WO2011089694A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2011089694A1
WO2011089694A1 PCT/JP2010/050638 JP2010050638W WO2011089694A1 WO 2011089694 A1 WO2011089694 A1 WO 2011089694A1 JP 2010050638 W JP2010050638 W JP 2010050638W WO 2011089694 A1 WO2011089694 A1 WO 2011089694A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
fuel
state
exhaust
intake
Prior art date
Application number
PCT/JP2010/050638
Other languages
English (en)
French (fr)
Inventor
啓介 佐野
中川 徳久
貴志 錦織
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP10843860.7A priority Critical patent/EP2527621B1/en
Priority to US13/511,007 priority patent/US8560210B2/en
Priority to CN201080061810.8A priority patent/CN102713214B/zh
Priority to PCT/JP2010/050638 priority patent/WO2011089694A1/ja
Priority to JP2011550746A priority patent/JP5240370B2/ja
Publication of WO2011089694A1 publication Critical patent/WO2011089694A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • F01L2013/001Deactivating cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • F02D2041/0012Controlling intake air for engines with variable valve actuation with selective deactivation of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a control device for an internal combustion engine, and more particularly, to a control device for an internal combustion engine provided with a valve stop mechanism capable of maintaining at least an intake valve of an intake valve and an exhaust valve in a closed stop state.
  • Patent Document 1 it is possible to switch between an all-cylinder operation that operates all cylinders and a cylinder-cylinder operation that stops driving some intake and exhaust valves of some cylinders and deactivates some cylinders.
  • a control device for a closed cylinder engine is disclosed.
  • this conventional control device the number of revolutions of the engine during the cylinder resting operation is counted, and when this count reaches a predetermined value, the operation is temporarily returned to the all cylinder operation.
  • the exhaust emission at the time of returning to the all cylinder operation due to the oil increase in the idle cylinder is prevented by such control.
  • the applicant has recognized the following documents including the above-mentioned documents as related to the present invention.
  • the present invention has been made to solve the above-described problems, and enters the combustion chamber during valve stop control while preventing fresh air from flowing into the catalyst at the time of valve return accompanying return from fuel cut.
  • An object of the present invention is to provide a control device for an internal combustion engine that can suppress the deterioration of exhaust emission caused by unburned fuel contained in the oil.
  • a first invention is a control device for an internal combustion engine, A valve stop mechanism capable of changing an operation state of at least the intake valve of the intake valve and the exhaust valve between a valve operating state and a closed valve stop state; Fuel cut executing means for executing fuel cut when a predetermined execution condition is satisfied during operation of the internal combustion engine; Valve stop execution means for performing valve stop control for changing an operation state of at least the intake valve of the intake valve and the exhaust valve to the closed valve stop state when the fuel cut is performed; A fuel cut return request detecting means for detecting a return request from the fuel cut; When the return request from the fuel cut accompanied with the valve stop control is detected, when the valve stop control is executed for both the intake valve and the exhaust valve, the operating state of the exhaust valve is changed.
  • Preceding fuel supply means for supplying fuel to the combustion chamber of A fuel supply amount for correcting the fuel supply amount by the preceding fuel supply means in accordance with the amount of unburned fuel contained in the oil that enters the combustion chamber from the crank chamber side during the fuel cut with the valve stop control.
  • Correction means It is characterized by providing.
  • the second invention is the first invention, wherein
  • the fuel supply amount correction means includes estimation means for estimating the unburned fuel amount based on an integrated engine speed during the fuel cut with the valve stop control.
  • the third invention is the first or second invention, wherein
  • the valve stop execution means performs valve stop control to change the operation state of both the intake valve and the exhaust valve to the valve closing stop state when the fuel cut is executed
  • Intake valve advance return execution means for changing the operating state of the intake valve to the valve operating state prior to the return of the exhaust valve to the valve operating state when a return request from the fuel cut is detected.
  • the fuel supply amount correction means adjusts the intake manifold negative pressure when the intake valve is returned to the valve operating state according to the intake manifold negative pressure immediately before the start of the fuel cut and the execution time of the fuel cut.
  • the fuel supply amount correction means corrects the fuel supply amount supplied by the preceding fuel supply means based on the intake manifold negative pressure estimated by the negative pressure estimation means.
  • the valve stop execution means performs valve stop control to change the operation state of both the intake valve and the exhaust valve to the valve closing stop state when the fuel cut is executed
  • the control device for the internal combustion engine is in an exhaust filling state in which the exhaust gas is filled in the combustion chamber when the operation state of the intake valve and the exhaust valve is changed to the closed valve stop state by the valve stop execution unit.
  • a charging state determination unit that determines whether each of the combustion chambers is in a fresh air filling state in which fresh air is filled or not,
  • the preceding fuel supply means supplies fuel to the combustion chamber only before returning the operating state of the exhaust valve to the valve operating state only for the cylinder determined to be in the fresh air filling state. It is characterized by.
  • any one of the first to fourth inventions Further comprising catalyst temperature acquisition means for acquiring the temperature of the catalyst disposed in the exhaust passage of the internal combustion engine; When the temperature of the catalyst at the time of fuel supply of the fuel supply amount is higher than a predetermined value, the preceding fuel supply means has a fuel supply amount of The fuel supply amount is corrected so that the air-fuel ratio at the time of combustion with fuel becomes rich.
  • the amount of unburned fuel accumulated in the combustion chamber during the fuel cut accompanied by the valve stop control is supplied by the preceding fuel supply means before the valve is returned in response to the return request from the fuel cut.
  • the amount of fuel supplied by the preceding fuel supply means is corrected according to the amount of unburned fuel contained in the oil that enters the combustion chamber. Therefore, according to the present invention, it is possible to prevent deterioration of exhaust emission at the time of valve return caused by oil rising while preventing fresh air from flowing into the catalyst at the time of valve return accompanying the return from the fuel cut. Can do.
  • the second invention it is possible to obtain an appropriate fuel injection amount in consideration of the amount of unburned fuel contained in the oil that enters the combustion chamber, so that combustion at the time of valve return can be stabilized. Further, since the correction of the fuel injection amount in consideration of the unburned fuel amount is a decrease correction, it is possible to achieve both reduction of exhaust emission when the valve is returned and reduction of the fuel injection amount.
  • the fuel supply amount can be corrected after grasping the amount of air sucked into the combustion chamber based on the intake manifold negative pressure when the intake valve is returned. Combustion can be stabilized. Further, it is possible to achieve both reduction of exhaust emission when the valve is returned and reduction of the fuel injection amount.
  • the fifth aspect of the invention it is possible to realize control that prioritizes suppression of catalyst deterioration when the temperature of the catalyst is high and prioritizes reduction of exhaust emission when the temperature of the catalyst is low.
  • Embodiment 1 of this invention It is a figure for demonstrating the structure of the internal combustion engine of Embodiment 1 of this invention. It is a flowchart of the control routine performed in Embodiment 1 of the present invention. It is a figure showing the relationship between the amount of in-cylinder HC and the integrated engine speed during fuel cut. It is a figure showing the relationship between the intake manifold negative pressure and the execution time of fuel cut.
  • FIG. 1 is a diagram for explaining a configuration of an internal combustion engine 10 according to a first embodiment of the present invention.
  • the system of this embodiment includes a spark ignition type internal combustion engine (gasoline engine) 10.
  • the internal combustion engine 10 is, for example, an in-line four-cylinder engine having four cylinders # 1 to # 4.
  • a piston 12 In the cylinder of the internal combustion engine 10, a piston 12 is provided. In the cylinder of the internal combustion engine 10, a combustion chamber 14 is formed on the top side of the piston 12, and a crank chamber 16 is formed on the lower side of the piston 12. An intake passage 18 and an exhaust passage 20 communicate with the combustion chamber 14.
