインピーダンスにマッチングさせているからである。インピーダンス変換回路35′は、例えば、800~900MHz帯で、第2放射部のもつ特性インピーダンスを給電回路30のインピーダンス(通常は50Ω)にマッチングさせている。これにより、給電回路30から供給されたローバンドの高周波信号を第2放射部から放射させ、または、第2放射部で受信したローバンドの高周波信号を給電回路30に供給することができる。同様に、給電回路30から供給されたハイバンドの高周波信号を第1放射部から放射させ、または、第1放射部で受信したハイバンドの高周波信号を給電回路30に供給することができる。
 なお、インピーダンス変換回路35′のうちキャパシタC1はハイバンドの高周波信号のうち特に高い周波数帯域の信号を通過させる。このことにより、アンテナ装置のさらなる広帯域化が図れる。また、本実施形態の構造によれば、アンテナと給電回路は直流的には分離されているため、ESDに対して強い。
《第3の実施形態》
 図6(A)は第3の実施形態のインピーダンス変換回路35の斜視図、図6(B)はそれを下面側から見た斜視図である。また、図7はインピーダンス変換回路35を構成する積層体40の分解斜視図である。
 図7に示すように、積層体40の最上層の基材層51aに導体パターン61が形成され、2層目の基材層51bに導体パターン62(62a,62b)が形成され、3層目の基材層51cに導体パターン63,64が形成されている。4層目の基材層51dに二つの導体パターン65,66が形成され、5層目の基材層51eに導体パターン67(67a,67b)が形成されている。さらに、6層目の基材層51fにグランド導体68が形成され、7層目の基材層51gの裏面に給電端子41、グランド端子42、アンテナ端子43が形成されている。なお、最上層の基材層51a上には図示しない無地の基材層が積層される。
 前記導体パターン62a,63によって第1コイル素子L1aが構成されていて、前記導体パターン62b,64によって第2コイル素子L1bが構成されている。また、前記導体パターン65,67aによって第3コイル素子L2aが構成されていて、前記導体パターン66,67bによって第4コイル素子L2bが構成されている。
 前記各種導体パターン61~68には、銀や銅などの導電性材料を主成分として形成することができる。基材層51a~51gには、誘電体であればガラスセラミック材料、エポキシ系樹脂材料などを用いることができ、磁性体であればフェライトセラミック材料やフェライトを含有する樹脂材料などを用いることができる。基材層用の材料としては、特に、UHF帯用のインピーダンス変換回路を形成する場合は誘電体材料を用いることが好ましく、HF帯用のインピーダンス変換回路を形成する場合は磁性体材料を用いることが好ましい。
 前記基材層51a~51gを積層することで、導体パターン61~68および端子41,42,43は層間接続導体(ビア導体)を介して接続され、図4に示す回路を構成する。
 図7に示すように、第1コイル素子L1aと第2コイル素子L1bは、それぞれのコイルパターンの巻回軸が互いに平行になるように隣接配置されている。同様に第3コイル素子L2aと第4コイル素子L2bは、それぞれのコイルパターンの巻回軸が互いに平行になるように隣接配置されている。さらに、第1コイル素子L1aと第3コイル素子L2aは、それぞれのコイルパターンの巻回軸がほぼ同一直線になるように(同軸関係に)近接配置されている。同様に、第2コイル素子L1bと第4コイル素子L2bは、それぞれのコイルパターンの巻回軸がほぼ同一直線になるように(同軸関係に)近接配置されている。すなわち、基材層の積層方向からみたとき、各コイルパターンを構成する導体パターンは重なるように配置されている。
 なお、各コイル素子L1a,L1b,L2a,L2bはそれぞれほぼ2ターンのループ状導体にて構成されているが、ターン数はこれに限らない。また、第1コイル素子L1aおよび第3コイル素子L2aのコイルパターンの巻回軸は厳密に同一直線になるように配置されている必要はなく、平面視で第1コイル素子L1aおよび第3コイル素子L2aのコイル開口が互いに重なるように巻回されていればよい。同様に、第2コイル素子L1bおよび第4コイル素子L2bのコイルパターンは巻回軸が厳密に同一直線になるように配置されている必要はなく、平面視で第2コイル素子L1bおよび第4コイル素子L2bのコイル開口が互いに重なるように巻回されていればよい。
 以上のごとく、各コイル素子L1a,L1b,L2a,L2bを誘電体や磁性体の積層体40に内蔵し、一体化すること、特に、コイル素子L1a,L1bによる第1インダクタンス素子L1とコイル素子L2a,L2bによる第2インダクタンス素子L2との結合部となる領域を積層体40の内部に設けることによって、インピーダンス変換回路35を構成する素子の素子値、さらには第1インダクタンス素子L1と第2インダクタンス素子L2との結合度が、積層体40に隣接して配置される他の電子素子からの影響を受けにくくなる。その結果、周波数特性の一層の安定化を図ることができる。
 ところで、前記積層体40を搭載するプリント配線基板(図示せず)には各種の配線が設けられており、これらの配線とインピーダンス変換回路35とが干渉するおそれがある。本実施例のように、積層体40の底部にグランド導体68を導体パターン61~67によって形成されるコイルパターンの開口を覆うように設けることにより、コイルパターンにて生じる磁界がプリント配線基板上の各種配線からの磁界に影響されにくくなる。換言すれば、各コイル素子L1a,L1b,L2a,L2bのインダクタンス値にばらつきが生じにくくなる。
 図8は前記インピーダンス変換回路35の動作原理を示す図である。図8に示すように、給電端子41から入力された高周波信号電流が、矢印a,bに示すように流れると、第1コイル素子L1a(導体パターン62a,63)に矢印c,dで示すように導かれ、さらに、第2コイル素子L1b(導体パターン62b,64)に矢印e,fで示すように導かれる。第1コイル素子L1a(導体パターン62a,63)と第3コイル素子L2a(導体パターン65,67a)とは互いに並走しているので、相互の誘導結合および電界結合により、第3コイル素子L2a(導体パターン65,67a)に矢印g,hに示す高周波信号電流が誘導される。
 同様に、第2コイル素子L1b(導体パターン62b,64)と第4コイル素子L2b(導体パターン66,67b)とは互いに並走しているので、相互の誘導結合および電界結合により、第4コイル素子L2b(導体パターン66,67b)に矢印i,jに示す高周波信号電流が誘導される。
 その結果、アンテナ端子43には矢印kで示す高周波信号電流が流れ、グランド端子42には矢印lで示す高周波信号電流が流れる。なお、給電端子41に流れる電流(矢印a)が逆向きであれば、他の電流の向きも逆になる。
 ここで、第1コイル素子L1aの導体パターン63と第3コイル素子L2aの導体パターン65とが対向しているので、両者間に電界結合が発生し、この電界結合によって流れる電流は、前記誘導電流と同じ方向に流れる。すなわち、磁界結合と電界結合とで結合度を強めている。同様に第2コイル素子L1bの導体パターン64と第4コイル素子L2bの導体パターン66とでも磁界結合と電界結合が生じる。
 第1コイル素子L1aおよび第2コイル素子L1bは互いに同相で結合し、第3コイル素子L2aおよび第4コイル素子L2bは互いに同相で結合し、それぞれ閉磁路を形成している。そのため、前記二つの磁束C,Dが閉じ込められて、第1コイル素子L1aと第2コイル素子L1bとの間、並びに第3コイル素子L2aと第4コイル素子L2bとの間のエネルギーの損失を小さくすることができる。なお、第1コイル素子L1aおよび第2コイル素子L1bのインダクタンス値、第3コイル素子L2aおよび第4コイル素子L2bのインダクタンス値を実質的に同じ素子値にすると、閉磁路の漏れ磁界が少なくなり、エネルギーの損失をより小さくすることができる。もちろん、各コイル素子の素子値を適宜設計して、インピーダンス変換比をコントロールすることができる。
 また、グランド導体68を介して、キャパシタCag,Cbgにより第3コイル素子L2aおよび第4コイル素子L2bが電界結合するので、この電界結合により流れる電流がL2a,L2b間の結合度をより強めている。もし、上側にもグランドがあれば、このキャパシタCag,Cbgにより第1コイル素子L1aおよび第2コイル素子L1b間に電界結合を発生させることでL1a,L1b間の結合度をより強めることができる。
 また、第1インダクタンス素子L1に流れる一次電流によって励起される磁束Cと、第2インダクタンス素子L2に流れる二次電流によって励起される磁束Dは、誘導電流によって互いの磁束をしりぞけ合うように(反発しあうように)生じる。その結果、第1コイル素子L1aおよび第2コイル素子L1bに生じる磁界と第3コイル素子L2aおよび第4コイル素子L2bに生じる磁界とが、それぞれ狭空間に閉じ込められるので、第1コイル素子L1aおよび第3コイル素子L2a、並びに第2コイル素子L1bおよび第4コイル素子L2bは、それぞれより高い結合度で結合する。すなわち、第1インダクタンス素子L1と第2インダクタンス素子L2とは高い結合度で結合する。
《第4の実施形態》
 図9は第4の実施形態のアンテナ装置の回路図である。ここで用いられているインピーダンス変換回路34は、第1インダクタンス素子L1と二つの第2インダクタンス素子L21,L22を備えたものである。第2インダクタンス素子L22を構成する第5コイル素子L2cと第6コイル素子L2dとは互いに同相で結合している。第5コイル素子L2cは第1コイル素子L1aと逆相で結合していて、第6コイル素子L2dは第2コイル素子L1bと逆相で結合している。第5コイル素子L2cの一端は放射素子11に接続され、第6コイル素子L2dの一端はグランドに接続されている。
 図10は前記インピーダンス変換回路34を構成する積層体40の分解斜視図である。この例は、第3の実施形態で図7に示した積層体40の上に、さらに第5コイル素子L2cおよび第6コイル素子L2dを構成する導体71,72,73を形成した基材層51i,51jを積層したものである。すなわち、前述した第1~第4コイル素子と同様、第5および第6コイル素子をそれぞれ構成し、これらの第5および第6コイル素子L2c,L2dをコイルパターンの導体で構成し、且つ、第5および第6コイル素子L2c,L2dに生じる磁束が閉磁路を形成するように第5および第6コイル素子L2c,L2dを巻回している。
 この第4の実施形態のインピーダンス変換回路34の動作原理は前記第1~第3の実施形態と基本的には同様である。この第4の実施形態においては、第1インダクタンス素子L1を二つの第2インダクタンス素子L21,L22で挟み込むように配置することによって、第1インダクタンス素子L1とグランドとの間に生じる浮遊容量が抑制される。このような放射に寄与しない容量成分が抑制されることによって、アンテナの放射効率を高めることができる。
 また、第1インダクタンス素子L1と第2インダクタンス素子L21,L22とがより密結合し、つまり、漏れ磁界が少なくなり、第1インダクタンス素子L1と第2インダクタンス素子L21,L22との間の高周波信号のエネルギー伝達ロスが少なくなる。
《第5の実施形態》
 図11(A)は第5の実施形態のインピーダンス変換回路135の斜視図、図11(B)はそれを下面側から見た斜視図である。また、図12はインピーダンス変換回路135を構成する積層体40の分解斜視図である。
 この積層体140は誘電体または磁性体からなる複数の基材層を積層したもので、その裏面には給電回路30に接続される給電端子141、グランドに接続されるグランド端子142、アンテナ素子11に接続されるアンテナ端子143が設けられている。裏面には、それ以外に、実装のために用いられるNC端子144も設けられている。なお、積層体140の表面に、必要に応じてインピーダンス整合用のインダクタやキャパシタを搭載してもよい。また、積層体140内に電極パターンでインダクタやキャパシタを形成してもよい。
 前記積層体140に内蔵されたインピーダンス変換回路135は、図12に表れているように、1層目の基材層151aに前記各種端子141,142,143,144が形成され、2層目の基材層151bに第1および第3コイル素子L1a,L2aとなる導体パターン161,163が形成され、3層目の基材層151cに第2および第4コイル素子L1b,L2bとなる導体パターン162,164が形成されている。
 導体パターン161~164としては、銀や銅などの導電性材料を主成分とするペーストのスクリーン印刷や、金属箔のエッチングなどで形成することができる。基材層151a~151cとしては、誘電体であればガラスセラミック材料、エポキシ系樹脂材料などを用いることができ、磁性体であればフェライトセラミック材料やフェライトを含有する樹脂材料などを用いることができる。
 前記基材層151a~151cを積層することで、それぞれの導体パターン161~164および端子141,142,143は層間接続導体(ビアホール導体)を介して接続され、前述した図3(A)に示す等価回路を構成する。すなわち、給電端子141はビアホール導体パターン165aを介して導体パターン161(第1コイル素子L1a)の一端に接続され、導体パターン161の他端はビアホール導体165bを介して導体パターン162(第2コイル素子L1b)の一端に接続される。導体パターン162の他端はビアホール導体165cを介してグランド端子142に接続され、分岐した導体パターン164(第4コイル素子L2b)の他端はビアホール導体165dを介して導体パターン163(第3コイル素子L2a)の一端に接続される。導体パターン163の他端はビアホール導体165eを介してアンテナ端子143に接続される。
 以上のごとく、コイル素子L1a,L1b,L2a,L2bを誘電体や磁性体からなる積層体140に内蔵すること、特に、第1インダクタンス素子L1と第2インダクタンス素子L2との結合部となる領域を積層体140の内部に設けることによって、インピーダンス変換回路135が積層体140に隣接して配置される他の回路や素子からの影響を受けにくくなる。その結果、周波数特性の一層の安定化を図ることができる。
 また、第1コイル素子L1aと第3コイル素子L2aとを積層体140の同じ層(基材層151b)に設け、第2コイル素子L1bと第4コイル素子L2bとを積層体140の同じ層(基材層151c)に設けることにより、積層体140(インピーダンス変換回路135)の厚みが薄くなる。さらに、互いに結合する第1コイル素子L1aと第3コイル素子L2aおよび第2コイル素子L1bと第4コイル素子L2bを、それぞれ同一工程(例えば、導電性ペーストの塗布)で形成できるため、積層ずれなどに起因する結合度のばらつきが抑制され、信頼性が向上する。
《第6の実施形態》
 図13は第6の実施形態のアンテナ装置106の回路図、図13(B)はその等価回路図である。
 図13(A)に示すように、アンテナ装置106は、アンテナ素子11と、このアンテナ素子11に接続されたインピーダンス変換回路25とを備えている。アンテナ素子11はモノポール型アンテナであり、このアンテナ素子11の給電端にインピーダンス変換回路25が接続されている。インピーダンス変換回路25は(厳密に言うと、インピーダンス変換回路25のうち第1インダクタンス素子L1は)アンテナ素子11と給電回路30との間に挿入されている。給電回路30は高周波信号をアンテナ素子11に給電するための給電回路であり、高周波信号の生成や処理を行うが、高周波信号の合波や分波を行う回路を含んでいてもよい。
 インピーダンス変換回路25は、給電回路30に接続された第1インダクタンス素子L1と、第1インダクタンス素子L1に結合した第2インダクタンス素子L2とを備えている。より具体的には、第1インダクタンス素子L1の第1端は給電回路30に、第2端はアンテナにそれぞれ接続されていて、第2インダクタンス素子L2の第1端はアンテナ素子11に、第2端はグランドにそれぞれ接続されている。
 そして、第1インダクタンス素子L1と第2インダクタンス素子L2とは密結合している。このことにより擬似的に負のインダクタンス成分が生じている。そして、この負のインダクタンス成分によって、アンテナ素子11自身が持つインダクタンス成分を打ち消すことにより、アンテナ素子11のインダクタンス成分が見かけ上小さくされている。すなわち、アンテナ素子11の実効的な誘導性リアクタンス成分が小さくなるため、アンテナ素子11は高周波信号の周波数に依存しにくくなる。
 このインピーダンス変換回路25は、第1インダクタンス素子L1と第2インダクタンス素子L2とを相互インダクタンスMを介して密結合したトランス型回路を含む。このトランス型回路は、図13(B)に示すように、三つのインダクタンス素子Z1,Z2,Z3によるT型回路に等価変換できる。すなわち、このT型回路は、給電回路に接続される第1ポートP1、アンテナ素子11に接続される第2ポートP2、グランドに接続される第3ポートP3、第1ポートP1と分岐点Aとの間に接続された第1インダクタンス素子Z1、第2ポートP2と分岐点Aとの間に接続された第2インダクタンス素子Z2、および第3ポートP3と分岐点Aとの間に接続された第3インダクタンス素子Z3で構成される。
 図13(A)に示した第1インダクタンス素子L1のインダクタンスをL1、第2インダクタンス素子L2のインダクタンスをL2、相互インダクタンスをMで表すと、図13(B)の第1インダクタンス素子Z1のインダクタンスは、L1+M、第2インダクタンス素子Z2のインダクタンスは-M、第3インダクタンス素子Z3のインダクタンスはL2+Mである。すなわち、第2インダクタンス素子Z2のインダクタンスは、L1,L2の値に関わらず負の値である。すなわち、ここに擬似的な負のインダクタンス成分が形成されている。
 一方、アンテナ素子11は図13(B)に表れているように、等価的にインダクタンス成分LANT、放射抵抗成分Rr、および、キャパシタンス成分CANTで構成される。このアンテナ素子11単体のインダクタンス成分LANTは、インピーダンス変換回路45における前記負のインダクタンス成分(-M)によって打ち消されるように作用する。すなわち、インピーダンス変換回路のA点からアンテナ素子11側を見た(第2インダクタンス素子Z2を含めたアンテナ素子11の)インダクタンス成分は小さく(理想的にはゼロにすることが)なり、その結果、このアンテナ装置106のインピーダンス周波数特性が小さくなる。
 このように負のインダクタンス成分を生じさせるためには、第1インダクタンス素子と第2インダクタンス素子とを高い結合度で結合させることが重要である。具体的には、インダクタンス素子の素子値によもよるが、この結合度は0.5以上、さらには0.7以上あることが好ましい。すなわち、このような構成であれば、第1の実施形態における結合度のような極めて高い結合度が必ずしも要求されるわけではない。
《第7の実施形態》
 図14(A)は第7の実施形態のアンテナ装置107の回路図、図14(B)はその各コイル素子の具体的な配置を示す図である。
 第7の実施形態の基本構成は第6の実施形態と同様であるが、第1インダクタンス素子と第2インダクタンス素子とを極めて高い結合度で結合(密結合)させるための、より具体的な構成を示すものである。
 図14(A)に表れているように、第1インダクタンス素子L1は第1コイル素子L1aおよび第2コイル素子L1bで構成されていて、これらのコイル素子は互いに直列的に接続され、且つ閉磁路が構成されるように巻回されている。また、第2インダクタンス素子L2は第3コイル素子L2aおよび第4コイル素子L2bで構成されていて、これらのコイル素子は互いに直列的に接続され、且つ閉磁路を構成するように巻回されている。換言すると、第1コイル素子L1aと第2コイル素子L1bとは逆相で結合(加極性結合)し、第3コイル素子L2aと第4コイル素子L2bとは逆相で結合(加極性結合)する。
 さらに、第1コイル素子L1aと第3コイル素子L2aとは同相で結合(減極性結合)するとともに、第2コイル素子L1bと第4コイル素子L2bとは同相で結合(減極性結合)することが好ましい。
 図15(A)は図14(B)に示した等価回路を基にしてインピーダンス変換回路のトランス比を示す図である。また、図15(B)は、図14(B)に示した回路に磁界結合と電界結合の様子を示す各種矢印を書き入れた図である。
 図15(B)に示すように、給電回路から図中矢印a方向に電流が供給されたとき、第1コイル素子L1aに図中矢印b方向に電流が流れるとともに、コイル素子L1bには図中矢印c方向に電流が流れる。そして、これらの電流により、図中矢印Aで示される磁束(閉磁路を通る磁束)が形成される。
 コイル素子L1aとコイル素子L2aは互いに並走しているので、コイル素子L1aに電流bが流れて生じる磁界がコイル素子L2aに結合して、コイル素子L2aに誘導電流dが逆方向に流れる。同様に、コイル素子L1bとコイル素子L2bは互いに並走しているので、コイル素子L1bに電流cが流れて生じる磁界がコイル素子L2bに結合して、コイル素子L2bに誘導電流eが逆方向に流れる。そして、これらの電流により、図中矢印Bで示されるように、閉磁路を通る磁束が形成される。
 コイル素子L1a,L1bによる第1インダクタンス素子L1に生じる磁束Aの閉磁路と、コイル素子L1b,L2bによる第2インダクタンス素子L2に生じる磁束Bの閉磁路とは独立しているので、第1インダクタンス素子L1と第2インダクタンス素子L2との間には等価的な磁気障壁MWが生じることになる。
 また、コイル素子L1aとコイル素子L2aとは電界によっても結合されている。同様に、コイル素子L1bとコイル素子L2bとは電界によっても結合されている。したがって、コイル素子L1aおよびコイル素子L1bに交流信号が流れるとき、コイル素子L2aおよびコイル素子L2bには電界結合により電流が励起される。図4中のキャパシタCa,Cbは前記電界結合のための結合容量を表象的に表した記号である。
 第1インダクタンス素子L1に交流電流が流れるとき、前記磁界を介した結合により第2インダクタンス素子L2に流れる電流の向きと、前記電界を介した結合により第2インダクタンス素子L2に流れる電流の向きとは同じである。したがって、第1インダクタンス素子L1と第2インダクタンス素子L2とは磁界と電界の両方で強く結合することになる。
 インピーダンス変換回路25は、第1インダクタンス素子L1に交流電流が流れるとき、磁界を介した結合により第2インダクタンス素子L2に流れる電流の向きと、電界を介した結合により第2インダクタンス素子L2に流れる電流の向きとが同じになるよう構成された回路であると言うこともできる。
 このインピーダンス変換回路25を等価変換すると、図15(A)の回路のように表わすことができる。すなわち、給電回路とグランドとの間の合成インダクタンス成分は、図中一点鎖線で示すように、L1+M+L2+M=L1+L2+2Mとなり、アンテナ素子とグランドとの間の合成インダクタンス成分は、図中二点鎖線で示すように、L2+M-M=L2となる。すなわち、このインピーダンス変換回路におけるトランス比はL1+L2+2M:L2となり、トランス比の大きなインピーダンス変換回路を構成できる。
 図16は、マルチバンドに対応させたアンテナ装置107の回路図である。このアンテナ装置107は、GSM方式やCDMA方式に対応可能なマルチバンド対応型移動体無線通信システム(800MHz帯、900MHz帯、1800MHz帯、1900MHz帯)に用いられるアンテナ装置である。アンテナ素子11は分岐モノポール型アンテナである。
 このアンテナ装置102は通信端末装置のメインアンテナとして利用される。分岐モノポール型のアンテナ素子11の第1放射部は主にハイバンド側(1800~2400MHz帯)のアンテナ放射素子として作用し、第1放射部と第2放射部の両者で主にローバンド側(800~900MHz帯)のアンテナ素子として作用する。ここで、分岐モノポール型のアンテナ素子11は、それぞれの対応周波数帯で共振する必要はない。なぜなら、インピーダンス変換回路25が、各放射部のもつ特性インピーダンスを給電回路30のインピーダンスにマッチングさせているからである。インピーダンス変換回路25は、例えば、800~900MHz帯で、第2放射部のもつ特性インピーダンスを給電回路30のインピーダンス(通常は50Ω)にマッチングさせている。これにより、給電回路30から供給されたローバンドの高周波信号を第2放射部から放射させ、または、第2放射部で受信したローバンドの高周波信号を給電回路30に供給することができる。同様に、給電回路30から供給されたハイバンドの高周波信号を第1放射部から放射させ、または、第1放射部で受信したハイバンドの高周波信号を給電回路30に供給することができる。
《第8の実施形態》
 図17は第8の実施形態に係るインピーダンス変換回路25を多層基板に構成した場合の各層の導体パターンの例を示す図である。各層は磁性体シートで構成され、各層の導体パターンは図17に示す向きでは磁性体シートの裏面に形成されているが、各導体パターンは実線で表している。また、線状の導体パターンは所定の線幅を備えているが、ここでは単純な実線で表している。
 図17に示した範囲で基材層51aの裏面に導体パターン73が形成され、基材層51bの裏面に導体パターン72,74が形成され、基材層51cの裏面に導体パターン71,75が形成されている。基材層51dの裏面に導体パターン63が形成され、基材層51eの裏面に導体パターン62,64が形成され、基材層51fの裏面に導体パターン61,65が形成されている。基材層51gの裏面に導体パターン66が形成され、基材層51hの裏面には給電端子41、グランド端子42、アンテナ端子43が形成されている。図17中の縦方向に延びる破線はビア電極であり、導体パターン同士を層間で接続する。これらのビア電極は実際には所定の径寸法を有する円柱形の電極であるが、ここでは単純な破線で表している。
 図17において、導体パターン63の右半分と導体パターン61,62によって第1コイル素子L1aを構成している。また、導体パターン63の左半分と導体パターン64,65によって第2コイル素子L1bを構成している。また、導体パターン73の右半分と導体パターン71,72によって第3コイル素子L2aを構成している。また、導体パターン73の左半分と導体パターン74,75によって第4コイル素子L2bを構成している。各コイル素子L1a,L1b,L2a,L2bの巻回軸は多層基板の積層方向に向いている。そして、第1コイル素子L1aと第2コイル素子L1bの巻回軸は異なる関係で並置されている。同様に、第3コイル素子L2aと第4コイル素子L2bは、それぞれの巻回軸が異なる関係で並置されている。そして、第1コイル素子L1aと第3コイル素子L2aのそれぞれの巻回範囲が平面視で少なくとも一部で重なり、第2コイル素子L1bと第4コイル素子L2bのそれぞれの巻回範囲が平面視で少なくとも一部で重なる。この例ではほぼ完全に重なる。このようにして8の字構造の導体パターンで4つコイル素子を構成している。
 なお、各層は誘電体シートで構成されていてもよい。但し、比透磁率の高い磁性体シートを用いれば、コイル素子間の結合係数をより高めることができる。
 図18は、図17に示した多層基板の各層に形成された導体パターンによるコイル素子を通る主な磁束を示している。磁束FP12は導体パターン61~63による第1コイル素子L1aおよび導体パターン63~65による第2コイル素子L1bを通る。また、磁束FP34は導体パターン71~73による第3コイル素子L2aおよび導体パターン73~75による第4コイル素子L2bを通る。
 図19は第8の実施形態に係るインピーダンス変換回路25の4つコイル素子L1a,L1b,L2a,L2bの磁気的結合の関係を示す図である。このように、第1コイル素子L1aおよび第2コイル素子L1bは、この第1コイル素子L1aと第2コイル素子L1bとによって第1の閉磁路(磁束FP12で示すループ)が構成されるように巻回されていて、第3コイル素子L2aおよび第4コイル素子L2bは、第3コイル素子L2aと第4コイル素子L2bとによって第2の閉磁路(磁束FP34で示すループ)が構成されるように巻回されている。このように、第1の閉磁路を通る磁束FP12と第2の閉磁路を通る磁束FP34とが互いに逆方向になるように4つコイル素子L1a,L1b,L2a,L2bが巻回されている。図19中の二点鎖線の直線はこの2つの磁束FP12とFP34とが結合しない磁気障壁を表している。このようにコイル素子L1aとL2aの間、およびL1bとL2bの間に磁気障壁が生じる。
《第9の実施形態》
 図20は第9の実施形態に係るインピーダンス変換回路の構成を示す図であり、このインピーダンス変換回路を多層基板に構成した場合の各層の導体パターンの例を示す図である。各層の導体パターンは図20に示す向きでは裏面に形成されているが、各導体パターンは実線で表している。また、線状の導体パターンは所定の線幅を備えているが、ここでは単純な実線で表している。
 図20に示した範囲で基材層51aの裏面に導体パターン73が形成され、基材層51bの裏面に導体パターン72,74が形成され、基材層51cの裏面に導体パターン71,75が形成されている。基材層51dの裏面に導体パターン63が形成され、基材層51eの裏面に導体パターン62,64が形成され、基材層51fの裏面に導体パターン61,65が形成されている。基材層51gの裏面に導体パターン66が形成され、基材層51hの裏面には給電端子41、グランド端子42、アンテナ端子43が形成されている。図20中の縦方向に延びる破線はビア電極であり、導体パターン同士を層間で接続する。これらのビア電極は実際には所定の径寸法を有する円柱形の電極であるが、ここでは単純な破線で表している。
 図20において、導体パターン63の右半分と導体パターン61,62によって第1コイル素子L1aを構成している。また、導体パターン63の左半分と導体パターン64,65によって第2コイル素子L1bを構成している。また、導体パターン73の右半分と導体パターン71,72によって第3コイル素子L2aを構成している。また、導体パターン73の左半分と導体パターン74,75によって第4コイル素子L2bを構成している。
 図21は、図20に示した多層基板の各層に形成された導体パターンによるコイル素子を通る主な磁束を示す図である。また、図22は第9の実施形態に係るインピーダンス変換回路の4つのコイル素子L1a,L1b,L2a,L2bの磁気的結合の関係を示す図である。磁束FP12で示すように、第1コイル素子L1aと第2コイル素子L1bとによる閉磁路が構成され、磁束FP34で示すように、第3コイル素子L2aと第4コイル素子L2bとによる閉磁路が構成される。また、磁束FP13で示すように、第1コイル素子L1aと第3コイル素子L2aとによる閉磁路が構成され、磁束FP24で示すように、第2コイル素子L1bと第4コイル素子L2bとによる閉磁路が構成される。さらに、4つのコイル素子L1a,L1b,L2a,L2bによる閉磁路FPallも構成される。
 この第9の実施形態の構成によっても、コイル素子L1aとL1b、L2aとL2bのインダクタンス値はそれぞれの結合により小さくなるため、第9の実施形態で示したインピーダンス変換回路も第7の実施形態のインピーダンス変換回路25と同様の効果を奏する。
《第10の実施形態》
 図23は、多層基板に構成された第10の実施形態に係るインピーダンス変換回路の各層の導体パターンの例を示す図である。各層は磁性体シートで構成され、各層の導体パターンは図23に示す向きでは磁性体シートの裏面に形成されているが、各導体パターンは実線で表している。また、線状の導体パターンは所定の線幅を備えているが、ここでは単純な実線で表している。
 図23に示した範囲で基材層51aの裏面に導体パターン73が形成され、基材層51bの裏面に導体パターン72,74が形成され、基材層51cの裏面に導体パターン71,75が形成されている。基材層51dの裏面に導体パターン61,65が形成され、基材層51eの裏面に導体パターン62,64が形成され、基材層51fの裏面に導体パターン63が形成されている。基材層51gの裏面には給電端子41、グランド端子42、アンテナ端子43が形成されている。図23中の縦方向に延びる破線はビア電極であり、導体パターン同士を層間で接続する。これらのビア電極は実際には所定の径寸法を有する円柱形の電極であるが、ここでは単純な破線で表している。
 図23において、導体パターン63の右半分と導体パターン61,62によって第1コイル素子L1aを構成している。また、導体パターン63の左半分と導体パターン64,65によって第2コイル素子L1bを構成している。また、導体パターン73の右半分と導体パターン71,72によって第3コイル素子L2aを構成している。また、導体パターン73の左半分と導体パターン74,75によって第4コイル素子L2bを構成している。
 図24は第10の実施形態に係るインピーダンス変換回路の4つコイル素子L1a,L1b,L2a,L2bの磁気的結合の関係を示す図である。このように、第1コイル素子L1aと第2コイル素子L1bとによって第1の閉磁路(磁束FP12で示すループ)が構成される。また、第3コイル素子L2aと第4コイル素子L2bとによって第2の閉磁路(磁束FP34で示すループ)が構成される。第1の閉磁路を通る磁束FP12と第2の閉磁路を通る磁束FP34の向きは互いに逆方向である。
 ここで、第1コイル素子L1aおよび第2コイル素子L1bを「1次側」、第3コイル素子L2aおよび第4コイル素子L2bを「2次側」と表すと、図24に示すように、1次側のうちの2次側に近い方に給電回路がつながるので、1次側のうちの2次側近傍の電位を高くすることができ、コイル素子L1aとコイル素子L2aとの間での電界結合が高まり、この電界結合による電流が大きくなる。
 この第10の実施形態の構成によっても、コイル素子L1aとL1b、L2aとL2bのインダクタンス値はそれぞれの結合により小さくなるため、この第10の実施形態で示したインピーダンス変換回路も第7の実施形態のインピーダンス変換回路25と同様の効果を奏する。
《第11の実施形態》
 図25は第11の実施形態に係るインピーダンス変換回路の回路図である。このインピーダンス変換回路は、給電回路30とアンテナ素子11との間に接続された第1の直列回路26、給電回路30とアンテナ素子11との間に接続された第3の直列回路28、およびアンテナ素子11とグランドとの間に接続された第2の直列回路27とで構成されている。
 第1の直列回路26は第1コイル素子L1aと第2コイル素子L1bとが直列に接続された回路である。第2の直列回路27は第3コイル素子L2aと第4コイル素子L2bとが直列に接続された回路である。第3の直列回路28は第5コイル素子L1cと第6コイル素子L1dとが直列に接続された回路である。
 図25において、囲みM12はコイル素子L1aとL1bとの結合、囲みM34はコイル素子L2aとL2bとの結合、囲みM56はコイル素子L1cとL1dとの結合をそれぞれ表している。また、囲みM135はコイル素子L1aとL2aとL1cとの結合を表している。同様に、囲みM246はコイル素子L1bとL2bとL1dとの結合を表している。
 この第11の実施形態においては、第2インダクタンス素子を構成するコイル素子L2a,L2bを、第1のインダクタンス素子を構成するコイル素子L1a,L1b,L1c,L1dで挟み込むように配置することによって、第2インダクタンス素子とグランドとの間に生じる浮遊容量が抑制される。このような放射に寄与しない容量成分が抑制されることによって、アンテナの放射効率を高めることができる。
 図26は第11の実施形態に係るインピーダンス変換回路を多層基板に構成した場合の各層の導体パターンの例を示す図である。各層は磁性体シートで構成され、各層の導体パターンは図26に示す向きでは磁性体シートの裏面に形成されているが、各導体パターンは実線で表している。また、線状の導体パターンは所定の線幅を備えているが、ここでは単純な実線で表している。
 図26に示した範囲で基材層51aの裏面に導体パターン82が形成され、基材層51bの裏面に導体パターン81,83が形成され、基材層51cの裏面に導体パターン72が形成されている。基材層51dの裏面に導体パターン71,73が形成され、基材層51eの裏面に導体パターン61,63が形成され、基材層51fの裏面に導体パターン62が形成されている。基材層51gの裏面には給電端子41、グランド端子42、アンテナ端子43がそれぞれ形成されている。図26中の縦方向に延びる破線はビア電極であり、導体パターン同士を層間で接続する。これらのビア電極は実際には所定の径寸法を有する円柱形の電極であるが、ここでは単純な破線で表している。
 図26において、導体パターン62の右半分と導体パターン61とによって第1コイル素子L1aを構成している。また、導体パターン62の左半分と導体パターン63とによって第2コイル素子L1bを構成している。また、導体パターン71と導体パターン72の右半分とによって第3コイル素子L2aを構成している。また、導体パターン72の左半分と導体パターン73とによって第4コイル素子L2bを構成している。また、導体パターン81と導体パターン82の右半分とによって第5コイル素子L1cを構成している。また、導体パターン82の左半分と導体パターン83とによって第6コイル素子L1dを構成している。
 図26において破線の楕円形は閉磁路を表している。閉磁路CM12はコイル素子L1aとL1bとに鎖交する。また、閉磁路CM34はコイル素子L2aとL2bとに鎖交する。さらに、閉磁路CM56はコイル素子L1cとL1dとに鎖交する。このように、第1コイル素子L1aと第2コイル素子L1bとによって第1の閉磁路CM12が構成され、第3コイル素子L2aと第4コイル素子L2bとによって第2の閉磁路CM34が構成され、第5コイル素子L1cと第6コイル素子L1dとによって第3の閉磁路CM56が構成される。図26において二点鎖線の平面は、前記三つの閉磁路の間にコイル素子L1aとL2a、L2aとL1c、L1bとL2b、L2bとL1dが各々逆向きに磁束が発生するように結合しているために等価的に生じる二つの磁気障壁MWである。換言すると、この二つの磁気障壁MWでコイル素子L1a,L1bによる閉磁路の磁束、コイル素子L2a,L2bによる閉磁路の磁束、およびコイル素子L1c,L1dによる閉磁路の磁束をそれぞれ閉じ込める。
 このように、第2の閉磁路CM34が第1の閉磁路CM12および第3の閉磁路CM56で層方向に挟み込まれた構造とする。この構造により、第2の閉磁路CM34は二つの磁気障壁で挟まれて充分に閉じ込められる(閉じ込められる効果が高まる)。すなわち、結合係数の非常に大きなトランスとして作用させることができる。
 そのため、前記閉磁路CM12とCM34との間、およびCM34とCM56との間をある程度広くすることができる。ここで、コイル素子L1a,L1bによる直列回路と、コイル素子L1c,L1dによる直列回路とが並列接続された回路を一次側回路と称し、コイル素子L2a,L2bによる直列回路を二次側回路と称すると、前記閉磁路CM12とCM34との間、およびCM34とCM56との間を広くすることによって、第1の直列回路26と第2の直列回路27との間、第2の直列回路27と第3の直列回路28との間のそれぞれに生じるキャパシタンスを小さくできる。すなわち、自己共振点の周波数を定めるLC共振回路のキャパシタンス成分が小さくなる。
 また、第11の実施形態によれば、コイル素子L1a,L1bによる第1の直列回路26と、コイル素子L1c,L1dによる第3の直列回路28とが並列接続された構造であるので、自己共振点の周波数を定めるLC共振回路のインダクタンス成分が小さくなる。
 このようにして、自己共振点の周波数を定めるLC共振回路のキャパシタンス成分もインダクタンス成分も小さくなって、自己共振点の周波数を使用周波数帯域から充分に離れた高い周波数に定めることができる。
《第12の実施形態》
 第12の実施形態では、第11の実施形態とは異なる構成で、トランス部の自己共振点の周波数を第8~第10の実施形態で示したものより高めるための構成例を示す。
 図27は第12の実施形態に係るインピーダンス変換回路の回路図である。このインピーダンス変換回路は、給電回路30とアンテナ素子11との間に接続された第1の直列回路26、給電回路30とアンテナ素子11との間に接続された第3の直列回路28、およびアンテナ素子11とグランドとの間に接続された第2の直列回路27とで構成されている。
 第1の直列回路26は第1コイル素子L1aと第2コイル素子L1bとが直列に接続された回路である。第2の直列回路27は第3コイル素子L2aと第4コイル素子L2bとが直列に接続された回路である。第3の直列回路28は第5コイル素子L1cと第6コイル素子L1dとが直列に接続された回路である。
 図27において、囲みM12はコイル素子L1aとL1bとの結合、囲みM34はコイル素子L2aとL2bとの結合、囲みM56はコイル素子L1cとL1dとの結合をそれぞれ表している。また、囲みM135はコイル素子L1aとL2aとL1cとの結合を表している。同様に、囲みM246はコイル素子L1bとL2bとL1dとの結合を表している。
 図28は第12の実施形態に係るインピーダンス変換回路を多層基板に構成した場合の各層の導体パターンの例を示す図である。各層は磁性体シートで構成され、各層の導体パターンは図28に示す向きでは磁性体シートの裏面に形成されているが、各導体パターンは実線で表している。また、線状の導体パターンは所定の線幅を備えているが、ここでは単純な実線で表している。
 図26に示したインピーダンス変換回路と異なるのは、導体パターン81,82,83によるコイル素子L1c,L1dの極性である。図28の例では、閉磁路CM36はコイル素子L2a,L1c,L1d,L2bに鎖交する。したがって、コイル素子L2a,L2bとL1c,L1dとの間には等価的な磁気障壁が生じない。その他の構成は第11の実施形態で示したとおりである。
 第12の実施形態によれば、図28に示した閉磁路CM12,CM34,CM56が生じるとともに閉磁路CM36が生じることにより、コイル素子L2a,L2bによる磁束がコイル素子L1c,L1dによる磁束で吸い込まれる。そのため、第12の実施形態の構造でも磁束が漏れ難く、その結果、結合係数の非常に大きなトランスとして作用させることができる。
 第12の実施形態でも、自己共振点の周波数を定めるLC共振回路のキャパシタンス成分もインダクタンス成分も小さくなって、自己共振点の周波数を使用周波数帯域から充分に離れた高い周波数に定めることができる。
《第13の実施形態》
 第13の実施形態では、第11の実施形態および第12の実施形態とは異なる構成で、トランス部の自己共振点の周波数を第8~第10の実施形態で示したものより高めるための別の構成例を示す。
 図29は第13の実施形態に係るインピーダンス変換回路の回路図である。このインピーダンス変換回路は、給電回路30とアンテナ素子11との間に接続された第1の直列回路26、給電回路30とアンテナ素子11との間に接続された第3の直列回路28、およびアンテナ素子11とグランドとの間に接続された第2の直列回路27とで構成されている。
 図30は第13の実施形態に係るインピーダンス変換回路を多層基板に構成した場合の各層の導体パターンの例を示す図である。各層は磁性体シートで構成され、各層の導体パターンは図30に示す向きでは磁性体シートの裏面に形成されているが、各導体パターンは実線で表している。また、線状の導体パターンは所定の線幅を備えているが、ここでは単純な実線で表している。
 図26に示したインピーダンス変換回路と異なるのは、導体パターン61,62,63によるコイル素子L1a,L1bの極性、および導体パターン81,82,83によるコイル素子L1c,L1dの極性である。図30の例では、閉磁路CM16はすべてのコイル素子L1a~L1d,L2a,L2bに鎖交する。したがって、この場合は等価的な磁気障壁は生じない。その他の構成は第11の実施形態および第12の実施形態で示したとおりである。
 第13の実施形態によれば、図30に示した閉磁路CM12,CM34,CM56が生じるとともに閉磁路CM16が生じることにより、コイル素子L1a~L1dによる磁束が漏れ難く、その結果、結合係数の大きなトランスとして作用させることができる。
 第13の実施形態でも、自己共振点の周波数を定めるLC共振回路のキャパシタンス成分もインダクタンス成分も小さくなって、自己共振点の周波数を使用周波数帯域から充分に離れた高い周波数に定めることができる。
《第14の実施形態》
 第14の実施形態では通信端末装置の例を示す。
 図31(A)は第14の実施形態の第1例である通信端末装置、図31(B)は第2例である通信端末装置のそれぞれの構成図である。これらは、例えば携帯電話・移動体端末向けの1セグメント部分受信サービス(通称:ワンセグ)の高周波信号の受信用(470~770MHz)の端末である。
 図31(A)に示す通信端末装置1は、蓋体部である第1筺体10と本体部である第2筺体20とを備え、第1筺体10は第2筺体20に対して折りたたみ式あるいはスライド式で連結されている。第1筺体10にはグランド板としても機能する第1放射素子11が設けられ、第2筺体20にはグランド板としても機能する第2放射素子21が設けられている。第1および第2放射素子11,21は金属箔などの薄膜あるいは導電性ペーストなどの厚膜からなる導電体膜で形成されている。この第1および第2放射素子11,21は給電回路30から差動給電することでダイポールアンテナとほぼ同等の性能を得ている。給電回路30はRF回路やベースバンド回路のような信号処理回路を有している。
 なお、インピーダンス変換回路35のインダクタンス値は、二つの放射素子11,21を結ぶ接続線33のインダクタンス値よりも小さいことが好ましい。周波数特性に関する接続線33のインダクタンス値の影響を小さくすることができるからである。
 図31(B)に示す通信端末装置2は、第1放射素子11をアンテナ単体として設けたものである。第1放射素子11はチップアンテナ、板金アンテナ、コイルアンテナなど各種アンテナ素子を用いることができる。また、このアンテナ素子としては、例えば、筺体10の内周面や外周面に沿って設けられた線状導体を利用してもよい。第2放射素子21は第2筺体20のグランド板としても機能するものであり、第1放射素子11と同様に各種のアンテナを用いてもよい。ちなみに、通信端末装置2は、折りたたみ式やスライド式ではないストレート構造の端末である。なお、第2放射素子21は、必ずしも放射体として十分に機能するものでなくてもよく、第1放射素子11がいわゆるモノポールアンテナのように振る舞うものであってもよい。
 給電回路30は一端が第2放射素子21に接続され、他端がインピーダンス変換回路35を介して第1放射素子11に接続されている。また、第1および第2放射素子11,21は接続線33によって互いに接続されている。この接続線33は第1および第2筺体10,20のそれぞれに搭載されている電子部品(図示省略)の接続線として機能するもので、高周波信号に対してはインダクタンス素子として振る舞うがアンテナの性能に直接的に作用するものではない。
 インピーダンス変換回路35は、給電回路30と第1放射素子11との間に設けられ、第1および第2放射素子11,21から送信される高周波信号、あるいは、第1および第2放射素子11,21にて受信する高周波信号の周波数特性を安定化させる。それゆえ、第1放射素子11や第2放射素子21の形状、第1筺体10や第2筺体20の形状、近接部品の配置状況などに影響されることなく、高周波信号の周波数特性が安定化する。特に、折りたたみ式やスライド式の通信端末装置にあっては、蓋体部である第1筺体10の本体部である第2筺体20に対する開閉状態に応じて、第1および第2放射素子11,21のインピーダンスが変化しやすいが、インピーダンス変換回路35を設けることによって高周波信号の周波数特性を安定化させることができる。すなわち、アンテナの設計に関して重要事項である、中心周波数の設定・通過帯域幅の設定・インピーダンスマッチングの設定などの周波数特性の調整機能をこのインピーダンス変換回路35が担うことが可能になり、アンテナ素子そのものは、主に、指向性や利得を考慮するだけでよいため、アンテナの設計が容易になる。
C1…キャパシタ
Ca,Cb…キャパシタ
CANT…キャパシタンス成分
CM12,CM34,CM56…閉磁路
CM36,CM16…閉磁路
FP12,FP13,FP24,FP34…磁束
L1…第1インダクタンス素子
L2,L21,L22…第2インダクタンス素子
L1a…第1コイル素子
L1b…第2コイル素子
L2a…第3コイル素子
L2b…第4コイル素子
L1c,L2c…第5コイル素子
L1d,L2d…第6コイル素子
LANT…インダクタンス成分
M…相互インダクタンス
MW…磁気障壁
Rr…放射抵抗成分
Z1…第1インダクタンス素子
Z2…第2インダクタンス素子
Z3…第3インダクタンス素子
1,2…通信端末装置
10,20…筺体
11…アンテナ素子(第1放射素子)
21…第2放射素子
25…インピーダンス変換回路
26…第1の直列回路
27…第2の直列回路
28…第3の直列回路
30…給電回路
33…接続線
34,35…インピーダンス変換回路
36…一次側直列回路
37…二次側直列回路
40…積層体
41…給電端子
42…グランド端子
43…アンテナ端子
45…インピーダンス変換回路
51a~51j…基材層
61~66…導体パターン
68…グランド導体
71~75…導体パターン
81,82,83…導体パターン
101,102,106,107…アンテナ装置
135…インピーダンス変換回路
140…積層体
141…給電端子
142…グランド端子
143…アンテナ端子
144…NC端子
151a,151b,151c…基材層
161~164…導体パターン
165a~165e…ビアホール導体

Claims (12)

  1.  アンテナ素子と、このアンテナ素子に接続されたインピーダンス変換回路とを含むアンテナ装置であって、
     前記インピーダンス変換回路は、第1インダクタンス素子と、この第1インダクタンス素子に密結合した第2インダクタンス素子と、を含み、
     前記第1インダクタンス素子と前記第2インダクタンス素子とが密結合することにより擬似的な負のインダクタンス成分が生じ、この負のインダクタンス成分により前記アンテナ素子の実効的なインダクタンス成分が抑制されたことを特徴とするアンテナ装置。
  2.  前記インピーダンス変換回路は、前記第1インダクタンス素子と前記第2インダクタンス素子とが相互インダクタンスを介して密結合したトランス型回路を含み、
     前記トランス型回路を、給電回路に接続される第1ポート、前記アンテナ素子に接続される第2ポート、グランドに接続される第3ポート、前記第1ポートと分岐点との間に接続されたインダクタンス素子、前記第2ポートと前記分岐点との間に接続されたインダクタンス素子、および前記第3ポートと前記分岐点との間に接続されたインダクタンス素子で構成されるT型回路に等価変換した際に、前記擬似的な負のインダクタンス成分は前記分岐点と前記第2ポートとの間に接続されたインダクタンス素子に相当する、請求項1に記載のアンテナ装置。
  3.  前記第1インダクタンス素子の第1端は前記給電回路に接続され、第1インダクタンス素子の第2端はグランドに接続され、前記第2インダクタンス素子の第1端は前記アンテナ素子に接続され、前記第2インダクタンス素子の第2端はグランドに接続されている、請求項1または2に記載のアンテナ装置。
  4.  前記第1インダクタンス素子の第1端は前記給電回路に接続され、前記第1インダクタンス素子の第2端は前記アンテナ素子に接続され、前記第2インダクタンス素子の第1端は前記アンテナ素子に接続され、前記第2インダクタンス素子の第2端はグランドに接続されている、請求項1または2に記載のアンテナ装置。
  5.  前記第1インダクタンス素子は第1コイル素子および第2コイル素子を含み、前記第1コイル素子および前記第2コイル素子は互いに直列的に接続されていて、且つ閉磁路を作るように導体の巻回パターンが形成されている、請求項3または4に記載のアンテナ装置。
  6.  前記第2インダクタンス素子は第3コイル素子および第4コイル素子を含み、前記第3コイル素子および前記第4コイル素子は互いに直列的に接続されていて、且つ閉磁路を作るように導体の巻回パターンが形成されている、請求項3~5のいずれかに記載のアンテナ装置。
  7.  前記第1インダクタンス素子と前記第2インダクタンス素子とは、磁界および電界を介して結合されていて、
     前記第1インダクタンス素子に交流電流が流れるとき、前記磁界を介した結合により前記第2インダクタンス素子に流れる電流の向きと、前記電界を介した結合により前記第2インダクタンス素子に流れる電流の向きとが同じである、請求項1~6のいずれかに記載のアンテナ装置。
  8.  前記第1インダクタンス素子に交流電流が流れるとき、前記第2インダクタンス素子に流れる電流の向きは、前記第1インダクタンス素子と前記第2インダクタンス素子との間に磁気障壁が生じる向きである、請求項1~7に記載のアンテナ装置。
  9.  前記第1インダクタンス素子および前記第2インダクタンス素子は、複数の誘電体層または磁性体層が積層された積層体内に配置された導体パターンで構成され、前記第1インダクタンス素子と前記第2インダクタンス素子とは前記積層体の内部で結合している、請求項1~8のいずれかに記載のアンテナ装置。
  10.  前記第1インダクタンス素子は電気的に並列接続された少なくとも二つのインダクタンス素子で構成され、この二つのインダクタンス素子は前記第2インダクタンス素子を挟む位置関係に配置されている、請求項1~9のいずれかに記載のアンテナ装置。
  11.  前記第2インダクタンス素子は電気的に並列接続された少なくとも二つのインダクタンス素子で構成され、この二つのインダクタンス素子は前記第1インダクタンス素子を挟む位置関係に配置されている、請求項1~9のいずれかに記載のアンテナ装置。
  12.  アンテナ素子と、給電回路と、前記アンテナ素子と前記給電回路との間に接続されたインピーダンス変換回路とを含むアンテナ装置を備えた通信端末装置であって、
     前記インピーダンス変換回路は、第1インダクタンス素子と、この第1インダクタンス素子に密結合した第2インダクタンス素子と、を含み、
     前記第1インダクタンス素子と前記第2インダクタンス素子とが密結合することにより擬似的な負のインダクタンス成分が生じ、この負のインダクタンス成分により前記アンテナ素子の実効的なインダクタンス成分が抑制されたことを特徴とする通信端末装置。
PCT/JP2011/050884 2010-01-19 2011-01-19 アンテナ装置および通信端末装置 WO2011090080A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180001341.5A CN102341957B (zh) 2010-01-19 2011-01-19 天线装置及通信终端装置
KR1020117019919A KR101244902B1 (ko) 2010-01-19 2011-01-19 안테나 장치 및 통신단말장치
EP11734686.6A EP2388858B1 (en) 2010-01-19 2011-01-19 Antenna device and communication terminal apparatus
US13/218,501 US9030371B2 (en) 2010-01-19 2011-08-26 Antenna device and communication terminal apparatus
US14/681,222 US9711848B2 (en) 2010-01-19 2015-04-08 Antenna device and communication terminal apparatus

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2010009513 2010-01-19
JP2010-009513 2010-01-19
JP2010-098312 2010-04-21
JP2010098313 2010-04-21
JP2010-098313 2010-04-21
JP2010098312 2010-04-21
JP2010-180088 2010-08-11
JP2010180088 2010-08-11
JP2010-209295 2010-09-17
JP2010209295 2010-09-17
JP2011008534A JP4900515B1 (ja) 2010-01-19 2011-01-19 アンテナ装置および通信端末装置
JP2011-008534 2011-01-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/218,501 Continuation US9030371B2 (en) 2010-01-19 2011-08-26 Antenna device and communication terminal apparatus

Publications (1)

Publication Number Publication Date
WO2011090080A1 true WO2011090080A1 (ja) 2011-07-28

Family

ID=44306880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050884 WO2011090080A1 (ja) 2010-01-19 2011-01-19 アンテナ装置および通信端末装置

Country Status (7)

Country Link
US (2) US9030371B2 (ja)
EP (1) EP2388858B1 (ja)
JP (1) JP4900515B1 (ja)
KR (1) KR101244902B1 (ja)
CN (1) CN102341957B (ja)
TW (1) TWI466375B (ja)
WO (1) WO2011090080A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168892A (ja) * 2012-02-17 2013-08-29 Murata Mfg Co Ltd インピーダンス変換素子および通信端末装置
WO2014188739A1 (ja) * 2013-05-23 2014-11-27 株式会社村田製作所 高周波トランス、高周波部品および通信端末装置
US9531072B2 (en) 2012-06-28 2016-12-27 Murata Manufacturing Co., Ltd. Antenna device, feed element, and communication terminal device
US11095265B2 (en) 2017-10-24 2021-08-17 Murata Manufacturing Co., Ltd. Matching circuit and communication device
US11777466B2 (en) 2018-12-14 2023-10-03 Murata Manufacturing Co., Ltd. Matching circuit, matching circuit element, and communication device

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11476566B2 (en) 2009-03-09 2022-10-18 Nucurrent, Inc. Multi-layer-multi-turn structure for high efficiency wireless communication
JP5234084B2 (ja) * 2010-11-05 2013-07-10 株式会社村田製作所 アンテナ装置および通信端末装置
CN103348531B (zh) * 2011-01-20 2016-06-08 株式会社村田制作所 稳频电路、天线装置及通信终端装置
JP5477512B2 (ja) * 2011-02-23 2014-04-23 株式会社村田製作所 インピーダンス変換回路および通信端末装置
CN106209009B (zh) 2011-05-09 2019-03-01 株式会社村田制作所 阻抗匹配切换电路、天线装置及通信终端装置
JP5454742B2 (ja) * 2011-05-31 2014-03-26 株式会社村田製作所 アンテナ装置および通信端末装置
CN107370249B (zh) * 2012-03-14 2020-06-09 索尼公司 电力发送装置以及非接触电力提供系统
JP5967989B2 (ja) * 2012-03-14 2016-08-10 ソニー株式会社 検知装置、受電装置、送電装置及び非接触給電システム
JP5582158B2 (ja) * 2012-03-28 2014-09-03 株式会社村田製作所 マルチバンドアンテナ装置
JP5590060B2 (ja) * 2012-03-28 2014-09-17 株式会社村田製作所 マルチバンドアンテナ装置の設計方法
JP5505571B2 (ja) * 2012-04-27 2014-05-28 株式会社村田製作所 コイルアンテナおよび通信端末装置
CN106299706B (zh) * 2012-05-28 2019-03-05 株式会社村田制作所 天线装置及无线通信装置
KR101323134B1 (ko) 2012-06-01 2013-10-30 주식회사 이엠따블유 안테나 및 이를 포함하는 통신 장치
EP2733787B1 (en) * 2012-06-28 2017-09-06 Murata Manufacturing Co., Ltd. Antenna device and communication terminal device
DE202013012361U1 (de) * 2012-08-28 2016-06-20 Murata Manufacturing Co., Ltd. Antennenvorrichtung und Kommunikationsendgerät
JP5618027B2 (ja) * 2012-09-28 2014-11-05 株式会社村田製作所 インピーダンス変換回路およびアンテナ装置
CN104685713B (zh) 2012-09-28 2016-07-06 株式会社村田制作所 阻抗转换电路以及无线通信装置
WO2014050482A1 (ja) * 2012-09-28 2014-04-03 株式会社村田製作所 インピーダンス変換回路の設計方法
WO2014088218A1 (ko) * 2012-12-03 2014-06-12 엘지전자 주식회사 다중의 반송파 집성 및 다양한 통신 무선 액세스 기술을 지원하는 사용자 단말기의 rf 구조
CN104037494B (zh) * 2013-03-08 2019-07-05 纽卡润特有限公司 用于高效无线通信的多层引线结构
US9324490B2 (en) * 2013-05-28 2016-04-26 Tdk Corporation Apparatus and methods for vector inductors
US9570222B2 (en) 2013-05-28 2017-02-14 Tdk Corporation Vector inductor having multiple mutually coupled metalization layers providing high quality factor
FR3009897B1 (fr) 2013-08-20 2015-08-14 Commissariat Energie Atomique Procede de determination d'un reseau antennaire
FR3009898B1 (fr) 2013-08-20 2015-08-14 Commissariat Energie Atomique Reseau antennaire
CN205986794U (zh) 2013-10-31 2017-02-22 株式会社村田制作所 阻抗转换电路以及通信终端装置
JP6288105B2 (ja) * 2013-11-05 2018-03-07 株式会社村田製作所 トランスおよび通信端末装置
KR101762778B1 (ko) 2014-03-04 2017-07-28 엘지이노텍 주식회사 무선 충전 및 통신 기판 그리고 무선 충전 및 통신 장치
KR101473714B1 (ko) * 2014-04-03 2014-12-18 주식회사 이엠따블유 광대역 모듈 및 이를 포함하는 통신 장치
KR101473717B1 (ko) * 2014-04-03 2014-12-18 주식회사 이엠따블유 광대역 모듈 및 이를 포함하는 통신 장치
EP3125367B1 (en) * 2014-04-30 2019-07-31 Murata Manufacturing Co., Ltd. Antenna device and electronic device
JP6386308B2 (ja) * 2014-09-03 2018-09-05 三星エスディアイ株式会社Samsung SDI Co., Ltd. 電力補助システム
EP3176734B1 (en) 2014-11-27 2020-07-15 Murata Manufacturing Co., Ltd. Rfic module and rfid tag equipped with same
US9735752B2 (en) 2014-12-03 2017-08-15 Tdk Corporation Apparatus and methods for tunable filters
JP5999286B1 (ja) * 2015-01-15 2016-09-28 株式会社村田製作所 トランス型移相器、移相回路および通信端末装置
JP6372609B2 (ja) 2015-02-23 2018-08-15 株式会社村田製作所 高周波トランス素子、インピーダンス変換素子およびアンテナ装置
CN107408931B (zh) 2015-07-28 2020-06-19 株式会社村田制作所 电路基板、使用其的滤波器电路以及电容器元件
CN113114150B (zh) * 2015-12-24 2024-01-16 株式会社村田制作所 滤波器电路以及电容元件
US10615489B2 (en) * 2016-06-08 2020-04-07 Futurewei Technologies, Inc. Wearable article apparatus and method with multiple antennas
CN208955196U (zh) * 2016-09-26 2019-06-07 株式会社村田制作所 天线装置以及电子设备
WO2019017098A1 (ja) * 2017-07-21 2019-01-24 株式会社村田製作所 アンテナ結合素子、アンテナ装置および電子機器
IL256639B (en) * 2017-12-28 2022-09-01 Elta Systems Ltd Compact antenna
US11063345B2 (en) * 2018-07-17 2021-07-13 Mastodon Design Llc Systems and methods for providing a wearable antenna
US10778176B2 (en) * 2018-11-29 2020-09-15 Raytheon Company CMOS Guanella balun
CN109659693B (zh) 2018-12-12 2021-08-24 维沃移动通信有限公司 一种天线结构及通信终端
JPWO2021112086A1 (ja) * 2019-12-03 2021-06-10

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124728A (ja) 1998-10-16 2000-04-28 Mitsubishi Electric Corp 多周波共用アンテナ装置
JP2000244273A (ja) * 1999-02-18 2000-09-08 Toko Inc ハイブリッド回路及びハイブリッド回路用トランス
JP2004304615A (ja) * 2003-03-31 2004-10-28 Tdk Corp 高周波複合部品
JP2004336250A (ja) 2003-05-02 2004-11-25 Taiyo Yuden Co Ltd アンテナ整合回路、アンテナ整合回路を有する移動体通信装置、アンテナ整合回路を有する誘電体アンテナ
JP2005323132A (ja) * 2004-05-10 2005-11-17 Kyocera Corp バラントランス
JP2006173697A (ja) 2004-12-13 2006-06-29 Matsushita Electric Ind Co Ltd アンテナ装置
JP2008035065A (ja) 2006-07-27 2008-02-14 Murata Mfg Co Ltd 整合器およびアンテナ整合回路
JP2009246624A (ja) * 2008-03-31 2009-10-22 Hitachi Metals Ltd 積層型バラントランス及びこれを用いた高周波スイッチモジュール

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2141573A (en) * 1934-07-18 1938-12-27 Ferrocart Corp Antenna coupling system
US2359684A (en) * 1942-12-30 1944-10-03 Rca Corp Loop input system for radio receivers
US3953799A (en) * 1968-10-23 1976-04-27 The Bunker Ramo Corporation Broadband VLF loop antenna system
US6121940A (en) * 1997-09-04 2000-09-19 Ail Systems, Inc. Apparatus and method for broadband matching of electrically small antennas
US6937115B2 (en) * 2002-02-25 2005-08-30 Massachusetts Institute Of Technology Filter having parasitic inductance cancellation
US7107026B2 (en) * 2004-02-12 2006-09-12 Nautel Limited Automatic matching and tuning unit
CN102780084B (zh) * 2006-04-14 2016-03-02 株式会社村田制作所 天线
JP2008277485A (ja) * 2007-04-27 2008-11-13 Fuji Electric Device Technology Co Ltd トランスユニットおよび電力変換装置
ATE555518T1 (de) * 2007-12-20 2012-05-15 Murata Manufacturing Co Ic-radiogerät
US7956715B2 (en) * 2008-04-21 2011-06-07 University Of Dayton Thin film structures with negative inductance and methods for fabricating inductors comprising the same
US7969270B2 (en) * 2009-02-23 2011-06-28 Echelon Corporation Communications transformer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124728A (ja) 1998-10-16 2000-04-28 Mitsubishi Electric Corp 多周波共用アンテナ装置
JP2000244273A (ja) * 1999-02-18 2000-09-08 Toko Inc ハイブリッド回路及びハイブリッド回路用トランス
JP2004304615A (ja) * 2003-03-31 2004-10-28 Tdk Corp 高周波複合部品
JP2004336250A (ja) 2003-05-02 2004-11-25 Taiyo Yuden Co Ltd アンテナ整合回路、アンテナ整合回路を有する移動体通信装置、アンテナ整合回路を有する誘電体アンテナ
JP2005323132A (ja) * 2004-05-10 2005-11-17 Kyocera Corp バラントランス
JP2006173697A (ja) 2004-12-13 2006-06-29 Matsushita Electric Ind Co Ltd アンテナ装置
JP2008035065A (ja) 2006-07-27 2008-02-14 Murata Mfg Co Ltd 整合器およびアンテナ整合回路
JP2009246624A (ja) * 2008-03-31 2009-10-22 Hitachi Metals Ltd 積層型バラントランス及びこれを用いた高周波スイッチモジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2388858A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168892A (ja) * 2012-02-17 2013-08-29 Murata Mfg Co Ltd インピーダンス変換素子および通信端末装置
US9531072B2 (en) 2012-06-28 2016-12-27 Murata Manufacturing Co., Ltd. Antenna device, feed element, and communication terminal device
WO2014188739A1 (ja) * 2013-05-23 2014-11-27 株式会社村田製作所 高周波トランス、高周波部品および通信端末装置
JP5700176B1 (ja) * 2013-05-23 2015-04-15 株式会社村田製作所 高周波トランス、高周波部品および通信端末装置
JP2015122535A (ja) * 2013-05-23 2015-07-02 株式会社村田製作所 高周波トランス、高周波部品および通信端末装置
US11095265B2 (en) 2017-10-24 2021-08-17 Murata Manufacturing Co., Ltd. Matching circuit and communication device
US11777466B2 (en) 2018-12-14 2023-10-03 Murata Manufacturing Co., Ltd. Matching circuit, matching circuit element, and communication device

Also Published As

Publication number Publication date
JP4900515B1 (ja) 2012-03-21
CN102341957B (zh) 2014-01-22
JP2012085251A (ja) 2012-04-26
EP2388858A4 (en) 2014-04-02
TWI466375B (zh) 2014-12-21
US20150214611A1 (en) 2015-07-30
US20110309994A1 (en) 2011-12-22
US9711848B2 (en) 2017-07-18
EP2388858A1 (en) 2011-11-23
TW201128847A (en) 2011-08-16
EP2388858B1 (en) 2016-09-21
CN102341957A (zh) 2012-02-01
KR101244902B1 (ko) 2013-03-18
US9030371B2 (en) 2015-05-12
KR20110108417A (ko) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4900515B1 (ja) アンテナ装置および通信端末装置
JP4935955B2 (ja) アンテナ装置および通信端末装置
JP4962629B2 (ja) 高周波トランス、電子回路および電子機器
US9019168B2 (en) Frequency stabilization circuit, frequency stabilization device, antenna apparatus and communication terminal equipment, and impedance conversion element
JP5477512B2 (ja) インピーダンス変換回路および通信端末装置
JP5957816B2 (ja) インピーダンス変換デバイス、アンテナ装置および通信端末装置
US9106313B2 (en) Impedance conversion circuit and communication terminal apparatus
WO2012153692A1 (ja) インピーダンス整合切替回路、アンテナ装置、高周波電力増幅装置および通信端末装置
US9287629B2 (en) Impedance conversion device, antenna device and communication terminal device
JP2012100221A (ja) アンテナ装置および通信端末装置
US8797225B2 (en) Antenna device and communication terminal apparatus
JP5447537B2 (ja) アンテナ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001341.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 3258/KOLNP/2011

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2011734686

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011734686

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117019919

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE