WO2011089677A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2011089677A1
WO2011089677A1 PCT/JP2010/007470 JP2010007470W WO2011089677A1 WO 2011089677 A1 WO2011089677 A1 WO 2011089677A1 JP 2010007470 W JP2010007470 W JP 2010007470W WO 2011089677 A1 WO2011089677 A1 WO 2011089677A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pad electrode
electrode
semiconductor
semiconductor substrate
Prior art date
Application number
PCT/JP2010/007470
Other languages
English (en)
French (fr)
Inventor
上田 哲也
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011089677A1 publication Critical patent/WO2011089677A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device including a step of forming a through electrode penetrating from the front surface to the back surface in the thickness direction of a semiconductor substrate in a semiconductor integrated circuit to be three-dimensionally mounted.
  • FIG. 9 is a schematic cross-sectional view showing a first manufacturing method (hereinafter referred to as Prior Art 1) of a through electrode disclosed in Patent Document 1.
  • the manufacturing method of Prior Art 1 first, the insulating layer 102 is formed on the semiconductor substrate 100 in which the concave portion 101 is formed on the surface side (FIG. 9A).
  • a metal thin film 103 is deposited on the recess 101 (FIG. 9B), and this metal thin film 103 is used as a seed layer by a plating method generally called conformal growth, that is, as shown in FIG. 9C.
  • the wiring material 104 is formed by a method of uniformly growing the film along the surface shape including the recess 101, and the recess 101 is filled (FIG. 9D). Then, unnecessary portions of the wiring material 104 grown on the plane are removed, and finally the semiconductor substrate 100 is polished from the back surface side by CMP or the like to expose the through electrodes (FIG. 9E).
  • FIG. 10 is a schematic cross-sectional view showing a second method for manufacturing a through electrode (hereinafter referred to as Prior Art 2) disclosed in Patent Document 1.
  • Prior Art 2 first, as shown in FIG. 10A, a first insulating film 2a is formed on the front surface side of the semiconductor substrate 1, and a second insulating film 2b is formed on the back surface side.
  • a metal layer is formed as a first etching stop layer 3 on the entire back surface side of the second insulating film 2b (FIG. 10B).
  • the semiconductor substrate 1 and the second insulating film 2b are further etched to the first etching stop layer 3 to form the recess 4 (FIG. 10C).
  • a third insulating film 5 is formed on the inner wall of the recess 4 (FIG. 10 (d)), and then plating called bottom-up growth is performed using the surface of the metal layer as the first etching stop layer 3 as a seed layer for plating.
  • the recess 4 is filled with a wiring material 6 such as copper by a method, that is, a method in which plating is grown in the thickness direction from the bottom side of the semiconductor substrate 1 (FIG. 10E).
  • unnecessary portions on the front and back surfaces unnecessary portions of the first etching stop layer 3 and the wiring material 6) are removed to form the through electrodes 7.
  • the through electrode 7 has a front surface 7a portion and a back surface 7b portion by removing the unnecessary portion (FIG. 10 (f)).
  • a film of the wiring material 104 is formed by a plating method by conformal growth, and the recess 101 is filled to form a through electrode.
  • the opening diameter of the recess 101 becomes about several ⁇ m as the through electrode diameter decreases
  • the depth of the recess 104 at the time of performing the plating process is about several tens ⁇ m to 100 ⁇ m
  • the aspect ratio The ratio of the depth to the opening diameter is 10 or more.
  • the wiring material 104 by a bottom-up growth plating method as in the manufacturing method of Prior Art 2.
  • the insulating layer 102 that is supposed to insulate the semiconductor substrate 100 and the through electrode has to be formed in the process adopted by the prior art 1, the metal serving as a seed layer necessary for plating the wiring material 104 is formed.
  • the thin film 103 is deposited on the insulating layer 102, the entire surface must be deposited. This means that the formation of the wiring material 104 in the prior art 1 can be easily performed only by conformal growth over the entire surface of the metal thin film 103.
  • a bottom-up growth plating method is used to embed the wiring material 6 in the recess 4 as shown in FIG.
  • the plating method by bottom-up growth is superior in the embedding property of the wiring material than the plating method by conformal growth in view of the film growth mechanism.
  • the semiconductor substrate 1 having a thickness of several hundreds ⁇ m is used as it is without being polished and thinned, when the opening diameter of the recess 4 is reduced to several ⁇ m, the aspect ratio is reduced.
  • the bottom-up growth method it is very difficult to obtain a through electrode with a high yield without forming a void.
  • a step of forming a metal layer to be the first etching stop layer 3 on the back surface of the substrate (FIG. 10A ⁇ (B))
  • the step of etching and forming the recesses 4 from the substrate surface (FIG. 10 (b) ⁇ (c)).
  • the substrate In the step of forming the back surface 7b of the through electrode 7 by processing the first etching stop layer 3 on the back surface of the substrate (FIG. 10 (e) ⁇ (f)), the substrate must be turned upside down a total of 3 times. I must.
  • the present invention can embed an electrode material in a through-hole formed in a semiconductor substrate for a through-electrode without causing a gap even if the through-electrode has a narrow pitch arrangement and fine dimensions. It is an object of the present invention to provide a method for manufacturing a semiconductor device capable of forming a through electrode while reducing the number of times of front / back reversal operation. In the present invention, it is only necessary to achieve at least one of the above objects.
  • a method of manufacturing a semiconductor device includes a step of forming a pad electrode on an insulating film layer formed on a semiconductor substrate so that a surface thereof is exposed; A step of forming a conductive adhesive layer on the insulating film layer by contact, and a first surface, which is a surface on which the insulating film layer and the pad electrode are formed, via the adhesive layer A step of bonding a conductive support plate, a step of polishing the semiconductor substrate from a second surface opposite to the first surface to thin the semiconductor substrate to a predetermined thickness, and a step of thinning the second substrate from the second surface side.
  • an insulating film is further formed on the surface of the semiconductor substrate on the second surface side and on the sidewall of the opening.
  • the step of forming the through electrode is performed so that the conductive material protrudes outside the opening to form a protrusion.
  • the conductive material may be copper
  • the pad electrode is made of a metal mainly composed of copper or aluminum
  • a tantalum-based or titanium-based barrier metal is provided between the pad electrode and the insulating film layer. It can be provided.
  • the semiconductor substrate is an SOI substrate in which a buried insulating layer parallel to the surface of the semiconductor substrate is formed, and the semiconductor substrate is thinned. After the semiconductor material portion of the semiconductor substrate is polished, the semiconductor material portion may be further selectively wet etched to expose the buried insulating layer.
  • Another method of manufacturing a semiconductor device according to the present invention for solving the above-described problems includes a step of preparing a master substrate having a first pad electrode formed on a first semiconductor substrate, and a second semiconductor substrate. Forming a second pad electrode on the insulating film layer formed on the insulating film layer so that a surface thereof is exposed; and a conductive adhesive layer on the insulating film layer in contact with the second pad electrode Bonding a conductive support plate to the first surface, which is the surface on which the insulating film layer and the second pad electrode are formed, via the adhesive layer; Polishing the second semiconductor substrate from a second surface opposite to the first surface to reduce the thickness to a predetermined thickness; and thinning the second semiconductor substrate from the second surface side; and Insulating film layer is selectively etched sequentially to form an opening reaching the second pad electrode A predetermined potential is applied to the second pad electrode through the support plate and the adhesive layer, and a conductive material is grown and embedded in the opening by a plating method, thereby at least opening the opening. Form
  • the manufacturing method may further include a step of separating the support plate from the first surface after the step of coupling the through electrode and the first pad electrode of the master substrate.
  • the through electrode may have a protruding portion in which the conductive material protrudes to the outside of the opening, and the through electrode and the first pad electrode of the master substrate may be coupled by the protruding portion. desirable.
  • a method of manufacturing a semiconductor device comprising: preparing a master substrate having a first pad electrode formed on a first substrate; and forming the master substrate on the semiconductor substrate. Forming a second pad electrode on the insulating film layer so that the surface thereof is exposed; and forming a conductive adhesive layer on the insulating film layer in contact with the second pad electrode Bonding a conductive support plate to the first surface, which is the surface on which the insulating film layer and the second pad electrode are formed, via the adhesive layer, and the first surface Polishing the semiconductor substrate from the second surface opposite to the first surface to reduce the thickness to a predetermined thickness, and selectively etching the thinned semiconductor substrate and the insulating film layer sequentially from the second surface side.
  • the method includes a step of dividing the substrate into a plurality of pieces, and a step of connecting the through electrodes of the pieces and the first pad electrodes of the master substrate to face each other.
  • the step of separating the support plate in the piece from the first surface after the step of connecting the through electrode of the piece and the first pad electrode of the master substrate, the step of separating the support plate in the piece from the first surface. It can be further included.
  • the through electrode has a protruding portion in which the conductive material protrudes outside the opening, and the protruding electrode included in the piece and the first pad electrode of the master substrate are connected to the protruding portion. It is desirable to combine with.
  • the semiconductor substrate is polished from the second surface opposite to the first surface on which the insulating film layer and the pad electrode are formed as described above to obtain a predetermined thickness. Then, from the second surface side, the thinned semiconductor substrate and the insulating film layer are etched to form an opening reaching the pad electrode. Thereby, the aspect ratio of this opening can be made into a desired small value. Therefore, even if the arrangement pitch of the apertures and the diameter of the apertures are as fine as several ⁇ m, a conductive material is embedded in the apertures without forming voids, and a low resistance and highly reliable through electrode is obtained with a high yield. Can be manufactured.
  • an insulating film is formed on the surface on the second surface side of the semiconductor substrate and on the side wall of the opening, so that a conductive pad is formed only on the bottom surface of the opening. Since the electrode surface is exposed, the conductive material can be grown upward from the bottom surface of the opening by plating. According to this configuration, it is possible to prevent a void from being further formed inside the aperture.
  • a support plate is provided on the first surface side opposite to the second surface via an adhesive layer, and the adhesive layer and the support plate are provided. It was made conductive, and a predetermined potential was applied to the pad electrode through the support plate and the adhesive layer for the purpose of plating film growth.
  • the semiconductor substrate is turned upside down in order to form a metal layer for applying a potential on the bottom surface of the opening in advance, and then the semiconductor substrate is turned upside down again for further processing of the through electrode. Is no longer needed. Further, it is not necessary to turn the semiconductor substrate upside down in order to remove unnecessary portions of the metal layer after the growth of the plating film. In this way, the number of times the semiconductor substrate is turned upside down can be reduced, and an increase in manufacturing cost can be suppressed.
  • the present invention has various effects, but it is sufficient that at least one of the effects can be achieved.
  • FIG. 1 is a process cross-sectional view illustrating a method for manufacturing a semiconductor device according to a first embodiment of the present invention.
  • FIG. 2 is a process sectional view showing the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 3 is a process sectional view showing the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a semiconductor device manufactured by the semiconductor device manufacturing method according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing details of the opening process in the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 1 is a process cross-sectional view illustrating a method for manufacturing a semiconductor device according to a first embodiment of the present invention.
  • FIG. 2 is a process sectional view showing the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 3 is a process sectional view showing the method for manufacturing the semiconductor device according to
  • FIG. 6 is a cross-sectional view illustrating a copper plating process in the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 7 is a SEM cross-sectional photograph of a through electrode formed by the method for manufacturing a semiconductor device according to the first embodiment of the present invention.
  • FIG. 8 is a process cross-sectional view illustrating the method for manufacturing a semiconductor device according to the second embodiment of the present invention.
  • FIG. 9 is a process cross-sectional view illustrating a conventional method for manufacturing a through electrode.
  • FIG. 10 is a process cross-sectional view illustrating a conventional method for manufacturing a through electrode.
  • (First embodiment) 1 to 3 are process cross-sectional views for explaining a method of manufacturing a semiconductor device according to the first embodiment of the present invention.
  • first embodiment of the present invention only the central and both end regions of the semiconductor substrate are divided and displayed, thereby representing a cross section over the entire semiconductor substrate.
  • an insulating film layer 11 is formed on the surface of a semiconductor substrate 10 such as a silicon single crystal. Further, active elements such as MOS transistors, passive elements such as capacitors and resistors are formed on the surface layer and the surface of the semiconductor substrate 10 using a well-known Si semiconductor process (not shown). The membrane layer 11 is covering. In addition, a multilayer wiring structure made of a conductive film mainly composed of aluminum, refractory metal, or copper, which can be manufactured by a well-known Si semiconductor process, is formed inside the insulating film layer 11. Although the insulating film layer 11 is shown as a single layer in the figure, it is actually a laminated film of the same or different kinds of insulating films as described above.
  • a plate-like pad electrode 12 which has aluminum or copper as a main component and has a surface substantially parallel to the surface of the semiconductor substrate 10 is formed.
  • the pad electrode 12 is an electrode for taking out a signal to the outside, and has a side dimension of 10 ⁇ m to 100 ⁇ m.
  • the pad electrode 12 can be formed by a well-known patterning by dry etching of a conductive film or a damascene method. In this embodiment, the pad electrode 12 is formed by a damascene method and made of a copper film. Furthermore, the pad electrode 12 is indirectly electrically connected to the active element and the passive element via the multilayer wiring to function them.
  • the surface side on which the pad electrode 12 is exposed from the insulating film layer 11 is referred to as the front surface side
  • the surface of the semiconductor substrate 10 opposite to the surface side is referred to as the back surface side.
  • a liquid conductive adhesive is applied by a spin coat method so as to cover the entire surface of the insulating film layer 11 including the pad electrode 12, and is dried and heat-cured to form an adhesive layer. 13 is formed.
  • the entire semiconductor substrate 10 in this state is turned upside down so that the front side faces downward, and then the whole is bonded to a support substrate 14 having the same size as the semiconductor substrate 10.
  • the bonding process is preferably performed in a reduced-pressure atmosphere close to vacuum so that air or the like is not taken in between the adhesive layer 13 and the support substrate 14.
  • the conductive adhesive is a material in which metal fine particles are mixed in a thermosetting resin.
  • the support substrate 14 is a hard support plate having a predetermined thickness that does not cause deformation, bending, or the like for the purpose of safely holding the semiconductor substrate 10 thinned by a subsequent polishing process.
  • the back surface (the upper surface in the drawing) of the semiconductor substrate 10 is made to have a desired thickness, for example, 50 ⁇ m, using a Si back grinding apparatus and a CMP (Chemical Mechanical Polishing) apparatus. Polish and thin.
  • a Si back grinding apparatus and a CMP (Chemical Mechanical Polishing) apparatus. Polish and thin.
  • CMP Chemical Mechanical Polishing
  • the silicon semiconductor material portion on the back surface is first polished to a predetermined thickness, and then the remaining silicon semiconductor material portion is wet-etched, so that the buried insulating layer provided over the entire surface in parallel with the substrate surface is provided. What is necessary is just to stop an etch at the time of exposure. Since the buried insulating layer and the silicon single crystal layer separated by this layer are uniform in thickness, polishing with good film thickness control can be performed.
  • FIG. 2B a plurality of apertures 15 that penetrate the semiconductor substrate 10 and the insulating film layer 11 from the back surface of the polished semiconductor substrate 10 and reach the respective surfaces of the pad electrodes 12 are anisotropically dried. It is formed using etching. Since the detailed structure around the pad electrode 12 is omitted in FIG. 2, the manufacturing process from FIGS. 2A to 2B will be described in more detail with reference to FIG. FIG. 5 is an enlarged cross-sectional view showing a portion where the pad electrode 12 and the opening 15 are formed. In FIG.
  • a tantalum nitride (TaN) film is formed on the bottom surface (upper surface in the drawing) and the side wall.
  • a tantalum-based thin barrier metal 18 made of a laminated film of tantalum (Ta) films is provided.
  • the barrier metal 18 may be a titanium-based material composed of a laminated film of a titanium (Ti) film and a titanium nitride (TiN) film.
  • an insulating film 19 (for example, a silicon oxide film, a silicon nitride film, or the like) is formed on the back surface side (upper surface in the drawing) of the semiconductor substrate 10 as shown in FIG. And the like are deposited.
  • the insulating film 19, the semiconductor substrate 10, the insulating film layer 11, and the barrier metal 18 are sequentially selectively removed by anisotropic dry etching to form the opening 15.
  • the surface of the pad electrode 12 is exposed. This step corresponds to FIG. Thereafter, as shown in FIG.
  • an insulating film 20 (for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof) is deposited. Then, as shown in FIG. 5 (d), the insulating film 20 is anisotropically etched over the entire surface to leave the sidewall 21 on the inner wall surface of the opening 15 and from the copper of the pad electrode 12 at the bottom of the opening 15. Re-expose the part.
  • the insulating films 19 and 20 described above remain even after completing the respective steps shown in FIG. 2C and FIGS. 3A to 3B.
  • FIG. 2C a conductive material, particularly copper (Cu) as a metal material is selectively buried and grown inside each of the openings 15 by electrolytic plating of bottom-up growth, and Cu plugs 16 are grown. Then, a through electrode made of Cu post 17 is formed. At this time, the through electrode is electrically insulated from the semiconductor substrate 10 because the insulating film 19 and the side wall 21 (FIG. 5D) are formed.
  • FIG. 6 is a schematic view showing an electrolytic copper plating method for forming the through electrode.
  • the substrate shown in FIG. 2B is described as comprising the support substrate 14, the adhesive layer 13, and the semiconductor circuit layer 25a.
  • the semiconductor circuit layer 25a refers to all portions including the semiconductor substrate 10, the insulating film layer 11 and the like other than the support substrate 14 and the adhesive layer 13 in FIG.
  • the entire support substrate 14 side of the substrate having the structure shown in FIG. 2B (or FIG. 5D) is brought into close contact with the cathode electrode 40 of the plating apparatus, and both are electrically connected.
  • the substrate composed of the support substrate 14, the adhesive layer 13, and the semiconductor circuit layer 25 a is installed so as to face the anode electrode 41, and a DC voltage is applied from the power source 43 between the cathode electrode 40 and the anode electrode 41.
  • at least the anode 41 and the semiconductor circuit layer 25a are filled with a copper plating solution 42, and a seal 44 is provided so that the copper plating solution 42 does not enter the adhesive layer 13, the support substrate 14, and the cathode electrode 40.
  • the liquid contact surface 26 of the semiconductor circuit layer 25 with the copper plating solution 42 is the back surface side of the semiconductor substrate 10 and the exposed surface of the opening 15 as is apparent from the comparison with FIG.
  • the selective growth of copper inside the opening 15 provided in the semiconductor substrate 10 can be performed in a plating process by bottom-up growth as follows. Since the periphery of the opening 15 employs the manufacturing method shown in FIG. 5, the rear surface of the semiconductor substrate 10 is covered with the insulating film 19, and the inner side wall of the opening 15 is covered with the sidewall 21 made of the insulating film 20. The conductive portion of the pad electrode 12 is exposed only on the bottom surface of the opening 15 (see FIG. 5C).
  • the substrate processed in such a structure (the substrate in FIG. 2B) is installed in a plating apparatus as shown in FIG. 6, a positive potential is applied to the anode electrode 41 and a negative potential is applied to the cathode electrode 40 at the same time. Since the support substrate 14 and the adhesive layer 13 are conductive, the pad electrodes 12 have a negative potential of almost the same value in common through them.
  • the copper ions (Cu 2+ ) in the copper plating solution 42 that have entered the opening 15 receive electrons from the negative potential pad electrode 12 exposed at the bottom surface of the opening 15, and (Cu 2+ + 2e ⁇ ⁇ Copper is deposited on the pad electrode 12 by the reaction Cu). Only the exposed portion of the bottom surface of the opening 15 of the pad electrode 12 or the deposited copper film is clearly at a negative potential, and the insulating film 19 and the side wall 21 are formed in other portions, so that the copper The film is difficult to deposit. Thus, the copper plating film can grow upward from the bottom surface of the opening 15.
  • FIG. 7 is a SEM cross-sectional photograph of the through electrode immediately after completion of copper plating actually formed using the above plating method.
  • a dotted line in the photograph indicates a boundary between the semiconductor substrate 10 and the insulating film layer 11. It can be seen that an opening is formed through the insulating film layer 11 on the pad electrode 12 and the semiconductor substrate 10, a Cu plug 16 is embedded therein, and a Cu post 17 protrudes from the upper portion.
  • the semiconductor circuit layer 25a is formed with a through electrode to become the semiconductor circuit layer 25b, and the manufacturing process relating to this circuit layer is completed.
  • a first master substrate A formed in a separate process from the semiconductor circuit layer 25 is prepared.
  • the master substrate A has a semiconductor substrate 22 such as a silicon single crystal, an insulating film layer 23 formed thereon, and a pad electrode 24.
  • An active element such as a MOS transistor, a passive element such as a capacitor, and a resistor are formed on the surface layer and the surface of the semiconductor substrate 22, and aluminum, a refractory metal, or copper is formed inside the insulating film layer 23.
  • a multilayer wiring structure made of a conductive film containing as a main component is formed.
  • the pad electrode 24 is made of a metal material whose main component is aluminum or copper, and is electrically connected to the active element and the passive element via the multilayer wiring, and further, the pad electrode 12 of the already manufactured semiconductor circuit layer 25b. Are formed at the same pitch and the same arrangement.
  • the oxide film layer that is thinly grown on the surface of the Cu post 17 of the through electrode and the surface of the pad electrode 24 of the first master substrate A in the semiconductor circuit layer 25b is removed. Thereafter, each pad electrode 24 formed on the front surface side of the first master substrate A and each Cu post corresponding to each pad electrode 24 formed on the back surface side of the semiconductor substrate 10 constituting the semiconductor circuit layer 25b. 17 and facing each other in a reduced-pressure atmosphere close to vacuum at a predetermined temperature (for example, about 400 ° C.) and bonded together. Then, as shown in FIG. 3B, the support substrate 14 that reinforces the semiconductor circuit layer 25b is separated and removed from the substrate combination of the substrate of FIG. 2C and the first master substrate A formed by pressure bonding.
  • a predetermined temperature for example, about 400 ° C.
  • the second master substrate B is used.
  • the support substrate 14 can be separated by immersing the substrate combination in a peeling solvent tank and dissolving the adhesive layer 13.
  • active elements and passive elements formed on the semiconductor circuit layer 25b and the first master substrate A are electrically connected through the through electrodes, and operate as one semiconductor integrated circuit.
  • FIG. 4 shows a third master substrate C formed by stacking three semiconductor circuit layers in the vertical direction.
  • the semiconductor circuit layer 27 installed in the uppermost layer has the same structure as the first master substrate A and the semiconductor circuit layer 25b. That is, a semiconductor substrate 30 such as a silicon single crystal, an insulating film layer 31 formed thereon, a pad electrode 32, a Cu plug 34 formed in an opening 33 reaching the pad electrode 32 from the back surface of the semiconductor substrate 30, and a Cu post A through electrode made of 35 is provided. Active elements such as MOS transistors, passive elements such as capacitors and resistors are formed on the surface layer and the surface of the semiconductor substrate 30, and a multilayer wiring structure is formed inside the insulating film layer 31. . The pad electrode 24 is electrically connected to the active element and the passive element via the multilayer wiring.
  • Such a third master substrate can be manufactured by the same method as the second master substrate B.
  • a semiconductor circuit layer 27 having a support substrate (not shown) attached to the surface side where the pad electrode 32 is exposed is formed by the steps shown in FIGS.
  • the support substrate may be separated.
  • the manufacturing process does not need to be changed.
  • a three-dimensionally mounted semiconductor device having a stacked structure of four or more semiconductor circuit layers can be easily achieved by repeating a simple process of sequentially stacking new semiconductor circuit layers on a master substrate that has already been manufactured. Can be manufactured.
  • the through hole 15 for the through electrode is obtained by polishing the back surface of the semiconductor substrate 10 to reduce the thickness as in the steps of FIGS. Then, a conductive material such as copper is embedded and grown in the opening 15 by an electrolytic plating method of bottom-up growth. For this reason, even if the diameter of the aperture 15 is as small as several ⁇ m corresponding to the narrowing and high density of the pad electrode 12, the aspect ratio of the aperture 15 is already small at the time of the plating process. Therefore, the conductive material can be embedded without forming a void, and a low resistance and highly reliable through electrode can be formed with a high manufacturing yield.
  • the present invention it is only necessary to reverse the semiconductor substrate 10 one time before the through electrode forming process is completed for the purpose of fixing the support substrate 14, and the number of times the semiconductor substrate 10 is reversed can be reduced. .
  • the burden on the semiconductor manufacturing equipment and the manufacturing cost can be suppressed. This is because (1) the support substrate 14 and the adhesive layer 13 to which the support substrate 14 is bonded are made conductive, and these are electrically contacted with the respective pad electrodes 12, and the support substrate 14 is made part of the potential setting means in the electrolytic plating process.
  • the support substrate 14 is provided on the front surface side of the semiconductor substrate 10 on which the pad electrode 12 is formed, and the through electrode processing step is performed consistently from the back surface side. According to configurations (1) and (2), it is not necessary to form a metal layer for applying a potential for growing a plating film from the bottom surface of the recess as in the prior art 2 on the back surface of the semiconductor substrate. Then, after the semiconductor substrate is turned upside down for forming the metal layer, it is not necessary to turn the semiconductor substrate upside down again in order to process the through electrode from the surface. In addition, the semiconductor substrate is not turned upside down in order to remove unnecessary portions of the metal layer after the plating process is completed.
  • Table 1 compares the performances of the prior art 1, the prior art 2 and the manufacturing method according to the present invention described above.
  • the substrate thickness after polishing is set to 50 ⁇ m, and when not, 500 ⁇ m is set.
  • the opening diameters are 50 ⁇ m and 5 ⁇ m.
  • the manufacturing method according to the present invention has superior characteristics as compared with the conventional through electrode forming technique.
  • the bottom-up growth plating method itself employed by the manufacturing method according to the present invention has several advantages. For example, since the plating film is selectively grown basically from the bottom surface of the opening for the through electrode, it is sufficient if the source ions of the conductive material to be the plating film are supplied to a limited small area. Since the speed is high and the Cu post is automatically formed as shown in FIG. 7, it is not necessary to newly perform this forming step, and the manufacturing cost can be reduced. This automatically formed Cu post is removed by CMP or the like, if necessary, and then a resist pattern having an opening is formed on the Cu plug of the through electrode and newly selected using a plating method. Alternatively, Cu posts or Cu bumps may be formed.
  • FIG. 8 is a process cross-sectional view illustrating the method for manufacturing a semiconductor device according to the second embodiment of the present invention.
  • the cross-sectional view of FIG. 8 is similar to FIG. 1 to FIG. 3 or FIG. 4 relating to the first embodiment, and only the center and both end regions of the substrate subjected to the manufacturing process are divided and displayed. The entire cross section is represented.
  • the process shown in FIGS. 1 (a) to 1 (c) and FIGS. 2 (a) to 2 (c) described for the first embodiment is used to increase the conductivity.
  • a semiconductor circuit layer 25b (FIG. 2 (c)) is formed by attaching the conductive support substrate 14 to the adhesive layer 13 having the conductive layer. Since the manufacturing method up to FIG. 2C is the same as that described in the first embodiment, the same parts in FIG.
  • FIG. 8 shows three of the divided pieces 28a, 28b, and 28c, and the left and right pieces 28a and 28c display a part thereof.
  • the first master substrate A described in the first embodiment is manufactured and prepared in a separate process. Since this first master substrate A is also the same as that shown in FIG. 3A, the same parts are indicated by the same reference numerals.
  • each Cu post 17 of the through electrode of the pieces 28a, 28b, 28c is formed on the surface side of the first master substrate A, and each pad electrode corresponding to each of the through electrodes of the pieces 28a, 28b, 28c. 24, facing each other in a reduced pressure atmosphere close to vacuum, and bonded together by bonding at a predetermined temperature (for example, about 400 ° C.).
  • a predetermined temperature for example, about 400 ° C.
  • the support substrate 14 is separated and removed from the substrate combination of the individual pieces 28a, 28b, 28c and the first master substrate A formed by pressure bonding using a peeling solvent or the like. Let it be substrate D.
  • three or more semiconductor circuit layers are stacked in the vertical direction by repeatedly performing additional stacking of individual semiconductor circuit layers on the master substrate D sequentially by the steps of FIGS. 8A and 8B.
  • a dimensionally mounted semiconductor device can be manufactured.
  • the manufacturing method according to the second embodiment is a three-dimensional mounting method in which a plurality of pieces such as die units are bonded to the first master substrate A of the semiconductor substrate scale and stacked vertically. Called Wafer to Die.
  • the three-dimensional mounting method according to the first embodiment is called Wafer to Wafer. According to the manufacturing method of the semiconductor device according to the second embodiment, the same effect as that of the first embodiment can be obtained.
  • each piece includes a die having the same circuit configuration cut out from the same semiconductor circuit layer 25b.
  • a plurality of dies having different sizes, or a plurality of dies having different functions such as a semiconductor memory, a solid-state imaging device, a logic circuit, etc.
  • the first master substrate A is described as a substrate mainly composed of the semiconductor substrate 22, but the present invention is not limited to this.
  • a plurality of plate-like pad electrodes connected to these wirings are formed in the interior, front surface, and back surface, and a wiring substrate made of ceramic or resin can be used as a master substrate.
  • the present invention is useful for forming a through electrode having a minute arrangement pitch and a minute dimension that penetrates in the thickness direction of a semiconductor substrate, which is necessary for making a semiconductor integrated circuit device or the like into a three-dimensional mounting form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 半導体装置を3次元実装するため、狭ピッチ、微小径、高アスペクト比の開孔に空隙を形成することなく導電性材料を埋め込み、低コストで貫通電極を形成する。 半導体基板上の絶縁膜層、パッド電極が形成された面に導電性の接着剤層を用いて導電性のサポート基板を貼り合わせする。この状態で半導体基板の裏面を研磨して薄化した後、開孔を形成する。さらにサポート基板、接着剤層を通じて複数のパッド電極に同時に同電位を与え、ボトムアップ成長のメッキ法で開孔に銅を埋め込み、Cuプラグ、Cuポストからなる貫通電極を形成する。このようにすると開孔のアスペクト比が極端に高くならないので銅が良好に埋め込まれ、また半導体基板の表裏反転を伴う工程処理回数が低減できる。

Description

半導体装置の製造方法
 本発明は、3次元実装等がされる半導体集積回路において、半導体基板の厚み方向に表面から裏面まで貫通する貫通電極を形成する工程を含む半導体装置の製造方法に関するものである。
 半導体集積回路装置の高集積化、高機能化および高速化は回路を構成する半導体素子パターンを微細化することによって達成されてきた。一方、電子機器の小型軽量化、高性能化を実現するためには多数の高密度半導体集積回路装置をコンパクトに実装できることが要求される。近年、複数の半導体集積回路チップを垂直方向に積層しその占有面積を低減させることができる3次元実装を可能とするために、半導体基板にそれ自体を貫通する貫通電極を形成することによって半導体チップ間を直接電気的接続する技術が提案されている。これは従来のワイヤ・ボンディングを用いて半導体チップ間を配線する手法に代わる技術である。この技術によれば、貫通電極により極めて短い距離で半導体チップ間を垂直方向に接続することができる。従ってこの技術には信号波形の崩れや遅延の問題がなくなり、信号処理スピードが高速化すると同時に消費電力の低減が実現できるというメリットがある。
 以上のような貫通電極を有する半導体装置の製造方法は、例えば特許文献1に記載されている。図9は当該特許文献1が開示する貫通電極の第1の製造方法(以下先行技術1という)を示す概略断面図である。先行技術1の製造方法によると、まず表面側に凹部101を形成した半導体基板100に絶縁層102を形成する(図9(a))。次に凹部101上に金属薄膜103を堆積させ(図9(b))、この金属薄膜103をシード層として、一般的にコンフォーマル成長と呼ばれるメッキ方法で、すなわち図9(c)に示されるように凹部101を含む表面形状に沿って一様に膜成長させる方法で配線材料104を形成するとともに凹部101内を充填する(図9(d))。そして平面上に成長した配線材料104の不要箇所を除去した後、最後にCMP等によって裏面側から半導体基板100を研磨して貫通電極を露出させる(図9(e))。
 また図10は特許文献1が開示する貫通電極の第2の製造方法(以下先行技術2という)を示す概略断面図である。先行技術2ではまず、図10(a)に示すように半導体基板1の表面側に第1絶縁膜2aを、裏面側に第2絶縁膜2bを形成する。次に、第2絶縁膜2bの裏面側全面に、金属層を第1エッチングストップ層3として形成する(図10(b))。そして表面側から第1絶縁膜2aに開口を形成した後、さらに半導体基板1および第2絶縁膜2bを第1エッチングストップ層3までエッチングして凹部4を形成する(図10(c))。
 次に凹部4の内壁に第3絶縁膜5を形成し(図10(d))、次いで第1エッチングストップ層3である金属層の表面をメッキ用のシード層として、ボトムアップ成長と呼ばれるメッキ方法で、すなわち半導体基板1の底部側から厚み方向にメッキを成長させる方法で銅等の配線材料6を凹部4に充填する(図10(e))。そして最後に、表裏面の不要な部分(第1エッチングストップ層3や配線材料6の不要部分)を除去することで貫通電極7を形成する。この貫通電極7は前記不要部分を除去したことによって表面7aの部分と裏面7bの部分とを有する(図10(f))。
特開2006-222138号公報
 半導体集積回路チップを積層する3次元実装技術においては、より大容量、あるいは高機能で高速信号処理可能なシステム・イン・パッケージ(SiP)などを実現するために今後ますます上下層の集積回路チップ同士を接続する接続ピン数が増大する傾向にある。このため、最近では集積回路チップ間を接続する貫通電極のピッチが十ミクロンオーダー、貫通電極径が数μm程度という値が要求されるようになってきている。このような背景の下、貫通電極を形成する上記の先行技術1および先行技術2などには次のような課題が存在した。
 まず先行技術1の製造方法においては、図9(c)、(d)に示すようにコンフォーマル成長によるメッキ方法で配線材料104の膜を形成し凹部101内を充填して貫通電極とする。ここで貫通電極径の減少に伴い凹部101の開口径が数μm程度となると、メッキ工程を行う時点での凹部104の深さが数十μm~100μm程度である場合、凹部101のアスペクト比(深さの開口径に対する比)が10以上となる。先行技術1が用いるコンフォーマル成長によるメッキ法では凹部101の内側表面に沿って原則的には均一な膜形成がなされるが、それでも凹部101の上部コーナーには他の部分より膜が速く厚く成長する傾向がある。凹部101が上記のような高アスペクト比になると、配線材料104がより速く成長することによってメッキの途中で上部コーナーを含む開口部が先に塞がり、内部に空隙が残留することになる。こうした状況は、特に凹部101の開口部側が底部側よりも狭まるような逆テーパー形状になっている場合に著しく、貫通電極としての低抵抗および信頼性が損なわれるという問題がある。
 このような事態を回避するためには、先行技術2の製造方法のようにボトムアップ成長のメッキ法で配線材料104を形成することが考えられる。しかし、先行技術1が採用する工程では半導体基板100と貫通電極とを絶縁すると考えられる絶縁層102を先に形成しておかねばならないので、配線材料104のメッキ形成に必要なシード層となる金属薄膜103を絶縁層102上に堆積する場合は全面堆積とならざるを得ない。このことは先行技術1における配線材料104の形成は、金属薄膜103上全面に渡るコンフォーマル成長でしか容易にできないことを意味する。なお、先行技術2の製造方法に従って、先行技術1においても凹部101の底面のみにメッキのシード層として金属薄膜103を残せばボトムアップ成長のメッキが可能と考えられるが、底面にのみ局所的に金属薄膜103を残すことは技術的に難しく、製造工程を複雑なものとするので製造コスト面で大きい課題がある。
 次に先行技術2では図10(e)に示したように凹部4に配線材料6を埋め込むためにボトムアップ成長のメッキ法を用いる。このボトムアップ成長によるメッキ法はその膜成長機構から考えてコンフォーマル成長によるメッキ法よりも配線材料の埋め込み特性に優れている。しかし先行技術2の製造方法によれば、厚さ数百μmの半導体基板1を、研磨して薄くせずにそのまま用いるので、凹部4の開口径を数μmに微細化した場合はそのアスペクト比が100程度になってしまい、上記ボトムアップ成長法を用いたとしても空隙を形成させずに貫通電極を高歩留りで得ることは非常に困難である。
 さらに先行技術2の製造方法においては、第1絶縁膜2a、第2絶縁膜2bを形成した後、基板裏面に第1エッチングストップ層3となる金属層を形成する工程(図10(a)→(b))、基板裏面に第1エッチングストップ層3を形成した後、基板表面から凹部4をエッチング形成する工程(図10(b)→(c))、基板表面から配線材料6を凹部4に充填した後、基板裏面の第1エッチングストップ層3を加工して貫通電極7の裏面7bを形成する工程(図10(e)→(f))で、基板を合計3回表裏反転させなければならない。
 こうした多数回におよぶ半導体基板の表裏反転操作は量産工程ラインにおける基板の取り扱いや半導体製造設備の設定を複雑化させる。また先行技術2では厚い半導体基板を終始一貫して用いるので半導体基板の厚さに関する課題は顕在化しない。しかし先行技術1の例にみられるように一連の製造工程中に半導体基板を研磨して数十μmあるいはそれ以下に薄くする工程が含まれる場合、研磨後の基板に大きい可撓性が生じるとともに強度が極めて低くなる。このような基板に表裏反転操作を施すに際しては基板が損傷することがないように新たな煩雑な工程を追加する必要があり、このために製造コストが上昇するのでできる限り基板の表裏反転操作回数を少なくすることが望ましい。
 3次元実装技術においては以上のような課題のうち少なくとも一つを解決する必要がある。
 本発明は前記課題に鑑み、貫通電極を狭ピッチ配列・微細寸法としても、貫通電極用として半導体基板に形成される貫通孔に電極材料を空隙を生じることなく埋め込むことができ、また半導体基板の表裏反転操作回数を低減させて貫通電極を形成することができる半導体装置の製造方法を提供することを目的とする。なお、本発明においては上記目的のうち少なくとも一つを達成できればよいものとする。
 上記課題を解決するために、本発明に係る半導体装置の製造方法は、半導体基板上に形成された絶縁膜層に、その表面が露出するようにパッド電極を形成する工程と、前記パッド電極に接触させて前記絶縁膜層上に導電性の接着剤層を形成する工程と、前記絶縁膜層と前記パッド電極が形成された側の面である第1面に、前記接着剤層を介して導電性の支持板を接合する工程と、前記第1面とは反対側の第2面から前記半導体基板を研磨して所定の厚さに薄化する工程と、前記第2面側から前記薄化した半導体基板および前記絶縁膜層を順次選択的にエッチングし、前記パッド電極に達する開孔を形成する工程と、前記支持板および前記接着剤層を介して前記パッド電極に所定の電位を与え、メッキ法により前記開孔内に導電性材料を成長させて埋め込むことによって、少なくとも前記開孔の上端から前記パッド電極に達する貫通電極を形成する工程とを含む構成としたものである。
 上記製造方法では、前記開孔内に前記導電性材料を埋め込む前に、さらに前記半導体基板の前記第2面側の表面上、および前記開孔の側壁に絶縁膜を形成する。また、前記貫通電極を形成する工程は、前記導電性材料が前記開孔の外部へ突出して突起部を形成するように行うことが望ましい。
 また前記導電性材料は銅とすることができ、前記パッド電極は銅またはアルミニウムを主成分とする金属からなり、前記パッド電極と前記絶縁膜層との間にタンタル系もしくはチタン系のバリアメタルを設けたものとすることができる。
 また本発明に係る製造方法の一形態として、前記半導体基板を、その中に、前記半導体基板の表面に平行な埋め込み絶縁層が形成されたSOI基板とし、前記半導体基板を薄化する工程を、前記半導体基板の半導体材料部を研磨した後、さらに前記半導体材料部を選択的にウエットエッチングして、前記埋め込み絶縁層を露出させる工程を含むものとすることができる。
 上記課題を解決するための、本発明に係る他の半導体装置の製造方法は、第1の半導体基板上に第1のパッド電極が形成されたマスター基板を準備する工程と、第2の半導体基板上に形成された絶縁膜層に、その表面が露出するように第2のパッド電極を形成する工程と、前記第2のパッド電極に接触させて前記絶縁膜層上に導電性の接着剤層を形成する工程と、前記絶縁膜層と前記第2のパッド電極が形成された側の面である第1面に、前記接着剤層を介して導電性の支持板を接合する工程と、前記第1面とは反対側の第2面から前記第2の半導体基板を研磨して所定の厚さに薄化する工程と、前記第2面側から前記薄化した第2の半導体基板および前記絶縁膜層を順次選択的にエッチングし、前記第2のパッド電極に達する開孔を形成する工程と、前記支持板および前記接着剤層を介して前記第2のパッド電極に所定の電位を与え、メッキ法により前記開孔内に導電性材料を成長させて埋め込むことによって、少なくとも前記開孔の上端から前記第2のパッド電極に達する貫通電極を形成する工程と、前記貫通電極と前記マスター基板の前記第1のパッド電極とを対向させて結合する工程とを含むものである。
 この製造方法には、前記貫通電極と前記マスター基板の前記第1のパッド電極とを結合する工程の後、前記支持板を前記第1面から分離する工程をさらに含ませることができる。
 また前記貫通電極を、前記導電性材料が前記開孔の外部へ突出した突起部を有するものとし、前記貫通電極と前記マスター基板の前記第1のパッド電極とを前記突起部で結合させることが望ましい。
 上記課題を解決するための、本発明に係るさらに他の半導体装置の製造方法は、第1の基板上に第1のパッド電極が形成されたマスター基板を準備する工程と、半導体基板上に形成された絶縁膜層に、その表面が露出するように第2のパッド電極を形成する工程と、前記第2のパッド電極に接触させて前記絶縁膜層上に導電性の接着剤層を形成する工程と、前記絶縁膜層と前記第2のパッド電極が形成された側の面である第1面に、前記接着剤層を介して導電性の支持板を接合する工程と、前記第1面とは反対側の第2面から前記半導体基板を研磨して所定の厚さに薄化する工程と、前記第2面側から前記薄化した半導体基板および前記絶縁膜層を順次選択的にエッチングし、前記第2のパッド電極に達する開孔を形成する工程と、前記支持板および前記接着剤層を介して前記第2のパッド電極に所定の電位を与え、メッキ法により前記開孔内に導電性材料を成長させて埋め込むことによって、少なくとも前記開孔の上端から前記第2のパッド電極に達する貫通電極を形成する工程と、前記半導体基板、前記絶縁膜層、前記第2のパッド電極、前記貫通電極、前記支持板および前記接着剤層を備えた状態の第2の基板を複数の個片に分割する工程と、前記個片が有する前記貫通電極と前記マスター基板の前記第1のパッド電極とを対向させて結合する工程とを含むものである。
 この製造方法においては、前記個片が有する前記貫通電極と前記マスター基板の前記第1のパッド電極とを結合する工程の後、前記個片における前記支持板を前記第1面から分離する工程をさらに含ませることができる。また前記貫通電極を、前記導電性材料が前記開孔の外部へ突出した突起部を有するものとし、前記個片が有する前記貫通電極と前記マスター基板の前記第1のパッド電極とを前記突起部で結合させることが望ましい。
 本発明に係る半導体装置の製造方法では、前記のように絶縁膜層とパッド電極とが形成された側の第1面とは反対側の第2面から半導体基板を研磨して所定の厚さに薄化し、さらに第2面側から、薄化した半導体基板および絶縁膜層をエッチングしてパッド電極に達する開孔を形成するようにした。これによりこの開孔のアスペクト比を所望の小さい値とすることができる。従って開孔の配列ピッチおよび開孔の直径を数μmオーダーまで微細なものとしても、空隙を形成せずに開孔内部に導電性材料を埋め込んで低抵抗で信頼性の高い貫通電極を歩留まりよく製造することができる。
 また開孔内に導電性材料を埋め込む前に、半導体基板の第2面側の表面上、および開孔の側壁に絶縁膜を形成しておくことによって、開孔の底面のみに導電性のパッド電極表面が露出した状態となるのでメッキ法により開孔の底面から上方へ向かって導電性材料を成長させることができる。この構成によれば一層開孔内部に空隙を形成させないようにすることができる。
 さらに本発明の製造方法では、貫通電極の加工を開始するに先立って第2面とは反対側の第1面側に接着剤層を介して支持板を設け、しかも接着剤層と支持板を導電性とし、支持板および接着剤層を介してパッド電極にメッキ膜成長を目的とした所定の電位を与えるようにした。このことにより、従来のように電位を与える金属層を予め開孔の底面に形成するために半導体基板を表裏反転させ、その後さらに貫通電極の加工を行うために再び半導体基板を表裏反転させるという操作が必要なくなる。またメッキ膜成長終了後前記の金属層の不要部分を除去するためにさらに半導体基板を表裏反転させる必要もなくなる。こうして半導体基板の表裏反転回数を低減させ、製造コストの上昇を抑制することができる。
 以上のように本発明は種々の効果を有するが、少なくともそのうちの一つの効果を奏することができるものであればよい。
図1は本発明の第1の実施形態に係る半導体装置の製造方法を示す工程断面図である。 図2は本発明の第1の実施形態に係る半導体装置の製造方法を示す工程断面図である。 図3は本発明の第1の実施形態に係る半導体装置の製造方法を示す工程断面図である。 図4は本発明の第1の実施形態に係る半導体装置の製造方法で製造された半導体装置の断面図である。 図5は本発明の第1の実施形態に係る半導体装置の製造工程のうち、開孔工程の詳細を示す断面図である。 図6は本発明の第1の実施形態に係る半導体装置の製造工程のうち、銅メッキ工程を説明する断面図である。 図7は本発明の第1の実施形態に係る半導体装置の製造方法で形成した貫通電極のSEM断面写真である。 図8は本発明の第2の実施形態に係る半導体装置の製造方法を示す工程断面図である。 図9は従来の貫通電極の製造方法を示す工程断面図である。 図10は従来の貫通電極の製造方法を示す工程断面図である。
 以下、本発明の実施形態に係る半導体装置の製造方法について、図面を参照しながら説明する。
 (第1の実施形態)
 図1~図3は本発明の第1の実施形態に係る半導体装置の製造方法を説明するための工程断面図である。これらの図では半導体基板の中央部および両端部の領域のみを分割して表示し、これによって半導体基板全体にわたる断面を代表させている。
 まず図1(a)を参照すると、シリコン単結晶などの半導体基板10の表面上に絶縁膜層11が形成されている。また、半導体基板10の表面層および表面上には図示していないが周知のSi半導体プロセスを用いてMOS型トランジスタなどの能動素子、キャパシタ、抵抗などの受動素子が形成されており、それらを絶縁膜層11が被覆している。また、絶縁膜層11の内部には周知のSi半導体プロセスで製造可能なアルミニウム、高融点金属、または銅を主成分とする導電膜からなる多層配線構造が形成されている。図では絶縁膜層11を単層として表示しているが上に述べたことから実際には同種もしくは異種の絶縁膜の積層膜である。
 絶縁膜層11の最上部にはアルミニウムもしくは銅を主成分とし、半導体基板10の表面にほぼ平行な面を有する板状のパッド電極12が形成されている。パッド電極12は外部へ信号を取り出すための電極であり、一辺の寸法が10μm~100μmである。このパッド電極12は周知の導電膜のドライエッチングによるパターニングまたはダマシン法で形成することができるが、本実施形態ではダマシン法で形成され銅膜からなるものとする。さらにパッド電極12は前記多層配線を介して前記能動素子や受動素子と間接的に電気接続されてそれらを機能させる。以下の説明においてはパッド電極12が絶縁膜層11から露出して形成された面側を表面側とし、これと対向する反対側の半導体基板10の面を裏面側とする。
 次に、図1(b)に示すようにパッド電極12を含む絶縁膜層11上全面を覆うように液状の導電性接着材をスピンコート法によって塗布し、乾燥および加熱硬化させて接着剤層13を形成する。そして図1(c)のようにこの状態の半導体基板10全体を表裏反転させて表面側を下向きにした後、半導体基板10と同サイズの導電性を有するサポート基板14に全体を接着する。接着工程は接着剤層13とサポート基板14の間にエアーなどを取り込まないように真空に近い減圧雰囲気中で行うことが望ましい。ここで上記の導電性接着材は熱硬化性樹脂に金属微粒子を混入したもので、一般的にはエポキシ樹脂等にAg、Sn等の金属微粒子を混合した材料が使用され、120℃~240℃の低温で硬化させることができる。また、サポート基板14は後の研磨工程により薄化された半導体基板10を安全に保持することを目的とし、変形、撓み等が発生しない所定の厚さを有する硬質の支持板である。
 次に図2(a)に示すように、半導体基板10の裏面(図の上側の面)をSiバックグラインド装置およびCMP(Chemical Mechanical Polishing)装置を用いて所望の厚さ、例えば50μmになるまで研磨し薄化する。研磨後の半導体基板10の厚さ均一性が要求される場合には、半導体基板10として当該半導体基板本体の中間にシリコン酸化膜からなる埋め込み絶縁層が形成されたSOI(Silicon on Insulator)基板等を採用する。そしてまず所定の厚さまで裏面のシリコン半導体材料部を研磨し、続いて残りのシリコン半導体材料部にウエットエッチングを施して、基板表面と平行に全面に渡って設けられている上記の埋め込み絶縁層が露出した時点でエッチストップさせればよい。埋め込み絶縁層およびこの層で分離されているシリコン単結晶層の厚さは均一であるから膜厚制御のよい研磨ができる。
 次に図2(b)に示すように、研磨した半導体基板10の裏面より半導体基板10および絶縁膜層11を貫通し、パッド電極12それぞれの表面に達する複数の開孔15を異方性ドライエッチングを用いて形成する。図2ではパッド電極12周辺の詳細構造を省略しているので、図2(a)から(b)にかけての製造工程を図5によりさらに詳細に説明する。図5はパッド電極12および開孔15が形成される部分を拡大して示す断面図である。図5(a)において、パッド電極12はダマシン法で絶縁膜層11に埋め込み形成された銅膜からなる電極であるため、その底面(図では上面)と側壁には窒化タンタル(TaN)膜とタンタル(Ta)膜の積層膜からなるタンタル系の薄いバリアメタル18が設けられた構造となっている。このバリアメタル18はチタン(Ti)膜と窒化チタン(TiN)膜との積層膜からなるチタン系の材料であっても良い。
 半導体基板10の裏面研磨(図2(a))の後、図5(a)のように半導体基板10の裏面側(図では上面)に絶縁膜19(例えばシリコン酸化膜、シリコン窒化膜、それらの積層膜等)を堆積する。次に図5(b)のように異方性ドライエッチング法で絶縁膜19、半導体基板10、絶縁膜層11、バリアメタル18を順次選択的にエッチング除去し、開孔15を形成することによってパッド電極12の面を露出させる。この工程は図2(b)に対応するものである。この後、図5(c)に示す様に絶縁膜20(例えばシリコン酸化膜、シリコン窒化膜、それらの積層膜等)を堆積する。それから図5(d)に示すように全面に渡って絶縁膜20に異方性エッチングを施し、開孔15の内壁面にサイドウオール21を残存させると共に開孔15底にパッド電極12の銅からなる部分を再露出させる。以上に説明した絶縁膜19、20は図2(c)、図3(a)~(b)に示す各工程を経て完成品となっても残留する。
 次に図2(c)に示すように、ボトムアップ成長の電解メッキにより開孔15のそれぞれの内部に選択的に導電性材料、特に金属材料として銅(Cu)を埋め込み成長させ、Cuプラグ16およびCuポスト17からなる貫通電極を形成する。このとき、貫通電極は絶縁膜19およびサイドウオール21(図5(d))が形成されているために半導体基板10と電気的に絶縁されることになる。図6は前記の貫通電極を形成するための電解銅メッキ方法を示す概略図である。図6において図2(b)に示す基板は、サポート基板14、接着剤層13および半導体回路層25aからなるものとして記載している。ここで半導体回路層25aは図2(b)においてサポート基板14、接着剤層13以外の、半導体基板10、絶縁膜層11などを含むすべての部分を指す。
 電解メッキ工程では、メッキ装置のカソード電極40に図2(b)(または図5(d))に示す構造を有する基板のサポート基板14側全体を密着させ、両者を電気的に接続する。これによりサポート基板14、接着剤層13、半導体回路層25aからなる基板はアノード電極41と対向するように設置され、カソード電極40およびアノード電極41間に電源43からDC電圧が印加される。また少なくともアノード41と半導体回路層25a間には銅メッキ液42が満たされており、接着剤層13、サポート基板14およびカソード電極40に銅メッキ液42が回り込まないようにシール44が設けられている。半導体回路層25の銅メッキ液42との接液面26は図2(b)との比較から明らかなように半導体基板10の裏面側で且つ開孔15の露出面である。
 半導体基板10に設けられた開孔15内部への銅の選択的成長は次のようにしてボトムアップ成長によるメッキ過程で行うことができると考えられる。開孔15周辺は図5に示す製造方法を採用したため、半導体基板10の裏面側表面が絶縁膜19で被覆され、また開孔15の内部側壁が絶縁膜20からなるサイドウオール21で被覆され、開孔15の底面のみにパッド電極12による導電性部分が露出した構造となっている(図5(c)を参照)。こうした構造に加工された後の基板(図2(b)の基板)を図6に示すようにメッキ装置に設置し、アノード電極41に正電位を与えると同時にカソード電極40に負電位を与えると、サポート基板14および接着剤層13が導電性を有するのでそれらを通じて各パッド電極12が共通にほぼ同一値の負電位となる。
 この状態で開孔15内に侵入した銅メッキ液42中の銅イオン(Cu2+)は開孔15の底面に露出する負電位のパッド電極12から電子を受け取り、(Cu2++2e-→Cu)という反応によってパッド電極12上に銅を析出する。明確に負電位となっているのはパッド電極12の開孔15底面の露出部分、または析出した銅膜のみであり、他の部位には絶縁膜19、サイドウオール21が形成されているので銅膜は析出し難い。こうして銅メッキ膜は開孔15の底面から上方へ向かって成長することができる。そして開孔15の外部に銅膜が到達すると、絶縁膜19の表面からなる開孔15の上端から突出し、一部は横方向にも拡大した形状となる。この突起部分がCuポスト17(図2(c))となる。図7は実際に上記のメッキ法を用いて形成した銅メッキ完了直後における貫通電極のSEM断面写真である。写真中の点線は半導体基板10と絶縁膜層11との境界を示す。パッド電極12上の絶縁膜層11、半導体基板10を通して開孔が形成され、内部にCuプラグ16が埋め込まれ、上部にはCuポスト17が突出して形成されていることがわかる。
 図2(c)の工程で半導体回路層25aは貫通電極が形成されて半導体回路層25bとなりこの回路層に関する製造工程は完了する。次に図3(a)に示すように半導体回路層25とは別工程で形成された第1マスター基板Aを準備する。このマスター基板Aは図1(a)と同様にシリコン単結晶などの半導体基板22、その上に形成された絶縁膜層23、パッド電極24を有するものである。そして半導体基板22の表面層および表面上にはMOS型トランジスタなどの能動素子、キャパシタ、抵抗などの受動素子が形成されており、また絶縁膜層23の内部にはアルミニウム、高融点金属、または銅を主成分とする導電膜からなる多層配線構造が形成されている。パッド電極24はアルミニウムもしくは銅を主成分とする金属材料で構成され、前記多層配線を介して能動素子、受動素子に電気的に接続されており、さらにすでに製造した半導体回路層25bのパッド電極12と同一ピッチ、同一配置で複数形成されている。
 次に半導体回路層25bにおける貫通電極のCuポスト17表面および第1マスター基板Aのパッド電極24の表面に大気雰囲気に起因して薄く成長している酸化膜層を除去する。その後第1マスター基板Aの表面側に形成された各パッド電極24と半導体回路層25bを構成する半導体基板10の裏面側に形成された、前記各パッド電極24に対応する貫通電極それぞれのCuポスト17とを対向させ、真空に近い減圧雰囲気中、所定の温度(例えば約400℃)で互いに圧着し結合する。それから図3(b)に示すように、圧着により形成された図2(c)の基板と第1マスター基板Aとの基板結合体から半導体回路層25bを補強していたサポート基板14を分離除去し、第2マスター基板Bとする。サポート基板14の分離は、上記基板結合体を剥離溶剤槽に浸漬し接着剤層13を溶解することによって可能である。第2マスター基板Bでは半導体回路層25bと第1マスター基板Aのそれぞれに形成された能動素子、受動素子が貫通電極を通じて電気的に接続され、1個の半導体集積回路として動作するようになる。
 図4は半導体回路層を3層垂直方向に積層して形成した第3マスター基板Cである。最上層に設置された半導体回路層27は第1マスター基板Aや半導体回路層25bと同様の構造を有するものである。すなわち、シリコン単結晶などの半導体基板30、その上に形成された絶縁膜層31、パッド電極32、半導体基板30の裏面からパッド電極32に達する開孔33に形成されたCuプラグ34とCuポスト35からなる貫通電極を備えている。そして半導体基板30の表面層および表面上にはMOS型トランジスタなどの能動素子、キャパシタ、抵抗などの受動素子が形成されており、また絶縁膜層31の内部には多層配線構造が形成されている。パッド電極24は前記多層配線を介して能動素子、受動素子に電気的に接続されている。
 このような第3マスター基板は第2マスター基板Bと同じ方法で製造できる。パッド電極32が露出する表面側にサポート基板(図示なし)が貼り付けられた半導体回路層27を図1~図2に示した工程によって形成する。次に図3(b)に示す第2マスター基板B上の各パッド電極12と、対向する半導体回路層27の各Cuポスト35とを圧着した後、サポート基板を分離すればよい。製造工程は変更する必要がない。以上ようにすでに作製したマスター基板上に新たな半導体回路層を順次追加積層するという単純な工程を複数回繰り返せば4層以上の半導体回路層の積層構造を有する3次元実装化半導体装置も容易に製造することができる。
 以上に説明した本発明に係る半導体装置の製造方法においては、図2(a)、(b)の工程のように半導体基板10を裏面研磨し厚さを低減させて貫通電極用の開孔15を形成し、ボトムアップ成長の電解メッキ法で開孔15に銅のような導電材料を埋め込み成長させるようにした。このため、パッド電極12の狭ピッチ化・高密度化に対応して開孔15の直径を数μmと微細なものとしても、メッキ工程の時点ではすでに開孔15のアスペクト比は小さくなっているので導電材料を空隙を形成することなく埋め込むことができ、高い製造歩留りで低抵抗高信頼性の貫通電極が形成できる。
 また、本発明によればサポート基板14の固定を目的として貫通電極の形成工程終了までに半導体基板10を1回表裏反転させるだけでよくなり、半導体基板10の表裏反転回数を低減させることができる。このように表裏反転回数を低減できるので半導体製造設備に対する負担や製造コストを抑制することができる。これは(1)サポート基板14およびそれを接着する接着剤層13を導電性とし、これらを各パッド電極12に電気的に接触させ、電解メッキ工程においてサポート基板14を電位設定手段の一部としたこと、(2)サポート基板14を半導体基板10のパッド電極12が形成された表面側に設けて裏面側から貫通電極加工工程を一貫して行うようにしたことによる。構成(1)、(2)によると、先行技術2などのように凹部の底面からメッキ膜を成長させるための電位を与える金属層を半導体基板の裏面に形成する必要がなくなる。そして金属層の形成のために半導体基板を表裏反転させた後さらに表面から貫通電極の加工を行うために再び半導体基板を表裏反転させる必要がなくなる。またメッキ工程終了後前記金属層の不要部分を除去するために半導体基板を表裏反転することもなくなる。
 表1は上に述べた先行技術1、先行技術2および本発明に係る製造方法に関する性能を比較したものである。相互比較の目的で半導体基板の裏面研磨がある場合は、研磨後の基板厚さを50μm、ない場合は500μmとしている。また貫通電極用開孔へのメッキ膜埋め込み特性の比較については開孔径を50μmおよび5μmとしている。
Figure JPOXMLDOC01-appb-T000001
 表1が示すように本発明による製造方法は従来の貫通電極形成技術と比較して優れた特性を有することが分かる。この他本発明による製造方法が採用するボトムアップ成長のメッキ法自体もいくつかの利点を有する。例えば基本的に貫通電極用の開孔の底面からメッキ膜を選択的に成長させるので、メッキ膜となる導電材料の原料イオンが限られた小面積に供給されれば十分であり、膜の成長速度が大きい、また、図7に示したようにCuポストが自動的に形成されるのでこの形成工程を新たに行う必要がない、等製造コスト抑制ができる。なお、この自動的に形成されるCuポストについては必要であればCMPによる研磨等で取り除いた後に、貫通電極のCuプラグ上に開口を有するレジストパターンを形成し、メッキ法を用いて新たに選択的にCuポストまたはCuバンプを形成してもよい。
 (第2の実施形態)
 図8は本発明の第2の実施形態に係る半導体装置の製造方法を示す工程断面図である。図8の断面図は第1の実施形態に関する図1~図3あるいは図4と同様に、製造工程が施される基板の中央部および両端部の領域のみを分割して表示することによって当該基板全体にわたる断面を代表させている。第2の実施の形態による製造方法では、まず第1の実施の形態について説明した図1(a)~(c)、図2(a)~(c)に示す工程を用いて、導電性を有する接着剤層13により導電性を有するサポート基板14を貼り付けた半導体回路層25b(図2(c))を形成する。図2(c)までの製造方法は第1の実施形態で説明したものと同じであるので、図8における同一部位には同一符号を付与して説明は省略する。
 図2(c)に示す構造の基板を形成した後、その基板をサポート基板14を装着した状態で例えば半導体回路層25b上に複数繰り返し形成されているダイ(チップ)毎に、あるいは単位回路毎にダイシングして個片に分割する。これにより半導体回路層25bだけでなく、サポート基板14、接着剤層13も同時に切断されることになる。図8には分割された前記個片のうちの3個28a、28b、28cを示し、左右の個片28aおよび28cはその一部分を表示している。一方図8(a)に示すように、第1の実施形態において説明した第1マスター基板A(図3(a)を参照)を別途工程にて製造し準備する。この第1マスター基板Aも図3(a)に示したものと同一であるから同一部位には同一符号を付与して示す。
 次に個片28a、28b、28cが有する貫通電極の各Cuポスト17を、第1マスター基板Aの表面側に形成され、各個片28a、28b、28cが有する貫通電極それぞれに対応する各パッド電極24に対向させ、真空に近い減圧雰囲気中、所定の温度(例えば約400℃)で互いに圧着し、結合する。その後図8(b)に示すように、圧着により形成された各個片28a、28b、28cと第1マスター基板Aとの基板結合体からサポート基板14を剥離溶剤などを用いて分離除去し、マスター基板Dとする。この工程以降、マスター基板Dに順次図8(a)および(b)の工程により個片状態の半導体回路層の追加積層を繰り返し実施することによって半導体回路層を垂直方向に3層以上積層した3次元実装の半導体装置を製造することができる。
 以上のように第2の実施形態による製造方法は、半導体基板スケールの第1マスター基板Aにダイ単位などの個片を複数個結合して垂直方向に積層して行う3次元実装方法であり、Wafer to Dieと呼ばれる。これに対し第1の実施形態による3次元実装方法はWafer to Waferと呼ばれるものである。第2の実施形態に係る半導体装置の製造方法によれば、第1の実施形態と同様の効果を得ることができる。
 上記第2の実施の形態では各個片がすべて同一の半導体回路層25bから切り出された同一の回路構成を有するダイを備える場合について説明した。しかし、本実施の形態による製造方法によると互いにサイズの異なる複数のダイ、あるいは半導体メモリー、固体撮像装置、ロジック回路などのような互いに異なる機能を有する複数のダイを1つの半導体基板スケールのマスター基板上に同一層レベルで実装することが可能となる。また、この実施形態では第1マスター基板Aが半導体基板22を主体とする基板として説明したが、これに限られるものではない。半導体基板22以外にその内部や表面、裏面に配線を有し、それら配線と接続された板状のパッド電極が複数形成され、セラミックや樹脂からなる配線基板もマスター基板とすることができる。
 本発明は、半導体集積回路装置などを3次元実装形態にするために必要な、半導体基板の厚み方向に貫通し、微小配列ピッチおよび微小寸法を有する貫通電極の形成に有用である。
10、22、30 半導体基板
11、23、31 絶縁膜層
12、24、32 パッド電極
13 接着剤層
14 サポート基板
15、33 開孔
16、34 Cuプラグ
17、35 Cuポスト
18 バリアメタル
19、20 絶縁膜
21 サイドウオール
25a、25b、27 半導体回路層
26 接液面
28a、28b、28c 個片
40 カソード電極
41 アノード電極
42 銅メッキ液
43 電源
44 シール

Claims (16)

  1.  半導体基板上に形成された絶縁膜層に、その表面が露出するようにパッド電極を形成する工程と、
     前記パッド電極に接触させて前記絶縁膜層上に導電性の接着剤層を形成する工程と、
     前記絶縁膜層と前記パッド電極が形成された側の面である第1面に、前記接着剤層を介して導電性の支持板を接合する工程と、
     前記第1面とは反対側の第2面から前記半導体基板を研磨して所定の厚さに薄化する工程と、
     前記第2面側から前記薄化した半導体基板および前記絶縁膜層を順次選択的にエッチングし、前記パッド電極に達する開孔を形成する工程と、
     前記支持板および前記接着剤層を介して前記パッド電極に所定の電位を与え、メッキ法により前記開孔内に導電性材料を成長させて埋め込むことによって、少なくとも前記開孔の上端から前記パッド電極に達する貫通電極を形成する工程と
     を含むことを特徴とする半導体装置の製造方法。
  2.  前記開孔内に前記導電性材料を埋め込む前に、前記半導体基板の前記第2面側の表面上、および前記開孔の側壁に絶縁膜を形成する工程をさらに備えたことを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  前記貫通電極を形成する工程は、前記導電性材料が前記開孔の外部へ突出して突起部を形成するように行うことを特徴とする請求項2に記載の半導体装置の製造方法。
  4.  前記導電性材料は銅であることを特徴とする請求項2に記載の半導体装置の製造方法。
  5.  前記導電性材料は銅であることを特徴とする請求項3に記載の半導体装置の製造方法。
  6.  前記パッド電極は銅またはアルミニウムを主成分とする金属からなり、前記パッド電極と前記絶縁膜層との間にタンタル系もしくはチタン系のバリアメタルを設けることを特徴とする請求項4に記載の半導体装置の製造方法。
  7.  前記パッド電極は銅またはアルミニウムを主成分とする金属からなり、前記パッド電極と前記絶縁膜層との間にタンタル系もしくはチタン系のバリアメタルを設けることを特徴とする請求項5に記載の半導体装置の製造方法。
  8.  前記半導体基板は、その中に、前記半導体基板の表面に平行な埋め込み絶縁層が形成されたSOI基板であり、前記半導体基板を薄化する工程は、前記半導体基板の半導体材料部を研磨した後、さらに前記半導体材料部を選択的にウエットエッチングして、前記埋め込み絶縁層を露出させる工程を含むことを特徴とする請求項1に記載の半導体装置の製造方法。
  9.  前記半導体基板は第1の半導体基板であり、前記パッド電極は第1のパッド電極であり、
     第2の半導体基板上に第2のパッド電極が形成されたマスター基板を準備する工程と、
     前記貫通電極と前記マスター基板の前記第2のパッド電極とを対向させて結合する工程と
     を含むことを特徴とする請求項1に記載の半導体装置の製造方法。
  10.  前記半導体基板は第1の半導体基板であり、前記パッド電極は第1のパッド電極であり、
     第2の半導体基板上に第2のパッド電極が形成されたマスター基板を準備する工程と、
     前記貫通電極と前記マスター基板の前記第2のパッド電極とを対向させて結合する工程と
     を含むことを特徴とする請求項2に記載の半導体装置の製造方法。
  11.  前記貫通電極と前記マスター基板の前記第2のパッド電極とを結合する工程の後、前記支持板を前記第1面から分離する工程をさらに含むことを特徴とする請求項10に記載の半導体装置の製造方法。
  12.  前記貫通電極は、前記導電性材料が前記開孔の外部へ突出した突起部を有し、前記貫通電極と前記マスター基板の前記第2のパッド電極とを前記突起部で結合することを特徴とする請求項10に記載の半導体装置の製造方法。
  13.  前記半導体基板は第1の半導体基板であり、前記パッド電極は第1のパッド電極であり、前記第1の半導体基板、前記絶縁膜層、前記第1のパッド電極、前記貫通電極、前記支持板および前記接着剤層を備えた状態の基板は第1の基板であり、
     第2の基板上に第2のパッド電極が形成されたマスター基板を準備する工程と、
     前記第1の基板を複数の個片に分割する工程と、
     前記個片が有する前記貫通電極と前記マスター基板の前記第2のパッド電極とを対向させて結合する工程と
     を含むことを特徴とする請求項1に記載の半導体装置の製造方法。
  14.  前記半導体基板は第1の半導体基板であり、前記パッド電極は第1のパッド電極であり、前記第1の半導体基板、前記絶縁膜層、前記第1のパッド電極、前記貫通電極、前記支持板および前記接着剤層を備えた状態の基板は第1の基板であり、
     第2の基板上に第2のパッド電極が形成されたマスター基板を準備する工程と、
     前記第1の基板を複数の個片に分割する工程と、
     前記個片が有する前記貫通電極と前記マスター基板の前記第2のパッド電極とを対向させて結合する工程と
     を含むことを特徴とする請求項2に記載の半導体装置の製造方法。
  15.  前記個片が有する前記貫通電極と前記マスター基板の前記第2のパッド電極とを結合する工程の後、前記個片における前記支持板を前記第1面から分離する工程をさらに含むことを特徴とする請求項14に記載の半導体装置の製造方法。
  16.  前記貫通電極は、前記導電性材料が前記開孔の外部へ突出した突起部を有し、前記個片が有する前記貫通電極と前記マスター基板の前記第2のパッド電極とを前記突起部で結合することを特徴とする請求項14に記載の半導体装置の製造方法。
PCT/JP2010/007470 2010-01-20 2010-12-24 半導体装置の製造方法 WO2011089677A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-010256 2010-01-20
JP2010010256A JP2011151138A (ja) 2010-01-20 2010-01-20 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2011089677A1 true WO2011089677A1 (ja) 2011-07-28

Family

ID=44306501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007470 WO2011089677A1 (ja) 2010-01-20 2010-12-24 半導体装置の製造方法

Country Status (2)

Country Link
JP (1) JP2011151138A (ja)
WO (1) WO2011089677A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5814959B2 (ja) * 2013-02-21 2015-11-17 株式会社東芝 半導体装置及びその製造方法
JP5827277B2 (ja) * 2013-08-02 2015-12-02 株式会社岡本工作機械製作所 半導体装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007909A (ja) * 2001-04-17 2003-01-10 Mitsubishi Electric Corp 半導体装置の製造方法とそれによる半導体装置およびこれを用いた電子機器
JP2006210369A (ja) * 2005-01-25 2006-08-10 Murata Mfg Co Ltd 半導体装置およびその製造方法
JP2007049103A (ja) * 2005-08-05 2007-02-22 Zycube:Kk 半導体チップおよびその製造方法、ならびに半導体装置
JP2009111061A (ja) * 2007-10-29 2009-05-21 Elpida Memory Inc 半導体装置およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007909A (ja) * 2001-04-17 2003-01-10 Mitsubishi Electric Corp 半導体装置の製造方法とそれによる半導体装置およびこれを用いた電子機器
JP2006210369A (ja) * 2005-01-25 2006-08-10 Murata Mfg Co Ltd 半導体装置およびその製造方法
JP2007049103A (ja) * 2005-08-05 2007-02-22 Zycube:Kk 半導体チップおよびその製造方法、ならびに半導体装置
JP2009111061A (ja) * 2007-10-29 2009-05-21 Elpida Memory Inc 半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP2011151138A (ja) 2011-08-04

Similar Documents

Publication Publication Date Title
TWI320198B (en) Methods of forming through-wafer interconnects and structures resulting therefrom
US8951906B2 (en) Method of forming a through-silicon via utilizing a metal contact pad in a back-end-of-line wiring level to fill the through-silicon via
JP4366510B2 (ja) 垂直型接続部を使用したチップおよびウェハ集積方法
TWI387052B (zh) 用於形成一穿透一半導體裝置結構之導電通孔之方法,用於製造一半導體裝置結構之方法,半導體裝置結構及電子裝置
US9455181B2 (en) Vias in porous substrates
US8034713B2 (en) Method for stacking and interconnecting integrated circuits
TWI538147B (zh) 低應力導通體
JP5682897B2 (ja) 基板を含む半導体ウェハの一部分内にビアを形成するための方法および基板を含む半導体ウェハの一部分内に形成されるビア構造体
US8546961B2 (en) Alignment marks to enable 3D integration
TW201639087A (zh) 具有矩形空腔陣列的聚合物框架的製造方法
TW201036104A (en) Minimum cost method for forming high density passive capacitors for replacement of discrete board capacitors using a minimum cost 3D wafer-to-wafer modular integration scheme
JP2006019455A (ja) 半導体装置およびその製造方法
US10553358B2 (en) Electronic substrates and interposers made from nanoporous films
JP2013533638A (ja) 裏面コンタクトがビアファースト構造体又はビアミドル構造体で接続された超小型電子素子
TW201630008A (zh) 具有與電容器串聯的至少一個通孔的芯片用聚合物框架
WO2010035375A1 (ja) 半導体装置及びその製造方法
US8913402B1 (en) Triple-damascene interposer
CN111566799B (zh) 用于形成半导体装置的后柱方法
CN111968953A (zh) 硅通孔结构及其制备方法
JP5377657B2 (ja) 半導体装置の製造方法
WO2011089677A1 (ja) 半導体装置の製造方法
TWI571988B (zh) 具有矽貫穿電極的晶片以及其形成方法
JP4323137B2 (ja) 基板埋め込み用キャパシタ、基板埋め込み用キャパシタを埋め込んだ回路基板及び基板埋め込み用キャパシタの製造方法
WO2024021356A1 (zh) 高深宽比tsv电联通结构及其制造方法
TW201640976A (zh) 堆疊電子裝置及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843843

Country of ref document: EP

Kind code of ref document: A1