  • an air flow meter 22 that outputs a signal corresponding to the flow rate of air sucked into the intake passage 18 is provided.
  • a throttle valve 24 is provided downstream of the air flow meter 22.
  • the throttle valve 24 is an electronically controlled throttle valve that can control the throttle opening independently of the accelerator opening.
  • the cylinder head provided in the internal combustion engine 10 is provided with an in-cylinder fuel injection valve 26 for directly injecting fuel into the combustion chamber 14 (in-cylinder).
  • a spark plug 28 is attached to the cylinder head of the internal combustion engine 10 so as to protrude from the top of the combustion chamber 14 into the combustion chamber 14.
  • the intake port and the exhaust port are respectively provided with an intake valve 30 and an exhaust valve 32 for bringing the combustion chamber 14 and the intake passage 18 or the combustion chamber 14 and the exhaust passage 20 into a conductive state or a cut-off state.
  • the intake valve 30 and the exhaust valve 32 are driven by an intake variable valve operating device 34 and an exhaust variable valve operating device 36, respectively.
  • the intake variable valve operating device 34 has a valve stop mechanism capable of changing the operation state of the intake valve 30 in units of cylinders between the valve operating state and the valve closed stop state.
  • the exhaust variable valve operating device 36 is The valve stop mechanism can change the operation state of the exhaust valve 32 in units of cylinders between the valve operation state and the valve closed stop state.
  • valve stop control the control for switching the operation state of the intake valve 30 and the exhaust valve 32 from the valve operation state to the valve closing stop state.
  • valve stop mechanism may be realized by using an electromagnetically driven valve, or transmits the acting force of the cam to the valve.
  • movement of a rocker arm may be implement
  • a catalyst 38 for purifying exhaust gas is disposed in the exhaust passage 20.
  • the system shown in FIG. 1 includes an ECU (Electronic Control Unit) 40.
  • the ECU 40 inputs the internal combustion engine 10 such as a crank angle sensor 42 for detecting the engine speed and an intake pressure sensor 44 for detecting the intake pressure (intake manifold pressure).
  • Various sensors for detecting the driving state are connected.
  • the various actuators described above are connected to the output of the ECU 40.
  • the ECU 40 can control the operating state of the internal combustion engine 10 based on the sensor outputs.
  • fuel is supplied to the combustion chamber 14 before returning the operating state of the exhaust valve 32 to the valve operating state when a return request from the fuel cut accompanied with the valve stop control is detected. More specifically, when the return request is detected, first, the intake valve 30 is first opened to introduce fresh air into the combustion chamber 14, and the minimum combustible injection amount (combustible minimum injection amount) is set. The fuel was injected into the combustion chamber 14. In addition, the exhaust valve 32 is returned after combustion at the minimum combustible injection amount.
  • the above-described minimum combustible injection amount is determined based on the amount of unburned fuel contained in the oil that enters the combustion chamber 14 side from the crank chamber 16 side during fuel cut with valve stop control of the intake and exhaust valves 30 and 32. (Hereinafter, it may be referred to as “in-cylinder HC amount”).
  • the in-cylinder HC amount contained in the oil entering the combustion chamber 14 is estimated based on the accumulated engine speed during fuel cut with valve stop control. Furthermore, in this embodiment, the intake manifold negative pressure at the time of return of the intake valve is estimated according to the intake manifold negative pressure immediately before the start of the fuel cut and the execution time of the fuel cut, and then the estimated intake valve return The minimum combustible injection amount is corrected based on the intake manifold negative pressure at the time.
  • each of the cylinders in which the intake and exhaust valves 30 and 32 are closed when the fuel cut is performed is in an exhaust filling state in which the combustion chamber 14 is filled with exhaust gas, Alternatively, whether or not the combustion chamber 14 is filled with fresh air is determined for each cylinder. And only with respect to the cylinder determined to be in the fresh air filling state, before the operation state of the exhaust valve 32 is returned to the valve operating state, the combustion with the fuel with the minimum combustible injection amount is executed.
  • the catalyst 38 when the temperature of the catalyst 38 is higher than the predetermined value A when the operating state of the exhaust valve 32 is returned to the valve operating state (when the fuel with the minimum combustible injection amount is supplied), the catalyst Compared to the case where the temperature of 38 is equal to or lower than the predetermined value A, the variable minimum injection amount is further corrected so that the air-fuel ratio at the time of combustion after the initial explosion with the fuel having the minimum combustible injection amount becomes rich. I made it.
  • FIG. 2 is a flowchart showing a control routine executed by the ECU 40 in order to realize the above function. Note that the routine shown in FIG. 2 is started when a fuel cut execution request is detected.
  • valve stop control is executed to change the operation states of the intake valve 30 and the exhaust valve 32 in all cylinders to the closed valve stop state (step 100). Further, in this step 100, each cylinder in which the intake and exhaust valves 30 and 32 are closed is in an exhaust filling state in which the exhaust gas is filled in the combustion chamber 14, or a new one is introduced into the combustion chamber 14. It is determined for each cylinder whether it is in a fresh air filling state filled with air, and the determination result is stored. The valve stop control is started in all cylinders immediately upon receiving a fuel cut execution request.
  • each cylinder is a fresh air filled cylinder or an exhaust filled cylinder. For example, a cylinder that is in a closed valve stop state at the end of the intake stroke is determined to be in a fresh air filling state, and a cylinder that is in a closed valve stop state at the end of the expansion stroke is determined to be in an exhaust normal state. Is done.
  • step 102 it is determined whether or not there is a fuel cut stop request (return request from fuel cut) (step 104).
  • step 106 the execution time of the current fuel cut by the counter and the counting of the accumulated engine speed during the fuel cut are each stopped (step 106).
  • step 108 a process of returning the operating state of the intake valve 30 of each cylinder to the valve operating state is executed (step 108).
  • FIG. 3 is a graph showing the relationship between the in-cylinder HC amount and the accumulated engine speed during fuel cut.
  • the amount of oil that is swept into the combustion chamber 14 during execution of fuel cut with valve stop control (the amount of oil rise) increases in the combustion chamber 14 as the integrated engine speed increases during fuel cut. Increased because the extended period becomes longer. Accordingly, as shown in FIG. 3, the in-cylinder HC amount contained in the oil scooped up in the combustion chamber 14 also increases in accordance with the integrated engine speed during fuel cut.
  • the ECU 40 stores the relationship as shown in FIG. 3 in a map, and in this step 110, referring to such a map, the in-cylinder HC amount is determined based on the integrated engine speed during fuel cut. Calculated.
  • FIG. 4 is a graph showing the relationship between intake manifold negative pressure and fuel cut execution time. As shown in FIG. 4, the intake manifold negative pressure approaches the atmospheric pressure as the fuel cut execution time accompanied by the valve stop control becomes longer.
  • the ECU 40 has a map in which the intake manifold negative pressure when the intake valve 30 is returned is determined based on the relationship between the intake manifold negative pressure just before the start of the fuel cut and the fuel cut execution time. (Not shown) is stored.
  • the intake manifold negative pressure when the intake valve is restored is calculated with reference to such a map (step 112).
  • a minimum injection amount combustible in a state where fresh air is introduced in accordance with the return of the intake valve 30 of each cylinder in step 108 (hereinafter referred to as “minimum combustible injection amount”) is calculated (step). 114).
  • step 114 based on the in-cylinder HC amount calculated in steps 110 and 112 and the intake manifold negative pressure when the intake valve is restored, the in-cylinder HC amount is placed in the combustion chamber 14 during fuel cut.
  • the combustible minimum injection amount is calculated so that the air-fuel ratio of the gas burned under the condition where the air is accumulated becomes the stoichiometric air-fuel ratio (or the air-fuel ratio leaner than the stoichiometric air-fuel ratio). More specifically, the combustible minimum injection amount is calculated as a value that is reduced more as the in-cylinder HC amount accumulated in the combustion chamber 14 during the fuel cut is larger.
  • the said combustible minimum injection amount is correct
  • the minimum combustible injection amount is corrected so that the air-fuel ratio at the time of combustion when the air is sucked into the combustion chamber 14 becomes the stoichiometric air-fuel ratio (or an air-fuel ratio leaner than the stoichiometric air-fuel ratio).
  • a map (not shown) that defines the estimated value in relation to the intake manifold negative pressure and the like when the intake valve is restored. Can be calculated.
  • the predetermined value A in this step 116 is a value set in advance as a threshold for determining whether or not the deterioration of the catalyst 38 is a concern due to the inflow of fresh air into the catalyst 38.
  • the temperature of the catalyst 38 can be estimated based on, for example, the operation history of the internal combustion engine 10, or may be acquired by a temperature sensor.
  • step 116 If it is determined in step 116 that the temperature of the catalyst 38 is equal to or lower than the predetermined value A, that is, if it can be determined that there is no concern about deterioration of the catalyst 38, further correction of the minimum combustible injection amount is performed. Is not executed. On the other hand, if it is determined in step 116 that the temperature of the catalyst 38 is higher than the predetermined value A, that is, if it can be determined that the catalyst 38 is in a state of concern, the minimum combustible injection amount is used.
  • the temperature of the catalyst 38 is not more than the predetermined value A (that is, when the minimum combustible injection amount is calculated so as to obtain the theoretical air-fuel ratio). Further correction of the combustible minimum injection amount is executed so as to be richer than (step 118).
  • step 120 fuel injection and ignition using the minimum combustible injection amount calculated as described above are executed only in the cylinder determined to be in the fresh air filling state in step 100 (step 120). Note that the fuel injection and ignition in this step 120 are not executed for the cylinder determined to be in the exhaust filling state.
  • Step 122 a process of returning the operation state of the exhaust valve 32 of each cylinder to the valve operating state is executed.
  • the intake valve 30 is opened first and fresh air is introduced into the combustion chamber 14.
  • the minimum combustible amount of fuel is injected into the combustion chamber 14.
  • a process for returning the exhaust valve 32 after the combustion at the combustible minimum injection amount is executed. Further, the minimum combustible injection amount is corrected in accordance with the in-cylinder HC amount contained in the oil that enters the combustion chamber 14 from the crank chamber 16 side during fuel cut with valve stop control of the intake and exhaust valves 30 and 32.
  • the in-cylinder HC accumulated in the combustion chamber 14 during the fuel cut is burned together with the fuel having the minimum combustible injection amount, and the valve return of the intake and exhaust valves 30 and 32 can be completed.
  • the valve return of the intake and exhaust valves 30 and 32 can be completed.
  • the in-cylinder HC amount contained in the oil entering the combustion chamber 14 is estimated based on the integrated engine speed during fuel cut with valve stop control. As a result, an appropriate fuel injection amount in consideration of the in-cylinder HC amount can be obtained, so that combustion at the time of valve return can be stabilized. Further, since the correction of the fuel injection amount in consideration of the in-cylinder HC amount is a decrease correction, it is possible to achieve both a reduction in exhaust emission and a reduction in the fuel injection amount when the valve is returned.
  • the intake manifold negative pressure at the time of return of the intake valve is estimated according to the intake manifold negative pressure immediately before the start of the fuel cut and the execution time of the fuel cut, and then the estimated intake air
  • the combustible minimum injection amount is corrected based on the manifold negative pressure.
  • combustion with the fuel having the minimum combustible injection amount is executed before returning the exhaust valve 32 only to the cylinder determined to be in the fresh air filling state.
  • combustion with the fuel having the minimum combustible injection amount is executed before returning the exhaust valve 32 only to the cylinder determined to be in the fresh air filling state.
  • the temperature of the catalyst 38 when the exhaust valve 32 is returned is higher than the predetermined value A
  • the temperature of the catalyst 38 is higher than that when the temperature is lower than the predetermined value A.
  • the variable minimum injection amount is further corrected so that the air-fuel ratio at the time of combustion after the initial explosion with the fuel having the minimum combustible injection amount becomes rich.
  • Embodiment 1 when the return request
  • the method of supplying fuel to the combustion chamber before returning the operating state of the exhaust valve to the valve operating state is It is not limited.
  • the in-cylinder fuel injection valve 26 injects the minimum injection amount so that the vicinity of the spark plug 28 becomes a combustible atmosphere. May be. Then, after performing stratified combustion under a lean air-fuel ratio in the vicinity of the spark plug 28 with such a minimum injection amount, the intake valve 30 and the exhaust valve 32 may be returned to the valve operating state.
  • the in-cylinder HC amount contained in the oil entering the combustion chamber 14 is estimated based on the integrated engine speed during fuel cut with valve stop control. .
  • the present invention is not limited to this.
  • the amount of unburned fuel contained in the oil entering the combustion chamber 14 is estimated based on the execution time of fuel cut with valve stop control. May be.
  • the valve stop control is executed for both the intake valve 30 and the exhaust valve 32. It is not limited to this. That is, when the valve stop control is executed only for the intake valve 30, the gas goes back and forth between the combustion chamber 14 and the exhaust manifold, and the return of the intake valve 30 is performed from that state. Then, the flow of gas from the intake side to the exhaust side through the combustion chamber 14 is resumed. Further, even when the valve stop control is executed only on the intake valve 30 as described above, the inside of the combustion chamber 14 is in a negative pressure state in the intake stroke and the expansion stroke, and the unburned fuel contained in the oil is removed from the crank chamber. It enters from the 16 side to the combustion chamber 14 side. Therefore, when the fuel cut execution request is detected, the control of the present invention is applied to the configuration in which only the operation state of the intake valve is changed to the closed valve stop state and the valve stop control is executed. Also good.
  • the fuel cut accompanied with the valve stop control for all cylinders has been described as an example.
  • the present invention is not limited to this, and can also be applied to the partial cylinder deactivation operation with valve stop control for some cylinders.
  • the spark ignition type internal combustion engine (gasoline engine) 10 is taken as an example.
  • the internal combustion engine that is the subject of the present invention is not limited to this, and may be, for example, a compression ignition type internal combustion engine such as a diesel engine.
  • the in-cylinder fuel injection valve 26 that directly injects fuel into the combustion chamber 14 when used to detect the return request from the fuel cut with the valve stop control, the exhaust gas is discharged.
  • the fuel is supplied to the combustion chamber 14 before the operation state of the valve 32 is returned to the valve operation state.
  • the fuel injection valve in the present invention is not limited to one that directly injects fuel into the combustion chamber 14. That is, the fuel injection valve (not shown) may be provided in the intake port, and the fuel injected into the intake port using the fuel injection valve may be supplied into the combustion chamber 14.
  • the valve stop mechanism provided in the intake variable valve operating device 34 and the exhaust variable valve operating device 36 corresponds to the “valve stop mechanism” in the first invention, and the ECU 40
  • the fuel injection by the in-cylinder fuel injection valve 26 is stopped so that the “fuel cut execution means” executes the processing of the above step 100 to thereby execute the “valve” in the first invention.
  • the “stop execution means” executes the processing of step 104 above
  • the “fuel cut return request detection means” in the first invention executes the processing of step 120 above.
  • the “fuel supply means” executes the processing of steps 110 to 118 described above, whereby “fuel supply amount correction "It has been realized, respectively.
  • the “intake valve advance return executing means” in the third aspect of the invention executes the process of step 112 of “negative pressure” in the third aspect of the invention.
  • Each “estimating means” is realized.
  • the ECU 40 executes the processing of step 100, thereby realizing the “filling state determining means” according to the fourth aspect of the present invention.
  • the “catalyst temperature acquisition means” according to the fifth aspect of the present invention is realized by the ECU 40 executing the process of step 116.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 フューエルカットからの復帰に伴う弁復帰時に、触媒への新気流入を防止しつつ、弁停止制御中に燃焼室内に浸入したオイルに含まれる未燃燃料に起因する排気エミッションの悪化を抑制し得る内燃機関の制御装置を提供する。 吸気弁(30)および排気弁(32)の動作状態を弁稼動状態と閉弁停止状態との間で変更可能な弁停止機構を有する可変動弁装置(34、46)を備える。フューエルカットの実行時に、吸気弁(30)および排気弁(32)の動作状態を閉弁停止状態に変更する弁停止制御を行う。当該弁停止制御を伴うフューエルカットからの復帰要求が検知された場合において、排気弁(32)の動作状態を弁稼動状態に復帰させる前に、燃焼室(14)に燃料を供給する。この場合の燃料供給量を、弁停止制御を伴うフューエルカット中に、クランク室(16)側から燃焼室(14)内に浸入するオイルに含まれる未燃燃料の量に応じて補正する。

Description

内燃機関の制御装置
 この発明は、内燃機関の制御装置に係り、特に、吸気弁および排気弁のうちの少なくとも吸気弁を閉弁停止状態に維持可能な弁停止機構を備える内燃機関の制御装置に関する。
 従来、例えば特許文献1には、すべての気筒を稼動する全筒運転と、一部の気筒の吸排気弁の駆動を停止して当該一部の気筒を休止する休筒運転とに切換自在とした休筒式エンジンの制御装置が開示されている。この従来の制御装置では、休筒運転時にエンジンが何回転したかをカウントし、このカウント数が所定値に達したところで一時的に全筒運転に復帰させるようにしている。上記従来の制御装置では、このような制御によって、休止気筒でのオイル上がりに起因する全筒運転復帰時の排気エミッションの悪化防止を図っている。
 尚、出願人は、本発明に関連するものとして、上記の文献を含めて、以下に記載する文献を認識している。
日本特開2000-34941号公報 日本特開平5-33686号公報 日本特開2004-232577号公報
 上記従来の技術では、全筒運転への一時的な復帰時に、休止気筒における吸排気弁の駆動の再開が完了した後に、当該休止気筒への燃料供給を再開するようにしている。このような手法では、休止気筒における吸排気弁の駆動の再開から当該休止気筒への燃料供給の再開までの過程で、新気が筒内を通過し、排気通路に設けられた触媒に流入してしまう。その結果、触媒が高温である場合には、触媒に劣化が生ずることが懸念される。
 この発明は、上述のような課題を解決するためになされたもので、フューエルカットからの復帰に伴う弁復帰時に、触媒への新気流入を防止しつつ、弁停止制御中に燃焼室内に浸入したオイルに含まれる未燃燃料に起因する排気エミッションの悪化を抑制し得る内燃機関の制御装置を提供することを目的とする。
 第1の発明は、内燃機関の制御装置であって、
 吸気弁および排気弁のうちの少なくとも前記吸気弁の動作状態を弁稼動状態と閉弁停止状態との間で変更可能な弁停止機構と、
 内燃機関の運転中に、所定の実行条件が成立した場合にフューエルカットを実行するフューエルカット実行手段と、
 前記フューエルカットの実行時に、前記吸気弁および前記排気弁のうちの少なくとも前記吸気弁の動作状態を前記閉弁停止状態に変更する弁停止制御を行う弁停止実行手段と、
 前記フューエルカットからの復帰要求を検知するフューエルカット復帰要求検知手段と、
 前記弁停止制御を伴う前記フューエルカットからの復帰要求が検知された場合において、前記吸気弁および前記排気弁の双方に対して上記弁停止制御が実行される場合には前記排気弁の動作状態を前記弁稼動状態に復帰させる前に、または、前記吸気弁のみに対して上記弁停止制御が実行される場合には前記吸気弁の動作状態を前記弁稼動状態に復帰させる前に、前記内燃機関の燃焼室に燃料を供給する先行燃料供給手段と、
 前記先行燃料供給手段による燃料供給量を、前記弁停止制御を伴う前記フューエルカット中に、クランク室側から前記燃焼室内に浸入するオイルに含まれる未燃燃料の量に応じて補正する燃料供給量補正手段と、
 を備えることを特徴とする。
 また、第2の発明は、第1の発明において、
 前記燃料供給量補正手段は、前記弁停止制御を伴う前記フューエルカット中の積算エンジン回転数に基づいて、前記未燃燃料量を推定する推定手段を含むことを特徴とする。
 また、第3の発明は、第1または第2の発明において、
 前記弁停止実行手段は、前記フューエルカットの実行時に、前記吸気弁および前記排気弁の双方の動作状態を前記閉弁停止状態に変更する弁停止制御を行うものであって、
 前記フューエルカットからの復帰要求が検知された場合に、前記弁稼働状態への前記排気弁の復帰に先立って、前記吸気弁の動作状態を前記弁稼働状態に変更する吸気弁先行復帰実行手段を更に備え、
 前記燃料供給量補正手段は、前記フューエルカットの実行開始直前の吸気マニホールド負圧と当該フューエルカットの実行時間とに応じて、前記弁稼動状態への前記吸気弁の復帰時の吸気マニホールド負圧を推定する負圧推定手段を含み、
 前記燃料供給量補正手段は、前記負圧推定手段により推定された吸気マニホールド負圧に基づいて、前記先行燃料供給手段により供給される前記燃料供給量を補正することを特徴とする。
 また、第4の発明は、第1乃至第3の発明の何れかにおいて、
 前記弁停止実行手段は、前記フューエルカットの実行時に、前記吸気弁および前記排気弁の双方の動作状態を前記閉弁停止状態に変更する弁停止制御を行うものであって、
 前記内燃機関の制御装置は、前記弁停止実行手段により前記吸気弁および前記排気弁の動作状態が前記閉弁停止状態に変更された時に、前記燃焼室内に排気ガスが充填された排気充填状態であるか、或いは前記燃焼室内に新気が充填された新気充填状態であるかを気筒別に判定する充填状態判定手段を更に備え、
 前記先行燃料供給手段は、前記新気充填状態であると判定された気筒に対してのみ、前記排気弁の動作状態を前記弁稼働状態に復帰させる前に、前記燃焼室に燃料を供給することを特徴とする。
 また、第5の発明は、第1乃至第4の発明の何れかにおいて、
 前記内燃機関の排気通路に配置される触媒の温度を取得する触媒温度取得手段を更に備え、
 前記先行燃料供給手段は、前記燃料供給量の燃料供給時の前記触媒の温度が所定値よりも高い場合には、当該触媒の温度が前記所定値以下である場合と比べ、前記燃料供給量の燃料での燃焼時の空燃比がリッチとなるように、当該燃料供給量を補正することを特徴とする。
 第1の発明によれば、弁停止制御を伴うフューエルカット中に燃焼室内に溜まった未燃燃料量を、フューエルカットからの復帰要求に伴って弁復帰させる前に先行燃料供給手段により供給された燃料といっしょに燃焼させることができる。また、先行燃料供給手段による燃料供給量は、燃焼室内に浸入するオイルに含まれる未燃燃料の量に応じて補正される。このため、本発明によれば、フューエルカットからの復帰に伴う弁復帰時に、触媒に新気が流入するのを防止しつつ、オイル上がりに起因する弁復帰時の排気エミッションの悪化を抑制することができる。
 第2の発明によれば、燃焼室内に浸入するオイルに含まれる未燃燃料の量を考慮した適切な燃料噴射量を得ることができるので、弁復帰時の燃焼を安定させることができる。また、上記未燃燃料量を考慮した燃料噴射量の補正は、減量補正となるので、弁復帰時の排気エミッションの低減と燃料噴射量の低減とを両立させることができる。
 第3の発明によれば、吸気弁復帰時の吸気マニホールド負圧に基づいて燃焼室内に吸入される空気量を把握したうえで、上記燃料供給量を補正することができるので、弁復帰時の燃焼を安定させることができる。また、弁復帰時の排気エミッションの低減と燃料噴射量の低減とを両立させることができる。
 第4の発明によれば、失火気筒を生じさせずに弁復帰時の排気エミッションの低減を図ることができる。
 第5の発明によれば、触媒の温度が高い場合には触媒の劣化抑制を優先し、触媒の温度が低い場合には排気エミッションの低減を優先した制御を実現することができる。
本発明の実施の形態1の内燃機関の構成を説明するための図である。 本発明の実施の形態1において実行される制御ルーチンのフローチャートである。 筒内HC量とフューエルカット中の積算エンジン回転数との関係を表した図である。 吸気マニホールド負圧とフューエルカットの実行時間との関係を表した図である。
10 内燃機関
14 燃焼室
16 クランク室
18 吸気通路
20 排気通路
26 筒内燃料噴射弁
28 点火プラグ
30 吸気弁
32 排気弁
34 吸気可変動弁装置
36 排気可変動弁装置
38 触媒
40 ECU(Electronic Control Unit)
42 クランク角センサ
44 吸気圧力センサ
実施の形態1.
[システム構成の説明]
 図1は、本発明の実施の形態1の内燃機関10の構成を説明するための図である。本実施形態のシステムは、火花点火式の内燃機関(ガソリンエンジン)10を備えている。本実施形態では、内燃機関10は、一例として、#1~#4の4つの気筒を有する直列4気筒型エンジンであるものとする。
 内燃機関10の筒内には、ピストン12が設けられている。内燃機関10の筒内には、ピストン12の頂部側に燃焼室14が形成され、ピストン12の下部側にクランク室16が形成されている。燃焼室14には、吸気通路18および排気通路20が連通している。
 吸気通路18の入口近傍には、吸気通路18に吸入される空気の流量に応じた信号を出力するエアフローメータ22が設けられている。エアフローメータ22の下流には、スロットルバルブ24が設けられている。スロットルバルブ24は、アクセル開度と独立してスロットル開度を制御することのできる電子制御式スロットルバルブである。
 内燃機関10が備えるシリンダヘッドには、燃焼室14内(筒内)に燃料を直接噴射するための筒内燃料噴射弁26が設けられている。また、内燃機関10が備えるシリンダヘッドには、燃焼室14の頂部から燃焼室14内に突出するように点火プラグ28が取り付けられている。吸気ポートおよび排気ポートには、それぞれ、燃焼室14と吸気通路18、或いは燃焼室14と排気通路20を導通状態または遮断状態とするための吸気弁30および排気弁32が設けられている。
 吸気弁30および排気弁32は、それぞれ吸気可変動弁装置34および排気可変動弁装置36により駆動される。吸気可変動弁装置34は、弁稼動状態と閉弁停止状態との間で吸気弁30の動作状態を気筒単位で変更可能な弁停止機構を有し、同様に、排気可変動弁装置36は、弁稼動状態と閉弁停止状態との間で排気弁32の動作状態を気筒単位で変更可能な弁停止機構を有している。以下、本明細書中においては、吸気弁30および排気弁32の動作状態を弁稼動状態から閉弁停止状態に切り換える制御を「弁停止制御」と称する。
 上記弁停止機構を実現する具体的な構成は、特に限定されるものではなく、例えば、電磁駆動弁を用いて実現されるものであってもよく、或いは、カムの作用力をバルブに伝達するロッカーアームの揺動動作を切換ピンを用いて休止可能な構成によって実現されるものであってもよい。また、排気通路20には、排気ガスを浄化するための触媒38が配置されている。
 図1に示すシステムは、ECU(Electronic Control Unit)40を備えている。ECU40の入力には、上述したエアフローメータ22に加え、エンジン回転数を検知するためのクランク角センサ42、および吸気圧力(吸気マニホールド圧力)を検知するための吸気圧力センサ44等の内燃機関10の運転状態を検知するための各種センサが接続されている。また、ECU40の出力には、上述した各種のアクチュエータが接続されている。ECU40は、それらのセンサ出力に基づいて、内燃機関10の運転状態を制御することができる。
[フューエルカット実行時における実施の形態1の制御]
 排気通路20に配置される触媒38が高温状態にある場合に、酸素濃度の高い新気が触媒38に供給されると、触媒38に劣化が生ずることが懸念される。上述した可変動弁装置34、36を備える本実施形態のシステムによれば、減速時等においてフューエルカットの実行要求が出された場合に、吸気弁30および排気弁32の動作状態をそれぞれ閉弁停止状態とすることで、フューエルカット中に触媒38に新気が流入するのを防止することができる。
 フューエルカットの実行中に吸気弁30および排気弁32が閉弁停止状態とされると、燃焼室14内が負圧状態となる。その結果、シリンダ壁面に付着しているオイルがクランク室16側から燃焼室14側に掻き揚げられる(浸入する)現象(いわゆるオイル上がり)が生ずる。シリンダ壁面に付着しているオイルには、特に冷間始動時にシリンダ壁面に付着した未燃燃料(HC)が含まれている。弁停止制御中に燃焼室14側に掻き揚げられたオイル中に含まれる未燃燃料は、閉弁停止状態から弁稼動状態への復帰時(以下、単に「弁復帰時」と称する場合がある)に、排気通路20に排出されることになる。その結果、排気エミッションが悪化してしまう。
 そこで、本実施形態では、フューエルカットからの復帰に伴う弁復帰時に、触媒38への新気流入を防止しつつ、弁停止制御中に燃焼室14に浸入したオイルに含まれる未燃燃料による排気エミッションの悪化を抑制するために、次のような制御を行うこととした。
 すなわち、弁停止制御を伴うフューエルカットからの復帰要求が検知された場合に、排気弁32の動作状態を弁稼動状態に復帰させる前に、燃焼室14に燃料を供給するようにした。より具体的には、当該復帰要求の検知時に、先ず、吸気弁30を先に開放して燃焼室14内に新気を導入し、かつ、燃焼可能な最小噴射量(可燃最小噴射量)の燃料を燃焼室14内に噴射するようにした。そのうえで、この可燃最小噴射量での燃焼後に排気弁32を復帰させるようにした。更に、本実施形態では、上記可燃最小噴射量を、吸排気弁30、32の弁停止制御を伴うフューエルカット中にクランク室16側から燃焼室14側に浸入するオイルに含まれる未燃燃料量(以下、「筒内HC量」と称する場合がある)に応じて補正するようにした。
 また、本実施形態では、弁停止制御を伴うフューエルカット中の積算エンジン回転数に基づいて、燃焼室14内に浸入するオイルに含まれる筒内HC量を推定するようにした。更に、本実施形態では、フューエルカットの実行開始直前の吸気マニホールド負圧と当該フューエルカットの実行時間とに応じて吸気弁復帰時の吸気マニホールド負圧を推定したうえで、推定された吸気弁復帰時の吸気マニホールド負圧に基づいて上記可燃最小噴射量を補正するようにした。
 更に、本実施形態では、フューエルカットの実施に併せて吸排気弁30、32が閉弁停止状態とされた各気筒が、燃焼室14内に排気ガスが充填された排気充填状態であるか、或いは燃焼室14内に新気が充填された新気充填状態であるかを気筒別に判定するようにした。そして、新気充填状態であると判定された気筒に対してのみ、排気弁32の動作状態を弁稼働状態に復帰させる前に、上記可燃最小噴射量の燃料による燃焼を実行するようにした。
 更に、本実施形態では、排気弁32の動作状態を弁稼動状態に復帰させる際(上記可燃最小噴射量の燃料供給時)の触媒38の温度が所定値Aよりも高い場合には、当該触媒38の温度が当該所定値A以下である場合と比べ、上記可燃最小噴射量の燃料での初爆以降の燃焼時の空燃比がリッチとなるように、上記可変最小噴射量を更に補正するようにした。
 図2は、上記の機能を実現するために、ECU40が実行する制御ルーチンを示すフローチャートである。尚、図2に示すルーチンは、フューエルカットの実行要求が検知された場合に起動されるものとする。
 図2に示すルーチンでは、先ず、全気筒における吸気弁30および排気弁32の動作状態をそれぞれ閉弁停止状態に変更する弁停止制御が実行される(ステップ100)。また、本ステップ100では、吸排気弁30、32が閉弁停止状態とされた各気筒が、燃焼室14内に排気ガスが充填された排気充填状態であるか、或いは燃焼室14内に新気が充填された新気充填状態であるかが気筒別に判定され、その判定結果が記憶される。上記弁停止制御は、フューエルカットの実行要求を受けて直ちに全気筒において開始されるものである。このため、吸排気弁30、32が閉弁停止状態とされるタイミングが気筒によって異なるものとなり、その結果、上記新気充填状態となる気筒と上記排気充填状態となる気筒とが存在し得ることとなる。本ステップ100では、クランク角センサ42を利用して、各気筒が新気充填気筒であるか排気充填気筒であるかが判定される。例えば、吸気行程の終了時に閉弁停止状態となった気筒については新気充填状態であると判定され、膨張行程の終了時に閉弁停止状態となった気筒については排気順点状態であると判定される。
 次に、上記弁停止制御を伴うフューエルカットの実行時間をカウントするカウンターおよび当該フューエルカット中の積算エンジン回転数をカウントするカウンターによって、今回のフューエルカットの実行時間およびフューエルカット中の積算エンジン回転数のカウントがそれぞれ開始される(ステップ102)。次いで、フューエルカットの停止要求(フューエルカットからの復帰要求)があるか否かが判定される(ステップ104)。
 その結果、フューエルカットからの復帰要求があると判定された場合には、上記カウンターによる今回のフューエルカットの実行時間およびフューエルカット中の積算エンジン回転数のカウントがそれぞれ停止される(ステップ106)。次いで、各気筒の排気弁32の復帰に先立って、各気筒の吸気弁30の動作状態を弁稼動状態に復帰させる処理が実行される(ステップ108)。
 次に、上記カウンターによりカウントされたフューエルカット中の積算エンジン回転数に基づいて、弁停止制御の実行中に燃焼室14内に掻き揚げられたオイルに含まれる筒内HC量が算出される(ステップ110)。図3は、筒内HC量とフューエルカット中の積算エンジン回転数との関係を表した図である。弁停止制御を伴うフューエルカットの実行中に燃焼室14内に掻き揚げられるオイル量(オイル上がり量)は、フューエルカット中の積算エンジン回転数が多くなるほど、燃焼室14内が負圧化に置かれた期間が長くなるので増加する。それに伴い、図3に示すように、燃焼室14内に掻き揚げられたオイルに含まれる筒内HC量も、フューエルカット中の積算エンジン回転数に応じて増加する。ECU40は、図3に示すような関係をマップ化して記憶しており、本ステップ110では、そのようなマップを参照して、フューエルカット中の積算エンジン回転数に基づいて、筒内HC量が算出される。
 図2に示すルーチンでは、上記ステップ110における筒内HC量の算出と並行して、フューエルカットの実行開始直前の吸気マニホールド負圧と、上記カウンターによりカウントされたフューエルカットの実行時間とに基づいて、上記ステップ108における吸気弁30の復帰時の吸気マニホールド負圧が算出される(ステップ112)。図4は、吸気マニホールド負圧とフューエルカットの実行時間との関係を表した図である。図4に示すように、吸気マニホールド負圧は、弁停止制御を伴うフューエルカットの実行時間が長くなるにつれ、大気圧に近づいていく。このような傾向を考慮して、ECU40には、フューエルカットの実行開始直前の吸気マニホールド負圧とフューエルカットの実行時間との関係で、吸気弁30の復帰時の吸気マニホールド負圧を定めたマップ(図示省略)が記憶されている。本ステップ112では、そのようなマップを参照して、吸気弁復帰時の吸気マニホールド負圧が算出される(ステップ112)。
 次に、上記ステップ108における各気筒の吸気弁30の復帰に伴って新気が導入された状態で燃焼可能な最小噴射量(以下、「可燃最小噴射量」と称する)が算出される(ステップ114)。本ステップ114では、上記ステップ110、112にて算出された筒内HC量と吸気弁復帰時の吸気マニホールド負圧とに基づいて、フューエルカットの実行中に燃焼室14内に上記筒内HC量が溜まっている状況下で燃焼されたガスの空燃比が理論空燃比(もしくは理論空燃比よりもリーンな空燃比)となるように、上記可燃最小噴射量が算出される。より具体的には、上記可燃最小噴射量は、フューエルカットの実行中に燃焼室14内に溜まった上記筒内HC量がより多いほど、より大きく減量された値として算出される。
 また、吸気弁復帰時の吸気マニホールド負圧が変わると、燃焼室14内に吸入される空気量が変化する。このため、本ステップ114では、上記ステップ112において算出された吸気弁復帰時の吸気マニホールド負圧に基づいて、上記可燃最小噴射量が補正される。より具体的には、本ステップ114では、吸気弁復帰時の吸気マニホールド負圧に基づいて、吸気弁復帰時に燃焼室14内に吸入される空気量が推定されたうえで、推定された空気量が燃焼室14内に吸入された場合の燃焼時の空燃比が理論空燃比(もしくは理論空燃比よりもリーンな空燃比)となるように、上記可燃最小噴射量が補正される。尚、吸気弁復帰時に燃焼室14内に吸入される空気量の推定値は、例えば、当該推定値を吸気弁復帰時の吸気マニホールド負圧等との関係で定めたマップ(図示省略)を参照して算出することができる。
 次に、触媒38の温度が上記所定値Aよりも高いか否かが判定される(ステップ116)。本ステップ116における所定値Aは、触媒38への新気の流入により当該触媒38の劣化が懸念される状況であるか否かを判断するための閾値として予め設定された値である。尚、触媒38の温度は、例えば、内燃機関10の運転履歴に基づいて推定することができるし、温度センサによって取得してもよい。
 上記ステップ116において触媒38の温度が上記所定値A以下であると判定された場合、つまり、触媒38の劣化が懸念されない状況であると判断できる場合には、上記可燃最小噴射量の更なる補正は実行されない。一方、上記ステップ116において触媒38の温度が上記所定値Aよりも高いと判定された場合、つまり、触媒38の劣化が懸念される状況であると判断できる場合には、上記可燃最小噴射量による弁復帰時の初爆以降の燃焼時の空燃比が、触媒38の温度が上記所定値A以下である場合(すなわち、理論空燃比が得られるように上記可燃最小噴射量が算出される場合)と比べてリッチとなるように、上記可燃最小噴射量の更なる補正が実行される(ステップ118)。
 次に、上記ステップ100において、新気充填状態にあると判定された気筒においてのみ、上記のように算出された可燃最小噴射量を用いた燃料噴射および点火が実行される(ステップ120)。尚、排気充填状態にあると判定された気筒に関しては、本ステップ120における燃料噴射および点火は実行されない。
 また、図2に示すルーチンでは、上記ステップ120において上記可燃最小噴射量を用いた燃焼が実行された後に、各気筒の排気弁32の動作状態を弁稼動状態に復帰させる処理が実行される(ステップ122)。
 以上説明した図2に示すルーチンによれば、弁停止制御を伴うフューエルカットからの復帰要求が検知された場合には、吸気弁30を先に開放して燃焼室14内に新気が導入され、かつ、上記可燃最小噴射量の燃料が燃焼室14内に噴射される。そのうえで、この可燃最小噴射量での燃焼後に排気弁32を復帰させる処理が実行される。更に、上記可燃最小噴射量が、吸排気弁30、32の弁停止制御を伴うフューエルカット中にクランク室16側から燃焼室14内に浸入するオイルに含まれる筒内HC量に応じて補正される。これにより、フューエルカット中に燃焼室14内に溜まった筒内HCを上記可燃最小噴射量の燃料といっしょに燃焼させたうえで吸排気弁30、32の弁復帰を完了させることができる。このような手順で弁復帰前の燃焼と弁復帰の完了とを実行することにより、フューエルカットからの復帰に伴う弁復帰時に、触媒38に新気が流入するのを防止しつつ、オイル上がりに起因する弁復帰時の排気エミッションの悪化を抑制することができる。
 また、上記ルーチンによれば、弁停止制御を伴うフューエルカット中の積算エンジン回転数に基づいて、燃焼室14内に浸入するオイルに含まれる筒内HC量が推定される。これにより、上記筒内HC量を考慮した適切な燃料噴射量を得ることができるので、弁復帰時の燃焼を安定させることができる。また、筒内HC量を考慮した燃料噴射量の補正は、減量補正となるので、弁復帰時の排気エミッションの低減と燃料噴射量の低減とを両立させることができる。
 また、上記ルーチンによれば、フューエルカットの実行開始直前の吸気マニホールド負圧と当該フューエルカットの実行時間とに応じて吸気弁復帰時の吸気マニホールド負圧が推定されたうえで、推定された吸気マニホールド負圧に基づいて上記可燃最小噴射量が補正される。これにより、吸気弁復帰時に燃焼室14内に吸入される空気量を把握して、弁復帰時の燃焼を安定させることができる。また、弁復帰時の排気エミッションの低減と燃料噴射量の低減とを両立させることができる。
 また、上記ルーチンによれば、新気充填状態であると判定された気筒に対してのみ、排気弁32を復帰させる前に、上記可燃最小噴射量の燃料での燃焼が実行される。このように、排気充填状態ではないと判定された気筒に対しては上記燃焼を実行しないようにすることで、失火気筒を生じさせずに弁復帰時の排気エミッションの低減を図ることができる。
 また、上記ルーチンによれば、排気弁32を復帰させる際の触媒38の温度が上記所定値Aよりも高い場合には、当該触媒38の温度が当該所定値A以下である場合と比べ、上記可燃最小噴射量の燃料での初爆以降の燃焼時の空燃比がリッチとなるように、上記可変最小噴射量が更に補正される。これにより、触媒38の温度が高い場合には触媒38の劣化抑制を優先し、触媒38の温度が低い場合には排気エミッションの低減を優先した制御を実現することができる。
 ところで、上述した実施の形態1においては、弁停止制御を伴うフューエルカットからの復帰要求が検知された場合に、吸気弁30を先に開放して燃焼室14内に新気を導入し、かつ、燃焼可能な最小噴射量の燃料を筒内燃料噴射弁26により噴射して燃焼を行ったうえで、排気弁32を復帰させるようにしている。このような手法によれば、吸気弁30を先行して開いて新気を導入することで、排気弁32の復帰前の上記燃焼の安定性を良好に確保できるようになる。しかしながら、本発明において、弁停止制御を伴うフューエルカットからの復帰要求が検知された場合に、排気弁の動作状態を弁稼働状態に復帰させる前に燃焼室に燃料を供給する手法は、これに限定されるものではない。すなわち、例えば、上記復帰要求が検知された場合に、排気弁32を開放する前に、点火プラグ28の近傍が可燃雰囲気となるような最小噴射量を筒内燃料噴射弁26によって噴射するようにしてもよい。そして、このような最小噴射量によって点火プラグ28の近傍でリーンな空燃比下で成層燃焼を行ったうえで、吸気弁30および排気弁32を弁稼動状態に復帰させるようにしてもよい。
 また、上述した実施の形態1においては、弁停止制御を伴うフューエルカット中の積算エンジン回転数に基づいて、燃焼室14内に浸入するオイルに含まれる筒内HC量を推定するようにしている。しかしながら、本発明はこれに限定されるものではなく、例えば、弁停止制御を伴うフューエルカットの実行時間に基づいて、燃焼室14内に浸入するオイルに含まれる未燃燃料量を推定するようにしてもよい。
 また、上述した実施の形態1においては、フューエルカットの実行要求が検知された場合に、吸気弁30および排気弁32の双方に対して弁停止制御を実行するようにしているが、本発明はこれに限定されるものではない。すなわち、吸気弁30のみに対して弁停止制御を実行した場合には、燃焼室14内と排気マニホールドとの間でガスが行き来する状態となり、その状態から吸気弁30の復帰が行われることで、燃焼室14を介した吸気側から排気側へのガスの流通が再開されるようになる。また、このように、吸気弁30のみに対して弁停止制御を実行した場合においても、吸気行程および膨張行程において燃焼室14内が負圧状態となり、オイルに含まれた未燃燃料がクランク室16側から燃焼室14側に浸入するようになる。従って、フューエルカットの実行要求が検知された場合に、吸気弁の動作状態のみを閉弁停止状態に変更して弁停止制御を実行する構成に対して、本発明の制御を適用するようにしてもよい。
 また、上述した実施の形態1においては、全気筒を対象とする弁停止制御を伴うフューエルカット時を例に挙げて説明を行った。しかしながら、本発明はこれに限定されるものではなく、一部気筒を対象とする弁停止制御を伴う当該一部気筒休止運転時に対しても適用可能である。
 また、上述した実施の形態1においては、火花点火式の内燃機関(ガソリンエンジン)10を例に挙げて説明を行っている。しかしながら、本発明の対象となる内燃機関はこれに限定されるものではなく、例えば、ディーゼルエンジンなどの圧縮着火式の内燃機関であってもよい。
 また、上述した実施の形態1においては、燃焼室14内に直接燃料を噴射する筒内燃料噴射弁26を用いて、弁停止制御を伴うフューエルカットからの復帰要求が検知された場合に、排気弁32の動作状態を弁稼働状態に復帰させる前に、燃焼室14に燃料を供給するようにしている。しかしながら、上述した実施の形態1において具体的に説明した手法のように、排気弁32の開放よりも前に吸気弁30を先に開放して新気を導入する手法を用いる場合であれば、本発明における燃料噴射弁は、燃焼室14内に直接燃料を噴射するものに限られない。すなわち、吸気ポートに燃料噴射弁(図示省略)を備えるようにしておき、当該燃料噴射弁を用いて吸気ポートに噴射された燃料が燃焼室14内に供給されるものであってもよい。
 尚、上述した実施の形態1においては、吸気可変動弁装置34および排気可変動弁装置36が備える弁停止機構が前記第1の発明における「弁停止機構」に相当しているとともに、ECU40が、所定の実行条件が成立した場合に筒内燃料噴射弁26による燃料噴射を停止することにより「フューエルカット実行手段」が、上記ステップ100の処理を実行することにより前記第1の発明における「弁停止実行手段」が、上記ステップ104の処理を実行することにより前記第1の発明における「フューエルカット復帰要求検知手段」が、上記ステップ120の処理を実行することにより前記第1の発明における「先行燃料供給手段」が、上記ステップ110~118の処理を実行することにより前記第1の発明における「燃料供給量補正手段」が、それぞれ実現されている。
 また、ECU40が、上記ステップ108の処理を実行することにより前記第3の発明における「吸気弁先行復帰実行手段」が、上記ステップ112の処理を実行することにより前記第3の発明における「負圧推定手段」が、それぞれ実現されている。
 また、ECU40が上記ステップ100の処理を実行することにより、前記第4の発明における「充填状態判定手段」が実現されている。
 また、ECU40が上記ステップ116の処理を実行することにより、前記第5の発明における「触媒温度取得手段」が実現されている。

Claims (5)

  1.  吸気弁および排気弁のうちの少なくとも前記吸気弁の動作状態を弁稼動状態と閉弁停止状態との間で変更可能な弁停止機構と、
     内燃機関の運転中に、所定の実行条件が成立した場合にフューエルカットを実行するフューエルカット実行手段と、
     前記フューエルカットの実行時に、前記吸気弁および前記排気弁のうちの少なくとも前記吸気弁の動作状態を前記閉弁停止状態に変更する弁停止制御を行う弁停止実行手段と、
     前記フューエルカットからの復帰要求を検知するフューエルカット復帰要求検知手段と、
     前記弁停止制御を伴う前記フューエルカットからの復帰要求が検知された場合において、前記吸気弁および前記排気弁の双方に対して上記弁停止制御が実行される場合には前記排気弁の動作状態を前記弁稼動状態に復帰させる前に、または、前記吸気弁のみに対して上記弁停止制御が実行される場合には前記吸気弁の動作状態を前記弁稼動状態に復帰させる前に、前記内燃機関の燃焼室に燃料を供給する先行燃料供給手段と、
     前記先行燃料供給手段による燃料供給量を、前記弁停止制御を伴う前記フューエルカット中に、クランク室側から前記燃焼室内に浸入するオイルに含まれる未燃燃料の量に応じて補正する燃料供給量補正手段と、
     を備えることを特徴とする内燃機関の制御装置。
  2.  前記燃料供給量補正手段は、前記弁停止制御を伴う前記フューエルカット中の積算エンジン回転数に基づいて、前記未燃燃料量を推定する推定手段を含むことを特徴とする請求項1に記載の内燃機関の制御装置。
  3.  前記弁停止実行手段は、前記フューエルカットの実行時に、前記吸気弁および前記排気弁の双方の動作状態を前記閉弁停止状態に変更する弁停止制御を行うものであって、
     前記フューエルカットからの復帰要求が検知された場合に、前記弁稼働状態への前記排気弁の復帰に先立って、前記吸気弁の動作状態を前記弁稼働状態に変更する吸気弁先行復帰実行手段を更に備え、
     前記燃料供給量補正手段は、前記フューエルカットの実行開始直前の吸気マニホールド負圧と当該フューエルカットの実行時間とに応じて、前記弁稼動状態への前記吸気弁の復帰時の吸気マニホールド負圧を推定する負圧推定手段を含み、
     前記燃料供給量補正手段は、前記負圧推定手段により推定された吸気マニホールド負圧に基づいて、前記先行燃料供給手段により供給される前記燃料供給量を補正することを特徴とする請求項1または2に記載の内燃機関の制御装置。
  4.  前記弁停止実行手段は、前記フューエルカットの実行時に、前記吸気弁および前記排気弁の双方の動作状態を前記閉弁停止状態に変更する弁停止制御を行うものであって、
     前記内燃機関の制御装置は、前記弁停止実行手段により前記吸気弁および前記排気弁の動作状態が前記閉弁停止状態に変更された時に、前記燃焼室内に排気ガスが充填された排気充填状態であるか、或いは前記燃焼室内に新気が充填された新気充填状態であるかを気筒別に判定する充填状態判定手段を更に備え、
     前記先行燃料供給手段は、前記新気充填状態であると判定された気筒に対してのみ、前記排気弁の動作状態を前記弁稼働状態に復帰させる前に、前記燃焼室に燃料を供給することを特徴とする請求項1乃至3の何れか1項記載の内燃機関の制御装置。
  5.  前記内燃機関の排気通路に配置される触媒の温度を取得する触媒温度取得手段を更に備え、
     前記先行燃料供給手段は、前記燃料供給量の燃料供給時の前記触媒の温度が所定値よりも高い場合には、当該触媒の温度が前記所定値以下である場合と比べ、前記燃料供給量の燃料での燃焼時の空燃比がリッチとなるように、当該燃料供給量を補正することを特徴とする請求項1乃至4の何れか1項に記載の内燃機関の制御装置。
PCT/JP2010/050638 2010-01-20 2010-01-20 内燃機関の制御装置 WO2011089694A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10843860.7A EP2527621B1 (en) 2010-01-20 2010-01-20 Control device for internal combustion engine
US13/511,007 US8560210B2 (en) 2010-01-20 2010-01-20 Control apparatus for internal combustion engine
CN201080061810.8A CN102713214B (zh) 2010-01-20 2010-01-20 内燃机的控制装置
PCT/JP2010/050638 WO2011089694A1 (ja) 2010-01-20 2010-01-20 内燃機関の制御装置
JP2011550746A JP5240370B2 (ja) 2010-01-20 2010-01-20 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/050638 WO2011089694A1 (ja) 2010-01-20 2010-01-20 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2011089694A1 true WO2011089694A1 (ja) 2011-07-28

Family

ID=44306517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050638 WO2011089694A1 (ja) 2010-01-20 2010-01-20 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US8560210B2 (ja)
EP (1) EP2527621B1 (ja)
JP (1) JP5240370B2 (ja)
CN (1) CN102713214B (ja)
WO (1) WO2011089694A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103047024A (zh) * 2011-09-07 2013-04-17 通用汽车环球科技运作有限责任公司 基于催化剂温度的气门机构控制系统与方法
CN103670732A (zh) * 2012-09-10 2014-03-26 通用汽车环球科技运作有限责任公司 用于气缸起用和停用控制系统的进气端口压力预测

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3015683B1 (en) * 2013-06-26 2017-10-11 Toyota Jidosha Kabushiki Kaisha Controller for variable valve mechanism
CN107288771A (zh) * 2016-03-30 2017-10-24 联合汽车电子有限公司 发动机喷油控制系统及方法
JP6477638B2 (ja) * 2016-09-14 2019-03-06 トヨタ自動車株式会社 熱、水素生成装置
JP6939472B2 (ja) * 2017-11-27 2021-09-22 トヨタ自動車株式会社 内燃機関の制御装置
JP2021076029A (ja) 2019-11-05 2021-05-20 三菱重工エンジン&ターボチャージャ株式会社 ガスエンジンの再着火処理装置、再着火方法およびプログラム
US20230243315A1 (en) * 2023-03-17 2023-08-03 Michael J. Holihan Method to mitigate reverse oil flow to the combustion chamber via hybrid cylinder cutout for internal combustion engines

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164928A (ja) * 1999-12-13 2001-06-19 Mazda Motor Corp エンジンの排気浄化装置及び浄化方法
JP2004027995A (ja) * 2002-06-27 2004-01-29 Nissan Motor Co Ltd エンジンの空燃比制御装置
JP2006250023A (ja) * 2005-03-10 2006-09-21 Toyota Motor Corp 内燃機関の制御装置
JP2007211720A (ja) * 2006-02-10 2007-08-23 Toyota Motor Corp 内燃機関の制御装置
JP2007285239A (ja) * 2006-04-19 2007-11-01 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2668036B2 (ja) 1991-07-30 1997-10-27 三菱自動車工業株式会社 エンジンの制御方法
JP3801783B2 (ja) 1998-07-16 2006-07-26 本田技研工業株式会社 休筒式エンジンの制御装置
US6738706B2 (en) * 2002-06-19 2004-05-18 Ford Global Technologies, Llc Method for estimating engine parameters
JP4168766B2 (ja) 2003-01-31 2008-10-22 トヨタ自動車株式会社 圧縮自着火運転が可能なエンジン
US7607410B2 (en) * 2006-06-12 2009-10-27 Ford Global Technologies, Llc System and method of controlling fuel delivery during positive valve overlap operation of an engine start

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164928A (ja) * 1999-12-13 2001-06-19 Mazda Motor Corp エンジンの排気浄化装置及び浄化方法
JP2004027995A (ja) * 2002-06-27 2004-01-29 Nissan Motor Co Ltd エンジンの空燃比制御装置
JP2006250023A (ja) * 2005-03-10 2006-09-21 Toyota Motor Corp 内燃機関の制御装置
JP2007211720A (ja) * 2006-02-10 2007-08-23 Toyota Motor Corp 内燃機関の制御装置
JP2007285239A (ja) * 2006-04-19 2007-11-01 Toyota Motor Corp 内燃機関の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103047024A (zh) * 2011-09-07 2013-04-17 通用汽车环球科技运作有限责任公司 基于催化剂温度的气门机构控制系统与方法
CN103670732A (zh) * 2012-09-10 2014-03-26 通用汽车环球科技运作有限责任公司 用于气缸起用和停用控制系统的进气端口压力预测
CN103670732B (zh) * 2012-09-10 2016-04-20 通用汽车环球科技运作有限责任公司 用于气缸起用和停用控制系统的进气端口压力预测

Also Published As

Publication number Publication date
CN102713214B (zh) 2014-01-08
CN102713214A (zh) 2012-10-03
EP2527621A1 (en) 2012-11-28
JPWO2011089694A1 (ja) 2013-05-20
JP5240370B2 (ja) 2013-07-17
US20120290196A1 (en) 2012-11-15
EP2527621B1 (en) 2016-11-23
EP2527621A4 (en) 2014-05-14
US8560210B2 (en) 2013-10-15

Similar Documents

Publication Publication Date Title
JP5240370B2 (ja) 内燃機関の制御装置
US9279377B2 (en) Air-fuel ratio imbalance determination apparatus and air-fuel ratio imbalance determination method
US7885757B2 (en) Degradation determination apparatus and degradation determination system for oxygen concentration sensor
JP5052547B2 (ja) 内燃機関、内燃機関の制御装置
JP5273310B2 (ja) 内燃機関の制御装置
US6729305B2 (en) Fuel injection amount control apparatus and method for internal combustion engine
JP5240385B2 (ja) 多気筒内燃機関の制御装置
JP5267728B2 (ja) 内燃機関の制御装置
JP2013119809A (ja) 内燃機関のインバランス検出装置
JP5110119B2 (ja) 多気筒内燃機関の制御装置
JP4792453B2 (ja) 吸入空気量検出装置
JP5282636B2 (ja) 内燃機関の制御装置
JP5644342B2 (ja) 多気筒内燃機関の制御装置
JP4232710B2 (ja) 水素添加内燃機関の制御装置
JP5240384B2 (ja) 多気筒内燃機関の制御装置
US11365701B2 (en) Engine device
JP2019108824A (ja) 燃料噴射制御装置
JP2012180817A (ja) 内燃機関の空燃比算出装置
JP2013142305A (ja) 内燃機関の制御装置
JP2002213276A (ja) 内燃機関の燃料噴射制御装置
JP2012112314A (ja) 内燃機関の制御装置
JPH10274079A (ja) エンジンの制御装置
JP2010265869A (ja) 内燃機関の燃料噴射システム
JP2013142301A (ja) 内燃機関の制御装置
JP2006144656A (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061810.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843860

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550746

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010843860

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010843860

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13511007

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE